• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite element analysis of stress and strain distributions in mortise and loose tenon furniture joints

    2014-06-19 17:22:07MohammadDerikvandGhanbarEbrahimi
    Journal of Forestry Research 2014年3期

    Mohammad Derikvand ? Ghanbar Ebrahimi

    Finite element analysis of stress and strain distributions in mortise and loose tenon furniture joints

    Mohammad Derikvand ? Ghanbar Ebrahimi

    We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M<) furniture joints under uniaxial bending loads, and determined the effects of loose tenon length (30, 45, 60, and 90 mm) and loose tenon thickness (6 and 8 mm) on bending moment capacity of M< joints constructed with polyvinyl acetate (PVAc) adhesive. Stress and strain distributions in joint elements were then estimated for each joint using ANSYS finite element (FE) software. The bending moment capacity of joints increased significantly with thickness and length of the tenon. Based on the FE analysis results, under uniaxial bending, the highest shear stress values were obtained in the middle parts of the tenon, while the highest shear elastic strain values were estimated in glue lines between the tenon surfaces and walls of the mortise. Shear stress and shear elastic strain values in joint elements generally increased with tenon dimensions and corresponding bending moment capacities. There was consistency between predicted maximum shear stress values and failure modes of the joints.

    bending moment capacity, failure mode, finite element, furniture, mortise and loose tenon joint; stress and strain distributions

    Introduction

    Finite element analysis (FEA) is among the most effective numerical and computer-based techniques used for analyzing and solving a variety of complex problems of engineering, including physical phenomena in the field of structural, solid, and fluid mechanics (Mackerle 2005; ?olako?lu and Apay 2012). Various studies used the finite element (FE) technique on wooden structures as well as furniture using FE modeling (Smardzewski and Prekrat 2002; Smardzewski and Papuga 2004; Smardzewski and O?arska 2005; Kasal 2006; Ko? et al. 2011; Demirci 2011; ?olako?lu and Apay 2012; Mohamadzadeh et al. 2012; Smardzewski 2012). Smardzewski and Papuga (2004) studied the stress distribution in mortise and tenon and double-dowel joints of skeleton furniture using the FE method. They demonstrated that the values of normal stresses directly affect the strength of construction nodes of skeleton furniture. ?olako?lu and Apay (2012) investigated the strength of a wooden chair constructed of three different wood species in free drop by ANSYS FE software. They concluded that, in order to develop the design of furniture and its packaging, the drop of furniture can be simulated by using FE software, such as ANSYS, for performance testing of packaged or unpackaged furniture. Mohamadzadeh et al. (2012) indicated that FE models yield beneficial information, including the location of damage initiation in composite joints. The stress on critical components that caused the failure can be tabulated and recognized using corresponding failure criteria and this is not possible in experimental studies.

    Our aim was to determine the effect of loose tenon dimensions on stress and strain distributions in T-type mortise and loose-tenon (M<) furniture joints. In the first step, we experimentally determined the effects of tenon length and tenon thickness on bending moment capacity of M< joints. Then, we used ANSYS FE software to estimate the stress and strain distributions in the joint elements with varying thicknesses and lengths of tenons. We compared both results from experiment tests and FE models

    Materials and methods

    M< joint specimens

    Eastern beech (Fagus orientalis L.), with 12% moisture content, was utilized in constructing T-type M< joint specimens used in the study (Fig. 1).Tenon were 6- and 8-mm, while tenon lengths were 30, 45, 60, and 90 mm. Tenon width was constantat 50 mm for all joint specimens. Clearance of 0.05 mm was allowed between tenons and mortise walls, while the clearance between the bottom of the mortise and the end of the tenon was a nominal 0.125 mm (Derikvand et al. 2013). Totally, 40 M< joint specimens [2 (tenon thicknesses) × 4 (tenon lengths) × 5 (replicates)] were constructed using polyvinyl acetate (PVAc) adhesive (60%). Prior to performing the tests, the joint specimens were conditioned at 20°C±2°C and relative humidity of 65%±3% for three weeks (Derikvand et al. 2013; Maleki et al. 2012).

    Fig. 1: Geometry and dimensions (mm) of T-type M< joint specimens

    Testing

    Tests were performed on an Instron (4486) testing machine with a loading velocity of 5 mm?min-1(Fig. 2). Bending moment capacities of the joints were estimated by Equ. 1:

    where, M is bending moment capacity (N?m), F is the maximum applied load (N), and L is the moment arm, 0.35 m.

