• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Propagation behavior of acoustic wave in wood

    2014-04-19 10:10:40HuadongXuGuoqiXuLihaiWangLeiYu
    Journal of Forestry Research 2014年3期

    Huadong Xu ? Guoqi Xu ? Lihai Wang ? Lei Yu

    Introduction

    Acoustic technologies for testing wood products have been introduced to the field of forestry and the wood industry for a few decades.Compared with other testing techniques such as nuclear magnetic resonance (Hernández and Cáceres 2010), X-rays (Yu and Qi 2008), and vibration, acoustic wave tests have the advantages of low cost, portability, safety for testing personnel, and rapid return of results.These features increase the suitability of acoustic wave testing for in situ tests of wood engineering materials and field measurement of standing trees.Two dimensional acoustic wave tomography broadens the scope for application of acoustic wave testing.Acoustic wave testing has become one of the most popular and effective nondestructive wood testing methods, and it is widely used to assess the physical and mechanical qualities of wood (Sandoz 1989; Halabe et al.1997), detect internal defects in logs or standing trees (Bucur 2005; Ross et al.1994), evaluate the strength and residual life of the major components of timber structures (Yang et al.2012), determine the stability of roadside trees in cities (Mattheck and Bethge 1993; Wang 1999) and analyze the vibration properties of musical instruments manufactured of wood (Brémaud 2012).

    In tests using acoustic waves, one acoustic parameter, such as acoustic wave velocity (AWV), is generally employed.For example, to detect internal defects in standing trees, AWV is compared between healthy trees and defective trees and then used to evaluate the locations and sizes of defects such as knots, fungal decay, or cracks based on changes AWV magnitude (Divos and Szalai 2002).In assessments of the mechanical quality of standing trees or structural beams, the dynamic properties of wood such modulus of elasticity (MOE) are quantified using AWV, and then the static properties of wood are evaluated based on the linear relationship between the dynamic and static properties (Brashaw et al.2004).

    The basis of these applications is understanding of the fundamentals of acoustic wave propagation in wood, especially their propagation behavior in intact wood.Few studies have focused on the propagation path of acoustic waves in intact wood or the effects on propagation paths of defects such as knots and decay.The objective of this study was to examine the propagation path of acoustic waves in intact and defective wood (with cavity defects) to enhance understanding of wave propagation behavior.We analyzed the effects of wood anisotropy and cavity defects on acoustic wave propagation paths.

    Materials and methods

    Wood samples

    Wood samples were quarter-sawn Ussuri poplar (Populus us-suriensis) timbers measuring 76 cm long, 7 cm thick, and 34?35 cm wide (Fig.1).The moisture content of heartwood and sapwood of the timbers were 83.3% and 99.5%, respectively.

    Fig.1: Specimen and instruments for measuring the acoustic wave time

    Arranging measuring points

    To study the propagation process and behavior of acoustic wave in radial sections of lumber, a series of grids was drawn on the radial section to be used to measure the transmission time of acoustic waves point by point.Fig.2 depicts nine measuring points along the radial direction of specimen at 4 cm intervals, and nine measuring points along the longitudinal direction at 8 cm intervals.The distance between the last two columns points was 4 cm, for example the distance from Point 82 to Point 99.Additionally, six measuring points were drawn between Point 1 and Point 18.Thus, there were one hundred and six measuring points on the radial section of the sample lumber.The locations and areas of cavities are shown in Fig.1(b) and Table 1.

    Fig.2: Arrangement of measuring points

    Table 1: The location and area of the rectangular cavity artificially drilled in wood specimen

    Instruments and methods

    Rate of wave transmission in longitudinal and radial directions We used the Arbotom instrument, produced by RINNTECH Company with an exciting sensor and a series of nreceiving sensors, to measure acoustic wave transmission times (AWTs) (Fig.1).When measuring each point, we used a hammer to knock on the exciting sensor 5?10 times with the same intensity of force, and then calculated the average values of AWT.

    To discuss the differences in acoustic wave propagation between heartwood and sapwood, AWV was tested in the longitudinal direction once at 2 cm interval along the short edge of specimen using an acoustic wave timer.The tests were conducted nine times on heartwood, seven times on sapwood, and twice on bark.In total, we recorded 18 data sets for longitudinal transmission times of acoustic waves.Transmission times were then tested for radial acoustic waves between points 1 and 9, points 46 and 54, and points 91 and 99.

