• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An integrated method for matching forest machinery and a weight-value adjustment

    2014-06-19 17:22:07DanLi
    Journal of Forestry Research 2014年3期

    Dan Li

    An integrated method for matching forest machinery and a weight-value adjustment

    Dan Li

    Proper matching of forestry machinery is important when raising mechanization levels for forestry production. In the matching process, forestry machinery needs not only expertise, but also improved methods for solving problems. I propose combination of case-based reasoning (CBR) and rule-based reasoning (RBR) by calculating the similarity of quantitative parameters of various forestry machines in an analytical and hierarchical process. I calculated the similarity of machinery used in forest industries to enable better selection and matching of equipment. I propose a weight-value adjusting method based on sums of squares of deviations in which the individual parameter weights were modified in the process of application. During the process of system design, I put forward a design method knowledge base and generated a dynamic web reasoning framework to integrate the processes of forest industry machinery selection and weight-value adjustment. This enables expansion of the scope of the complete system and enhancement of the reasoning efficiency. I demonstrate the validity and practicability of this method using a practical example.

    forest industry, machinery selection and matching, weight-value determination, reasoning process, integration method

    Introduction

    China is a large producer of forest products. The levels of forest industry production and mechanization are in the forefront of the world. Although much forestry machinery has been created (Xiang 2003; Huang 2004; Shen 2005), mechanization of forest industries is still low in China in comparison levels in industrially developed countries. Further development of machinery and mechanized production should be promoted in the production of forest products in China.

    Classification of forestry and woodworking machines in China has been proposed (Ma 2009). This method divides forestry and woodworking machines into three industries: (1) artificial board; (2) furniture; and (3) timber production. The low levels of mechanization in forest plantation management and timber production in China have resulted in low productivity levels. This has seriously restricted the efficiency of forest production. To enhance mechanized production, guidance is needed in the selection and matching of forestry machinery, and in mechanical maintenance. As various types of forestry production machinery are adapted to different production environments, it is necessary to match the characteristics of machines with their intended production environments to maximize results. In order to speed up the process of forestry mechanization in China, the demands of using scientific management theory and forestry mechanization technology in actual forestry production are becoming more and more pressing. During the promotion, the consultation and guidance from specialists are needed. And the specialists of forestry machinery selecting and matching can give guidance in this case.

    The first expert system, DENDRL, in 1965 (Massart and Meuter 2008) has been widely used in mechanical maintenance, mechanical matches, mechanical fault diagnosis, and mechanical design (Aamodt and Plaza 1994; Chang and Joo 2006; Chang et al. 2008; Tsai and Chiu 2007). Rule-based reasoning (RBR) and case-based reasoning (CBR) are techniques in expert systems. RBR uses induction rules to determine, if a new problem should be inspected further. Based on similarity matching, CBR finds the case that is most similar to the new problem (Chou 2009). The core of CBR is to solve the new problem by reusing previous cases to improve reasoning efficiency. The reasoning process of CBR includes the following steps: retrieve, reuse, revise and retain. Retrieving locates similar previous cases from a Base Case. Reusing infers a proper solution to the current problem byreusing similar previous cases. Revising is to put forward solutions where necessary. Retrieving is the most important step in CBR. By retrieving from a base case, the new situation (new case) and the description of problems in the previous case are matched. The similarities between them are calculated, and based on the solutions from similar previous cases, a new solution is reasoned and generated for the new case (Guo 2012). Case retrieval calculates the similarity between new and previous cases and the similarity of the two is the difference in value between cases. One object usually has three types of values, numerical, range and fuzzy values. Three types of values form six different similarity calculation problems. The formula for each similarity calculation problem is shown in Table 1.

    Table 1: Formulae table counting the degree of similarity by the weighted average method

    RBR and CBR have been widely used in designing machinery systems, and many studies have assessed development of expert systems using RBR and CBR. In the field of mechanical design, an expert system to aid design of ship engine room automation was developed (Kowalski et al. 2005). Gao (2011) proposed a CBR method for machining fixture design and designed an integrated system for machining fixtures based on VR A case-based parametric system for testing turntables was designed and the system produced automatic and intelligent designs for turntables (Liu and Xi 2011). Li et al. (2012) built a CBR-Based CAD System for Subframe Design of Aerial Work Trucks and proposed a system framework and implementation method for a subframe CAD system based on CBR. Yang et al. (2004) designed a system for fault diagnosis of induction motors, an innovative approach to integrate CBR with Petri net in the field of fault diagnosis. Yang et al. (2012) developed a web-oriented expert system to save time in fault diagnosis of gear boxes and created an expert solution to achieve precise and quick maintenance.

    As forestry machinery developers offer various types of products, it is difficult to choose the appropriate forestry machinery at the beginning of the model selection. Users need to know methods for fault diagnosis and maintenance of equipment. By collecting and analyzing mechanical information in different processes of forestry production, this study proposes a matching reasoning algorithm and a weight adjustment method. Based on the different stages of the production processes and integration of RBR with CBR, this study establishes an expert system of forestry machinery matching which is web-based. To increase knowledge processing ability and strengthen system maintainability, I used various mechanical matching processes in a unified generation network framework environment by network integration.

