• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temporal changes in nitrogen acquisition of Japanese black pine (Pinus thunbergii) associated with black locust (Robinia pseudoacacia)

    2014-04-19 10:10:28LopezMizotaNoboriSasakiYamanaka
    Journal of Forestry Research 2014年3期

    M.L.Lopez C.? C.Mizota ? Y.Nobori ? T.Sasaki ? T.Yamanaka

    Introduction

    The nitrogen-fixing tree black locust (Robinia pseudoacacia) is the second most abundant deciduous tree species in the world (Malcolm et al.2008).This competitive, early-successional species native to the Appalachian uplands in USA has rapidly invaded several countries (Malcolm et al.2008).Nitrogen-fixing species can impact the structure and function of plant communities by contributing a high annual budget of N-rich litter of up to 100 kg·ha-1·a-1(Binckley et al.1985; Moon and Haruki 1999; Baddey et al.2000; Schulze 2000; Rice et al.2004).Invasion of these species elevates soil N concentration and increases rates of subsequent N cycling, including mineralization and nitrification (and probably denitrification) in forest ecosystems (Binckley et al.1985; Kawata 1987; Shulze et al.1991; Rice et al.2004; Malcolm et al.2008).

    In Japan, black locust was first introduced in the middle of the 19th century to stabilize Japanese black pine (Pinus thunbergii) plantations on coastal sand dunes along the Sea of Japan where N-poor habitat prevails.The legume species has recently invaded gaps caused by the spread of pine nematode (Taniguchi et al.2007).Taniguchi et al.(2007) reported that the invasion reduces N acquisition by the associated black pine due to elevated concentration of nitrate-N.Temporal changes in the process of N acquisition by black locust and associated black pine are expected to be recorded in the annual rings and to represent past interactions (Poulson et al.1995; Sauer et al.2004; Savard 2010).

    Use of the naturally abundant N isotope composition (δ15N/14N ratio), commonly designated as δ15N, (a per mil variation relative to atmospheric nitrogen, where δ15N=0) has been recognized as a method of tracing N nutrition in studies of forest ecosystems (Natelhoffer and Fry 1988; Gebauer and Shulze 1991; Robinson 2001; Hart and Classen 2003; Lopez et al.2010; Mizota et al.2011).Under humid and temperate climatic conditions, δ15N values for wood of black locust are expected to be around zero per mil because limited N isotope fractionation results from biological nitrogen fixation (Robinson 2001).Black pine grown in humid and temperate climates such as those of central to southern Japan has δ15N values in a narrow range for any geographic region.This reflects the sole N source (NH4+and NO3--N) in meteoric precipitation in open soil systems (Lopez et al.2010; Mizota et al.2011).In forest gaps newly formed after nematode disease outbreaks, e.g.those in forests along the Sea of Japan coast, black locust invades, resulting in the formation of mixed forests (Taniguchi et al.2007).In any forest ecosystem, when other nutrients are not limiting, increases in N availability can enhance tree growth (Bouillet et al.2008).Black locust is a fast growing species with high biomass production.Because of its N fixation ability it can be used to reduce the demand for external fertilization, especially if the timing for maximum N transfer from black locust to black pine is determined.The aim of this study was to investigate N acquisition by Japanese black pine associated with black locust by using δ15N analyses of annual tree rings (resolution of one year) at two locations in Japan.We discuss temporal changes in δ15N in relation to the growth of associated N-fixing legumes.

    Materials and methods

    Description of the study sites

    Two study sites were selected to represent different durations of black locust establishment in mixed forest with black pine.Recently invaded forest was represented by the Shohnai site in northeast Japan, while longer black locust presence was represented by the Kita-Kyushu site in southwest Japan.Soils at both study sites were classified as Dystric Regosols (FAO/UNESCO system) developed on coastal dune sands.Mean annual air temperature and annual rainfall at the nearest meteorological stations (Sakata and Fukuoka, respectively) are 12.1 and 16.2°C, and 1857 and 1604 mm, respectively.A brief description of the sites is given below.

    Shohnai site

    This study site is representative of temperate-humid regions in Yamagata Prefecture, northeast Japan.The Shohnai (38°49'14"N, 139°47'47"E) coastal areas in northern Yamagata are subject to strong seasonal winds during winter.For more than 150 years, black pine has been planted along the coast to prevent sand movement, which causes serious damage to agricultural crops in back-dune areas.The site selected for sample collection was located on the west-facing slope of a coastal sand dune where black locust recently (early 1990s) invaded clearings in black pine forests.The growth of black locust is faster than that of the associated black pine (Kawata 1987; Taniguchi et al.2007) and contributes to the increase of N input to soils, providing a new N source for the surrounding black pine.The densities of Pinus thunbergii and Robinia pseudoacacia on the study area was estimated at 2,100 and 2,400 trees per hectare, respectively.Kita-Kyushu site

    This study site represents the warm and humid regions in Fukuoka in southwest Japan.The site (33°39'53" N, 130°21'21" E) was along the Genkai Sea at the location of the flat or nearly flat National Reserve of Marine Park.This area was also invaded by black locust after clearings formed in black pine forests infested by pine nematodes, but invasion occurred about 20 years earlier here (early 1970s) than at the Shohnai site (Gyokusen et al.1991).At this site, decaying large trunks of black locust are common, suggesting that black locust has occurred here for at least two generations.At this site there was no pure black locust stand.The densities of P.thunbergii and R.pseudoacacia during the present study site were estimated at 1760 and 4750 trees per hectare, respectively (Gyokusen et al.1991).

