• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The in fl uence of silane coupling agent and poplar particles on the wettability, surface roughness, and hardness of UF-bonded wheat straw (Triticum aestivum L.)/poplar wood particleboard

    2014-06-19 17:22:07SeyedehMasoumehHafeziKazemDoosthoseini
    Journal of Forestry Research 2014年3期

    Seyedeh Masoumeh Hafezi ? Kazem Doosthoseini

    The in fl uence of silane coupling agent and poplar particles on the wettability, surface roughness, and hardness of UF-bonded wheat straw (Triticum aestivum L.)/poplar wood particleboard

    Seyedeh Masoumeh Hafezi ? Kazem Doosthoseini

    We used silane coupling agents to improve the bonding ability between wheat straw particles and UF resin, and investigated surface properties (wettability and surface roughness) and hardness of particleboard made from UF-bonded wheat straw (Triticum aestivum L.) combined with poplar wood as affected by silane coupling agent content and straw/poplar wood particle ratios. We manufactured one-layered particleboard panels at four different ratios of straw to poplar wood particles (0%, 15%, 30% and 45% wheat straw) and silane coupling agent content at three levels of 0, 5% and 10%. Roughness measurements, average roughness (Ra), mean peak-to-valley height (Rz), and root mean square roughness (Rq) were measured on unsanded samples by using a fi ne stylus tracing technique. We obtained contact angle measurements by using a goniometer connected to a digital camera and computer system. Boards containing greater amounts of poplar particles had superior hardness compared to control samples and had lower wettability. Panels made with higher amounts of silane had lower Rqvalues.

    wheat straw particleboard, poplar wood, surface properties, wettability, silane coupling agent, hardness

    Introduction

    Approximately 95% of the lignocellulosic material available for particleboard production is wood. Decreasing availability of raw material and the need to conserve natural resources initiated research regarding the use of non-wood fi bers in particleboard production (Dahmardeh Ghalehno et al. (2011). Cereal straw is annually-renewable and available in large quantities in many regions of world, the worldwide production of cereal straw is estimated at 1.5 billion m3annually (Grigoriou 2000). Cereal straw has high fibre content. Traditionally, straw feed to livestock, use as a fuel for heating and cooking, in India/Nepal, combine it with cattle dung to produce fuel farmers harvest grain, Also in no-till systems, it remains on the soil to be incorporated as a contributor to organic content. In North America, straw is baled for later use as bedding material and fodder. It typically burn or otherwise dispose the residues (stalks and husk). Burning wheat straw causes environmental problems such as air pollution, soil erosion and a decrease in soil biological activity (Grigoriou 2000).

    In the last two decades, use of straw has been gaining research attention as a potential alternative fi brous raw material replacing wood for making particleboards (Azizi et al. 2011). However some problems still exist, including seasonality of availability, storage, scattered sources and bondability. Of these problems, bondability is a major unsolved technical problem, especially when urea-based resins are applied (Han et al. 1999). Morphologically, straw is more complicated than wood. Straw contains a relatively large number of elements, including the actual fibers, parenchyma cells, vessel elements, and epidermal cells, which contain high amounts of ash and silica .The epidermal cells of straw are the outermost surface cells covered by a thin wax layer. This surface layer reduces absorbance by straw of moisture from water-based adhesives such as urea-formaldehyde (UF) resin (Markessini et al. 1997). The layer therefore acts as a barrier to the gluing of straw with UF resin. Removing this bonding barrier layer from straw materials is a technical problem for performance enhancement of straw panels (Markessini et al. 1997; Han et al. 1999). Isocyanate is an alternative resin that can be used to improve the properties of these strawboards, but the use of isocyanate is hindered by its high cost; hence, it is not commonly utilized, especially in developing countries (Han et al. 1999). In addition, silane coupling agents are generally added when using isocyanate because they improve the adhesion between organic and inorganic materials (Han et al. 1998). We used silane cou-pling agents to modify the characteristics of the inorganic surface by fixing organic functional groups onto it (Han et al. 1998). Particleboard is widely used as substrate for thin overlays such as laminates, resin impregnated papers, foils and as a direct fi nish to surface uses including furniture, counter and desk tops, cabinets, fl oor, wall, ceiling panels, door skin and of fi ce dividers. Roughness is a measure of the fi ne irregularities on a surface. The surface roughness of particleboard plays an important role since surface irregularities can show through thin overlays, reducing the fi nal quality of the panel. When particleboard is used as substrate for surface coating, the particleboard surfaces must be capable of resisting peeling. Fine irregularities on the board surface will show through overlays, and this lowers the grade of the final product, and its quality, fi nishing and gluing. Wettability is an index of how fast a liquid will wet and spread on the particleboard surface, or whether it will be repelled and not spread on the surface. Wettability is crucial for good adhesion in bonding between particleboard and coatings. Liquid surface coatings or adhesives must wet, fl ow and penetrate the cellular structure of wood to establish tight contact between molecules of the composite surface and its coating. The contact angle (CA) method is commonly used to determine the wettability of particleboard. A CA value of zero indicates perfect wetting of a surface. Liquids can wet surfaces at CA values less than 90° (Baharoglu et al. 2011).