    Measuring AWT by grid point method

    Measurement by grid points included two parts: (1) Point 5 served as Exciting Point 1 (EP1) and the receiving points were from Point 10 to Point 99 in sequence; (2) Point 9 served as Exciting Point 2 (EP2), and the receiving points were from Point 10 to Point 106 in sequence (Fig.2).After measuring AWT, the transmission time isolines were drawn on the radial section of lumber specimens with Matlab software.

    By measuring the distance between the exciting point and each receiving point, we computed the angle between the propagation direction of the acoustic wave and wood fiber direction.At the same time, AWV was calculated using function (1), which was used to analyze the relationship between wave propagation velocity and propagation direction.

    Where, V is acoustic wave velocity (m·s-1), L is propagation distance (m), T is acoustic wave transmission time (s).

    Results and discussion

    Comparison between longitudinal and radial AWV

    AWV moved more quickly in heartwood than in sapwood, and moved slowest in bark (Table 2).The propagation directions of acoustic waves both in heartwood and in sapwood were along the grain direction (parallel to the wood fiber direction), so the reason for this difference may be due to the varying moisture content of wood.The moisture content of sapwood was higher than that of heartwood in sample timbers.Moisture content can affect the propagation of acoustic waves and AWV typically declines as wood moisture content increases (Sandoz 1989).

    The comparison of propagation velocity between longitudinal and radial acoustic waves in lumber specimens is shown in Fig.3.AWV was greater in the longitudinal direction than that in radial direction (Fig.3); mean radial AWV was 508 m·s-1.The main reason for this might have been the anisotropy of wood.The propagation direction of the longitudinal acoustic wave was parallel to the direction of wood fibers and the propagation direction of radial acoustic waves was perpendicular to the direction of wood fibers.Wood grain direction had a significant effect on the propagation of acoustic waves.

    Table 2: Propagation velocity of longitudinal acoustic waves in lumber specimen

    Fig.3: Comparison of propagation velocity between longitudinal and radial acoustic waves

    Transmitting time isolines of acoustic wave in intact wood

    The transmission times for acoustic waves received at each receiving point in the radial section of lumber specimen when Exciting Point 1 and Exciting Point 2 are knocked on respectively, were processed using Matlab to simulate the transmission time isolines of acoustic waves (Fig.4).

    The acoustic wave is gradually transmitted from the wood pith to the far area in the radial section of lumber when EP 1 is knocked on (Fig.4a).AWV varied by direction, with longitudinal travel most rapid and radial travel most slow.In the transition area from longitudinal to radial, the transmission time changed gradually from long to short.In other words, there were more isolines per unit length in the radial than in the longitudinal direction.Acoustic wave transmits gradually from near to far in the radial section of lumber when EP2 was knocked on (Fig.4b).Acoustic waves travelled most rapidly and there were fewer isolines when waves travelled in the longitudinal direction.Waves travelled most slowly and there are more isolines in the radial direction.

    Fig.4: Transmitting time isolines of acoustic wave in radial section of log when EP1 and EP2 are knocked on

    Relationship between wood grain and AWV

    The definition of grain angle (θ) between acoustic wave propagation direction and wood fiber direction is shown in Fig.5.

    The relationship scatter diagram between θ and AWV in different directions is shown in Fig.6.AWV was highest at θ = 0° and lowest at θ = 90°.AWV decreased gradually as θ increased.AWV decreased quickly at θ <45° but decreased more slowly at θ ≥45°.

    Fig.5: The illustration diagram of the grain angel

    Fig.6: Effect of grain angel on the propagation velocity of acoustic wave

    Prediction models of AWV

    Kabir et al.(2001) used the second order parabolic function (Equ.2) to study the relationship between AWV and grain angle, and concluded that the resulting model could be used to predict AWV in veneer.We also used the model to discuss the relationship between θ and AWV.

    Where, Vθis AWV at θ, and A, B, and C are regression coefficients.

    The regression equation for the relationship between θ and AWV traveling in a radial section of lumber is:

    For studying the relationship between wave velocity and wood mechanical properties, the most classical empirical formula is the Hankinson formula designed by the U.S.Army in 1921.Eq.4 is one of its forms, which can be used to predict AWV (Armstrong et al.1991).

    Where, Vθis AWV at θ; Vθis AWV parallel to the wood fiber direction; V90is AWV perpendicular to the wood fiber direction; n is an empirical constant ranging from 1.5?2.5.