    Selection of annual tree ring samples

    Representative trees were carefully selected based on observations of their spatial distribution.Tree cores were collected at both sites from Japanese black pine (soft wood) and black locust (porous wood) trees, using an increment borer (diameter of 12 mm, Haglof, Langsele, Sweden).Core samples were collected as follows: One core sample from a pure black pine stand, three core samples from three black pine trees in a mixed forest with black locust (at the Kita-Kyushu site only one sample was collected) and one core sample from a pure black locust stand.The increment borer was inserted into the tree from one side to the other side of the trunk (thus two sides were collected at once with the pith included).All samples were collected at breast height (1.3 m above ground level).The cores were taken to a laboratory for sampling of annual tree-rings (resolution of one year) to quantify δ15N values.One of the core samples from black pine in the mixed forest was analyzed from 1992 while the other two were analyzed from 1999 to 2009.The tree ring series ranged from the first year (1990/1992) to 2009 except for the sample from a pure black pine stand from Shohnai that was approximately 42 years old.All analyzed tree rings corresponded to the sapwood area.Each tree ring was systematically dissected using a sharp, high-quality, stainless blade, and dried at 55 °C overnight.Each ring sample was then cut into small pieces using a nail cutter.

    Nitrogen isotope analysis

    Extraction of labile N was not carried out because there were negligible changes in δ15N values in tree rings after extraction of labile N in previous studies (Couto-Vazquez and Gonzales Prieto 2010; Doucet et al.2011; Lopez et al.2011).δ15N values for dry ring samples were estimated using a CF-IRMS (continuous-flow type mass spectrometer: Iso Prime mass spectrometer, GV Instruments, UK) installed at the Faculty of Science, Okayama University.The evolved gas was first passed through a column packed with solid CaO-NaOH reagent (soda lime) to eliminate excess CO2and then subjected to gas chromatography to separate N2followed by mass spectrometric measurement of15N/14N ratios.The isotopic compositions of samples were expressed relative to atmospheric N2(δ15N=0) on scales normalized to the known δ15N values of laboratory working standards for glycine (δ15N=-0.3‰), which was normalized to L-glutamic acid distributed as USGS-40 (δ15N=-0.2‰) by SI Science Inc., Japan.The working standard was analyzed after every eight to ten samples during CF-IRMS runs to assess the replicability of the isotope measurements and normalization.One pulse of pure N2reference gas from a tank reservoir (δ15N=-2.5‰) was discharged into the IRMS at the beginning of each chromatogram for both standards and samples.The accuracy obtained for standards and samples during the overall analytical procedure was better than ±0.2‰for sample sizes of ≥10 μg N.

    Results and discussion

    Temporal changes in tree ring nitrogen isotope composition

    It is well documented that tree-rings of Japanese black pine retain their intrinsic record of N acquisition (Lopez et al.2010; Mizota et al.2011; Lopez et al.2011).Temporal changes in nitrogen isotope composition of tree-rings grown after 1992/1994 from Shohnai and Kita-Kyushu sites are shown in Fig.1 and 2, respectively.Clear differences were recorded for δ15N values of black locust and black pine.

    Fig.1: Temporal changes in δ15N values of annual tree-rings from Shohnai site.The standard deviation of black pine in the mixed stand corresponds to three core samples per tree-ring.Higher variation in δ15N value of ring samples from black pine, relative to those of black locust is also noticeable.For detailed explanation of the plots described in the legends, see the section Materials and methods.

    Shohnai site

    δ15N values of black locust tree rings from the pure stand varied in a narrow range from -1.1‰ to -0.5‰ (average= -0.9‰, n=18).Such values approximate those of atmospheric N2(δ15N= 0).Because limited N isotope fractionation is associated with N fixation (Robinson 2001), this result confirms the substantial contribution by N fixation in this woody legume.δ15N values of tree rings from the pure black pine stand ranged from -5.3‰ to -2.3‰, averaging -3.9‰.Nitrogen isotope values were similar to those of inorganic nitrogen input from meteoric precipitation as observed at a nearby site (δ15N=-5.5‰ to -1.7‰) (Fukuzaki and Hayasaka 2009) during May 2001 to November 2002.

    Fig.2: Temporal changes in δ15N values of annual tree-rings from Kita-Kyushu site.The δ15N values of ring samples from black pine are more variable, relative to those of black locust.For detailed explanation of the plots described in the legends, see the section Materials and methods.

    δ15N values for tree rings from black pine in the mixed stand were markedly higher than those from the pure stand.A steady increase was observed from 1992 (-2.6‰) to 2009 (-2.1‰±0.6‰).Tree ring δ15N values in 1999 and 2004 were (-3.2±1.4)‰ and (-1.4±0.4)‰, respectively.The δ15N values for 2002 to 2009 approached those of the associated black locust.