    Our objective was to investigate the in fl uence of silane coupling agents and percentages of poplar wood particles on the surface roughness, wettability and hardness of UF-bonded wheat straw (Triticum aestivum L.)/poplar wood particleboards.

    Materials and methods

    Wheat straw and poplar wood particles

    We obtained poplar logs from forests in northern Iran. The agricultural lignocellulosic fi ber was from wheat straw (Triticum aestivum L.) in Karaj, near Tehran. We prepared straw and poplar particles using a Pallmann knife ring flaker. All particles were air-dried to about 3% moisture content. Subsequently, we screened particles by handle sieve and oversize and undersize particles were removed. The average size of straw particles was 34 mm × 2.56 mm × 0.33 mm and that of poplar particles was 23 mm × 5.6 mm × 0.85 mm. Slenderness ratios for wheat straw and poplar particles were 80 and 27, respectively. The fractional analysis of straw particles in comparison to poplar particles is listed in Table 1.

    Table 1: Fractional (%) weights of straw and poplar wood particles

    Silane coupling agent

    We used amino silane coupling agent NH2-C3H6-Si (OC2H5)3in our assessment of the properties of the straw/poplar wood particleboards. The silane coupling agents (Merck Chemistry Company, Germany) had molar mass of 221.37 g?mol-1, density of 0.95 g?cm-3at 20°C, boiling point of 217°C, flash point of 93°C, pH (20 g?mol-1, H2O, 20°C) of 11, solubility temperature of 20°C, and ignition temperature of 300°C.

    UF resin

    We obtained commercial UF resin from Tiran Chemistry Company, Iran. The resin was water dispersed with a solid content of 62%, viscosity of 125 cp, gelation time of 54 s, pH of 7.5 and mass of 1.28 g/cm3.

    Board manufacture

    The UF resin was sprayed onto the particles in a blender at 10% resin content based on the oven-dried weight of particles. Silane coupling agent was mixed with the UF resin prior to blending, based on the weight of the resin solid. Based on the weight of the resin solid, 1% of NH4Cl was added as the curing catalyst. Sample boards were pressed into hand-formed mats 14 mm thick using distance bars at 180°C for 5 min and mats were pressed under a pressure of 35 kg?cm-2. The board size was 400 mm × 400 mm × 14 mm with targeted density of 0.70 g?cm-3. We tested four ratios of straw to poplar (100/0, 85/15, 70/30 and 55/45) and three levels of coupling agent (0, 5% and 10%). Our experimental schedule is shown in Table 3.

    Mechanical and physical testing

    Prior to testing the physical and mechanical properties of sample boards, the boards were conditioned at (20±1)°C and (65±5)% relative humidity (RH) until they reached a constant weight. The surface properties of the samples were determined by the use of a fi ne stylus pro fi lometer (Mitutoyo SJ-201P). Based on these variables, 12 board formulations were manufactured with three boards of each type, resulting in 36 boards in total. Three samples were used from each type of panel for surface roughness measurements. Three roughness parameters described by DIN 4768 standard (1990) as average roughness (Ra), mean peak-to-valley height (Rz), and root mean square roughness (Rq) were measured to evaluate the surface properties of the panels. Surface roughness parameters were calculated from digital information. The vertical displacement of the stylus was converted into an electrical signal by a linear displacement detector before the signal was ampli fi ed and converted into digital information. Rais the arithmetic mean of the absolute values of the pro fi le deviations from the mean and is the most commonly used parameter in surface fi nish measurement. The surface roughness of the samples was measured to a sensitivity of 0.5 μm. Measuring speed, pin diameter and pin top angle of the tool were 0.5 mm?s-1,4 μm and 90°C, respectively. The length of tracing line (Lt) and cut-off were 12.5 mm and 2.5 mm (γ), respectively. Measuring force of the scanning arm on the samples was 4 mN (0.4 gf). Measurements were done at room temperature and the pin was calibrated before the tests (Jarusombuti et al. 2010).