    Predicted AWVs using Hankinson formula and the parabolic function are shown in Fig.7.In the Hankinson formula, V0and V90were 4095 m·s-1and 680 m·s-1, respectively, and n was 1.7.Both of these models described the relationship between propagation directions and AWV, but the predicted data using the Hankinson formula yielded greater agreement with the experimental data.

    Effect of cavity defects on AWT isolines

    AWT isolines were drawn on the radial sections of defective wood when EP1 was excited (Fig.8a).Compared with Fig.4a, Fig.8a shows that AWT isolines on the radial section of defective wood differed significantly from those on intact wood.When wood specimens contained cavities, acoustic wave time isolines behind the rectangular cavities formed two “circular regions”.AWT from EP1 to these two regions was greater than to other region of wood in radial sections.AWT in defective wood was twice that from EP1 to these two regions in intact wood.AWTs from EP1 to other regions behind the rectangular cavity except those two regions were greater than in intact specimens.Similarly, compared with Fig.4b, Fig.8b shows that AWTs from EP2 to the area behind the cavity in defective wood were larger than in intact wood.AWT isolines from EP2 in defective wood also formed “circular regions” near the farthest corner of the rectangular cavity.

    Fig.7: Experimental and predicted acoustic wave velocity using different equations

    Conclusion

    When an acoustic wave transmits across a radial section of lumber, the propagation velocity in the longitudinal direction (parallel to the wood fiber) was higher than in the radial direction (perpendicular to the wood fiber).

    Acoustic waves were gradually transmitted from excitation points to other areas in the radial section of lumber.There were more transmitting time isolines per unit length in radial directions than in longitudinal directions.

    Acoustic wave velocity declined gradually with increasing θ.It decreased quickly at θ <45°, and decreased slowly at θ >45°.The predicted velocities using the second order parabolic model and Hankinson’s formula were in close agreement with the measured values.Compared with the parabolic model, Hankinson’s formula predicted more accurately at n >1.7.

    Acoustic wave time isolines on radial sections of defective wood differed from those on intact wood.Acoustic wave transmission time from the exciting point to the region behind the cavity was larger in defective wood than in intact wood.

    Fig.8: Effect of cavity defect on acoustic wave time isolines on the radial section of green wood.(a) and (b) are the acoustic wave time isolines on the wood with Cavity 1 when EP1 and EP2 are excited, respectively.

    Armstrong JP, Patterson DW, Sneckenberger JE.1991.Comparison of three equations for predicting stress wave velocity as a function of grain angle.Wood and Fiber Science, 23(1): 32?43.

    Brémaud I.2012.Acoustical properties of wood in string instruments soundboards and tuned idiophones: Biological and cultural diversity.Journal of the Acoustical Society of America, 131(1): 807?818.

    Brashaw BK, Wang XP, Ross RJ, Pellerin RF.2004.Relationship between stress wave velocities of green and dry veneer.Forest Products Journal, 54(6): 85?89.

    Bucur V.2005.Ultrasonic techniques for nondestructive testing of standing

    trees.Ultrasonics, 43(4): 237?239.

    Divos F, Szalai L.2002.Tree evaluation by acoustic tomography.In: Proceedings of the 13th International Symposium on Nondestructive Testing of Wood, pp.251?256.

    Halabe UB, Bidigalu GM, GangaRao HV, Ross RJ.1997.Nondestructive Evaluation of Green Wood Using Stress Wave and Transverse Vibration Techniques.Materials Evaluation, 55(9): 1013?1018.

    Hernández RE, Cáceres CB.2010.Magnetic resonance microimaging of liquid water distribution in sugar maple wood below fiber saturation point.Wood and Fiber Science, 42(3): 259?272.

    Kabir MF.2001.Prediction of ultrasonic properties from grain angle.Journal of the Institute of Wood Science, 15(5): 235?246.

    Mattheck CG, Bethge KA.1993.Detection of decay in trees with the Metriguard Stress Wave Timer.Journal of Abroriculture, 19(6): 374?378.

    Ross RJ, Ward JC, TenWolde A.1994.Stress wave nondestructive evaluation of wetwood.Forest Products Journal, 44(7/8): 79?83.

    Sandoz JL.1989.Grading of construction timber by ultrasound.Wood Sci-ence and Technology, 23: 95?108.