    δ15N values of tree rings of black pine for the first and second years (1992 to 1993) in the mixed stand showed clearly higher values (-2.7‰ and -2.6‰) than for the corresponding years for the pure black pine stand (-4.5‰ and -4.3‰).This could indicate that somewhat elevated δ15N values resulted from the N input from past invasion of black locust prior to the present stand of Japanese black pine (Fig.1).

    Kita-Kyushu site

    The overall temporal trend of δ15N values at the Kita-Kyushu site was different from that observed for the Shohnai site.From 1994, δ15N values of black locust tree rings in the mixed stand ranged from -2.0‰ to -0.5‰, averaging -1.2‰.

    δ15N values for black pine tree rings from a pure stand ranged from -4.7‰ to -2.9‰ for the period 1992?2009, averaging -3.7‰.These values were nearly identical to those for the Shohnai site (δ15N=-3.9‰).In contrast, δ15N values for tree rings from black pine in the mixed stand showed higher values that ranged from -2.3‰ to 0 and averaged -1.2‰ for the entire growth period, suggesting incorporation of N derived from N2 fixation from the very first year of Japanese black pine establishment in this area.This indicates that several generations (more than 30 years) of black locust in this area have enriched soil N to the point that it is readily available to newly established Japanese black pine (Fig.2).

    Potential use of nitrogen stable isotope composition in analysis of the acquisition of nitrogen in mixed forests

    From the temporal fluctuations and elevated isotope values observed in tree rings of black pines on both sites, it is clear that the main cause of this change is the acquisition of N derived from N2fixation through association with black locust.To a lesser degree, however, the roles of processes such as mineralization, nitrification and denitrification must also be considered.

    It is well known that woody legumes fix variable amounts of atmospheric N2.Estimates range from nearly 0 to 204 kg·ha-1·a-1(Bouillet et al.2008).The highest value reported for black locust was 110 kg·ha-1·a-1(calculated contribution of atmospheric N2relative to whole N absorbed from the environment = 90%) (Danso et al.1955).The nitrogen isotope analysis for annual tree rings can be applied to forest management practices in which woody legumes are mixed with other species and, as in the case of this study, can enhance growth of black pine forests that provide windbreaks in coastal areas along the Sea of Japan.However, the competition between the two species could counterbalance the positive effect of black locust on the growth of black pine as reported for red alder-Douglas fir forest (Binckley et al.1985).Malcolm et al.(2008) reported that black locust was completely removed prior to the reestablishment of pine-oak forest because of the enhanced growth of these species to soils enriched by high levels of N resulting from the prior presence of black locust.However, this is apparently not the case for black pine since it was not affected by high levels of N in the soil in forest receiving high input of avian N (Lopez et al.2011; Mizota et al.2011).

    Taniguchi et al.(2007) reported that black pine relies on ectomycorrhizal (ECM) colonization for N uptake from the soil.Since the ECM community changes because of N enrichment in the soil, the N enrichment effect of black locust on black pine trees is negative.Nevertheless, black pine trees exposed to high inputs of avian N grow without limitation in other areas of Japan (Lopez et al.2011; Mizota et al.2011), suggesting that even when ECM symbiosis is modified, black pine trees can uptake available N directly from the soil.Changes in ECM functions related to increases in N input remain, however, a topic for future studies.

    Our study results contribute to understanding the positive role of black locust in forest management practices for black pine in coastal areas of the Sea of Japan.Elevation of δ15N values in tree rings of Japanese black pine resulting from biological N fixation from associated black locust saturates within ca.10 years after the black locust invasion (Fig.1).This estimate enables improved scheduling of the removal of black locust during the early growth stages of black pine plantations.Such practices have not yet been implemented, despite the role of black locust in N fixation under low soil fertility conditions.

    Acknowledgement

    We are grateful to two anonymous reviewers for providing constructive comments and to Dr A.L.Cronin for improving the English in the paper.

    Boddey RM, Peoples MB, Palmer B, Dart P.2000.Use of the15N natural abundance technique to quantify biological nitrogen fixation by woody perennials.Nutr Cycl Agroecosys, 57: 235?270.

    Bouillet JP, Laclau JP, Gon?alves JLM, Moreira MZ, Trivelin PCO, Jourdan C, Silva EV, Piccolo MC, Tsai SM, Galiana A.2008.Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil.2: Nitrogen accumulation in the stands and biological N2fixation.For Ecol Manag, 255: 3918?3930.

    Couto-Vazquez A, Gonzalez-Prieto SJ.2010.Effects of climate, tree age, dominance and growth on δ15N in young pinewoods.Trees, 24: 507?514.

    Danso SKA, Zapata F, Awonaike KO.1955.Measurement of biological N2fixation in field-grown Robinia pseudoacacia L.Soil Biol Biochem, 27: 415?419.

    Doucet A, Savard MM, Begin C, Smirnoff A.2011.Is wood pre-treatment essential for tree-ring nitrogen concentration and isotope analysis? Rapid Commu Mass Spectr, 25: 469?475.