    The wetting behavior of the particleboard samples was characterized by the contact angle method (goniometer technique). The contact angles were obtained using a KSV Cam-101. By the sessile drop method, the most widely used procedure, the contact angle was determined simply by aligning a tangent with the sessile drop pro fi le at the point of contact with the solid surface. The drop image was stored using a video camera and an image analysis system calculated the contact angle (h) from the shape of the distilled water drop at room temperature. An imaging system was used to measure contact angle, shape, and size of water droplets for the tested sample surfaces. The image of the liquid drop was captured by a video camera and the contact angle was measured by digital image-analysis software. After a 5 μL droplet of the distilled water was placed on the sample surface, contact angles from the images were measured at one fi fth of a second. Three board samples measuring 50 mm × 50 mm × 14 mm were used from each type of formulation for contact angle measurements (Ayrilmis and Winandy 2010).

    The hardness behavior of the particleboard samples was characterized by Instron 4486 instrument and the Brinel method as described by ASTM 1037 standards (1990). Three samples of 50 mm × 50 mm × 14 mm were used from each type of board formulation for hardness measurements.

    Statistical analysis

    The experiment was designed as factorial using a completely randomized design arrangement. The Duncan method was used to compare means (p <0.05). Statistical analysis was conducted using SPSS? software.

    Results and discussion

    Physical properties

    Surface roughness

    Surface quality of sample particleboards increased with increasing ratios of poplar to straw and increasing levels of silane coupling agents (p < 0.05 in both cases, Figs. 1, 2 and 3).

    Increased concentrations of silane coupling agents reduced surface roughness as indexed by Rq values. This might have been due to better interfacial interaction between wheat straw and UF resin. The boards made with 10% silane coupling agent and 30% poplar particles had the smoothest surfaces. A typical commercially manufactured particleboard could have Ra values ranging from 3 to 6 μm (H?z?roglu 1996). Our samples exceeded this range, suggesting that the surfaces of our panels was too rough to be accepted as a substrate without preparatory sanding. However, if the panels were sanded with a sequence of 150, 180 and 220 grit sandpaper, their surfaces could be improved to meet the requirements for substrates for overlays (Hiziroglu and Holcomb 2005).

    Fig. 1: Surface roughness (Ra) of boards

    Fig. 2: Surface roughness (Rq) of boards

    Fig. 3: Surface roughness (Rz) of boards

    Wettability

    Panels made from 15% poplar particles and 10% silane coupling agent had the highest contact angles (Fig. 4). This might have been due to reduced bonding between the wheat straw particles in 100% straw board, which increased water diffusion into this type of panel.

    Adding poplar particles to a level of 30% had the positive effect of reducing wettability. This might have been due to better bonding between poplar particles than between straw particles because of the waxy layer on the latter, and the resulting improvement in compression during the pressing stage due to thegreater proportion of poplar particles. Increasing moisture content of wood from 40% to 60% significantly improved wettability and caused smoother surfaces. (Baharoglu et al. 2011).

    Fig. 4: Wettability (contact angle) of boards

    Mechanical properties: Hardness

    Silane concentration had no effect on particleboard quality but the addition of poplar particles into wheat straw particleboard signi fi cantly increased hardness (Fig. 5).

    Fig. 5: The Hardness (Ha) of boards

    In general, boards made with greater proportions of poplar exhibited greater hardness than control samples. Maximum hardness was 4.56 N for board with 30% poplar particles and 5% silane coupling agent level. Adding poplar particles increased hardness duo to the greater compression of poplar particles in compaction with wheat straw particles during pressing. In addition, higher density in poplar particles in compression with straw particles can be a good reason for illustrating this increasing. Doosthosseini and Abdolzadeh (2010) reported that the use of recycled corrugated containers (RCCs) improved the hardness of wood composites due to improved compaction of RCCs and better compression during pressing.

    Conclusion

    Wettability and hardness of wheatstraw particleboard were signi fi cantly improved by the addition of poplar particles. Adding poplar particles from 15% to 45% signi fi cantly increased hardness, while adding poplar particles to 30% improved wettability. The addition of silane coupling agents resulted in smoother particleboard surfaces.

    Panels made with 30% poplar particles and 5% silane coupling agent had greater hardness and less surface roughness, but panels made with 15% poplar particles and 10% silane coupling agent level had less wettability.

    In general, the addition of silane coupling agent resulted in better particleboard characteristics because of better adhesion between the UF resin and the straw particles.

    Ayr?lm?s N, Winandy JE. 2010. Effects of post heat treatment on surface Characteristics and adhesive bonding performance of MDF. Materials and Manufacturing Processes, 24: 594–599.

    Azizi Kh, Tabarsa T, Ashori A. 2011. Performance characterizations of particleboards made with wheat straw and waste veneer splinters. Composites Part B: Engineering, 42(7): 2085–2089.