    Wang LH, Xu HD, Zhou CL, Li L, Yang XC.2007.Effect of sensor quantity on measurement accuracy of log inner defects by using stress wave.Journal of Forestry Research, 18(3): 221?225.

    Wang XP.1999.Stress wave-based nondestructive evaluation (NDE) methods for wood quality of standing trees.Doctoral Dissertation.Houghton: Michigan Technological University.

    Yang HS, Kang J, Choi MS.2012.Acoustic effects of green roof systems on a low-profiled structure at street level.Building and Environment, 50: 44?55.

    Yu L, Qi DW.2008.Analysis and processing of decayed log CT image based on multifractal theory.Computers and Electronics in Agriculture, 63(2): 147?154.

    Zhao Y, Zhao N, Fa L, Zhao MS.2013.Seismic signal and data analysis of rock media with vertical anisotropy.Journal of Modern Physics, 4(1): 11?18.

    男女免费视频国产| 丝瓜视频免费看黄片| 精品一区二区三区视频在线| 亚洲人成网站高清观看| 国产av精品麻豆| 国产 一区精品| 少妇的逼好多水| 午夜老司机福利剧场| 国产无遮挡羞羞视频在线观看| 久久久久久久久久久丰满| 99re6热这里在线精品视频| 我的老师免费观看完整版| 国内揄拍国产精品人妻在线| av国产精品久久久久影院| a级毛色黄片| 99久久人妻综合| 高清日韩中文字幕在线| 免费黄网站久久成人精品| 王馨瑶露胸无遮挡在线观看| 国产成人91sexporn| 国产精品秋霞免费鲁丝片| 亚洲熟女精品中文字幕| 纯流量卡能插随身wifi吗| 亚洲成人手机| 国产永久视频网站| 91久久精品电影网| 国产av码专区亚洲av| 一级av片app| 亚洲综合精品二区| 成人18禁高潮啪啪吃奶动态图 | 亚洲av成人精品一二三区| av免费在线看不卡| 亚洲熟女精品中文字幕| 久久精品熟女亚洲av麻豆精品| 国产一级毛片在线| 国产无遮挡羞羞视频在线观看| 九九爱精品视频在线观看| 涩涩av久久男人的天堂| 国产精品麻豆人妻色哟哟久久| 赤兔流量卡办理| 国产成人freesex在线| 黑丝袜美女国产一区| 成人毛片60女人毛片免费| 边亲边吃奶的免费视频| 国产精品福利在线免费观看| freevideosex欧美| 国产精品秋霞免费鲁丝片| 欧美性感艳星| 晚上一个人看的免费电影| 人妻一区二区av| 亚洲精品日韩在线中文字幕| 丰满迷人的少妇在线观看| 国产 精品1| 亚洲三级黄色毛片| 久久精品人妻少妇| 久久人人爽av亚洲精品天堂 | 日本av免费视频播放| 亚洲精品国产色婷婷电影| a 毛片基地| 中文字幕久久专区| 精品熟女少妇av免费看| 一边亲一边摸免费视频| 少妇熟女欧美另类| 欧美日本视频| 国产一区二区在线观看日韩| 一本久久精品| 日韩电影二区| 国产亚洲5aaaaa淫片| 男女国产视频网站| 亚洲精品中文字幕在线视频 | 