    Fukuzaki N, Hayasaka H.2009.Seasonal variations of nitrogen isotope ratios of ammonium and nitrate in precipitations collected in the Yahiko-Kakuda mountains area in Niigata prefecture, Japan.Water, Air, Soil Pollut, 203: 391?397.

    Gebauer G, Schulze ED.1991.Carbon and nitrogen isotope ratios in different compartments of a healthy and declining Picea abies forest in the Fichtelgebirge, NE Bavaria.Oecologia, 87: 198?207.

    Gyokusen K, Iijima Y, Yahata H.1991.Spatial distribution and morphological features of root systems in Niseakashia (Robinia pseudo-acacia L.) growing under a coastal black pine forest.Bull Kyushu Univ Forests, 64: 13?28.(In Japanese)

    Hart SC, Classen AT.2003.Potential for assessing long-term dynamics in soil nitrogen availability from variations in δ15N of tree rings.Isotopes Environ Health Stud, 39: 15?28.

    Kawata H.1987.Difference of nutrient amounts returned to soil by litter falls and their effects on soil properties between Pinus thunbergii and Robinia pseudoacacia forests in coastal sand dune.Bull Niigata Univ For, 20: 51?56.(In Japanese)

    Lopez CML, Mizota C, Yamanaka T, Nobori Y.2010.Temporal changes in tree-ring nitrogen of Pinus thunbergii trees exposed to Black-tailed Gull (Larus crassirostris) breeding colonies.Appl Geochem, 25: 1699?1702.Lopez CML, Mizota C, Yamanaka T, Nobori Y.2011.Effects of pre-treatment on the nitrogen isotope composition of Japanese black pine (Pinus thunbergii) tree-rings as affected by high N input.Rapid Commu Mass Spectr, 25: 3298?3302.

    Malcolm GM, Bush DS, Rice SK.2008.Soil nitrogen conditions approach preinvasion levels following restoration of nitrogen-fixing black locust (Robinia pseudoacacia) stands in a pine-oak ecosystem.Restor Ecol, 16: 70?78.

    Mizota C, Lopez CML, Yamanaka T, Nobori Y.2011.Differential response of two Pinus spp.to avian nitrogen input as revealed by nitrogen isotope analysis for tree-rings.Isot Environ Health Stud, 47: 62?70.

    Montagnini F, Haines B, Boring L, Swank W.1986.Nitrification potentials in early successional black locust and in mixed hardwood forest stands in the southern Appalachians, USA.Biogeochemistry, 2: 197?210.

    Moon HS, Haruki M.1999.Nutrient distribution and content in plant tissue, forest floor, and litterfall in four pioneer stands on volcano Mt.Showa-Shinzan.J For Environ, 41: 7?11.

    Natelhoffer KJ, Fry B.1988.Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter.Soil Sci Soc Am J, 52: 1633?1640.

    Poulson SR, Chamberlain CP, Friedland AJ.1995.Nitrogen isotope variation of tree rings as a potential indicator of environmental change.Chem Geol (Iso.Geosci.Sec.), 125: 307?315.

    Rice SK, Westerman B, Federici R.2004.Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine-oak ecosystem.Plant Ecol, 174: 97?107.

    Robinson D.2001.δ15N as an integrator of the nitrogen cycle.Trends Ecol Evol, 16: 153?162.

    Sauer M, Cherubini P, Ammann M, De Cinti B, Siegwolf R.2004.First detection of nitrogen from NOxin tree rings: a15N/14N study near a motorway.Atmosp Environ, 38: 2779?2787.

    Savard MM.010.Tree-ring stable isotopes and historical perspectives on pollution – An overview.Environ Pollu, 158: 2007?2013.

    Schulze ED, Gebauer G, Ziegler H, Lange OL.1991.Estimates of nitrogen fixation by trees on an aridity gradient in Namibia.Oecologia, 88: 451?455.

    Schulze ED.2000.Carbon and nitrogen cycling in European forest ecosystems.Ecological Studies, 142: 3?13.

    Taniguchi T, Tamai S, Yamanaka N, Futai K.2007.Inhibition of the regeneration of Japanese black pine (Pinus thunbergii) by black locust (Robinia pseudoacacia) in coastal sand dunes.J For Res, 12: 350?357.