    Materials and methods

    Acquisition and representation of forestry machinery knowledge

    The system describe here aims to integrate the mechanization processes for timber production separated into seven processes: timber felling, site preparation, cutting point, transport, planting, tending and harvesting. The system addresses machinery forditching, digging, tree-planting, felling, seedling-plugging, seedling-lifting, and traction. Knowledge induction accumulates information about these various types of machinery and is used in the process of machine-matching. Knowledge of machinery is categorized as quantitative parameters (CBR) and qualitative parameters (RBR).

    RBR parameters were defined based on machine field applications such as production processes, machine types, and operation types. These RBR parameters define the mechanical case. After defining this case, we can analyze and match machinery according to the CBR parameters of user needs. Examples of CBR parameters are the felling machine and its maximum power and speed, the biggest skid trail of felling, net timber quality, tree length, width, and height, and cost and other related properties.

    The mixed knowledge representation mode was adopted in the system as follows:

    IF n1and n2and … nnand (Max (N(A,Bi))>ξ) THEN Casei

    In this formula, n1and n2and … nnare CBR parameters, and Max(N(A,Bi)>ξ indicates the similarity after matching with the RBR parameters. The CBR parameters for the system are shown in Table 2.

    Table 3: CBR breeding process list structure and parameters

    Designing the knowledge base

    Integration must be considered during when designing the knowledge base. In the knowledge storage procedure, the MySQL database was used and during the matching process, quantitative parameter names and the corresponding parameter properties, as well as weights generated in the process of parameter matching are stored separately in three knowledge tables.

    These three tables were created as the ‘pxjxcanshu’ table, which was used to store parameter names during the matching process and can be called the “parameter table” for short. A‘pxjxshuming’ table is used to store parameter properties during the matching process and can be called the “attributes list” for short. A ‘pxjxquanzhi’ table stores the corresponding weights of quantitative parameters during the matching process and can be called a “value table” for short. The three tables have the same structure and are used in framework integration in the reasoning process. A collective integration method is described later.

    Designing mechanical-matching reasoning machines

    RBR parameter matching

    The RBR parameter matching process uses the method of forward reasoning to retrieve the entire knowledge base. It uses matching production rules which are composed of qualitative parameters for rules matching. According to the qualitative parameters, it is feasible to narrow the scope of knowledge in the knowledge base. The matching process is relatively simple. It is not describe here. The following is the quantitative matching process for the knowledge obtained after completion of the CBR parameter matching process.

    CBR parameter matching

    Parameterized cultivating machine characteristic vector: The quantitative parameters from case matching are stored in the knowledge base according to the different requirements of parameters. The quantitative parameter set is comprised of the cultivating machine’s characteristic vector:

    Yinrepresents the values of different quantitative parameters. The design of quantitative parameters adopts the method of extreme value storage in the design process. Quantitative parameters which influence matching parameters are stored in the knowledge base as extreme values. For example specification of a digging machine is based on its application: the required maximum diameter and depth of the hole/trench, and the required maximum and minimum power. These matching parameters are stored. In a parametric process, n corresponds to the number of quantitative parameters in the knowledge base, so the range of n according to differences in cultivation machines. The different types of cultivation machinery i correspond to different types of matching processes. Each type of machinery includes m cultivation machinery matching feature vectors to yield a cultivation machinery matching feature vector space model:

    The parameterized matching machinery vector is based on thevarying parameter area of the cultivation machinery matching feature vector space. The quantitative parameters which can meet the demands of actual matching, a user inputs, can be expressed as:

    Its structure is the same as the corresponding matching feature of the cultivation machinery vector. The parameters provide the range from Min(Yin) to Max(Yin) for reference when the user input quota parameters.

    In this expression, Xjis the parameter input by a user, Yijis the parameter value of each matching case. First, the user gets the matching range according to Max(Yij) and Min(Yij). Then, the user inputs the quota parameter value which corresponds to the range, and finally he calculates the similarity between matching parameters and case parameters in the knowledge base. Matching vector X and vector space Y calculates the individual similarity as σij, it generates individual similarity feature vector space:

    After calculating the individual similarity, the system adopts an analytic hierarchy process (AHP). Thus, it makes the calculation of the overall similarity matching process. Each matching feature vector space Y of the cultivation machinery corresponds to each weight feature vector:

    quota parameters have no effect to the whole matching process. The greater the value βij, the greater the effect of j on the overall matching process. The similarity calculation is obtained through the computation of matching machinery feature vector and every weighted distance of the cultivation machinery feature vector to determine the overall degree of similarity:

    The quota parameter’s weight βij is saved in the knowledge base after being evaluated by the expert. After each matching process, the system provides a self-study function to adjust to the parameter weight. For example, sorting uses two methods: threshold value sorting and example number sorting. First, threshold value sorting sets the smallest threshold value δ for the similarity. The overall similarity obtained each time is a group of similarity coefficients. If SIM(X,Y)>δ, the corresponding case serves as an inference result. Example number sorting first sets the case number n, and orders case numbers according to the whole similarity size. Here I use the threshold sorting method, first setting the threshold number δ=0.6, when SIM(X,Y)>0.6, then sorting the corresponding cases according to the overall similarity from large to small as the inference conclusion.