22中文网久久字幕| 中文精品一卡2卡3卡4更新| 一区二区三区乱码不卡18| 亚洲图色成人| 国产成人精品一,二区| 亚洲精品一区蜜桃| 91精品伊人久久大香线蕉| 王馨瑶露胸无遮挡在线观看| 色视频www国产| 女的被弄到高潮叫床怎么办| 国产精品久久久久成人av| 亚洲欧美清纯卡通| 久久99热6这里只有精品| 久久久久久久国产电影| 80岁老熟妇乱子伦牲交| 五月开心婷婷网| 久久人妻熟女aⅴ| 欧美日韩在线观看h| 最近最新中文字幕免费大全7| 激情 狠狠 欧美| 91精品国产国语对白视频| 国产美女午夜福利| 精品一区二区三卡| 欧美日韩在线观看h| av在线播放精品| 18禁动态无遮挡网站| 久久久久久久久久久免费av| 七月丁香在线播放| 精品人妻熟女av久视频| 亚洲性久久影院| 欧美精品一区二区免费开放| 99久久综合免费| 丝瓜视频免费看黄片| 成人亚洲欧美一区二区av| 少妇人妻久久综合中文| 99久久精品国产国产毛片| 国产成人a区在线观看| 亚洲av日韩在线播放| 国产精品三级大全| 秋霞在线观看毛片| 亚洲中文av在线| 久久久久精品久久久久真实原创| 久久 成人 亚洲| 亚洲精品乱码久久久v下载方式| 精品酒店卫生间| 国内揄拍国产精品人妻在线| 一本一本综合久久| 熟女av电影| 亚洲天堂av无毛| 啦啦啦视频在线资源免费观看| 精品99又大又爽又粗少妇毛片| 国产精品一区二区三区四区免费观看| 亚洲精品乱久久久久久| 免费在线观看成人毛片| 久久av网站| 欧美日韩精品成人综合77777| 国产免费视频播放在线视频| 尤物成人国产欧美一区二区三区| 亚洲美女视频黄频| 免费观看无遮挡的男女| 国产亚洲av片在线观看秒播厂| 精品熟女少妇av免费看| 超碰av人人做人人爽久久| 国产精品蜜桃在线观看| 免费观看在线日韩| 激情五月婷婷亚洲| 久久久久久人妻| 亚洲人成网站在线观看播放| 大又大粗又爽又黄少妇毛片口| 国产av国产精品国产| 我要看日韩黄色一级片| 一级a做视频免费观看| 久久人人爽人人爽人人片va| 久久ye,这里只有精品| 国产在视频线精品| 干丝袜人妻中文字幕| 中文字幕久久专区| 九九在线视频观看精品| 亚洲精品日韩av片在线观看| 高清av免费在线| 国产成人a∨麻豆精品| 性色av一级| 青春草视频在线免费观看| av天堂中文字幕网| 熟女电影av网| 久久久久网色| 美女xxoo啪啪120秒动态图| 亚洲av男天堂| 欧美bdsm另类| 又粗又硬又长又爽又黄的视频| 18禁裸乳无遮挡动漫免费视频| 18禁在线播放成人免费| 一级毛片我不卡| 狂野欧美激情性bbbbbb| 免费黄网站久久成人精品| 熟妇人妻不卡中文字幕| 色5月婷婷丁香| 国产乱人视频| 亚洲精品乱久久久久久| videossex国产| 久久久久久久国产电影| 亚洲国产精品999| 国产女主播在线喷水免费视频网站| 成人特级av手机在线观看| 晚上一个人看的免费电影| 国产熟女欧美一区二区| 3wmmmm亚洲av在线观看| 亚洲欧美成人综合另类久久久| 少妇人妻精品综合一区二区| 一本一本综合久久| 少妇 在线观看| 成年免费大片在线观看| 熟女人妻精品中文字幕| 亚洲精品456在线播放app| 极品少妇高潮喷水抽搐| 日日摸夜夜添夜夜添av毛片| 成人毛片60女人毛片免费| 久久久久视频综合| 久久午夜福利片| 国产免费视频播放在线视频| 亚洲成人一二三区av| av视频免费观看在线观看| 国产乱人视频| 久久精品久久久久久噜噜老黄| 麻豆国产97在线/欧美| 成人影院久久| 秋霞伦理黄片| 亚洲欧美日韩另类电影网站 | 午夜精品国产一区二区电影| 国产高清三级在线| 精品亚洲乱码少妇综合久久| 国精品久久久久久国模美| 亚洲av综合色区一区| 联通29元200g的流量卡| 寂寞人妻少妇视频99o| 国产欧美另类精品又又久久亚洲欧美| 最后的刺客免费高清国语| 