    欧美人与性动交α欧美软件| 桃花免费在线播放| 99国产精品一区二区蜜桃av | 99精国产麻豆久久婷婷| 大陆偷拍与自拍| 女人久久www免费人成看片| 91麻豆精品激情在线观看国产 | 中文欧美无线码| 成年人黄色毛片网站| 波多野结衣一区麻豆| 男的添女的下面高潮视频| 男女边摸边吃奶| 色精品久久人妻99蜜桃| av网站免费在线观看视频| 色精品久久人妻99蜜桃| 欧美日韩视频精品一区| 国产成人91sexporn| 啦啦啦视频在线资源免费观看| 亚洲成人免费电影在线观看 | 两个人看的免费小视频| 日韩 亚洲 欧美在线| 老熟女久久久| av有码第一页| 亚洲一卡2卡3卡4卡5卡精品中文| 50天的宝宝边吃奶边哭怎么回事| 久久精品久久久久久久性| 另类亚洲欧美激情| 日韩一本色道免费dvd| 一边亲一边摸免费视频| 五月天丁香电影| 国产精品麻豆人妻色哟哟久久| 天天添夜夜摸| 精品一区二区三区四区五区乱码 | 黄片小视频在线播放| 色精品久久人妻99蜜桃| 夫妻午夜视频| 久久国产精品影院| 成人午夜精彩视频在线观看| 男女下面插进去视频免费观看| 亚洲国产av影院在线观看| 国产免费视频播放在线视频| 中文字幕亚洲精品专区| 欧美激情极品国产一区二区三区| 亚洲天堂av无毛| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩黄片免| 热99久久久久精品小说推荐| 免费看十八禁软件| 国产片内射在线| 亚洲国产精品成人久久小说| 99热全是精品| 午夜影院在线不卡| 免费女性裸体啪啪无遮挡网站| 色婷婷av一区二区三区视频| 中文字幕高清在线视频| 国产深夜福利视频在线观看| 90打野战视频偷拍视频| 老司机午夜十八禁免费视频| 一级毛片我不卡| 嫩草影视91久久| 国产在线免费精品| 少妇人妻久久综合中文| 天天躁日日躁夜夜躁夜夜| 嫩草影视91久久| 国产精品一区二区在线观看99| 制服诱惑二区| 久久99热这里只频精品6学生| 妹子高潮喷水视频| 欧美日本中文国产一区发布| 欧美日韩福利视频一区二区| 国产1区2区3区精品| 中文字幕制服av| 国产在线免费精品| 操美女的视频在线观看| 一本久久精品| 免费黄频网站在线观看国产| 两个人免费观看高清视频| 精品国产一区二区三区四区第35| 两个人看的免费小视频| 国产成人精品久久二区二区免费| 中文乱码字字幕精品一区二区三区| 777久久人妻少妇嫩草av网站| 久久狼人影院| 日韩av不卡免费在线播放| 欧美中文综合在线视频| 日韩一区二区三区影片| 91精品三级在线观看| 制服诱惑二区| 亚洲av片天天在线观看| 欧美精品高潮呻吟av久久| 亚洲国产精品一区二区三区在线| 精品欧美一区二区三区在线| 亚洲欧美中文字幕日韩二区| 免费看不卡的av| 只有这里有精品99| xxxhd国产人妻xxx| 精品人妻1区二区| 免费观看人在逋| 自拍欧美九色日韩亚洲蝌蚪91| 女性被躁到高潮视频| 久久亚洲精品不卡| 久久99精品国语久久久| av国产精品久久久久影院| 在线亚洲精品国产二区图片欧美| 老司机影院毛片| 女人精品久久久久毛片| 欧美日韩av久久| 另类亚洲欧美激情| 99香蕉大伊视频| 大片免费播放器 马上看| 91成人精品电影| 性色av乱码一区二区三区2| av网站在线播放免费| 又紧又爽又黄一区二区| 99国产精品免费福利视频| 婷婷色综合大香蕉| 午夜福利影视在线免费观看| 亚洲第一av免费看| 欧美日韩成人在线一区二区| 亚洲,一卡二卡三卡| 好男人电影高清在线观看| 久久中文字幕一级| svipshipincom国产片| 欧美日韩国产mv在线观看视频| 啦啦啦中文免费视频观看日本| 国产有黄有色有爽视频| 亚洲黑人精品在线| 亚洲免费av在线视频| 在现免费观看毛片| 国产一卡二卡三卡精品| 国产欧美日韩综合在线一区二区| 青青草视频在线视频观看| 老司机亚洲免费影院| 欧美国产精品va在线观看不卡| 亚洲欧美精品综合一区二区三区| 纯流量卡能插随身wifi吗| 两个人免费观看高清视频| 99精国产麻豆久久婷婷| 国产熟女午夜一区二区三区| 亚洲欧洲精品一区二区精品久久久| 2021少妇久久久久久久久久久| 伊人久久大香线蕉亚洲五| 黄片小视频在线播放| 精品福利永久在线观看| 女人精品久久久久毛片| 国产1区2区3区精品| 国产精品一二三区在线看| 久久久精品免费免费高清| 久久99一区二区三区| 免费av中文字幕在线| 性色av一级| 女人久久www免费人成看片| 