    Fig. 2: Method of loading used to evaluate bending moment capacity of joint specimens

    FE models

    After performing the laboratory tests, 3-dimensional models of T-type M< joints with different tenon dimensions were constructed in the DesignModeler environment of ANSYS Workbench v.14 finite element software. The following actions were:

    (1) The properties of joint members and PVAc glue were defined as orthotropic and isotropic materials, respectively (Table 1).

    Table 1: Technical properties of oriental beech (Fagus orientalis L.) and PVAc adhesive used in the FEA.

    (2) Twenty-node hexahedral elements were applied to the FE models (Fig. 3). The horizontal and vertical members of joints were meshed with 3 mm hexahedral elements. To increase the reliability of analysis, 1 mm hexahedral elements were applied to the tenon and glue line.

    (3) Based on the experimental results of ultimate bending moment capacities of joints, maximum force values required for loading of each joint were calculated by Equ. 2:

    where F is the required load value (N); M is calculated bending moment capacity (N?m); and L is the moment arm (0.35 m).

    After defining the loading type characteristics, loading direction, and other boundary conditions, we recorded outputs of FE models, including maximum shear stress and shear elastic strain values in joint members.

    Fig. 3: Standard 20-node hexahedral element

    Data evaluation

    Analysis of variance (ANOVA) was applied to quantify differences between mean values for variables.

    Results

    Modulus of failures of joint specimens

    For the joints with 30 mm length tenons, most failures occurred in the glue line of joints. However, along with increase in tenon length from 30 to 90 mm, for both 6 and 8 mm tenon thicknesses, failures occurred mostly in tenons (Fig. 4).

    Fig. 4: Tenon fracture in a test joint with tenon thickness of 6 mm and tenon length of 90 mm

    Bending moment capacity of tested joints

    Average bending moment capacities of joints under uniaxial bending load are shown in Fig. 5.

    Bending moment capacities of the tested joints varied significantly between groups in terms of thickness and length of tenons (Table 2). However, the interaction effect between thickness and length of the tenon was not statistically significant (p >0.05).

    Fig. 5: Average bending moment capacity of joint specimens

    Table 2: Results of ANOVA related to bending moment capacity of M< joints

    The highest bending moment capacity (518.93 Nm) was recorded for joints with tenon length of 90 mm and tenon thickness of 8 mm, while the lowest bending moment capacity (181.62 Nm) was obtained in joints that had tenons of 30 mm length and 6 mm thickness. Bending moment capacity of joints with tenon thickness of 6 mm increased by approximately 106% with increase in tenon length from 30 to 90 mm. In addition, for joints with 8 mm thick tenons, bending moment capacity increased by 107% with increase in tenon length from 30 to 90 mm. The increase of tenon thickness from 6 to 8 mm yielded increased bending moment capacity by 36.6%.

    Stress and strain distributions in joint elements

    Based on the results obtained from FEA, under uniaxial bending load, the horizontal member of the joint moved along the negative direction of the Y-axis (loading direction). Affected by this displacement, the horizontal member separated from the vertical member at the top corner of the joint (Fig. 6). Accordingly, an increasing bending moment occurred at the joint under loading. In this situation, under different bending loads, maximum stress values occurred in the middle parts of the tenon (Fig. 7). For the joints with tenon thickness of 6 mm and tenon lengths of 30, 50, 60, and 90 mm, shear stress values in middle parts of the tenon were 27.09, 44.49, 72.52, and 87.98 MPa, respectively (Fig. 8). With increase in tenon thickness from 6 to 8 mm, along with increase of bending moment capacity of joints, shear stress values in the tenon increased for all joint combinations (Fig. 8). The highest shear stress value (110 MPa) was obtained in the middle parts of joints with tenon thickness of 8 mm and tenon length of 90 mm. Average value of shear stress in joints with 8 mm tenon thickness (70.97 MPa) was approximately 22% higher than for joints with 6 mm tenon thickness (58.02 MPa). Maximum shear elastic strain values in middle parts of the tenon in the joints with 6 mm tenon thickness and tenon lengths of 30, 50, 60, and 90 mm were 0.007, 0.011, 0.016, and 0.018, respectively. For joints with 8 mm tenon thickness and 30, 50, 60, and 90 mm tenon length, maximum shear elastic strain values in middle parts of the tenon were 0.009, 0.012, 0.018, and 0.022, respectively. Horizontal member Separation

    Fig. 6: Total deformation of M< joint with tenon thickness of 8mm and tenon length of 90 mm under loading

    Highest shear elastic strain values were recorded in the glue line between the tenon and walls of the mortise (Fig. 9). Shear elastic strain values in the glue line increased with increasingthickness and length of tenons (Fig. 10). The maximum shear elastic strain values in the glue line of joints with 6 mm tenon thickness and tenon lengths of 30 and 50 mm were higher than those of similar joints with 8 mm tenon thickness (Fig. 10). For joints with 8 mm tenon thickness and 60 and 90 mm length tenons, the maximum shear elastic strain values were greater than for joints with 6 mm tenon thickness and tenon lengths of 60 and 90 mm.