    Weight adjustment method

    According to expert experience, weight determination can be used to investigate and analyze different matching processes. Expert weight evaluation, which adopts the individual mean value method to identify the weighting value of parameters, is used as the system default weight stored in the ‘pxjxquanzhi’table and the matching computation as the initialization value.

    In the matching process, we established Xj= unknown, and it indicates that the matching factor cannot be determined in this matching process. The system will set σij=1 as the default, in such a case we could consider that Xj has no effect in this matching process, which is the effect of the smallest factor. After every matching process, βij is adopted as the weight reducing factor if Xj = unknown. According to the reduced weight value of Xj, the other matching field makes corresponding increments to the weighted values.

    important role in the matching process. So we could use the ratio range,

    to define a different parameter I’s role in this matching process. That is, the parameter changes can reflect entire vector changes, so the following expression is used to make adjustment to βi:

    System integration process

    The purpose of the overall matching process is to integrate seven classes of forest mechanical matching systems where quantitative and qualitative parameters are of different types. Firstly, the integration process is defined by machinery quantitative parameters in the parameter table and this is used to retrieve the corresponding parameter entry which is defined in Table 1. Then we use the parameter sets to define the frame structure in a dynamic page and to retrieve the individual similarity calculation matching vector space according to the quantitative parameters of the attributes list. After a user inputs matching vectors, an individual similarity is calculated and then the corresponding weights are retrieved to calculate the overall similarity in the weight table. The detailed integration process is described in the following:

    (1) After the selection of all qualitative parameters, a case set composed of a number of cases is obtained. The value of case set is stored in a two-dimensional array. The qualitative parameter name in the parameter table is retrieved to generate an array as Cs1[]. Using the number m of Cs1[] length matching qualitative parameters and using a m × 3 table generated by the FOR LOOP, the table of the reasoning integration pages is dynamically generated. The first column of the table contains the name of matching parameters generated by the array of Cs1[].

    (2) In the second column of the table, a text box is dynamically generated through circular definition for the user’s input goal actual parameters<input name="text <%=i%>"type="text" value="unknown">. In the third column of the table, each parameter of the maximum and minimum values are retrieved in the base case corresponding to minimum and maximum parameters as input information for user reference. If the user cannot determine the parameters or has no relevant parameter for the matching process, the user can enter the default unknown, the system will convert all input parameters and the similarity corresponding to the each case as 1.

    (3) After all parameters have been entered, the individual similarity is first calculated according to the design of inference. The weight value is retrieved from the weight value table according to the fields in Cs1[] and the overall similarity is calculated.

    (4) After calculating the overall similarity, the case which has similarity above 0.6 is selected in accordance with descending order of sorting for output. In the page, if the user is satisfied with the matching process then he can decide whether to adjust the weighting values in the matching process.

    Results

    Take the digging machine matching as an example of matching cases Y and matching machinery feature vector X, which feature vector is shown in Table 3.

    Table 3: Experimental inputs of digging machine matching

    Quantitative parameters in the case base case matrix composition:

    The user inputs feature vector X, and receives the input matching vector: X=(50 95 170 50 - -).

    According to the formula (4), we calculate individual similarity of the each quantitative parameter between the input feature vector X and case vector space Y:

    According to expert evaluation, the corresponding weight value feature vector β=(0.2 0.2 0.2 0.2 0.05 0.05) calculatesω=(0.538 0.692 0.786 0.558 0.626), the overall similarity. We can ensure that the threshold δ=0.6 is met. After sorting, the greatest similarity is Y3. Finally, users decide if they are satisfied with this matching process and if they require adjustments to the weighting values. If the users are satisfied with the matching process, then we can adjust the assigned weights and set the value η=0.02. The system will set β5=β5-η=0.03 and β6=β6-η=0.03 according to X5= unknown and X6= unknown; According to expression (8) the residual weight values β1=0.208; β2=0.211; β3=0.210; β4=0.211 are adjusted. After the adjustment, β=(0.208 0.211 0.210 0.211 0.03 0.03) will be stored in the weight table.

    Conclusion

    By analyzing the forestry machinery in the production process, we established and realized an expert system of machinery selection and matching that integrates seven classes of forestry machinery and is based on network architecture. Therefore, we can systematically integrate the weight value adjusting method based on the sum of squared deviations. This enables adjustment of the weight value knowledge base in every matching process and more accurate and scientific representation of the matching process. In the realization process, we adopt the structure of open source framework for development. In this way, the calculation process can become more convenient and its practical value can be realized.

    Aamodt A, Plaza E. 1994. Case-based reasoning, foundation issues, methodological variations, and system approaches. Arti fi cial Intelligence Communications, 7(1): 39–59.

