• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    弱相互作用玻色-愛因斯坦凝聚體中渦旋動力學與量子混沌軌道

    2014-03-20 08:16:14崇桂書Borondo
    原子與分子物理學報 2014年1期
    關鍵詞:麻石玻色鋁質

    崇桂書,Borondo F

    (1.湖南大學物理與微電子科學學院,長沙410082;2.Departmento de Química,Universidad Autónoma de Madrid,Cantoblanco-28049 Madrid,Spain)

    1 Introduction

    Zeros of the wave function in a certain regime indicates singular wave structures,which contain topological wave front dislocations.There are ubiquitous in many branches of classical and quantum physics.Screw dislocations,or vortices,are a common dislocation type.In classical physics,properties of vortices have been extensively investigated in many fields,such as cosmology[1,2],hydrodynamics[3],or non-linear optics[4],just to name a few.Quantum mechanically,the vortices that are concerned with happen in the(peculiar)probability fluid[5,6].This type of vortices have been studied in the past in connection with superfluidity[7,8]and superconductivity[9]. More recently,this kind of quantized vortex has been experimentally observed in the quantum fluids associated to Bose-Einstein condensates(BEC)[10-17].Single vortex line,vortex lattices and even multiply charged vortices can be created by using Raman transition phase-imprinting methods[10],rotating the system with a“l(fā)aser spoon”[11,13,18,19]or applying topological phase engineering[20],respectively.Moreover,a number of theoretical and experimental investigations have been carried out on the features of these vortices,such as the stability and dynamics of single vortex or different vortex clusters in non-rotating[21-25]and rotating[26]single component BEC,and even in twospecies BECs[27-30].

    A very straightforward way to study quantum vortices is to use the hydrodynamic-based formulation of quantum mechanics introduced in the 1950s by David Bohm[31]in an attempt to solve some of interpretational difficulties of the standard version[32].One of the resulting equations(see next Section)allows the definition of“quantum trajectories”(QTs)which,according to the probabilistic interpretation of quantum mechanics,represent the paths along which the probability flows in the“quantum fluid”.Very recently the so-called Bohmian mechanics(BM),which represents a true theory of quantum mo-tion[33],has experienced an increased popularity,triggered mostly by practical interest[34-41].The reason for this being it combines the accuracy of the standard quantum theory with an intuitive insight derived from the causal trajectory formulation,this providing apowerful tool to shed light on the physical mechanisms underlying microscopic phenomena.An intense debate exists,however,about the “reality”of such trajectories[42].In the Bohmian theory,QTs are determined by not only the external potential but also a quantum potential determined from the wave function.As a consequence of quantum interferences in the wave functions the quantum potential can be very intricate,and it plays an important role in the relation of the QTs with the quantum probability.In particular,when the wave function vanishes the quantum potential tends to infinity,and then QTs are forbidden in the corresponding region.This is obviously in agreement with the results of standard quantum mechanics according to which vanishing wave functions corresponds to null probability density.Another interesting point of BM,especially in relation with the present work,is that Frisk[43]and Wisniacki et al[38-40]have recently pointed out the possible relationship existing between vortices and chaos in the QTs.In particular,it has been established the functional relationship between vortex dynamics and QT ergodicity in the two-dimensional(2D)harmonic oscillator and rectangular billiard models[44].

    In the present paper,we consider a weakly interacting BEC system confined in a harmonic trap.This situation can be adequate described by a nonlinear Schr?dinger equation as it has been experimentally shown.Using a variational method,we have computed solutions for different vortex clusters and analyzed the corresponding dynamics.Also,numerical simulations are presented,which are in good agreement with the analytical results.Based on the analytical solutions,the chaotic characteristics of the associated QTs are studied using stroboscopic Poincarésurfaces of section.Influences,which are caused by geometry shape of vortex moving orbit,nonlinear twobody interaction and vortex interaction,to the complexity of the QTs are discussed for the case of single vortex,vortex pairs and vortex dipole,respectively.

    The organization of the paper is as follows.The model under study and the methodology are introduced in Sect.II.In it,the dynamical aspects of three different cases,namely a BEC with single vortex,a BEC with a pair of vortices,and a BEC with a vortex dipole,are considered both analytically and numerically.The chaotic QTs based on these vortex clusters are discussed in Sec.III.Finally,our conclusions are summarized in Sect.IV.