    Baharoglu M, G?kay N, Sar? B, Bardak S, Ayr?lm?s N. 2011. The in fl uence of moisture content of raw material on the physical and mechanical properties, surface roughness, wettability and formaldehyde emission of particleboard composite. Composites Part B: Engineering, 43(5): 2448-2457.

    Dahmardeh Ghalehno M, Madhoushi M, Tabarsa T, Nazerian M. 2011. The manufacture of particleboards using mixture of read (surface layer) and commercial species (middle layer). European Journal of Wood and Wood Products, 69(3): 341-344.

    Doosthoseini K, Abdolzadeh H. 2010. Investigation on the feasibility of utilization wood and OCC fiber on the surface layer of particleboard and their effects on surface hardness and roughness. Iranian Journal of Wood and Paper Science Research, 25(1): 62-69.

    Grigoriou AH. 2000. Straw-wood composites bonded with various adhesive systems. Wood Science and Technology, 34: 355–365.

    Han GP, Zhang CW, Zhang DM, Umemura K, Kawai S. 1998. Upgrding of urea formaldehyde-bonded reed and wheat straw particle boards using silane coupling agents. Journal of Wood Science and Technology, 44(4): 282–286.

    Han GP, Umemura K, Kawai S, Kajita H. 1999. Improvement mechanism of bond ability in UF bonded reed and wheat straw boards by silane coupling agent and extraction treatments. Journal of Wood Science and Technology, 45(4): 299-305.

    H?z?roglu S. 1996. Surface roughness analysis of wood composites: a stylus method. Forest Products Journal, 46(7/8): 67–72.

    H?z?roglu S, Holcomb R. 2005. Some of the properties of the three-layer particleboard made of eastern red cedar. Building and Environment, 40(5): 719–723.

    Jarusombuti S, Ayr?lm?s N, Bauchongkol P, Fueangvivat V. 2010. Surface characteristics and overlaying properties of MDF panels from thermally treated rubberwood fi bers. Bioresources, 5(2): 968–978.

    Markessini E, Roffael E, Rigal L. 1997. Panels from annual plant fibers bonded with urea formaldehyde resins. In: Proceedings of 31st international particleboard composite materials symposium, April 8-10, Washington State University, pp. 147-160.

    2013-01-21; Accepted: 2013-04-23

    DOI 10.1007/s11676-014-0505-7

    The online version is available at http://www.springerlink.com

    Seyedeh Masoumeh Hafezi (), Kazem Doosthoseini

    Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, I. R. Iran.