    Bergmann R. 1999. Developing industrial case-based reasoning application: The INRECA methodology. Lecture Note in Computer Science. Berlin: Springer-Verlag.

    Chang KH, Joo SH. 2006. Design parameterization and tool integration for CAD-based mechanism optimization. Advances in Engineering Software, 37(12): 779–796.

    Chang PC, Liu CH, Lai RK. 2008. A fuzzy case-based reasoning model for sales forecasting in print circuit board industries. Expert Systems with Applications, 34(3): 2049–2058.

    Chou JS. 2009. Web-based CBR system applied to early cost budgeting for pavement maintenance project. Expert Systems with Applications, 36(2): 2947–2960.

    Guo Y, Hu J, Peng YH. 2012. Research of new strategies for improving CBR system. Artificial Intelligence Review, 42(1): 1-20

    Huang LH, Qin TF, Ohira T. 2004. Studies on preparations and analysis of essential oil from Chinese fir. Journal of Forestry Research, 15(1): 80-82.

    Kowalski Z,Meler-Kapcia M,Zieliński S, Drewka MZbigniew K, Maria M, Stefan Z, Marcin D. 2005. CBR methodology application in an expert system for aided design ship’s engine room automation. Expert Systems with Applications, 29(2): 256-263.

    Li Q, Liu XH, Liu YH, Yin JL. 2012. A CBR-based CAD system for subframe design of aerial work trucks. Lecture Notes in Electrical Engineering, 141: 389-396.

    Liu QS, Xi JT. 2011. Case-based parametric design system for test turntable. Expert Systems with Applications, 38(6): 6508-6516.

    MA Y. 2009. Discussion about classification methods of forestry and woodworking machines in China. Forestry Machinery & Woodworking Equipment, 37(1): 4-7. (in Chinese)

    Massart T, Meuter C. Van Begin L. 2008. On the complexity of partial order trace model checking. Information Processing Letters, 106(3): 120-126.

    Peng GL, Chen GF, Wu C, Xin H, Jiang Y. 2011. Applying RBR and CBR to develop a VR based integrated system for machining fixture design. Expert Systems with Applications, 38(1): 26–38.

    Shen J, Zhao L, Liu Y. 2005. The sampling apparatus of volatile organic compounds for wood composites. Journal of Forestry Research, 16(2): 153?154.

    Tsai CY, Chiu CC. 2007. A case-based reasoning system for PCB principal process parameter identification. Expert Systems with Applications. 32(4): 1183–1193.

    Xiang HL, Luo JR, Xiao ZH. 2003. Study on the new materials for fiberboard refiner plate of defibrator. Journal of Forestry Research, 14(1): 89-92.

    Yang B, Jeong S, Oh Y, Tan A. 2004. Case-based reasoning system with Petri nets for induction motor fault diagnosis. Expert Systems with Applications, 27(2): 301–311.

    Yang ZL, Wang B, Dong XH, Liu H. 2012. Expert system of fault diagnosis for gear box in wind turbine. Systems Engineering Procedia, 4:189–195.

    2013-09-09; Accepted: 2014-03-11

    DOI 10.1007/s11676-014-0508-4

    Project funding: This work was financially supported by the Fundamental Research Funds for the Central Universities Nos. DL12EB01-03, the planning subject of “the Twelfth Five-Year-Plan” in National Science and Technology Nos. 2012AA102003-2 and Heilongjiang Natural Science Fund in China Nos. F201116.

    The online version is available at http://www.springerlink.com

    School of Information and Computer Engineering, Northeast Forestry University, Harbin, China 150040.