    2 Vortices dynamics in weakly interacting BEC

    2.1 Model and the hydrodynamic formalism

    For a temperature well below the critical point,Bose-Einstein condensation occurs.In dilute and weakly interacting Bose gases,it is well known that the BEC dynamics can be well described by a Gross-Pitaevskii equation(GPE)in the mean-field theory framework,which can be described by

    Now,following the usual technique in BM,we write the wave function,ψ,in polar form

    where Rand Sare two time and position dependent real functions,given the amplitude and phase of the wave function,respectively.Substituting Eq.(3)into the dimensionless GPE(2),we recast the quantum theory into a'hydrodynamical'form,which is governed by

    These two equations represent the continuity and“quantum”Hamilton-Jacobi(HJ)equations,respectively.Comparing to the classical HJ equation we see that an extra term,

    determined by the quantum state and the two-body interaction,appears. This term is called the“quantum potential”,and it is responsible of introducing the quantum effects into the dynamics of the system.In analogy with the standard HJ theory,Eq.(4)allows the introduction of“quantum trajectories”for our system.These QTs can be obtained by integrating the corresponding velocity field

    The quantum state is therefore defined,in this interpretation of quantum mechanics,by ψ(x,y,t),x(t),y(t),that evolve simultaneously in a deterministic way,withψacting as a pilot wave guiding the particles,each one of them starting at a different position.

    2.2 Vortex dynamics in thevariational method

    Let us concentrate now on the study of the dynamics of different vortex clusters in the nonrotational system defined in the previous subsection.If the vortices are initially located at positions rj= (xj,yj),the corresponding initial state can be well approximated in the form[22]

    whereνj=(x-xj)=ip(y-yj),ψgsis the ground state wave function acting as a background,cis a normalizing constant,and p=±1represents the topological charges of the vortices.This approximation is valid when the vortices are not far away from the center of the condensate.Experimentally,such initial states can be prepared with the methods mentioned in the Introduction.

    Presently,it is not known how to obtain an exact analytical solution for the vortex dynamics in the full GPE equation framework.However,when the interatomic interaction is very weak,i.e.small values of g2d,the Ritz minimization method can be used to get good approximate analytical solutions[21,45].In this case,the following ansatz for the solution of GPE

    Using thevariational principle,δE/δσx,y=0,constantsσxandσycan be determined from the following two algebraic equations

    The chemical potentials,μn,m,in Eq.(8)are calculated as

    Now,the wave functions of Eq.(8)can then be used to expand the solutions for different vortices clusters,satisfying the initial condition(7).As examples,the cases corresponding to a single vortex,a vortex pair,and a vortex dipole,will be considered in the present paper.

    2.2.1 Single vortex

    Assuming that a single vortex initially occupies theposition(x1,y1),the wave function can be written in the form

    and analytically determine that the dynamics of this single vortex correspond the motion in the orbit

    Obviously,whenσx=σythis orbit is an exact circle for A=1,an ellipse for A ≠1,and a more complicated non-closing orbit is obtained whenσx≠σy.

    2.2.2 Pair of vortices

    A similar solution is obtained for the case of apair of vortices.For the isotropic case,σx=σy=σ,of two vortices with identical topological charges,the wave function is given

    2.2.3 Vortex dipole

    In the case of a vortex dipole formed by a pair of vortices with opposite topological charges,we have

    where,(x1,y1)and(x2,y2)are the initial positions that of the two vortices.

    In order to check the validity of the analytical solutions(12),(13),(14),presented above,we have also numerically solved Eq.(2)with initial conditionsψsv(x,y,0),ψvp(x,y,0),andψvd(x,y,0)using the time-splitting spectral method,which is explicit,unconditionally stable,and spectrally accurate in space.Plots of the distributions of probability density of the BEC in the 2D space at different instant of time are presented for single vortex,pair of vortices,and vortex dipole in Figs.1(a),(b)and(c),respectively.