    Fig. 7: Shear stress distribution in M< joint with tenon thickness of 8mm and tenon length of 90 mm

    Fig. 8: Maximum shear stress values in the middle parts of tenon

    Fig. 9: Shear elastic strain distribution in glue line of M< joint with tenon thickness of 8mm and tenon length of 90 mm

    Fig. 10: Maximum shear elastic strain values in the glue line of M< joint specimens

    Discussion

    The bending moment capacity of joints increased significantly with increasing length and thickness of tenons. Increase in total glued area of the tenon and its increasing impact on joint strength was one reason for this result. Along with increase in tenon dimensions and corresponding bending moment capacity, shear stress and shear elastic strain values in joint elements increased. Maximum shear stress values were recorded in the middle parts of tenons, while the highest shear elastic strain values were recorded in the glue line between the tenon surfaces and walls of the mortise. The results of FE models in this study are in agreement with results obtained by Smardzewski and Papuga (2004) for stress distributions in single mortise and tenon joints. However, some of the stress values predicted by FE models in this study exceed allowable values for shear strength of wood. These unusual values can be explained by failure modes of the joints. During the laboratory tests, most fractures occurred in the tenon apart from the adhesive line. Accordingly, since the highest shear stress values were obtained in the middle parts of tenons, it can be said that those stress values of joints predicted by FE models that exceeded the allowable shear strength of the wood indicate failure areas of the joints. Similar results were obtained by Mohamadzadeh et al. (2012) for failure modes of screwed single shear joints in wood plastic composite, and Demirci (2011) for various frame-type furniture corner joints.

    Conclusions

    We studied the effects of loose tenon length and loose tenon thickness on bending moment capacity of M< joints and corresponding stress-strain distribution in the joint elements, and experimentally investigated bending moment capacities of the joints, while using the FEA technique to determine the stress and strain distributions in the joint element.

    We conclude:

    (1) Dimensions of the loose tenon showed significant impacts on bending moment capacity of M< T-type joints.

    (2) Bending moment capacity of M< joints increased with increasing thickness and length of loose tenons.

    (3) Under uniaxial bending load, the highest stress values were in the middle parts of the loose tenon.

    (4) Maximum shear elastic strain values were in the glue line between the loose tenon and walls of the mortise.

    (5) Increase in tenon dimensions and corresponding bending moment capacity caused increase of shear stress and shear elastic strain values in M< joint elements.

    (6) There was consistency between values predicted by FE models for maximum shear stress and failure modes of joints in laboratory tests.

    (7) The FEA technique showed good potential for predicting the failure modes of furniture joints.

    ?olako?lu MH, Apay AC. 2012. Finite element analysis of wooden chair strength in free drop. International Journal of the Physical Sciences, 7(7): 1105-1114.

    Demirci H?. 2011. The experimental and finite element analysis of diagonal tensile tests conducted on frame-type constructed corner joints. Technology, 14(1): 11-21.

    Derikvand M, Smardzewski J, Ebrahimi GH, Dalvand M, Maleki S. 2013. Withdrawal force capacity of T-type mortise and loose tenon furniture joints. Turkish Journal of Agriculture and Forestry, 37: 377-384.

    Gawroński T. 2006. Rigidity-strength models and stress distribution in housed tenon joints subjected to torsion. Electronic Journal of Polish Agricultural Universities, Wood Technology, 9(4).

    Kasal A. 2006. Determination of the strength of various sofa frames with finite element analysis. GUJS, 19(4): 191-203.

    Ko? KH, Kizilkaya K, Erdinler ES, Korkut DS. 2011. The use of finite element method in the furniture industry. African Journal of Business Management, 5(3): 855-865.

    Mackerle J. 2005. Finite element analyses in wood research: a bibliography. Wood Science and Technology, 39: 579-600.

    Maleki S, Derikvand M, Dalvand M, Ebrahimi G. 2012. Load carrying capacity of mitered furniture corner joints with dovetail keys under diagonal tension load. Turkish Journal of Agriculture and Forestry, 36: 636-643.

    Mohamadzadeh M, Rostampour Haftkhani A, Ebrahimi G, Yoshihara H. 2012. Numerical and experimental failure analysis of screwed single shear joints in wood plastic composite. Materials & Design, 35: 404-413.

