龍欣欣,葉英楠,李 慧,于津浦
(1天津醫(yī)科大學(xué)腫瘤醫(yī)院,國家腫瘤臨床醫(yī)學(xué)研究中心,天津300060;2天津市腫瘤免疫與生物治療重點(diǎn)實驗室)
神經(jīng)降壓素(NTS)是由13個氨基酸組成的神經(jīng)肽,在中樞神經(jīng)、心血管、呼吸、消化、內(nèi)分泌、免疫等系統(tǒng)中發(fā)揮重要作用[1]。近年研究證實NTS與結(jié)腸癌、乳腺癌、前列腺癌、胰腺癌和肝癌等多種惡性腫瘤的生長和侵襲密切相關(guān)。神經(jīng)降壓素/白細(xì)胞介素-8(NTS/IL-8)通路在腫瘤的惡性預(yù)后中發(fā)揮重要作用[2];結(jié)腸癌、乳腺癌、前列腺癌、胰腺癌、肝癌等多種惡性腫瘤組織中存在NTS/IL-8通路異常活化[3~7]?,F(xiàn)就NTS/IL-8通路與惡性腫瘤的相關(guān)性研究進(jìn)展綜述如下。
NTS/IL-8通路激活通過NTS與細(xì)胞膜上的神經(jīng)降壓素受體(NTR)結(jié)合而發(fā)揮作用。NTR屬于G蛋白偶聯(lián)受體,有NTR1、2、3三種亞型,其中 NTR1為高親和力受體。NTS與NTR1結(jié)合之后,活化的NTR1便可通過核因子-κB(NF-κB)途徑、細(xì)胞外信號調(diào)節(jié)激酶(ERK)途徑引起IL-8表達(dá)增加,分泌增多。
1.1 NF-κB 途徑 NF-κB 為一個結(jié)構(gòu)高度保守的轉(zhuǎn)錄因子蛋白家族,包括5個亞單位:p50(NF-κB1)、p52(NF-κB2)、p65(RelA,NF-κB3)、RelB 和Rel(cRel)。兩個亞基通過形成的同源和(或)異源二聚體與靶基因上特定的序列(NF-κB位點(diǎn))結(jié)合調(diào)控基因轉(zhuǎn)錄[8~10]。最常見的 NF-κB 二聚體是p65與 p50組成的異二聚體[11,12]。在靜息細(xì)胞中,大部分NF-κB聚集在胞質(zhì)內(nèi)并與抑制因子IκB結(jié)合處于失活狀態(tài)。當(dāng)細(xì)胞受到刺激,可磷酸化IκB從而激活NF-κB途徑。通常情況下,胞質(zhì)內(nèi)的IκB激酶可磷酸化IκB上的Ser32/Ser36位點(diǎn),并促進(jìn)IκB 泛素化而降解[13,14],失去 IκB 抑制的 NF-κB 在胞質(zhì)內(nèi)聚集并向核內(nèi)轉(zhuǎn)移,進(jìn)而在細(xì)胞核內(nèi)通過激活多種基因轉(zhuǎn)錄而發(fā)揮作用。
然而在 NTS/IL-8通路中,激活 NF-κB途徑需要依賴小鳥苷酸三磷酸酶(Rho GTP酶)。Rho GTP酶是一種單體G蛋白,屬于Ras超家族成員之一。目前發(fā)現(xiàn)的Rho GTP酶家族至少有18種,其參與細(xì)胞的增殖、分化、凋亡、惡變和侵襲等多個生物學(xué)過程。G蛋白偶聯(lián)受體接受刺激后可磷酸化Rho GTP酶,使自身 GDP轉(zhuǎn)化為 GTP,酶活性得到激活[15]。NTS與NTR1結(jié)合后,NTR1便以此方式激活RhoA?;罨腞hoA可激活NF-κB,這個過程并不依賴IκB激酶,而是通過直接磷酸化IκB的Ser32/Ser36位點(diǎn)激活NF-κB。目前已發(fā)現(xiàn)在IL-8的啟動子上有p65的結(jié)合位點(diǎn),且NF-κB可上調(diào)IL-8的表達(dá)[16]。