    Tel.: +9809112575520

    E-mail: masoumeh_hafezi@yahoo.com

    Corresponding editor: Yu Lei

    ? Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2014

    18禁在线播放成人免费| 亚洲电影在线观看av| 欧美日本亚洲视频在线播放| 久久人人爽人人爽人人片va| videossex国产| 国产69精品久久久久777片| 免费人成在线观看视频色| 伊人久久精品亚洲午夜| 国产午夜精品久久久久久一区二区三区 | .国产精品久久| 日本免费一区二区三区高清不卡| 亚洲av成人av| 男人和女人高潮做爰伦理| 内地一区二区视频在线| 国产精品国产高清国产av| 波多野结衣高清无吗| 日韩欧美一区二区三区在线观看| 久久韩国三级中文字幕| 校园春色视频在线观看| 一个人看的www免费观看视频| 深夜a级毛片| 国产一区二区三区在线臀色熟女| 中文字幕精品亚洲无线码一区| 精品久久久久久久久久免费视频| 在线天堂最新版资源| 亚洲国产精品sss在线观看| 国产精品爽爽va在线观看网站| 精品欧美国产一区二区三| 中文在线观看免费www的网站| 人人妻人人澡人人爽人人夜夜 | 国产美女午夜福利| 亚洲人成网站在线观看播放| 蜜臀久久99精品久久宅男| 国产一区二区在线av高清观看| 欧美色视频一区免费| av在线老鸭窝| 我的老师免费观看完整版| 丰满人妻一区二区三区视频av| 国产精品久久视频播放| 国内久久婷婷六月综合欲色啪| 欧美高清成人免费视频www| 一进一出抽搐gif免费好疼| 日韩欧美三级三区| 国产淫片久久久久久久久| 亚洲人成网站高清观看| 久久热精品热| 嫩草影院精品99| 中文字幕精品亚洲无线码一区| 小蜜桃在线观看免费完整版高清| 午夜影院日韩av| 亚洲最大成人av| 51国产日韩欧美| 成人欧美大片| 91午夜精品亚洲一区二区三区| 色哟哟·www| 国产欧美日韩一区二区精品| 97超碰精品成人国产| 1000部很黄的大片| 国产精品一区二区三区四区久久| 最近的中文字幕免费完整| 免费一级毛片在线播放高清视频| 嫩草影视91久久| 变态另类丝袜制服| 日本撒尿小便嘘嘘汇集6| 亚洲欧美成人精品一区二区| 精品久久久久久久久亚洲| а√天堂www在线а√下载| 桃色一区二区三区在线观看| 天天一区二区日本电影三级| 女生性感内裤真人,穿戴方法视频| 免费观看的影片在线观看| 老师上课跳d突然被开到最大视频| 成人亚洲欧美一区二区av| 久久这里只有精品中国| 最近在线观看免费完整版| 天堂网av新在线| 不卡一级毛片| 女生性感内裤真人,穿戴方法视频| 国产美女午夜福利| 日韩,欧美,国产一区二区三区 | 波多野结衣高清无吗| 舔av片在线| 在线免费观看不下载黄p国产| 91在线观看av| 国产高清激情床上av| 国产精品久久久久久av不卡| 国产探花在线观看一区二区| 免费看a级黄色片| 国产一区二区三区在线臀色熟女| 免费黄网站久久成人精品| 三级经典国产精品| 久久99热这里只有精品18| 亚洲精品影视一区二区三区av| 日本在线视频免费播放| 91久久精品电影网| 麻豆国产97在线/欧美| 国产精品一区www在线观看| 国产欧美日韩精品一区二区| 天天躁夜夜躁狠狠久久av| 激情 狠狠 欧美| 国产69精品久久久久777片| 天天一区二区日本电影三级| 亚州av有码| 亚洲av免费高清在线观看| 国产精品一区二区免费欧美| 久久人人精品亚洲av| 一个人免费在线观看电影| 亚洲精品456在线播放app| 天天一区二区日本电影三级| 国产成年人精品一区二区| 国产精品嫩草影院av在线观看| 中文字幕久久专区| 久久国产乱子免费精品| 91久久精品国产一区二区成人| 久久精品国产亚洲av天美| 亚洲人成网站在线播放欧美日韩| 国产av不卡久久| 国产欧美日韩一区二区精品| 久久久久久久久中文| 最好的美女福利视频网| 亚洲国产精品成人综合色| 日本三级黄在线观看| 国产熟女欧美一区二区| 亚洲最大成人av| 美女高潮的动态| 天堂av国产一区二区熟女人妻| 网址你懂的国产日韩在线| 国产成人精品久久久久久| 十八禁网站免费在线| 少妇熟女欧美另类| 少妇高潮的动态图| 亚洲熟妇熟女久久| 亚洲欧美精品综合久久99| 国产精品1区2区在线观看.