    Smardzewski J. 2012. Auxetic springs for seating. Turkish Journal of Agriculture and Forestry, 37: 369-376.

    Smardzewski J, O?arska B. 2005. Rigidity of cabinet furniture with semi-rigid joints of the confirmat type. Electronic Journal of Polish Agricultural Universities, Wood Technology, 8(2).

    Smardzewski J, Papuga T. 2004. Stress distribution in angle joints of skeleton furniture. Electronic Journal of Polish Agricultural Universities, Wood Technology, 7(1).

    Smardzewski J, Prekrat S. 2002. Stress distribution in disconnected furniture joints. Electronic Journal of Polish Agricultural Universities, Wood Technology, 5(2).

    2013-01-18; Accepted: 2013-05-29

    DOI 10.1007/s11676-014-0507-5

    The online version is available at http://www.springerlink.com

    Mohammad Derikvand (), Ghanbar Ebrahimi

    Department of Wood and Paper Science and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77878, Iran.

    Tel.: +98 935 100 6032, +98 261 224 9311, Fax: +98 261 224 9311

    E-mail: m.derikvand@ut.ac.ir and ronashmd@yahoo.com

    Corresponding editor: Yu Lei

    ? Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2014

    精品无人区乱码1区二区| 日日爽夜夜爽网站| 黄色成人免费大全| 国产又爽黄色视频| 亚洲av第一区精品v没综合| 欧美人与性动交α欧美精品济南到| 成人亚洲精品一区在线观看| 少妇裸体淫交视频免费看高清 | 精品国产一区二区三区久久久樱花| 亚洲色图 男人天堂 中文字幕| 熟女少妇亚洲综合色aaa.| 咕卡用的链子| 黑人巨大精品欧美一区二区蜜桃| 极品教师在线免费播放| 欧美丝袜亚洲另类 | 欧美中文综合在线视频| 色老头精品视频在线观看| videos熟女内射| 精品人妻熟女毛片av久久网站| 国产精品久久久久久人妻精品电影| 亚洲精品乱久久久久久| 欧美性长视频在线观看| av在线播放免费不卡| 91av网站免费观看| 中文字幕色久视频| 亚洲一区二区三区不卡视频| 国产成人系列免费观看| 国产精品久久久久久人妻精品电影| 大码成人一级视频| 久久久久国产精品人妻aⅴ院 | 成人18禁高潮啪啪吃奶动态图| 精品福利观看| 亚洲成人国产一区在线观看| 欧美人与性动交α欧美精品济南到| 高潮久久久久久久久久久不卡| 成人特级黄色片久久久久久久| 精品人妻在线不人妻| 亚洲av熟女| 国产单亲对白刺激| 免费日韩欧美在线观看| 80岁老熟妇乱子伦牲交| 国产色视频综合| 正在播放国产对白刺激| av免费在线观看网站| 一a级毛片在线观看| 亚洲av第一区精品v没综合| 18禁裸乳无遮挡动漫免费视频| 久久精品国产综合久久久| 日韩欧美国产一区二区入口| 免费女性裸体啪啪无遮挡网站| 欧美黄色淫秽网站| 757午夜福利合集在线观看| 国产精品久久久av美女十八| a级毛片在线看网站| 亚洲国产中文字幕在线视频| 曰老女人黄片| 欧美激情 高清一区二区三区| 嫁个100分男人电影在线观看| 黑人猛操日本美女一级片| 水蜜桃什么品种好| av在线播放免费不卡| 精品福利永久在线观看| 高清在线国产一区| 国产精品久久久久久精品古装| 人妻一区二区av| 久久性视频一级片| 熟女少妇亚洲综合色aaa.