除了激活Rho GTP酶,NTS激活NF-κB還可借助于激活依賴Ca2+釋放的蛋白激酶C(PKC)系統(tǒng)。NTS與NTR1結(jié)合后,NTR1通過偶聯(lián)的G蛋白激活磷酸脂酶C,后者可將細(xì)胞膜上的脂酰肌醇4,5-二磷酸分解為二酰甘油和1,4,5-三磷酸肌醇。1,4,5-三磷酸肌醇動員細(xì)胞內(nèi)內(nèi)質(zhì)網(wǎng)中的Ca2+釋放到胞質(zhì)中與鈣調(diào)蛋白結(jié)合,而二酰甘油在Ca2+的協(xié)同可下激活PKC[17]?;罨腜KC不僅參與NTS介導(dǎo)的IκB磷酸化,促進(jìn)IκB降解,還參與p65磷酸化,增加其轉(zhuǎn)錄活性[18]。
1.2 Erk途徑 Erk 1/2途徑屬于經(jīng)典的絲裂原活化蛋白激酶(MAPKs)信號轉(zhuǎn)導(dǎo)途徑。細(xì)胞膜上的酪氨酸激酶受體接受刺激后,可募集胞質(zhì)內(nèi)的生長因子受體結(jié)合蛋白2,后者與胞質(zhì)中的鳥苷酸交換因子結(jié)合形成復(fù)合物,并將其轉(zhuǎn)移至細(xì)胞膜上。鳥苷酸交換因子可催化Ras上的GDP轉(zhuǎn)化為GTP,從而激活Ras。激活的Ras可磷酸化Raf蛋白并將其固定于細(xì)胞膜上。Raf具有絲/蘇氨酸激酶活性,能激活MAPK級聯(lián)信號通路,MAPK激酶進(jìn)一步磷酸化激活Erk1/2[19]。當(dāng)NTS與NTR1結(jié)合后,可通過上述途經(jīng)激活 Ras,進(jìn)一步激活 Erk1/2。活化的ERK1/2可磷酸化多種核轉(zhuǎn)錄因子如Elk-1、Ets21、c2Myc、Sap1a、Tal、STAT、c2jun 及 ATF2 等[20]。磷酸化的Elk-1進(jìn)一步激活細(xì)胞內(nèi)重要的轉(zhuǎn)錄因子激活子蛋白-1(AP-1)。磷酸化的Elk-1還可誘導(dǎo)c-fos基因活化,增加c-fos蛋白合成,后者通過自身二聚化或與c-Jun形成異源二聚體,從而激活A(yù)P-1的轉(zhuǎn)錄活性[21]。近年來有研究表明IL-8的啟動子上存在AP-1的結(jié)合位點(diǎn),且AP-1可增加IL-8的轉(zhuǎn)錄活性,因而NTS可通過Erk途徑誘導(dǎo)AP-1高表達(dá),從而上調(diào) IL-8 的表達(dá)[3,4]。
NTS/IL-8通路主要通過作用于腫瘤細(xì)胞和腫瘤微環(huán)境而影響腫瘤的增殖、侵襲和轉(zhuǎn)移等多個過程,與多種腫瘤的不良預(yù)后密切相關(guān)。NTS/IL-8通路活化不僅可促進(jìn)腫瘤細(xì)胞自身增殖,還可上調(diào)SOX2、OCT4、NANOG等基因使腫瘤細(xì)胞獲得干細(xì)胞特征,誘導(dǎo)腫瘤細(xì)胞上皮間質(zhì)轉(zhuǎn)化。
NTS/IL-8通路激活后,IL-8釋放增加,后者是一種由單核巨噬細(xì)胞分泌的CXC型炎癥趨化因子,可選擇性趨化中性粒細(xì)胞、腫瘤相關(guān)巨噬細(xì)胞,促進(jìn)多種細(xì)胞因子和生長因子釋放,加速局部炎癥微環(huán)境形成;部分腫瘤細(xì)胞也可分泌IL-8,并在腫瘤的增殖、分化、血管生成、侵襲和轉(zhuǎn)移方面發(fā)揮重要作用[8~11]。
目前,NTS已作為一種新的生物標(biāo)志物用于腫瘤的檢測。有學(xué)者通過小鼠模型體外實驗論證了NTR1表達(dá)水平與腺癌和鱗癌的惡性程度有關(guān)[22];Swift等[23]也證實NTR1表達(dá)水平與前列腺癌的分化程度有關(guān);在頭頸部鱗癌中,NTR1被認(rèn)為是不良預(yù)后的標(biāo)志[24]。NTS/NTR-1信號通路活化可促使結(jié)腸癌癌前病變畸變隱窩發(fā)展為結(jié)腸腺瘤[25]。Sgourakis等[26]提出血清NTS和IL-8水平聯(lián)合檢測在結(jié)腸腫瘤診斷中有一定意義。