| 香蕉av资源在线| 在现免费观看毛片| 看免费成人av毛片| 国产欧美日韩精品亚洲av| 久久精品夜色国产| 大香蕉久久网| 麻豆av噜噜一区二区三区| 国产单亲对白刺激| 美女黄网站色视频| 欧美一区二区国产精品久久精品| or卡值多少钱| 嫩草影院新地址| 精品欧美国产一区二区三| 又爽又黄无遮挡网站| 人妻制服诱惑在线中文字幕| 国产蜜桃级精品一区二区三区| 日韩高清综合在线| 国产探花在线观看一区二区| 精华霜和精华液先用哪个| 高清毛片免费观看视频网站| 日日摸夜夜添夜夜添av毛片| 无遮挡黄片免费观看| 亚洲av成人av| 超碰av人人做人人爽久久| 欧美3d第一页| 变态另类成人亚洲欧美熟女| 淫秽高清视频在线观看| 国产大屁股一区二区在线视频| 国产免费一级a男人的天堂| 亚洲最大成人av| 成年av动漫网址| 永久网站在线| 亚洲性夜色夜夜综合| 老司机午夜福利在线观看视频| 亚洲经典国产精华液单| 综合色av麻豆| 色av中文字幕| 亚洲电影在线观看av| 舔av片在线| 别揉我奶头 嗯啊视频| 日韩欧美 国产精品| 18禁在线播放成人免费| 黄色欧美视频在线观看| 精品人妻视频免费看| 久久久久国内视频| 国产精品99久久久久久久久| 亚洲一级一片aⅴ在线观看| 午夜激情福利司机影院| 黄色日韩在线| 国产精品国产三级国产av玫瑰| 99热6这里只有精品| 成人高潮视频无遮挡免费网站| 深夜精品福利| 久久人人爽人人片av| 两性午夜刺激爽爽歪歪视频在线观看| 变态另类丝袜制服| 国产在视频线在精品| 神马国产精品三级电影在线观看| 欧美成人a在线观看| 美女被艹到高潮喷水动态| 日本色播在线视频| 国产淫片久久久久久久久| 不卡视频在线观看欧美| 九九热线精品视视频播放| 精品午夜福利视频在线观看一区| 欧美日韩综合久久久久久| 亚洲无线在线观看| 干丝袜人妻中文字幕| 在线天堂最新版资源| 成人漫画全彩无遮挡| 国产aⅴ精品一区二区三区波| 中文字幕av成人在线电影| 欧美激情在线99| 亚洲在线观看片| 色av中文字幕| 色哟哟·www| 综合色av麻豆| 国产成人aa在线观看| 最近最新中文字幕大全电影3| 亚洲av二区三区四区| av国产免费在线观看| 日韩欧美免费精品| 最近的中文字幕免费完整| 日韩一区二区视频免费看| 亚洲一区二区三区色噜噜| 99热只有精品国产| 一本久久中文字幕| 亚洲精品乱码久久久v下载方式| 人妻制服诱惑在线中文字幕| 男人舔奶头视频| 一级毛片电影观看 | 婷婷亚洲欧美| 成年女人永久免费观看视频| 观看免费一级毛片| 日韩中字成人| 成人av在线播放网站| 国产精品国产高清国产av| 成年女人永久免费观看视频| 淫妇啪啪啪对白视频| 亚洲国产精品sss在线观看| 最近在线观看免费完整版| 欧美不卡视频在线免费观看| 一级毛片久久久久久久久女| 少妇的逼水好多| 久久99热这里只有精品18| a级毛色黄片| 国产高清不卡午夜福利| 在线免费观看的www视频| 天美传媒精品一区二区| 97人妻精品一区二区三区麻豆| 久久亚洲国产成人精品v| 欧美不卡视频在线免费观看| 国产真实伦视频高清在线观看| 岛国在线免费视频观看| 99久国产av精品| 人人妻人人澡人人爽人人夜夜 | 国产精品精品国产色婷婷| 夜夜爽天天搞| 色视频www国产| 尾随美女入室| 日产精品乱码卡一卡2卡三| 国产一区二区激情短视频| 少妇人妻精品综合一区二区 | 午夜福利成人在线免费观看| 国产伦一二天堂av在线观看| 色在线成人网| а√天堂www在线а√下载| 精品日产1卡2卡| 国产精品一区二区三区四区免费观看 | av视频在线观看入口| 老女人水多毛片| 精品人妻视频免费看| 久久韩国三级中文字幕| 级片在线观看| 国产三级在线视频| av在线播放精品| 直男gayav资源| 亚洲自拍偷在线| 可以在线观看的亚洲视频| av天堂中文字幕网| 免费人成视频x8x8入口观看| 国产成人freesex在线 | 国产免费男女视频| 久久久精品欧美日韩精品| 人妻丰满熟妇av一区二区三区| 99久久精品热视频| 欧美丝袜亚洲另类| 老熟妇仑乱视频hdxx| 国产精品久久久久久av不卡| 国内精品一区二区在线观看| 一个人免费在线观看电影| 午夜视频国产福利| 欧美精品国产亚洲| 久久人妻av系列| 久久精品夜夜夜夜夜久久蜜豆| 美女高潮的动态| 日韩一本色道免费dvd| 男插女下体视频免费在线播放| 天天一区二区日本电影三级| 一夜夜www| 亚洲丝袜综合中文字幕| 亚洲18禁久久av| 久久久久精品国产欧美久久久| 日韩中字成人| 国产精品一二三区在线看| 悠悠久久av| 午夜免费激情av| h日本视频在线播放| 