    E-mail: ld725725@126.com

    Corresponding editor: Yu Lei

    ? Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2014

    欧美一级a爱片免费观看看| 夜夜爽夜夜爽视频| 尾随美女入室| 成年美女黄网站色视频大全免费 | 亚洲精品国产av蜜桃| 青春草视频在线免费观看| 亚洲经典国产精华液单| 蜜臀久久99精品久久宅男| 国产欧美另类精品又又久久亚洲欧美| 久久综合国产亚洲精品| 国产 精品1| 涩涩av久久男人的天堂| 亚洲国产精品999| 亚洲av欧美aⅴ国产| 日韩中字成人| 久久综合国产亚洲精品| 少妇 在线观看| 黄色欧美视频在线观看| 大陆偷拍与自拍| 久久99精品国语久久久| 一边亲一边摸免费视频| 人妻人人澡人人爽人人| 纯流量卡能插随身wifi吗| 久久亚洲国产成人精品v| 日韩av不卡免费在线播放| 最近最新中文字幕免费大全7| 热re99久久国产66热| 亚洲国产欧美日韩在线播放| 国产毛片在线视频| 男女啪啪激烈高潮av片| 十分钟在线观看高清视频www| 男男h啪啪无遮挡| 嘟嘟电影网在线观看| 久久亚洲国产成人精品v| 亚洲精品亚洲一区二区| 久久久精品94久久精品| 久久久久精品性色| 在线观看一区二区三区激情| 国产男女超爽视频在线观看| 日韩精品有码人妻一区| av国产精品久久久久影院| 国产精品一二三区在线看| 亚洲人成网站在线观看播放| 午夜福利在线观看免费完整高清在| 99热网站在线观看| av一本久久久久| 亚洲色图综合在线观看| 妹子高潮喷水视频| 欧美激情国产日韩精品一区| 欧美日韩在线观看h| 国产精品一区二区在线不卡| 一边摸一边做爽爽视频免费| 久久久欧美国产精品| 视频在线观看一区二区三区| 丰满乱子伦码专区| 最近的中文字幕免费完整| h视频一区二区三区| 满18在线观看网站| 精品午夜福利在线看| 国产亚洲精品久久久com| 乱码一卡2卡4卡精品| 欧美日韩综合久久久久久| 国产精品秋霞免费鲁丝片| 日日爽夜夜爽网站| 在线亚洲精品国产二区图片欧美 | 国语对白做爰xxxⅹ性视频网站| 丝瓜视频免费看黄片| 色94色欧美一区二区| 免费播放大片免费观看视频在线观看| 一区二区三区四区激情视频| 国产精品久久久久久精品古装| 国产毛片在线视频| 亚洲美女黄色视频免费看| 久久影院123| 久久精品国产亚洲网站| a级片在线免费高清观看视频| 国产精品国产三级专区第一集| 国产亚洲最大av| 亚洲人与动物交配视频| 国产午夜精品一二区理论片| 这个男人来自地球电影免费观看 | 婷婷成人精品国产| 99国产精品免费福利视频| av播播在线观看一区| 久久综合国产亚洲精品| 嘟嘟电影网在线观看| 国产成人精品福利久久| 26uuu在线亚洲综合色| 一二三四中文在线观看免费高清| 熟妇人妻不卡中文字幕| 亚洲精品美女久久av网站| 五月伊人婷婷丁香| 卡戴珊不雅视频在线播放| 亚洲人成网站在线播| 亚洲av二区三区四区| 国产伦精品一区二区三区视频9| 热re99久久国产66热| 乱码一卡2卡4卡精品| 亚洲国产精品一区二区三区在线| 大片电影免费在线观看免费| 简卡轻食公司| 另类亚洲欧美激情| 只有这里有精品99| 色视频在线一区二区三区| 亚洲av不卡在线观看| 国产精品一区二区三区四区免费观看| 精品国产一区二区久久| 99九九在线精品视频| 一个人免费看片子| 国产成人精品久久久久久| 又粗又硬又长又爽又黄的视频| 下体分泌物呈黄色| 亚洲欧美成人精品一区二区| 亚洲色图 男人天堂 中文字幕 | 热99国产精品久久久久久7| 精品一区二区三卡| 91午夜精品亚洲一区二区三区| 久久ye,这里只有精品| 国产亚洲一区二区精品| 国产探花极品一区二区| 成人国产麻豆网| 最近手机中文字幕大全| 大又大粗又爽又黄少妇毛片口| 日韩人妻高清精品专区| 亚洲国产精品一区三区| 纯流量卡能插随身wifi吗| 亚洲成人av在线免费| 啦啦啦在线观看免费高清www| 人妻少妇偷人精品九色| 亚洲精品一二三| 成人手机av| 美女福利国产在线| 精品亚洲成a人片在线观看| 三级国产精品欧美在线观看| 国国产精品蜜臀av免费| 免费看av在线观看网站| 国产成人精品福利久久| 一本—道久久a久久精品蜜桃钙片| 女性被躁到高潮视频| 国产不卡av网站在线观看| 日本午夜av视频| 亚洲成人手机| 免费少妇av软件| 久久久午夜欧美精品| 9色porny在线观看| 中文字幕免费在线视频6| 老司机影院毛片| 