| 脱女人内裤的视频| 美女扒开内裤让男人捅视频| 国产熟女午夜一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美在线二视频 | 91成人精品电影| 国产高清激情床上av| 丝袜美腿诱惑在线| 在线看a的网站| 捣出白浆h1v1| 黄片大片在线免费观看| 婷婷丁香在线五月| 在线国产一区二区在线| 亚洲午夜精品一区,二区,三区| 老汉色∧v一级毛片| 午夜精品国产一区二区电影| 国产精品影院久久| 亚洲国产看品久久| 欧美日本中文国产一区发布| 国产亚洲精品久久久久5区| 18禁裸乳无遮挡免费网站照片 | 99riav亚洲国产免费| 美女 人体艺术 gogo| 久久午夜综合久久蜜桃| 亚洲自偷自拍图片 自拍| 三上悠亚av全集在线观看| 国产成人精品在线电影| 国产激情久久老熟女| 久热爱精品视频在线9| 天天躁狠狠躁夜夜躁狠狠躁| 一二三四社区在线视频社区8| 亚洲成人国产一区在线观看| av有码第一页| 亚洲精品中文字幕一二三四区| 欧美色视频一区免费| 人人妻人人澡人人看| 大码成人一级视频| 免费一级毛片在线播放高清视频 | 在线观看免费日韩欧美大片| 99久久精品国产亚洲精品| 久久久久精品国产欧美久久久| 黄色毛片三级朝国网站| 99国产精品一区二区三区| 久久婷婷成人综合色麻豆| 天天躁狠狠躁夜夜躁狠狠躁| 女人久久www免费人成看片| 欧美在线黄色| 黄色成人免费大全| 美女视频免费永久观看网站| av不卡在线播放| 久久久久国产精品人妻aⅴ院 | 国产高清激情床上av| 岛国毛片在线播放| 51午夜福利影视在线观看| 青草久久国产| 久久精品国产99精品国产亚洲性色 | 久久影院123| 热re99久久国产66热| av免费在线观看网站| 午夜影院日韩av| 大香蕉久久网| 日韩一卡2卡3卡4卡2021年| 亚洲专区字幕在线| 久久国产精品男人的天堂亚洲| a级毛片在线看网站| 国产精品一区二区免费欧美| 亚洲专区中文字幕在线| 夜夜爽天天搞| 免费一级毛片在线播放高清视频 | 美女视频免费永久观看网站| 亚洲国产精品一区二区三区在线| 亚洲在线自拍视频| 好男人电影高清在线观看| 黄频高清免费视频| 午夜免费鲁丝| videos熟女内射| 老鸭窝网址在线观看| 久久国产精品人妻蜜桃| 亚洲美女黄片视频| 久久精品亚洲av国产电影网| 欧美乱色亚洲激情| 精品乱码久久久久久99久播| 女人精品久久久久毛片| 天堂俺去俺来也www色官网| 久久久水蜜桃国产精品网| 国产成人免费观看mmmm| 久久久久久免费高清国产稀缺| 成人免费观看视频高清| 欧美丝袜亚洲另类 | 国产成人啪精品午夜网站| 精品午夜福利视频在线观看一区| 国产激情久久老熟女| 亚洲一区二区三区不卡视频| 18禁观看日本| 亚洲视频免费观看视频| 欧美日韩亚洲综合一区二区三区_| 一级作爱视频免费观看| av天堂久久9| 曰老女人黄片| 村上凉子中文字幕在线| 国产精品.久久久| 最新的欧美精品一区二区| 中出人妻视频一区二区| 少妇猛男粗大的猛烈进出视频| 丝袜在线中文字幕| 亚洲成人国产一区在线观看| 后天国语完整版免费观看| 99久久99久久久精品蜜桃| 国产真人三级小视频在线观看| 亚洲人成电影观看| 久久精品亚洲熟妇少妇任你| 99re6热这里在线精品视频| 日本撒尿小便嘘嘘汇集6| 老司机在亚洲福利影院| 视频区欧美日本亚洲| 亚洲avbb在线观看| 亚洲少妇的诱惑av| 国产色视频综合| 精品久久久精品久久久| 天堂√8在线中文| 国产97色在线日韩免费| 久久婷婷成人综合色麻豆| 午夜亚洲福利在线播放| 久久国产精品人妻蜜桃| 