天美传媒精品一区二区| 国产免费男女视频| 国产黄色小视频在线观看| 午夜日韩欧美国产| 亚洲最大成人av| 一级毛片aaaaaa免费看小| 国产成人91sexporn| 特大巨黑吊av在线直播| 成人三级黄色视频| 成人二区视频| 嫩草影视91久久| 精品一区二区三区视频在线| 12—13女人毛片做爰片一| 一本久久中文字幕| 久久精品91蜜桃| 一区二区三区免费毛片| 小说图片视频综合网站| 18禁在线无遮挡免费观看视频 | 插阴视频在线观看视频| 三级男女做爰猛烈吃奶摸视频| 日日摸夜夜添夜夜爱| 欧美+日韩+精品| 久久久精品94久久精品| 午夜免费男女啪啪视频观看 | 日本熟妇午夜| 激情 狠狠 欧美| 波多野结衣巨乳人妻| 国产成人福利小说| 麻豆一二三区av精品| 亚洲18禁久久av| 国产又黄又爽又无遮挡在线| 我的女老师完整版在线观看| 国产综合懂色| 免费av毛片视频| 亚洲av电影不卡..在线观看| 午夜福利18| 日本撒尿小便嘘嘘汇集6| 嫩草影视91久久| 可以在线观看的亚洲视频| 12—13女人毛片做爰片一| 久久午夜亚洲精品久久| 不卡一级毛片| 午夜精品在线福利| 国产高清视频在线播放一区| 51国产日韩欧美| 久久热精品热| 精品人妻熟女av久视频| 亚洲三级黄色毛片| 国产熟女欧美一区二区| 亚洲精品国产成人久久av| 亚洲不卡免费看| 波多野结衣高清无吗| 最后的刺客免费高清国语| 黄色日韩在线| 18禁在线无遮挡免费观看视频 | 亚洲欧美日韩高清专用| 老熟妇仑乱视频hdxx| 成人av在线播放网站| 91久久精品电影网| 99热6这里只有精品| 此物有八面人人有两片| a级毛色黄片| av在线观看视频网站免费| 亚洲最大成人中文| 免费av毛片视频| 精品人妻一区二区三区麻豆 | 麻豆av噜噜一区二区三区| 人人妻人人澡欧美一区二区| 一级av片app| 色在线成人网| 精品人妻一区二区三区麻豆 | 国产中年淑女户外野战色| 大型黄色视频在线免费观看| 夜夜爽天天搞| 亚洲欧美日韩高清在线视频| 亚洲成人精品中文字幕电影| 国产片特级美女逼逼视频| 国产午夜福利久久久久久| 99久国产av精品国产电影| 一级毛片电影观看 | 男人舔女人下体高潮全视频| 午夜福利成人在线免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 成人无遮挡网站| 小说图片视频综合网站| 国产精品嫩草影院av在线观看| 免费在线观看影片大全网站| 中文字幕精品亚洲无线码一区| 神马国产精品三级电影在线观看| 又爽又黄无遮挡网站| 五月伊人婷婷丁香| 在线播放国产精品三级| 国产高清视频在线观看网站| 日韩一区二区视频免费看| 丰满乱子伦码专区| 久久亚洲国产成人精品v| 超碰av人人做人人爽久久| 国产探花极品一区二区| 亚洲高清免费不卡视频| 国产极品精品免费视频能看的| 1024手机看黄色片| 此物有八面人人有两片| 男人狂女人下面高潮的视频| 男女做爰动态图高潮gif福利片| 99久久成人亚洲精品观看| 国产精品国产三级国产av玫瑰| 精品久久久久久久久久久久久| 免费电影在线观看免费观看| 国产精品电影一区二区三区| 俄罗斯特黄特色一大片| 99久久九九国产精品国产免费| 性插视频无遮挡在线免费观看| 欧美区成人在线视频| 亚洲va在线va天堂va国产| 国产高清不卡午夜福利| 国产片特级美女逼逼视频| 男女啪啪激烈高潮av片| 久久草成人影院| 精品国产三级普通话版| 又黄又爽又刺激的免费视频.| 哪里可以看免费的av片| 尾随美女入室| 亚洲欧美日韩卡通动漫| 亚洲人成网站在线播放欧美日韩| 国产人妻一区二区三区在| 婷婷精品国产亚洲av在线| 国产精品一二三区在线看| 精华霜和精华液先用哪个| 国产久久久一区二区三区| 国产精品免费一区二区三区在线| 天堂av国产一区二区熟女人妻| av在线天堂中文字幕| 一个人看视频在线观看www免费| 色播亚洲综合网| 插逼视频在线观看| 久久久国产成人免费| 亚洲av中文av极速乱| 国产单亲对白刺激| 香蕉av资源在线| 亚洲三级黄色毛片| 深爱激情五月婷婷| 免费av不卡在线播放| 日本欧美国产在线视频| 日韩av不卡免费在线播放| 亚洲一区高清亚洲精品| 丰满的人妻完整版| 国产精品野战在线观看| 午夜亚洲福利在线播放| 国产老妇女一区| 久久久国产成人免费| 国产男靠女视频免费网站| 午夜精品国产一区二区电影 | 久久久精品欧美日韩精品| 亚洲最大成人中文| 免费观看的影片在线观看| 国产乱人偷精品视频| 