国产成人免费观看mmmm| 亚洲欧美日韩另类电影网站| 色94色欧美一区二区| 国产一区亚洲一区在线观看| 国产亚洲av高清不卡| 国产一区二区三区综合在线观看| 一本—道久久a久久精品蜜桃钙片| 五月天丁香电影| 熟女av电影| 人人妻人人澡人人看| 高清欧美精品videossex| 欧美黑人精品巨大| 婷婷色综合大香蕉| 国产片特级美女逼逼视频| a级片在线免费高清观看视频| 99热国产这里只有精品6| 一级毛片我不卡| av视频免费观看在线观看| 麻豆国产av国片精品| 一区二区三区乱码不卡18| av欧美777| 一级,二级,三级黄色视频| 日日夜夜操网爽| 在线观看人妻少妇| 亚洲精品日韩在线中文字幕| 91精品国产国语对白视频| 国产xxxxx性猛交| 一区二区三区精品91| 在线观看免费高清a一片| 国产又爽黄色视频| 麻豆国产av国片精品| 欧美人与性动交α欧美软件| 少妇被粗大的猛进出69影院| 国产黄频视频在线观看| 国语对白做爰xxxⅹ性视频网站| 欧美黑人精品巨大| 国产成人一区二区三区免费视频网站 | 欧美久久黑人一区二区| 国产日韩欧美亚洲二区| 18在线观看网站| 亚洲av片天天在线观看| kizo精华| 色婷婷av一区二区三区视频| 亚洲欧美一区二区三区国产| 亚洲中文av在线| 高清av免费在线| 欧美日韩黄片免| 中文字幕人妻丝袜制服| 久久久久久久精品精品| 免费少妇av软件| 中文欧美无线码| 婷婷色综合www| 国产欧美日韩一区二区三 | 美女扒开内裤让男人捅视频| 在线亚洲精品国产二区图片欧美| 最近最新中文字幕大全免费视频 | 欧美激情高清一区二区三区| 黄色a级毛片大全视频| 波多野结衣av一区二区av| 久久99精品国语久久久| 免费在线观看视频国产中文字幕亚洲 | 日本黄色日本黄色录像| 777米奇影视久久| 妹子高潮喷水视频| 亚洲一码二码三码区别大吗| 亚洲精品av麻豆狂野| 久久国产精品男人的天堂亚洲| 制服诱惑二区| 黄色视频在线播放观看不卡| videosex国产| 亚洲精品国产色婷婷电影| 久久人人97超碰香蕉20202| 天天躁夜夜躁狠狠久久av| 亚洲精品中文字幕在线视频| 国产91精品成人一区二区三区 | 亚洲色图 男人天堂 中文字幕| 9191精品国产免费久久| 人人妻人人爽人人添夜夜欢视频| 国产男人的电影天堂91| 亚洲专区中文字幕在线| 亚洲精品久久久久久婷婷小说| 咕卡用的链子| 中文字幕人妻丝袜一区二区| 啦啦啦在线观看免费高清www| 亚洲国产成人一精品久久久| 亚洲一区二区三区欧美精品| 亚洲欧美清纯卡通| 日韩,欧美,国产一区二区三区| xxx大片免费视频| 老汉色∧v一级毛片| 国产成人精品无人区| 亚洲,一卡二卡三卡| 成人午夜精彩视频在线观看| 成人国产av品久久久| 日日摸夜夜添夜夜爱| 久久狼人影院| 日本wwww免费看| 一区二区三区激情视频| cao死你这个sao货| 99久久99久久久精品蜜桃| 亚洲,欧美精品.| 一本—道久久a久久精品蜜桃钙片| 蜜桃国产av成人99| 国产女主播在线喷水免费视频网站| 99国产精品99久久久久| 亚洲久久久国产精品| 久久久国产一区二区| 久久人人97超碰香蕉20202| 欧美精品一区二区大全| 免费久久久久久久精品成人欧美视频| 中文字幕精品免费在线观看视频| 亚洲精品在线美女| 久久精品人人爽人人爽视色| 国产日韩一区二区三区精品不卡| 少妇精品久久久久久久| 视频区图区小说| 国产亚洲av高清不卡| 日本a在线网址| 高清不卡的av网站| 免费在线观看完整版高清| 日韩中文字幕视频在线看片| 午夜免费成人在线视频| 在线观看免费午夜福利视频| 亚洲欧美日韩另类电影网站| 久久精品国产亚洲av涩爱| 99精品久久久久人妻精品| 免费av中文字幕在线| 亚洲欧美中文字幕日韩二区| 一级毛片黄色毛片免费观看视频| 男男h啪啪无遮挡| 国产成人一区二区在线| 国产精品三级大全| 在线观看人妻少妇| 国产麻豆69| 亚洲成人免费电影在线观看 | 国产无遮挡羞羞视频在线观看| 亚洲国产欧美一区二区综合| 欧美 亚洲 国产 日韩一| 在线天堂中文资源库| 最近最新中文字幕大全免费视频 | 两人在一起打扑克的视频| 在线观看免费高清a一片| 免费少妇av软件| 母亲3免费完整高清在线观看| 一本色道久久久久久精品综合| 超碰成人久久| 精品国产乱码久久久久久男人| 日日爽夜夜爽网站| 日韩,欧美,国产一区二区三区| 制服人妻中文乱码| 热99久久久久精品小说推荐| 国产精品欧美亚洲77777| 在线观看一区二区三区激情| 精品一区二区三区四区五区乱码 | 久久久久久久久久久久大奶| 一边摸一边抽搐一进一出视频| 亚洲中文av在线| 午夜免费鲁丝| 国产精品二区激情视频| 一级毛片电影观看| 国产av一区二区精品久久| xxx大片免费视频| videos熟女内射| 少妇人妻 视频| 欧美成人精品欧美一级黄| 亚洲精品日韩在线中文字幕| 久久国产精品影院| 国产成人精品久久久久久| 精品久久久精品久久久| 午夜福利在线免费观看网站| 91精品国产国语对白视频| 精品人妻熟女毛片av久久网站| www.