99re在线观看精品视频| tocl精华| 欧美日韩精品网址| 日韩三级视频一区二区三区| 正在播放国产对白刺激| 国产成人系列免费观看| 99久久国产精品久久久| 97人妻天天添夜夜摸| 久久香蕉国产精品| 欧洲精品卡2卡3卡4卡5卡区| 午夜影院日韩av| 国产精品偷伦视频观看了| 9191精品国产免费久久| 99热只有精品国产| 成熟少妇高潮喷水视频| 又紧又爽又黄一区二区| 国产亚洲精品第一综合不卡| а√天堂www在线а√下载 | 19禁男女啪啪无遮挡网站| 亚洲综合色网址| 欧美亚洲日本最大视频资源| 国产精品久久视频播放| 欧美乱码精品一区二区三区| 天堂√8在线中文| 自拍欧美九色日韩亚洲蝌蚪91| 久久婷婷成人综合色麻豆| 满18在线观看网站| 一区二区三区国产精品乱码| 宅男免费午夜| www.精华液| 嫩草影视91久久| 亚洲一区二区三区欧美精品| 亚洲国产精品合色在线| 叶爱在线成人免费视频播放| 久久国产亚洲av麻豆专区| 人妻 亚洲 视频| 很黄的视频免费| 变态另类成人亚洲欧美熟女 | 亚洲熟妇中文字幕五十中出 | 水蜜桃什么品种好| 国产一区二区三区在线臀色熟女 | 黄网站色视频无遮挡免费观看| 国产精品av久久久久免费| 国产精品一区二区免费欧美| 午夜福利一区二区在线看| 日本一区二区免费在线视频| 欧美日韩黄片免| 18禁美女被吸乳视频| 亚洲精品久久午夜乱码| 国产不卡av网站在线观看| 国产97色在线日韩免费| 少妇粗大呻吟视频| 老鸭窝网址在线观看| 亚洲午夜理论影院| 少妇被粗大的猛进出69影院| 波多野结衣一区麻豆| 搡老熟女国产l中国老女人| 久久国产精品男人的天堂亚洲| 国产精品 国内视频| 午夜91福利影院| 亚洲男人天堂网一区| 国产单亲对白刺激| 热re99久久精品国产66热6| 亚洲中文av在线| av片东京热男人的天堂| 手机成人av网站| 欧美日韩中文字幕国产精品一区二区三区 | 另类亚洲欧美激情| 91麻豆av在线| 亚洲伊人色综图| 欧美日韩视频精品一区| 日韩中文字幕欧美一区二区| 日韩人妻精品一区2区三区| 午夜91福利影院| 99re6热这里在线精品视频| 国产精品久久电影中文字幕 | 国产av又大| 国产精品国产高清国产av | 欧美激情久久久久久爽电影 | 欧美黄色片欧美黄色片| 中文字幕最新亚洲高清| 人妻 亚洲 视频| 国产精品亚洲av一区麻豆| 黄色 视频免费看| 天天操日日干夜夜撸| 丝袜美足系列| 美女高潮到喷水免费观看| 国产精品一区二区在线不卡| 丰满的人妻完整版| 国产精品永久免费网站| 欧美黑人精品巨大| 熟女少妇亚洲综合色aaa.| 极品少妇高潮喷水抽搐| 人人妻人人澡人人看| 精品一区二区三区视频在线观看免费 | 亚洲中文av在线| 丰满迷人的少妇在线观看| avwww免费| 成人国语在线视频| 亚洲av成人不卡在线观看播放网| 久99久视频精品免费| 欧美成人午夜精品| 这个男人来自地球电影免费观看| 一二三四在线观看免费中文在| 日韩欧美免费精品| 日韩免费高清中文字幕av| 日韩三级视频一区二区三区| 久久久久久久久免费视频了| 亚洲男人天堂网一区| 欧美国产精品一级二级三级| 日韩欧美一区视频在线观看| 日韩欧美在线二视频 | xxx96com| 91麻豆精品激情在线观看国产 | 97人妻天天添夜夜摸| 久久人妻熟女aⅴ| 色综合婷婷激情| 91精品三级在线观看| 正在播放国产对白刺激| 丰满的人妻完整版| 搡老乐熟女国产| 久热这里只有精品99| 在线av久久热| 色在线成人网| 少妇的丰满在线观看| 嫩草影视91久久| 别揉我奶头~嗯~啊~动态视频| 亚洲三区欧美一区| 视频在线观看一区二区三区| 国产乱人伦免费视频| 久久人妻福利社区极品人妻图片| 成人永久免费在线观看视频| 俄罗斯特黄特色一大片| 在线观看舔阴道视频| 欧美日韩中文字幕国产精品一区二区三区 | 精品久久久久久久毛片微露脸| 国产激情欧美一区二区| 国产一区二区三区综合在线观看| 黄色a级毛片大全视频| 国产精品久久久人人做人人爽| 自拍欧美九色日韩亚洲蝌蚪91| 免费黄频网站在线观看国产| 国产97色在线日韩免费| 日韩成人在线观看一区二区三区| 在线av久久热| 啦啦啦免费观看视频1| 