成人国产av品久久久| 天天操日日干夜夜撸| 丰满乱子伦码专区| 欧美 日韩 精品 国产| 久久国产精品大桥未久av| 国产亚洲欧美精品永久| 久久人人爽人人片av| 亚洲精品美女久久av网站| 国产成人免费观看mmmm| 亚洲欧美中文字幕日韩二区| 欧美人与善性xxx| 亚洲美女视频黄频| 色婷婷久久久亚洲欧美| kizo精华| 日韩不卡一区二区三区视频在线| 久久久久网色| 日日摸夜夜添夜夜添av毛片| 亚洲美女视频黄频| 久久久久精品性色| 免费看光身美女| 日本wwww免费看| 欧美 亚洲 国产 日韩一| 成人午夜精彩视频在线观看| 制服诱惑二区| av国产久精品久网站免费入址| 免费人成在线观看视频色| 免费人妻精品一区二区三区视频| 国产av国产精品国产| 国产亚洲av片在线观看秒播厂| 天天躁夜夜躁狠狠久久av| 亚洲精品久久午夜乱码| 国产色爽女视频免费观看| 91午夜精品亚洲一区二区三区| 亚洲色图综合在线观看| 国产日韩欧美在线精品| 国产极品天堂在线| 国产免费一区二区三区四区乱码| 男人添女人高潮全过程视频| 日本av免费视频播放| av电影中文网址| 亚洲精品久久成人aⅴ小说 | 狂野欧美激情性bbbbbb| 国产在线免费精品| 国产一区亚洲一区在线观看| 妹子高潮喷水视频| 中文字幕人妻丝袜制服| 国产精品一区二区在线不卡| 97在线人人人人妻| 日韩人妻高清精品专区| 久久韩国三级中文字幕| 精品视频人人做人人爽| 中文欧美无线码| 久久人人爽av亚洲精品天堂| av天堂久久9| 国产精品三级大全| 老司机影院成人| 欧美精品高潮呻吟av久久| 国产熟女欧美一区二区| 久久久久精品久久久久真实原创| 久久综合国产亚洲精品| 久久久久国产精品人妻一区二区| 大又大粗又爽又黄少妇毛片口| 满18在线观看网站| 国产精品免费大片| 国产老妇伦熟女老妇高清| 免费人成在线观看视频色| 欧美日韩一区二区视频在线观看视频在线| 亚洲天堂av无毛| 成人亚洲精品一区在线观看| 亚洲国产av新网站| 午夜91福利影院| 高清毛片免费看| 亚洲中文av在线| 久久精品久久久久久噜噜老黄| 日本av手机在线免费观看| 性色av一级| 午夜福利,免费看| 汤姆久久久久久久影院中文字幕| a级毛片免费高清观看在线播放| 国产片特级美女逼逼视频| 精品亚洲成a人片在线观看| 伊人亚洲综合成人网| 人人妻人人添人人爽欧美一区卜| 久久久久久久大尺度免费视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 午夜免费鲁丝| 夜夜爽夜夜爽视频| 日韩精品有码人妻一区| 99热6这里只有精品| 精品国产一区二区三区久久久樱花| 成人18禁高潮啪啪吃奶动态图 | 成人国产麻豆网| 午夜激情福利司机影院| 久久久久久久久久人人人人人人| 国产视频首页在线观看| 亚洲少妇的诱惑av| 日本与韩国留学比较| 国内精品宾馆在线| 亚洲国产日韩一区二区| 免费av中文字幕在线| 极品少妇高潮喷水抽搐| 欧美日韩视频精品一区| 精品人妻熟女av久视频| 国产高清不卡午夜福利| 黄片播放在线免费| 国产免费又黄又爽又色| 又大又黄又爽视频免费| 久久精品夜色国产| 中文字幕人妻丝袜制服| 久久国产亚洲av麻豆专区| 成人午夜精彩视频在线观看| 十分钟在线观看高清视频www| 国产一级毛片在线| 久久久亚洲精品成人影院| 一区二区三区乱码不卡18| 亚洲性久久影院| 五月玫瑰六月丁香| 三上悠亚av全集在线观看| 婷婷色麻豆天堂久久| 高清欧美精品videossex| 日韩,欧美,国产一区二区三区| 日韩av免费高清视频| 精品亚洲乱码少妇综合久久| 亚洲天堂av无毛| 51国产日韩欧美| 国产av精品麻豆| 久久99热这里只频精品6学生| 午夜视频国产福利| 一级毛片 在线播放| 晚上一个人看的免费电影| 日韩人妻高清精品专区| 亚洲四区av| 精品酒店卫生间| 亚洲av电影在线观看一区二区三区| 亚洲国产毛片av蜜桃av| 日韩中字成人| 建设人人有责人人尽责人人享有的| 亚洲欧美一区二区三区黑人 | 免费大片18禁| 99久久精品一区二区三区| 桃花免费在线播放| 女的被弄到高潮叫床怎么办| 亚洲av中文av极速乱| 老司机影院成人| 大陆偷拍与自拍| 国精品久久久久久国模美| 亚洲人成网站在线观看播放| 久久久国产一区二区| 99久久人妻综合| 一区在线观看完整版| 一边摸一边做爽爽视频免费| 天天操日日干夜夜撸| av电影中文网址| 成人免费观看视频高清| 午夜免费鲁丝| 熟女av电影| 日韩av免费高清视频| 午夜福利视频在线观看免费| 