熟女人妻精品国产| 在线观看免费视频网站a站| 国产一区亚洲一区在线观看| 在线观看一区二区三区激情| 国产精品人妻久久久影院| 精品亚洲成国产av| 99久久精品国产亚洲精品| 自线自在国产av| 亚洲人成电影免费在线| 悠悠久久av| 国产精品一国产av| 久久久久久久大尺度免费视频| 男女免费视频国产| 一边摸一边抽搐一进一出视频| 国产亚洲精品久久久久5区| 亚洲欧美一区二区三区久久| 国产精品av久久久久免费| 精品高清国产在线一区| 国产男女超爽视频在线观看| 精品少妇内射三级| 午夜福利免费观看在线| 日日爽夜夜爽网站| 久久精品人人爽人人爽视色| 亚洲国产欧美网| 性高湖久久久久久久久免费观看| 国产免费视频播放在线视频| 波野结衣二区三区在线| 精品久久久精品久久久| 免费女性裸体啪啪无遮挡网站| av电影中文网址| 成人亚洲欧美一区二区av| 亚洲欧美日韩高清在线视频 | 日韩电影二区| 一级片'在线观看视频| 午夜影院在线不卡| 熟女少妇亚洲综合色aaa.| 国产日韩欧美在线精品| 日韩av免费高清视频| 99国产精品免费福利视频| 中文字幕最新亚洲高清| a级片在线免费高清观看视频| 欧美精品av麻豆av| 人妻 亚洲 视频| 国产精品免费大片| 成人午夜精彩视频在线观看| svipshipincom国产片| 久久精品aⅴ一区二区三区四区| 国产男人的电影天堂91| 国产av一区二区精品久久| 一级毛片电影观看| 亚洲第一青青草原| 午夜免费鲁丝| 国产免费现黄频在线看| 99九九在线精品视频| 叶爱在线成人免费视频播放| www日本在线高清视频| 久久99一区二区三区| 美女国产高潮福利片在线看| 交换朋友夫妻互换小说| 少妇 在线观看| 中国美女看黄片| 一边摸一边做爽爽视频免费| 麻豆国产av国片精品| 在线亚洲精品国产二区图片欧美| 少妇人妻久久综合中文| 免费少妇av软件| 日韩av免费高清视频| 80岁老熟妇乱子伦牲交| 两个人看的免费小视频| 国产精品九九99| 亚洲成人手机| 亚洲欧美精品自产自拍| 97精品久久久久久久久久精品| 国产精品国产三级专区第一集| 建设人人有责人人尽责人人享有的| 欧美日韩成人在线一区二区| 中文字幕制服av| 精品国产一区二区久久| 国产日韩欧美亚洲二区| 亚洲精品国产一区二区精华液| 国产av一区二区精品久久| 国产精品一区二区在线不卡| 成年人免费黄色播放视频| 男男h啪啪无遮挡| 美女脱内裤让男人舔精品视频| 夜夜骑夜夜射夜夜干| 男女之事视频高清在线观看 | 丝袜美腿诱惑在线| 在现免费观看毛片| 日韩大码丰满熟妇| 老汉色∧v一级毛片| 国产国语露脸激情在线看| 久久精品国产a三级三级三级| 亚洲免费av在线视频| 国产xxxxx性猛交| 免费av中文字幕在线| 免费在线观看完整版高清| 亚洲色图综合在线观看| 大陆偷拍与自拍| 欧美国产精品va在线观看不卡| 一级片免费观看大全| 精品少妇一区二区三区视频日本电影| 欧美人与性动交α欧美精品济南到| 天天躁夜夜躁狠狠躁躁| 可以免费在线观看a视频的电影网站| 久久精品熟女亚洲av麻豆精品| 欧美国产精品一级二级三级| 99re6热这里在线精品视频| av国产精品久久久久影院| 老司机影院毛片| 欧美精品啪啪一区二区三区 | 视频区图区小说| 精品亚洲成国产av| 欧美少妇被猛烈插入视频| 亚洲,欧美,日韩| 高清不卡的av网站| 久久精品人人爽人人爽视色| 欧美日韩成人在线一区二区| 久久天躁狠狠躁夜夜2o2o | 久久中文字幕一级| 老司机在亚洲福利影院| 欧美日韩视频精品一区| videos熟女内射| 2018国产大陆天天弄谢| 国产不卡av网站在线观看| 青春草亚洲视频在线观看| h视频一区二区三区| 色婷婷av一区二区三区视频| 亚洲精品在线美女| 亚洲九九香蕉| 久久午夜综合久久蜜桃| 日韩 欧美 亚洲 中文字幕| 亚洲欧洲精品一区二区精品久久久| 久久精品国产亚洲av涩爱| 好男人视频免费观看在线| 