十分钟在线观看高清视频www| 日韩制服丝袜自拍偷拍| 亚洲人成伊人成综合网2020| 亚洲av成人不卡在线观看播放网| 老司机午夜十八禁免费视频| 亚洲成人免费av在线播放| 99久久精品国产亚洲精品| 久久精品国产a三级三级三级| 99热国产这里只有精品6| 女人被躁到高潮嗷嗷叫费观| 一进一出抽搐动态| 亚洲精品在线观看二区| 日本撒尿小便嘘嘘汇集6| 乱人伦中国视频| 人人妻人人澡人人看| 久久久久久久国产电影| 女警被强在线播放| 午夜免费成人在线视频| 日本撒尿小便嘘嘘汇集6| 国产精品影院久久| 女人被狂操c到高潮| av中文乱码字幕在线| 极品人妻少妇av视频| 国产精品影院久久| 18禁裸乳无遮挡动漫免费视频| 午夜影院日韩av| 国产97色在线日韩免费| 国产xxxxx性猛交| 久久久久国产一级毛片高清牌| videos熟女内射| 最新在线观看一区二区三区| 国产一区在线观看成人免费| 国产成人啪精品午夜网站| av欧美777| 法律面前人人平等表现在哪些方面| 国产真人三级小视频在线观看| 色综合欧美亚洲国产小说| 在线视频色国产色| 色综合欧美亚洲国产小说| 国产又色又爽无遮挡免费看| 午夜久久久在线观看| 一a级毛片在线观看| 午夜久久久在线观看| 欧美黑人精品巨大| 成人18禁高潮啪啪吃奶动态图| 欧美黄色片欧美黄色片| 窝窝影院91人妻| 99在线人妻在线中文字幕 | 黄频高清免费视频| 亚洲色图av天堂| 一级片免费观看大全| 麻豆成人av在线观看| 十八禁人妻一区二区| 亚洲精品在线美女| 欧美日韩一级在线毛片| 国产日韩欧美亚洲二区| 久久久久视频综合| 人妻 亚洲 视频| 91大片在线观看| 男女床上黄色一级片免费看| 看片在线看免费视频| 露出奶头的视频| 美国免费a级毛片| 一夜夜www| 老熟妇乱子伦视频在线观看| 国产成人影院久久av| 亚洲中文字幕日韩| 在线观看免费午夜福利视频| 精品亚洲成a人片在线观看| 18禁裸乳无遮挡动漫免费视频| 日本欧美视频一区| 国产片内射在线| 人人妻人人爽人人添夜夜欢视频| 91精品国产国语对白视频| 免费高清在线观看日韩| 女性被躁到高潮视频| 夜夜爽天天搞| 精品国产超薄肉色丝袜足j| 欧美日韩视频精品一区| 99国产极品粉嫩在线观看| 亚洲精品乱久久久久久| 国产蜜桃级精品一区二区三区 | 露出奶头的视频| 日韩免费高清中文字幕av| 亚洲国产精品一区二区三区在线| 亚洲精品成人av观看孕妇| 桃红色精品国产亚洲av| 国产一区二区三区视频了| 国产黄色免费在线视频| 午夜91福利影院| 色94色欧美一区二区| 亚洲色图 男人天堂 中文字幕| 亚洲一区中文字幕在线| 欧美激情高清一区二区三区| 韩国av一区二区三区四区| 国产精品一区二区在线观看99| 国产1区2区3区精品| 黄片小视频在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 女人高潮潮喷娇喘18禁视频| 波多野结衣一区麻豆| 精品国产超薄肉色丝袜足j| 国产精华一区二区三区| 九色亚洲精品在线播放| 大型av网站在线播放| 亚洲自偷自拍图片 自拍| 国产伦人伦偷精品视频| 午夜91福利影院| 国产精品自产拍在线观看55亚洲 | 欧美午夜高清在线| 国产97色在线日韩免费| 女人被躁到高潮嗷嗷叫费观| 成人手机av| 少妇 在线观看| 天堂中文最新版在线下载| 亚洲欧美一区二区三区久久| 99久久人妻综合| 大香蕉久久成人网| 亚洲色图av天堂| 亚洲精品中文字幕一二三四区| 在线观看舔阴道视频| 成人亚洲精品一区在线观看| 精品国内亚洲2022精品成人 | 69精品国产乱码久久久| 精品国产超薄肉色丝袜足j| 最新的欧美精品一区二区| 水蜜桃什么品种好| 夜夜爽天天搞| 不卡一级毛片| 色婷婷av一区二区三区视频| 人妻 亚洲 视频| 亚洲精品久久午夜乱码| 少妇裸体淫交视频免费看高清 | 好男人电影高清在线观看| 成年女人毛片免费观看观看9 | 国产色视频综合| 50天的宝宝边吃奶边哭怎么回事| 欧美精品亚洲一区二区| 成人亚洲精品一区在线观看| 日日爽夜夜爽网站| 