    In each panel,the plots from top-left to bottom-right correspond to times t=0,0.3927,0.7069,1.0210,1.3352,1.6493,1.9635,and 2.2777,respectively.For the calculation,we have selected a small value of the(weak)g2d=0.1,and set the initial positions at(0.3,0)with A=1 for the single vortex case;at(±0.3,0)with identical topological charges of+1for the pair of vortices case;and at(0.9,0.1)and(-1.1,0)for the vortex dipole case,respectively.As can be observed the vortices can stably exist in all cases for the time evolutions of such non-rotational BEC system.Moreover,they move around the trap center with the shapes keeping approximately unchanged.

    Another interesting specific aspect of the vortex motions are the corresponding trajectories.They are shown in Fig.2,where the top,middle and bottom panels correspond to the single vortex,pair of vortices and vortex dipole,respectively.In this figure,the solid lines represent the variational analytical results and the small circles mark the position of the data obtained by numerical integration.As can be seen,in all cases the variational results are in very good agreement with the exactly numerical calculation.Moreover,the single vortex(top panel)moves on a circle when A=1,and on more eccentric ellipses as Adecreases from 0.8,0.6to 0.4.The two vortices in the pair(middle panel)move on deformed circles,although they move independently on each exactly circle for ideal BECg2d=0.Evidently,it is the two-body interactions that cause these two vortices affect each other.For the vortex dipole,the moving orbit is more complicated due to the creation and annihilation of vortex.

    3 Chaotic quantum trajectories

    Fig.1 Quantum probability density distributions for a BEC in an isotropic trap corresponding to the solutions(12),(13),(14)at time t=0as initial states,and the results are shown as panels(a),(b),(c)for single vortex,vortex pair and vortex dipole,respectively.Here,nonlinear interaction g2d =0.1,the single vortex lies in the position(0.3,0),two vortices with identical topological charge lie in(±0.3,0),and two vortices with opposite topological charge locate at positions of(0.9,0.1),(-1.1,0)initially

    Fig.2 Vortex trajectories for the single vortex(left),pair of vortices(middle),and vortex dipole(right)cases discussed in the text.From top to bottom the nonlinear interaction is chosen as 0.1,1,10,and the initial positions of the vortices are the same with that in Fig.1.The solid lines correspond to the variational analytical results and the small cycles represent the data obtained from direct numerical calculations corresponding to Fig.1

    In the previous section we have seen how differentsuperfluid velocity fields appear for different vortex aggregations,i.e.single vortex,pair of vortices,and vortex dipole.Accordingly,it should be expected that the corresponding QTs in these fields will exhibit also different characteristics.The aim of the present Section is to carry out a study of the these properties.In order to study the complexity of the QTs,we use a stroboscopic Poincarésurface of section by plotting coordinates xand yat equal time intervals given byt=nT,being T=2π/(μ10-μ00)and nan integer.This is a standard technique in nonlinear dynamics.Some results are shown in Figs.3,4,and 5 for the cases of a single vortex,pair of vortices and vortex dipole described in the previous section,respectively.The procedure used to construct these plots is the following.Thirty initial conditions are chosen randomly,and each of the associated trajectory is followed for 1500crossings with the surface of section.

    據全國第二次土壤普查成果,研究區(qū)內土壤類型主要有麻石硅鋁質粗骨土、麻石黃棕壤和麻沙泥田(圖2),各類型土壤特征如下:

    Fig.3 Plot of the Poincarésurface of section for the case of a single vortex.The parameters g2d =0.1,which results inσx=σy=1.00396,A,which determines the shapes of vortex orbits is selected as(a)A=1,(b)A=0.8,(c)A=0.6,and(d)A=0.4,respectively

    As can be seen in Fig.3,the results in the one vortex case show that for A =1,where the orbit of the moving vortex is circular[see Fig.2(left)],all QTs are regular,with a phase space structure organized around two stable and one unstable fixed points that appear in the stroboscopic Poincarémap.As Ais decreased,to 0.8,0.6,and 0.4,and the orbit of the moving vortex becomes more and more elliptic[see Fig.2(left)],the QTs undergo a transition from to regular to chaotic and increasingly larger bands of stochasticity appear on the corresponding separatrices,as clearly appreciated in Figs.3(b)~(d).Here,this kind of transition results from a produce of a saddle point,and the associated stable and unstable manifolds interact each other and form a structure of Smale horseshoe chaos band.Therefore,the motion orbits of the vortex have an important influence to the complexity of the corresponding QTs.