目前針對NTS及NTS/IL-8通路的靶向藥物成為新的研究熱點(diǎn)。NTR-1的最常用小分子抑制劑SR48692有潛在抗腫瘤作用,有研究表明其可依賴表皮生長因子受體從而抑制非小細(xì)胞肺癌細(xì)胞增殖,并可通過誘導(dǎo)凋亡和捕獲細(xì)胞周期來抑制惡性黑色素瘤增殖[27,28]。除了小分子抑制劑,姜黃素被發(fā)現(xiàn)可通過阻斷NTS/IL-8通路,減少IL-8表達(dá),減弱結(jié)腸癌的侵襲性[29];還可抑制肌質(zhì)網(wǎng)釋放Ca2+從而并減弱Ca2+依賴型PKC的活性,阻斷NTS激活NF-κB途徑,減少IL-8表達(dá)和釋放;能抑制c-fos、c-jun與DNA形成復(fù)合體,減弱AP-1的轉(zhuǎn)錄活性,從而下調(diào) IL-8 的表達(dá)[30,31]。Wang 等[32]發(fā)現(xiàn)一種組蛋白脫乙酰酶抑制劑丁酸鈉可直接抑制NTR1的表達(dá)并減弱其功能,抑制IL-8表達(dá),認(rèn)為NTR1抑制劑將在阻止結(jié)腸癌侵襲和轉(zhuǎn)移上發(fā)揮重要作用。此外,有學(xué)者[33]還發(fā)現(xiàn)NTR1在放射性靶向藥物研究方面的重要價值,放射性藥物偶聯(lián)NTS類似物后,可作為NTR1陽性腫瘤的示蹤劑,用于腫瘤的診斷與治療。Valerie等[34]也提出應(yīng)用NTR1抑制劑可提高前列腺癌細(xì)胞對電離輻射的敏感性。
除阻斷NTR1外,阻斷IL-8受體同樣具有治療作用。Singh等[35]在體外惡性黑色素瘤模型中發(fā)現(xiàn),應(yīng)用趨化因子受體(CXCR)小分子抑制劑可抑制瘤細(xì)胞增殖和血管生成。在乳腺癌的治療中,Singh等[36]發(fā)現(xiàn)阻斷CXCR1可有效降低乳腺癌干細(xì)胞樣細(xì)胞的活性,并與人類表皮生長因子受體2(HER2)抑制劑起到協(xié)同作用,增強(qiáng)治療效果。Tazzyman等[37]證實CXCR2拮抗劑可抑制小鼠肺癌組織中性粒細(xì)胞浸潤,并延緩腫瘤生長,認(rèn)為CXCR2拮抗劑有望成為肺癌治療的新手段。
綜上所述,NTS/IL-8通路作用機(jī)制的闡明揭示了在惡性腫瘤中神經(jīng)肽類物質(zhì)介導(dǎo)局部炎癥形成的過程,表明神經(jīng)肽、炎癥與腫瘤不良預(yù)后有關(guān)。NTS有望成為一項重要的標(biāo)志物,為臨床判斷腫瘤惡性程度和評估腫瘤患者預(yù)后提供參考。同時,關(guān)于NTS/IL-8通路的研究結(jié)果也給惡性腫瘤靶向藥物的研究帶來了新的契機(jī)。盡管目前針對該通路中存在的靶向位點(diǎn)的研究還只局限于體外實驗和動物模型,但仍存在進(jìn)一步研發(fā)的潛力和臨床應(yīng)用價值。
[1]Bugni,JM,Rabadi LA,Jubbal K,et al.The neurotensin receptor-1 promotes tumor development in a sporadic but not an inflammation-associated mouse model of colon cancer[J].Int J Cancer,2012,130(8):1798-1805.