久久久久精品人妻al黑| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩精品亚洲av| 欧美久久黑人一区二区| 国产91精品成人一区二区三区| 午夜久久久在线观看| 男女午夜视频在线观看| 在线观看免费午夜福利视频| 久久久久久免费高清国产稀缺| 中国美女看黄片| 水蜜桃什么品种好| 精品福利永久在线观看| 美女国产高潮福利片在线看| 狠狠狠狠99中文字幕| 国产精品乱码一区二三区的特点 | 一边摸一边抽搐一进一出视频| 亚洲欧美一区二区三区黑人| 欧美精品啪啪一区二区三区| 在线看a的网站| 成年人午夜在线观看视频| 99国产精品一区二区蜜桃av | 国产精品 国内视频| 亚洲欧美日韩另类电影网站| 国产黄色免费在线视频| 亚洲中文字幕日韩| 久久性视频一级片| 久久久久久免费高清国产稀缺| 成年人黄色毛片网站| 飞空精品影院首页| 操出白浆在线播放| 欧美+亚洲+日韩+国产| 亚洲人成伊人成综合网2020| 天天影视国产精品| 男女高潮啪啪啪动态图| 一进一出好大好爽视频| 久久久久精品国产欧美久久久| 一本一本久久a久久精品综合妖精| 韩国av一区二区三区四区| 在线观看午夜福利视频| 十八禁高潮呻吟视频| 91麻豆av在线| 久久久水蜜桃国产精品网| www日本在线高清视频| 午夜精品在线福利| 悠悠久久av| 成熟少妇高潮喷水视频| 黄色视频不卡| 欧美不卡视频在线免费观看 | 国产精品成人在线| 少妇粗大呻吟视频| 老司机午夜十八禁免费视频| 亚洲视频免费观看视频| 91九色精品人成在线观看| 十八禁人妻一区二区| 极品少妇高潮喷水抽搐| 久久国产精品人妻蜜桃| 少妇裸体淫交视频免费看高清 | 天天躁狠狠躁夜夜躁狠狠躁| 精品久久久久久久久久免费视频 | 91国产中文字幕| 新久久久久国产一级毛片| 欧美另类亚洲清纯唯美| 亚洲熟妇熟女久久| 又黄又爽又免费观看的视频| 国产精品成人在线| 免费少妇av软件| 久久人人爽av亚洲精品天堂| 国产亚洲精品久久久久5区| 超碰97精品在线观看| 大码成人一级视频| 亚洲精品粉嫩美女一区| 九色亚洲精品在线播放| 很黄的视频免费| 亚洲精品一二三| 香蕉久久夜色| tocl精华| 一区福利在线观看| 色播在线永久视频| a在线观看视频网站| 免费黄频网站在线观看国产| 人妻丰满熟妇av一区二区三区 | 国产在视频线精品| tocl精华| 亚洲片人在线观看| 在线观看免费高清a一片| 欧美在线一区亚洲| 老熟女久久久| 精品第一国产精品| 欧美日韩乱码在线| 精品一区二区三区视频在线观看免费 | 香蕉国产在线看| 美女午夜性视频免费| 国产高清videossex| 亚洲精品美女久久久久99蜜臀| 中文字幕高清在线视频| 亚洲av第一区精品v没综合| 少妇粗大呻吟视频| 丰满人妻熟妇乱又伦精品不卡| 91成年电影在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 91av网站免费观看| 丝袜在线中文字幕| svipshipincom国产片| 精品国产一区二区三区久久久樱花| 热re99久久精品国产66热6| 成熟少妇高潮喷水视频| 国产免费现黄频在线看| 国产视频一区二区在线看| 久久草成人影院| 美女高潮到喷水免费观看| 亚洲精品成人av观看孕妇| 久久精品国产99精品国产亚洲性色 | 好看av亚洲va欧美ⅴa在| 如日韩欧美国产精品一区二区三区| 久久国产精品男人的天堂亚洲| 91精品国产国语对白视频| 高清毛片免费观看视频网站 | 亚洲久久久国产精品| 老熟妇乱子伦视频在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲久久久国产精品| 777久久人妻少妇嫩草av网站| 国产成人免费观看mmmm| 亚洲精品美女久久av网站| 久久国产精品影院| 狂野欧美激情性xxxx| 久久久久久久午夜电影 | 变态另类成人亚洲欧美熟女 | 热99re8久久精品国产| 18禁国产床啪视频网站| 欧美日韩瑟瑟在线播放| 美女 人体艺术 gogo| 男女床上黄色一级片免费看| 国产乱人伦免费视频| 久久久久久亚洲精品国产蜜桃av| 日韩三级视频一区二区三区| 国产视频一区二区在线看| 老司机福利观看|