高清黄色对白视频在线免费看| 麻豆乱淫一区二区| 又大又黄又爽视频免费| 亚洲成人免费av在线播放| 国产亚洲午夜精品一区二区久久| 久久精品国产亚洲av涩爱| 精品国产国语对白av| 亚洲一码二码三码区别大吗| 久久久久久免费高清国产稀缺| 少妇人妻 视频| 国产xxxxx性猛交| 亚洲av电影在线观看一区二区三区| 亚洲精品美女久久av网站| 一本久久精品| 亚洲精品久久久久久婷婷小说| 亚洲专区中文字幕在线| av网站在线播放免费| 欧美黄色片欧美黄色片| 高清不卡的av网站| 国产福利在线免费观看视频| 天堂俺去俺来也www色官网| 久久久精品国产亚洲av高清涩受| 成年动漫av网址| 日本av手机在线免费观看| 99精国产麻豆久久婷婷| 侵犯人妻中文字幕一二三四区| 99精品久久久久人妻精品| 丝袜喷水一区| 成人18禁高潮啪啪吃奶动态图| 久久久国产精品麻豆| a级毛片黄视频| 男人操女人黄网站| 欧美av亚洲av综合av国产av| 黑人欧美特级aaaaaa片| 国产熟女欧美一区二区| 亚洲熟女毛片儿| 精品久久久久久电影网| av视频免费观看在线观看| 日日摸夜夜添夜夜爱| 亚洲欧美精品自产自拍| 婷婷色av中文字幕| e午夜精品久久久久久久| 少妇被粗大的猛进出69影院| 中文字幕高清在线视频| 一级片免费观看大全| 久久久久久久大尺度免费视频| 国产精品人妻久久久影院| 人妻一区二区av| 女人爽到高潮嗷嗷叫在线视频| 中国美女看黄片| 嫩草影视91久久| 午夜久久久在线观看| 国产欧美亚洲国产| 国产精品久久久久久精品电影小说| 成人黄色视频免费在线看| 亚洲成人免费av在线播放| 搡老乐熟女国产| 视频区欧美日本亚洲| 久久久久网色| 精品国产乱码久久久久久小说| 日韩 欧美 亚洲 中文字幕| 日本av手机在线免费观看| 精品免费久久久久久久清纯 | 亚洲免费av在线视频| 国产不卡av网站在线观看| 色播在线永久视频| 久久天躁狠狠躁夜夜2o2o | 国产精品免费大片| 亚洲中文av在线| 国产激情久久老熟女| 亚洲av美国av| 2021少妇久久久久久久久久久| 久久九九热精品免费| 少妇精品久久久久久久| 高潮久久久久久久久久久不卡| 精品免费久久久久久久清纯 | 爱豆传媒免费全集在线观看| 亚洲成av片中文字幕在线观看| 精品久久久精品久久久| 国产精品成人在线| 国产精品久久久av美女十八| 久久精品久久精品一区二区三区| 国产成人精品久久久久久| 黄色 视频免费看| av片东京热男人的天堂| 亚洲国产精品999| 欧美人与性动交α欧美软件| 成人黄色视频免费在线看| 男人添女人高潮全过程视频| 黄色毛片三级朝国网站| 男女边摸边吃奶| 午夜免费成人在线视频| 久久国产精品人妻蜜桃| 你懂的网址亚洲精品在线观看| 妹子高潮喷水视频| 成人三级做爰电影| 五月开心婷婷网| 亚洲精品日本国产第一区| 亚洲色图 男人天堂 中文字幕| 巨乳人妻的诱惑在线观看| 日日夜夜操网爽| 久久免费观看电影| 极品少妇高潮喷水抽搐| 国产成人av激情在线播放| 亚洲欧美精品自产自拍| 纯流量卡能插随身wifi吗| 欧美国产精品一级二级三级| 欧美日韩综合久久久久久| 激情视频va一区二区三区| 亚洲国产欧美在线一区| 五月开心婷婷网| 秋霞在线观看毛片| 中文字幕色久视频| 久久鲁丝午夜福利片| 国产精品一区二区精品视频观看| 老司机午夜十八禁免费视频| 人妻一区二区av| 女性被躁到高潮视频| 黄色片一级片一级黄色片| 久久天堂一区二区三区四区| 我要看黄色一级片免费的| 别揉我奶头~嗯~啊~动态视频 | 汤姆久久久久久久影院中文字幕| 少妇精品久久久久久久| 日日摸夜夜添夜夜爱| 婷婷色麻豆天堂久久| 少妇精品久久久久久久| 高清不卡的av网站| 又大又爽又粗| 日本欧美视频一区| 国产成人a∨麻豆精品| 婷婷色麻豆天堂久久| 国产一区有黄有色的免费视频| 亚洲精品av麻豆狂野| 丝袜人妻中文字幕| 搡老岳熟女国产| 少妇猛男粗大的猛烈进出视频| 亚洲精品久久久久久婷婷小说| 亚洲av成人不卡在线观看播放网 | 成年动漫av网址| 精品久久蜜臀av无| 熟女av电影| 咕卡用的链子| 免费看十八禁软件| 中文字幕制服av| 国产精品人妻久久久影院| 另类亚洲欧美激情| 精品一区在线观看国产| 女人爽到高潮嗷嗷叫在线视频| 亚洲专区中文字幕在线| 一本色道久久久久久精品综合| 亚洲视频免费观看视频| 热re99久久国产66热| 男女之事视频高清在线观看 | 每晚都被弄得嗷嗷叫到高潮| 各种免费的搞黄视频|