亚洲国产av影院在线观看| 国产无遮挡羞羞视频在线观看| 伊人亚洲综合成人网| av不卡在线播放| 亚洲av二区三区四区| xxxhd国产人妻xxx| 久热这里只有精品99| 大码成人一级视频| videos熟女内射| 国产欧美日韩综合在线一区二区| 欧美亚洲日本最大视频资源| 亚洲精品,欧美精品| 51国产日韩欧美| 午夜福利网站1000一区二区三区| 最近手机中文字幕大全| 大陆偷拍与自拍| 男男h啪啪无遮挡| 久久久久国产网址| 观看美女的网站| 热99久久久久精品小说推荐| 2018国产大陆天天弄谢| 国产成人精品一,二区| 精品久久久久久电影网| 中文字幕制服av| 国产黄频视频在线观看| a级毛色黄片| 男女啪啪激烈高潮av片| 欧美精品亚洲一区二区| 伊人亚洲综合成人网| 在线 av 中文字幕| 欧美三级亚洲精品| 日韩免费高清中文字幕av| 亚洲人成77777在线视频| 日日爽夜夜爽网站| 九草在线视频观看| 久久97久久精品| 精品人妻熟女毛片av久久网站| 18禁在线播放成人免费| 亚洲人成网站在线观看播放| 久久久精品94久久精品| 赤兔流量卡办理| 国产国拍精品亚洲av在线观看| 午夜福利视频在线观看免费| 女人精品久久久久毛片| 亚洲av在线观看美女高潮| 欧美bdsm另类| 狠狠精品人妻久久久久久综合| 欧美人与性动交α欧美精品济南到 | 精品一品国产午夜福利视频| 22中文网久久字幕| av国产精品久久久久影院| 在线观看人妻少妇| 久久久久久久久久久久大奶| 免费观看性生交大片5| 免费看不卡的av| 多毛熟女@视频| 99久久精品一区二区三区| 九色成人免费人妻av| 男女无遮挡免费网站观看| 一级片'在线观看视频| videos熟女内射| av播播在线观看一区| 国产亚洲精品久久久com| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品一区二区在线观看99| 在线观看免费高清a一片| 日本黄色日本黄色录像| 亚洲,一卡二卡三卡| 尾随美女入室| 色视频在线一区二区三区| 欧美激情国产日韩精品一区| 国产成人一区二区在线| 新久久久久国产一级毛片| 天天操日日干夜夜撸| 91精品伊人久久大香线蕉| 两个人免费观看高清视频| 一级毛片 在线播放| 麻豆乱淫一区二区| 国产成人精品无人区| 99九九在线精品视频| 看免费成人av毛片| 一级毛片电影观看| 日韩视频在线欧美| 极品人妻少妇av视频| 26uuu在线亚洲综合色| 久久精品夜色国产| 制服丝袜香蕉在线| 毛片一级片免费看久久久久| 欧美老熟妇乱子伦牲交| 爱豆传媒免费全集在线观看| 欧美日韩亚洲高清精品| 纵有疾风起免费观看全集完整版| 国产成人av激情在线播放 | 免费黄频网站在线观看国产| 久久99精品国语久久久| 99久国产av精品国产电影| 国产欧美亚洲国产| 男女边吃奶边做爰视频| 亚洲av在线观看美女高潮| 国产午夜精品久久久久久一区二区三区| 高清欧美精品videossex| 九草在线视频观看| 狂野欧美激情性xxxx在线观看| tube8黄色片| 观看av在线不卡| 最近的中文字幕免费完整| 狠狠婷婷综合久久久久久88av| 校园人妻丝袜中文字幕| 在线观看免费视频网站a站| 草草在线视频免费看| 国产无遮挡羞羞视频在线观看| 人妻夜夜爽99麻豆av| 亚洲欧美清纯卡通| 亚洲欧美一区二区三区黑人 | 一本大道久久a久久精品| 永久网站在线| 欧美精品亚洲一区二区| 街头女战士在线观看网站| 18禁动态无遮挡网站| 日韩精品有码人妻一区| 免费黄频网站在线观看国产| 午夜久久久在线观看| 久久毛片免费看一区二区三区| 搡老乐熟女国产| 不卡视频在线观看欧美| 久久午夜福利片| 人体艺术视频欧美日本| 亚洲国产精品成人久久小说| 2022亚洲国产成人精品| 欧美日韩亚洲高清精品| 一级毛片 在线播放| 大又大粗又爽又黄少妇毛片口| 伦理电影免费视频| 欧美激情国产日韩精品一区| 亚洲高清免费不卡视频| 高清黄色对白视频在线免费看| 亚洲精品第二区| 亚洲熟女精品中文字幕| 亚洲少妇的诱惑av| 亚洲内射少妇av| 日韩成人伦理影院| 亚洲色图综合在线观看| 一级毛片黄色毛片免费观看视频| 午夜激情av网站| 国产午夜精品久久久久久一区二区三区| 狠狠精品人妻久久久久久综合| 亚洲av.av天堂| 一级毛片aaaaaa免费看小| 亚洲人成网站在线播| 亚洲综合色惰| 久久久精品免费免费高清| 久久午夜综合久久蜜桃| 久久精品人人爽人人爽视色| 精品一区二区三区视频在线| 国产午夜精品久久久久久一区二区三区| 亚洲精品国产av蜜桃| 