麻豆精品久久久久久蜜桃| 在线观看av片永久免费下载| 男人的好看免费观看在线视频| 欧美不卡视频在线免费观看| 女人十人毛片免费观看3o分钟| 久久久久国产网址| 69av精品久久久久久| 看黄色毛片网站| 国产一区亚洲一区在线观看| 内地一区二区视频在线| 日韩一本色道免费dvd| 毛片女人毛片| 亚洲精品一卡2卡三卡4卡5卡| 精品免费久久久久久久清纯| 免费av观看视频| 国产av不卡久久| 亚洲在线观看片| 亚州av有码| 亚洲人成网站高清观看| 色吧在线观看| 尤物成人国产欧美一区二区三区| 久久精品久久久久久噜噜老黄 | 99国产极品粉嫩在线观看| 亚洲人与动物交配视频| 国产一级毛片七仙女欲春2| 日韩高清综合在线| av天堂中文字幕网| 午夜福利在线观看吧| 波野结衣二区三区在线| 91久久精品国产一区二区成人| 在线a可以看的网站| 乱系列少妇在线播放| 亚洲成人精品中文字幕电影| 级片在线观看| a级毛片a级免费在线| 成人高潮视频无遮挡免费网站| 日本一二三区视频观看| 日韩精品青青久久久久久| 精品99又大又爽又粗少妇毛片| 天堂动漫精品| 亚洲,欧美,日韩| 亚洲高清免费不卡视频| 久久精品人妻少妇| 高清毛片免费看| 国产成人福利小说| 国产精品国产高清国产av| 97超碰精品成人国产| 六月丁香七月| 大型黄色视频在线免费观看| 99热这里只有精品一区| 床上黄色一级片| 日韩,欧美,国产一区二区三区 | 亚洲欧美日韩卡通动漫| 国产成人精品久久久久久| 一级黄片播放器| 国产蜜桃级精品一区二区三区| 日韩一区二区视频免费看| 成人午夜高清在线视频| 91久久精品电影网| 亚洲人成网站在线播| 国产成人福利小说| 黄色一级大片看看| 国产亚洲av嫩草精品影院| 婷婷精品国产亚洲av在线| 99热这里只有精品一区| 国产精品日韩av在线免费观看| 欧美激情久久久久久爽电影| 简卡轻食公司| 搡老岳熟女国产| 成人综合一区亚洲| 校园人妻丝袜中文字幕| 国产高清不卡午夜福利| 国产人妻一区二区三区在| 男人舔女人下体高潮全视频| 国产伦精品一区二区三区四那| 日韩av在线大香蕉| 男女啪啪激烈高潮av片| 久久精品国产鲁丝片午夜精品| 成年女人永久免费观看视频| 网址你懂的国产日韩在线| 一进一出抽搐动态| 久久久成人免费电影| 亚洲中文日韩欧美视频| 亚洲五月天丁香| 久久久午夜欧美精品| 中文在线观看免费www的网站| 听说在线观看完整版免费高清| 中文亚洲av片在线观看爽| 欧美丝袜亚洲另类| 国产精品国产三级国产av玫瑰| 欧美日韩国产亚洲二区| 久久午夜亚洲精品久久| 国产一区二区在线观看日韩| 看片在线看免费视频| 久久天躁狠狠躁夜夜2o2o| 99国产极品粉嫩在线观看| 中文字幕人妻熟人妻熟丝袜美| 欧美性感艳星| 亚洲一区二区三区色噜噜| 人妻久久中文字幕网| 国产精品日韩av在线免费观看| 黄色日韩在线| 国产精品一二三区在线看| 亚洲精品色激情综合| 亚洲最大成人中文| 一进一出抽搐动态| 国产精品一及| 免费看光身美女| 国产精品一区www在线观看| 草草在线视频免费看| 在线播放无遮挡| 毛片女人毛片| 男人舔女人下体高潮全视频| 久久久久久久久中文| 午夜老司机福利剧场| 国产一区二区三区av在线 | 天天躁夜夜躁狠狠久久av| 在线播放国产精品三级| 亚洲av一区综合| 两个人的视频大全免费| 内地一区二区视频在线| 我要看日韩黄色一级片| 不卡一级毛片| 亚洲精品乱码久久久v下载方式| 我要看日韩黄色一级片| 国产一级毛片七仙女欲春2| 一卡2卡三卡四卡精品乱码亚洲| 欧美性猛交黑人性爽| 夜夜看夜夜爽夜夜摸| 精品日产1卡2卡| 综合色av麻豆| 成年女人看的毛片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 91久久精品国产一区二区三区| 高清午夜精品一区二区三区 | 三级经典国产精品| 97超级碰碰碰精品色视频在线观看| 亚洲av免费在线观看| 国产成人freesex在线 | 久久这里只有精品中国| 日日摸夜夜添夜夜添av毛片| 欧美色视频一区免费| 日韩欧美一区二区三区在线观看| 熟妇人妻久久中文字幕3abv| 熟女人妻精品中文字幕| 久久中文看片网| 人妻制服诱惑在线中文字幕| 最近的中文字幕免费完整| 99热只有精品国产| 国产精品乱码一区二三区的特点| 久久精品夜色国产| 亚洲av免费在线观看| 看十八女毛片水多多多| 美女高潮的动态| 国国产精品蜜臀av免费| 亚洲中文字幕日韩| 成年av动漫网址|