[2]Myers RM,Shearman JW,Kitching MO,et al.Cancer,chemistry,and the cell:molecules that interact with the neurotensin receptors[J].ACS Chem Biol,2009,4(7):503-525.
[3]Zhao D,Keates AC,Kuhnt-Moore S,et al.Signal transduction pathways mediating neurotensin-stimulated interleukin-8 expression in human colonocytes[J].J Biol Chem,2001,276(48):44464-44471.
[4]Olszewski U,Hamilton G.Neurotensin signaling induces intracellular alkalinization and interleukin-8 expression in human pancreatic cancer cells[J].Mol Oncol,2009,3(3):204-213.
[5]Olszewski U,Hlozek M,Hamilton G.Activation of Na+/H+exchanger 1 by neurotensin signaling in pancreatic cancer cell lines[J].Biochem Biophys Res Commun,2010,393(3):414-419.
[6]Tang KH,Ma S,Lee TK,et al.CD133(+)liver tumor-initiating cells promote tumor angiogenesis,growth,and self-renewal through neurotensin/interleukin-8/CXCL1 signaling[J]. Hepatology,2012,55(3):807-820.
[7]Yu J,Ren X,Chen Y,et al.Dysfunctional activation of neurotensin/IL-8 pathway in hepatocellular carcinoma is associated with increased inflammatory response in microenvironment,more epithelial mesenchymal transition in cancer and worse prognosis in patients[J].PLoS One,2013,8(2):e56069.
[8]Doll D,Keller L,Maak M,et al.Differential expression of the chemokines GRO-2,GRO-3,and interleukin-8 in colon cancer and their impact on metastatic disease and survival[J].Int J Colorectal Dis,2010,25(5):573-581.
[9]Snoussi K,Mahfoudh W,Bouaouina N,et al.Combined effects of IL-8 and CXCR2 gene polymorphisms on breast cancer susceptibility and aggressiveness[J].BMC Cancer,2010,10:283.
[10]Welling TH,F(xiàn)u S,Wan S,et al.Elevated serum IL-8 is associated with the presence of hepatocellular carcinoma and independently predicts survival[J].Cancer Invest,2012,30(10):689-697.
[11] Waugh DJ,Wilson C.The interleukin-8 pathway in cancer[J].Clin Cancer Res,2008,14(21):6735-6741.
[12]Umezawa K.Possible role of peritoneal NF-kappaB in peripheral inflammation and cancer:lessons from the inhibitor DHMEQ[J].Biomed Pharmacother,2011,65(4):252-259.
[13]Bijli KM,F(xiàn)azal F,Rahman A.Regulation of Rela/p65 and endothelial cell inflammation by proline-rich tyrosine kinase 2[J].Am J Respir Cell Mol Biol,2012,47(5):660-668.
[14]Yong Y,Choi SW,Choi HJ,et al.Exogenous signal-independent nuclear IkappaB kinase activation triggered by Nkx3.2 enables constitutive nuclear degradation of IkappaB-alpha in chondrocytes[J].Mol Cell Biol,2011,31(14):2802-2816.
[16]Khanjani S,Terzidou V,Johnson MR,et al.NFkappaB and AP-1 drive human myometrial IL8 expression[J].Mediators Inflamm,2012,2012:504952.
[17]Muller KM,Tveteraas IH,Aasrum M,et al.Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells[J].BMC Cancer,2011,11:421.
[18]Zhao D,Zhan Y,Zeng H,et al.Neurotensin stimulates interleukin-8 expression through modulation of I kappa B alpha phosphorylation and p65 transcriptional activity:involvement of protein kinase C alpha[J].Mol Pharmacol,2005,67(6):2025-2031.
[19]Saini KS,Loi S,de Azambuja E,et al.Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer[J].Cancer Treat Rev,2013,39(8):935-946.