免费黄网站久久成人精品| 国产黄片美女视频| 在线观看一区二区三区| 午夜免费鲁丝| 天堂俺去俺来也www色官网| 亚洲丝袜综合中文字幕| 久久人妻熟女aⅴ| 深爱激情五月婷婷| 男人添女人高潮全过程视频| 亚洲欧美成人综合另类久久久| 精品人妻熟女av久视频| 日本免费在线观看一区| 女人十人毛片免费观看3o分钟| 一级爰片在线观看| 成人国产麻豆网| 男人爽女人下面视频在线观看| 亚洲欧美日韩东京热| 高清av免费在线| 国产爽快片一区二区三区| 在线观看av片永久免费下载| 性色avwww在线观看| 欧美高清成人免费视频www| 久久99热这里只有精品18| 久久国产亚洲av麻豆专区| 校园人妻丝袜中文字幕| 22中文网久久字幕| 22中文网久久字幕| 免费大片18禁| 欧美极品一区二区三区四区| 女的被弄到高潮叫床怎么办| kizo精华| 国产精品国产三级专区第一集| av又黄又爽大尺度在线免费看| 2021少妇久久久久久久久久久| 熟妇人妻不卡中文字幕| 网址你懂的国产日韩在线| 日韩制服骚丝袜av| 亚洲欧美清纯卡通| 久久久a久久爽久久v久久| 蜜桃久久精品国产亚洲av| 久久女婷五月综合色啪小说| 亚洲国产欧美在线一区| 成年人午夜在线观看视频| 高清在线视频一区二区三区| 国产av码专区亚洲av| 国产亚洲最大av| 久久久久网色| 一区二区三区免费毛片| 男人和女人高潮做爰伦理| 一级爰片在线观看| 制服丝袜香蕉在线| 97在线视频观看| 欧美精品人与动牲交sv欧美| 亚洲欧美成人综合另类久久久| 亚洲,一卡二卡三卡| 精品久久久精品久久久| 国产在线一区二区三区精| 免费观看在线日韩| 久久久国产一区二区| 日本爱情动作片www.在线观看| 99久久人妻综合| 日韩欧美 国产精品| 伦理电影免费视频| 久久久久久久久久久丰满| 日韩欧美 国产精品| 99九九线精品视频在线观看视频| 亚洲图色成人| 1000部很黄的大片| 亚洲自偷自拍三级| 丝袜脚勾引网站| 国产免费又黄又爽又色| 中文资源天堂在线| 日本午夜av视频| 欧美少妇被猛烈插入视频| 国产美女午夜福利| 国产成人freesex在线| 菩萨蛮人人尽说江南好唐韦庄| 我要看黄色一级片免费的| 久热这里只有精品99| 亚洲精品,欧美精品| 91精品国产国语对白视频| 成年女人在线观看亚洲视频| 日韩人妻高清精品专区| 亚洲内射少妇av| 免费观看的影片在线观看| 中文字幕久久专区| 国产永久视频网站| 夫妻午夜视频| 色视频www国产| 久久久久国产网址| 亚洲国产精品专区欧美| 色婷婷久久久亚洲欧美| 久久久久久久久久久丰满| 国产伦在线观看视频一区| 国产午夜精品久久久久久一区二区三区| 五月玫瑰六月丁香| 国产老妇伦熟女老妇高清| 精品亚洲成国产av| 国产成人一区二区在线| 国产精品无大码| 国产成人免费无遮挡视频| 国产国拍精品亚洲av在线观看| 国产精品女同一区二区软件| 亚洲成人一二三区av| 岛国毛片在线播放| 国产精品无大码| 女人十人毛片免费观看3o分钟| 高清在线视频一区二区三区| 国产熟女欧美一区二区| 日韩大片免费观看网站| 男人爽女人下面视频在线观看| 欧美老熟妇乱子伦牲交| 国产白丝娇喘喷水9色精品| 国产黄频视频在线观看| 亚洲精品久久午夜乱码| 热re99久久精品国产66热6| 亚洲久久久国产精品| 免费观看av网站的网址| 最近最新中文字幕免费大全7| 亚洲成人手机| 最近的中文字幕免费完整| 国产成人一区二区在线| 成人国产麻豆网| 婷婷色综合www| 赤兔流量卡办理| 久久久久久久久大av| 国产精品99久久99久久久不卡 | 欧美xxxx黑人xx丫x性爽| 国产精品伦人一区二区| 看十八女毛片水多多多| 精品国产乱码久久久久久小说| 久久国产亚洲av麻豆专区| 国产亚洲av片在线观看秒播厂| 波野结衣二区三区在线| 七月丁香在线播放| 国产亚洲精品久久久com| 亚洲国产精品国产精品| 