国产精品国产三级国产av玫瑰| 午夜免费观看性视频| 人人澡人人妻人| 国产白丝娇喘喷水9色精品| 亚洲精品国产av成人精品| 国产成人精品无人区| 国产亚洲一区二区精品| 少妇人妻久久综合中文| 精品一品国产午夜福利视频| 国产黄片视频在线免费观看| 欧美三级亚洲精品| 99热这里只有是精品在线观看| 亚洲欧洲国产日韩| 男女无遮挡免费网站观看| 18禁在线播放成人免费| 久久久久久久久久人人人人人人| 水蜜桃什么品种好| 五月伊人婷婷丁香| 在线观看一区二区三区激情| 美女xxoo啪啪120秒动态图| 亚洲中文av在线| 在现免费观看毛片| 如日韩欧美国产精品一区二区三区 | 国产欧美亚洲国产| 日本欧美国产在线视频| 欧美亚洲 丝袜 人妻 在线| 久久久久久人妻| 在线观看三级黄色| 欧美+日韩+精品| 一级毛片我不卡| 三级国产精品欧美在线观看| 国产精品久久久久久精品古装| 99热网站在线观看| 18+在线观看网站| 中国国产av一级| 国产精品不卡视频一区二区| 久久久久久久精品精品| av.在线天堂| 国产精品久久久久久精品电影小说| 高清黄色对白视频在线免费看| 国产老妇伦熟女老妇高清| 黄片无遮挡物在线观看| 国产乱人偷精品视频| 国产亚洲欧美精品永久| 久久鲁丝午夜福利片| 美女cb高潮喷水在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲av在线观看美女高潮| 亚洲欧洲日产国产| 女性生殖器流出的白浆| 水蜜桃什么品种好| 亚洲欧美成人综合另类久久久| 精品视频人人做人人爽| 日日爽夜夜爽网站| 成人毛片a级毛片在线播放| 亚洲av综合色区一区| 18禁裸乳无遮挡动漫免费视频| 午夜免费男女啪啪视频观看| 亚洲成人手机| 亚洲一区二区三区欧美精品| 久久精品国产鲁丝片午夜精品| 免费av中文字幕在线| 国产白丝娇喘喷水9色精品| a 毛片基地| 国产欧美日韩综合在线一区二区| 秋霞伦理黄片| 99久久综合免费| 精品人妻偷拍中文字幕| 亚洲精品乱码久久久v下载方式| 一边亲一边摸免费视频| 少妇高潮的动态图| 亚洲欧美中文字幕日韩二区| 久久久久精品久久久久真实原创| 99久久精品一区二区三区| 久久 成人 亚洲| 美女大奶头黄色视频| 欧美 日韩 精品 国产| 久久人人爽人人爽人人片va| 黄色配什么色好看| 亚洲欧美中文字幕日韩二区| 人人妻人人澡人人看| 美女中出高潮动态图| 亚洲精品久久午夜乱码| 午夜福利网站1000一区二区三区| 中文字幕亚洲精品专区| 大片电影免费在线观看免费| 亚洲中文av在线| 51国产日韩欧美| 亚洲国产精品专区欧美| kizo精华| 我要看黄色一级片免费的| 国产精品无大码| 日韩视频在线欧美| 一二三四中文在线观看免费高清| 男女啪啪激烈高潮av片| av在线app专区| 青青草视频在线视频观看| 亚洲欧美精品自产自拍| 中文字幕亚洲精品专区| 欧美国产精品一级二级三级| 免费高清在线观看日韩| 国产亚洲一区二区精品| 777米奇影视久久| 大香蕉久久网| 午夜激情福利司机影院| 中国三级夫妇交换| 国产在线视频一区二区| 日韩 亚洲 欧美在线| 少妇人妻久久综合中文| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品国产三级国产专区5o| 精品一区二区免费观看| 国产毛片在线视频| 久久久久网色| 国产伦精品一区二区三区视频9| kizo精华| 日本欧美国产在线视频| 最新中文字幕久久久久| 97超碰精品成人国产| 国产精品久久久久成人av| 国产一区二区三区av在线| 久久精品熟女亚洲av麻豆精品| 啦啦啦视频在线资源免费观看| a级毛片在线看网站| 精品亚洲成a人片在线观看| 午夜免费鲁丝| 22中文网久久字幕| 极品少妇高潮喷水抽搐| 精品少妇久久久久久888优播| 男的添女的下面高潮视频| 精品亚洲乱码少妇综合久久| 欧美日韩视频高清一区二区三区二| 一级毛片黄色毛片免费观看视频| 欧美成人精品欧美一级黄| 欧美少妇被猛烈插入视频| 高清午夜精品一区二区三区| 嘟嘟电影网在线观看| 欧美少妇被猛烈插入视频| 全区人妻精品视频| 亚洲国产成人一精品久久久| 国产视频首页在线观看| 欧美xxⅹ黑人| 蜜桃久久精品国产亚洲av| 18禁在线播放成人免费| 边亲边吃奶的免费视频| 亚洲少妇的诱惑av| 久久青草综合色| 亚洲一区二区三区欧美精品| 午夜影院在线不卡| 男男h啪啪无遮挡| 91aial.com中文字幕在线观看| 秋霞伦理黄片| 最近手机中文字幕大全| 国产极品粉嫩免费观看在线 |