[20]Schmitt JM,Abell E,Wagner A,et al.ERK activation and cell growth require CaM kinases in MCF-7 breast cancer cells[J].Mol Cell Biochem,2010,335(1-2):155-171.
[21]Maritz MF,van der Watt PJ,Holderness N,et al.Inhibition of AP-1 suppresses cervical cancer cell proliferation and is associated with p21 expression[J].Biol Chem,2011,392(5):439-448.
[22]Haase C,Bergmann R,Oswald J,et al.Neurotensin receptors in adeno-and squamous cell carcinoma[J].Anticancer Res,2006,26(5A):3527-3533.
[23]Swift SL,Burns JE,Maitland NJ.Altered expression of neurotensin receptors is associated with the differentiation state of prostate cancer[J].Cancer Res,2010,70(1):347-356.
[24]Shimizu S.Tsukada J,Sugimoto T,et al.Identification of a novel therapeutic target for head and neck squamous cell carcinomas:a role for the neurotensin-neurotensin receptor 1 oncogenic signaling pathway[J].Int J Cancer,2008,123(8):1816-1823.
[25]Chowdhury MA,Peters AA,Roberts-Thomson SJ,et al.Effects of differentiation on purinergic and neurotensin-mediated calcium signaling in human HT-29 colon cancer cells[J].Biochem Biophys Res Commun,2013,439(1):35-39.
[26]Sgourakis G,Papapanagiotou A,Kontovounisios C,et al.The combined use of serum neurotensin and IL-8 as screening markers for colorectal cancer[J].Tumour Biol,2014,35(6):5993-6002.
[27]Moody TW,Chan DC,Mantey SA,et al.SR48692 inhibits nonsmall cell lung cancer proliferation in an EGF receptor-dependent manner[J].Life Sci,2014,100(1):25-34.
[28] Zhang Y,Zhu S,Yi L,et al.Neurotensin receptor1 antagonist SR48692 reduces proliferation by inducing apoptosis and cell cycle arrest in melanoma cells[J].Mol Cell Biochem,2014,389(1-2):1-8.
[29]Wang X,Wang Q,Ives KL,et al.Curcumin inhibits neurotensin-mediated interleukin-8 production and migration of HCT116 human colon cancer cells[J].Clin Cancer Res,2006,12(18):5346-5355.
[30]Logan-Smith MJ,Lockyer PJ,East JM,et al.Curcumin,a molecule that inhibits the Ca2+-ATPase of sarcoplasmic reticulum but increases the rate of accumulation of Ca2+[J].J Biol Chem,2001,276(50):46905-46911.
[31]Hahm ER,Cheon G,Lee J,et al.New and known symmetrical curcumin derivatives inhibit the formation of Fos-Jun-DNA complex[J].Cancer Lett,2002,184(1):89-96.
[32]Wang X,Jackson LN,Johnson SM,et al.Suppression of neurotensin receptor type 1 expression and function by histone deacetylase inhibitors in human colorectal cancers[J].Mol Cancer Ther,2010,9(8):2389-2398.
[33]Garcia-Garayoa E,Bluenstein P,Blanc A,et al.A stable neurotensin-based radiopharmaceutical for targeted imaging and therapy of neurotensin receptor-positive tumours[J].Eur J Nucl Med Mol Imaging,2009,36(1):37-47.
[34]Valerie NC,Casarez EV,Dasilva JO,et al.Inhibition of neurotensin receptor 1 selectively sensitizes prostate cancer to ionizing radiation[J].Cancer Res,2011,71(21):6817-6826.
[35]Singh S,Sadanandam A,Nannuru KC,et al.Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation,survival,and angiogenesis[J].Clin Cancer Res,2009,15(7):2380-2386.
[36]Singh JK,F(xiàn)arnie G,Bundred NJ,et al.Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and-independent mechanisms[J].Clin Cancer Res,2013,19(3):643-656.
[37]Tazzyman S,Barry ST,Ashton S,et al.Inhibition of neutrophil infiltration into A549 lung tumors in vitro and in vivo using a CXCR2-specific antagonist is associated with reduced tumor growth[J].Int J Cancer,2011,129(4):847-858.