欧美+日韩+精品| 99热网站在线观看| 18禁裸乳无遮挡免费网站照片| 成人一区二区视频在线观看| 在线观看av片永久免费下载| 一级毛片久久久久久久久女| 中文字幕制服av| 一级毛片黄色毛片免费观看视频| 一级a做视频免费观看| av女优亚洲男人天堂| av黄色大香蕉| av在线蜜桃| 在线观看美女被高潮喷水网站| 亚洲精品乱码久久久v下载方式| 国产高潮美女av| 深爱激情五月婷婷| 精品99又大又爽又粗少妇毛片| 你懂的网址亚洲精品在线观看| a级毛片免费高清观看在线播放| 亚洲成人一二三区av| 老司机影院毛片| 国产精品欧美亚洲77777| 欧美 日韩 精品 国产| 性高湖久久久久久久久免费观看| 一区二区av电影网| 少妇 在线观看| 国产有黄有色有爽视频| 激情 狠狠 欧美| 女的被弄到高潮叫床怎么办| 国产精品一区二区性色av| 成人影院久久| 在线亚洲精品国产二区图片欧美 | 五月天丁香电影| 午夜视频国产福利| 成人黄色视频免费在线看| 午夜老司机福利剧场| 亚洲,欧美,日韩| 亚洲国产欧美在线一区| 91精品国产国语对白视频| 高清毛片免费看| 久久久亚洲精品成人影院| 亚洲欧美日韩卡通动漫| 美女中出高潮动态图| 精华霜和精华液先用哪个| 在线 av 中文字幕| 久久久久国产网址| 亚洲精品国产色婷婷电影| 亚洲精品一区蜜桃| 国产一区二区三区av在线| 女性被躁到高潮视频| 男女无遮挡免费网站观看| 街头女战士在线观看网站| 欧美成人一区二区免费高清观看| av专区在线播放| 亚洲成人中文字幕在线播放| 久久午夜福利片| 国产伦理片在线播放av一区| 亚洲精品色激情综合| 亚洲精品国产av蜜桃| 亚洲激情五月婷婷啪啪| 97热精品久久久久久| 在线精品无人区一区二区三 | 老师上课跳d突然被开到最大视频| 2022亚洲国产成人精品| 插阴视频在线观看视频| 高清视频免费观看一区二区| 大片电影免费在线观看免费| 欧美日韩亚洲高清精品| 国产爱豆传媒在线观看| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久成人| 久久久国产一区二区| 亚洲成人一二三区av| 黄色配什么色好看| 欧美少妇被猛烈插入视频| 高清在线视频一区二区三区| 亚洲av国产av综合av卡| 精品人妻熟女av久视频| 欧美区成人在线视频| 高清不卡的av网站| 美女脱内裤让男人舔精品视频| 天堂8中文在线网| 高清在线视频一区二区三区| 高清日韩中文字幕在线| 久久婷婷青草| 舔av片在线| 久久久久久久久久成人| av卡一久久| 精品国产一区二区三区久久久樱花 | 日韩强制内射视频| 人人妻人人爽人人添夜夜欢视频 | 在线观看免费高清a一片| 成人免费观看视频高清| 一级毛片我不卡| 身体一侧抽搐| 久久精品夜色国产| 3wmmmm亚洲av在线观看| 老女人水多毛片| 少妇的逼好多水| kizo精华| 卡戴珊不雅视频在线播放| 免费av不卡在线播放| 亚洲精品国产av成人精品| 午夜福利网站1000一区二区三区| 99热这里只有是精品在线观看| 哪个播放器可以免费观看大片| 久久精品国产a三级三级三级| 各种免费的搞黄视频| 亚洲天堂av无毛| 国产一级毛片在线| 一级毛片 在线播放| 久久久午夜欧美精品| 日韩 亚洲 欧美在线| 只有这里有精品99| 老熟女久久久| 国产国拍精品亚洲av在线观看| 久久久精品免费免费高清| 一级毛片电影观看| 国产一区二区三区综合在线观看 | 波野结衣二区三区在线| 插阴视频在线观看视频| av网站免费在线观看视频| 色视频www国产| 久久久久精品久久久久真实原创| 乱码一卡2卡4卡精品| 日韩三级伦理在线观看| 91精品一卡2卡3卡4卡| 久久久久久久精品精品| 成人亚洲欧美一区二区av| 男人和女人高潮做爰伦理| 汤姆久久久久久久影院中文字幕| 中文字幕免费在线视频6| 七月丁香在线播放| 小蜜桃在线观看免费完整版高清| 色视频在线一区二区三区| 秋霞伦理黄片| 日本av手机在线免费观看| av天堂中文字幕网| 人妻少妇偷人精品九色| 国产精品无大码| 久久久久久久国产电影| 色婷婷av一区二区三区视频| 国产亚洲av片在线观看秒播厂| 亚洲国产欧美人成| 不卡视频在线观看欧美| 免费观看的影片在线观看| 亚洲激情五月婷婷啪啪| 狠狠精品人妻久久久久久综合| 99久久精品热视频| 国产伦精品一区二区三区四那| 国产黄片视频在线免费观看| 亚洲电影在线观看av| 最近2019中文字幕mv第一页| 国产亚洲5aaaaa淫片| 亚洲图色成人| 亚洲国产欧美人成| 伦理电影大哥的女人| 国产亚洲精品久久久com| 日日啪夜夜撸| 久久精品国产鲁丝片午夜精品| 一级a做视频免费观看| 国产探花极品一区二区| 大香蕉97超碰在线| 欧美日韩在线观看h| 中文字幕人妻熟人妻熟丝袜美| 精品久久久久久久久av| 日韩,欧美,国产一区二区三区| 欧美zozozo另类| 你懂的网址亚洲精品在线观看| 99热6这里只有精品| 少妇被粗大猛烈的视频| 免费看日本二区| 各种免费的搞黄视频| 国产精品不卡视频一区二区| 六月丁香七月| 在线观看av片永久免费下载| 久久久久久人妻| 精品久久久久久久久av| 亚洲中文av在线| a 毛片基地| 99热国产这里只有精品6| 亚洲三级黄色毛片| 久久青草综合色| 寂寞人妻少妇视频99o| 欧美丝袜亚洲另类| 草草在线视频免费看| av专区在线播放| 国产成人免费无遮挡视频| 日韩欧美 国产精品| 如何舔出高潮| 日韩av免费高清视频| 亚洲在久久综合| 国产亚洲精品久久久com| 国产精品偷伦视频观看了| 精品亚洲成国产av| 狂野欧美激情性xxxx在线观看| 大香蕉久久网| 熟女人妻精品中文字幕| 国产精品av视频在线免费观看| 人妻 亚洲 视频| 男男h啪啪无遮挡| 成人毛片a级毛片在线播放| 一级av片app| 国产一区亚洲一区在线观看| 91狼人影院| 毛片女人毛片| 欧美日韩视频精品一区| 日韩视频在线欧美| 高清不卡的av网站| 91午夜精品亚洲一区二区三区| 免费看av在线观看网站| 18禁裸乳无遮挡动漫免费视频| 人妻一区二区av| 国内精品宾馆在线| 亚洲欧美日韩无卡精品| 国产亚洲av片在线观看秒播厂| 欧美一区二区亚洲| 高清午夜精品一区二区三区| 干丝袜人妻中文字幕| 日韩中文字幕视频在线看片 | 亚洲综合精品二区| 黄片无遮挡物在线观看| 久久久a久久爽久久v久久| 人人妻人人添人人爽欧美一区卜 | 18禁在线无遮挡免费观看视频| 午夜福利高清视频| 久久精品国产a三级三级三级| 成人影院久久| 网址你懂的国产日韩在线| 午夜老司机福利剧场| 国产精品一区二区性色av| 午夜老司机福利剧场| 91精品国产九色| av播播在线观看一区| 欧美成人精品欧美一级黄| 国产一区二区在线观看日韩| 国产深夜福利视频在线观看| 成人国产av品久久久| 国产视频首页在线观看| 九九在线视频观看精品| 亚洲精品中文字幕在线视频 | 成人漫画全彩无遮挡| 免费av不卡在线播放| 天堂俺去俺来也www色官网| 久久久久视频综合| www.av在线官网国产| 少妇人妻精品综合一区二区| av免费在线看不卡| 麻豆成人av视频| 我要看黄色一级片免费的| 国产黄频视频在线观看| 久久国产精品男人的天堂亚洲 | 免费大片黄手机在线观看| 丝袜脚勾引网站| 色婷婷av一区二区三区视频| 亚洲性久久影院| 中文乱码字字幕精品一区二区三区| 精品国产乱码久久久久久小说| 国产在线男女| 一区二区三区免费毛片| 午夜福利在线在线| 国产日韩欧美在线精品| 久久97久久精品| 婷婷色麻豆天堂久久| 国产成人a区在线观看| 亚洲国产精品一区三区| 色网站视频免费| 一级av片app| 丰满乱子伦码专区| 亚洲国产高清在线一区二区三| 亚洲精品456在线播放app|