    Fig.4 Plot of the Poincarésurface of section for the case of a vortex pair in an isotropic trapping potential.The vortices are initially placed at positions(0.1,1)and(-0.5,-1),respectively.The influence of nonlinear interaction on the onset of chaos:(a)g2d =0,(b)g2d =0.1,(c)g2d =0.5,(d)g2d =0.8,(e)g2d =1,and(f)g2d =1.5,is considered

    Now,let us continue and consider the case of apair of vortices studied in the previous section,whose vortex orbits are given by the solution of Eq.(13).Considering the isotropic trap,λ=1,and choosing the initial positions of the two vortices being located at(-0.3,0),(0.3,0),respectively,the corresponding chemical potentials are given by

    It is evident that for ideal boson gas,where,g2d=0,μ20 =μ02 =μ11,and the solution of Eq.13 can be factorized,with two vortices moving on the circle independently,with a time-periodic velocity field.In this case the regularity of the associated quantity is preserved,as can be seen in Fig.4(a).However,when considering a(weakly)interacting boson gas with increasingly larger values of g2d,μ11 deviates fromμ02 =μ20 more and more,and the solution cannot be any longer factorized;the two vortices move in a non-periodic orbit,influencing each other simultaneously,as it was given in middle panel of Fig.2.In this case,we find that the periodicity of the velocity field is destroyed due to the fact that the ratio between the two frequenciesω1=μ11-μ00andω2=μ20-μ00is not a rational number any longer.These changes in the moving orbits of the vortices in the pair and the non-periodicity in its time evolution break the regularity of some of the corresponding QTs.This process is shown in the results shown in Figs.4(b)~(f).

    Therefore,in our BEC system theinteratomic interaction plays a key role in the development of complexity of the QTs.It is the interatomic interaction that causes a difference in the couplings between levels ofμ00andμ20and the one betweenμ00 andμ11.Thus,the properties of the superfluid field are determined by the two corresponding time-evolving frequencies.As the interaction becomes stronger,the velocity field deviates more and more from the being periodic,and conse-quently the corresponding Bohmian trajectories become more and more irregular,as clearly seen in Fig.4withT=π/(μ02-μ00)+π/(μ11-μ00).

    Fig.5 Plots of the Poincarésurface of section for the case of a vortex dipole in isotropic trapping potential.The case of an ideal boson gas,g2d =0,with more and more distance between initial positions of the vortices:(a)(0.1,1),(-0.5,-1);(b)(0.1,1),(-0.6,-1);(c)(0.1,1),(-0.7,-1);(d)(0.1,1),(-0.8,-1);(e)(0.1,1),(-0.9,-1);and(f)(0.1,1),(-1.5,-1),is considered

    Finally,for the case of a vortex dipole consisting of two vortices with opposite topological charges the situation becomes more complicated.This is due to the fact that annihilation and reappearance of vortices take place.We consider first case of an ideal Bose gas,setting the initial positions of two vortices at(0.1,1)and(-0.5,-1),respectively.Similarly to the analysis carried out previously for a single vortex and a pair of vortices,we consider the stroboscopic Poincarésurfaces of section at the intervals of time given by t=nT,with T =4π[1/(μ01 -μ00)+1/(μ20 -μ00)]/3.The corresponding results are shown in Fig.5(a).Then,in the other panels,i.e.Fig.5(b)-(f),different initial positions of the vortices,corresponding to an increasing distance between them,are considered.As can be seen,our results show that the original two regular islands observed in the pair of vortices case[Fig.4(a)]change now to a single regular island,whose area in phase space increases with the distance between vortices.This phenomenon is obviously originated by the interaction between the two vortices.

    To further analyze this result let us consider next the orbits of the vortices in the dipole for all cases presented in Fig.5.The corresponding results are shown in Fig.6.As can be seen,the overlap between two trajectories becomes smaller and smaller,as the vortex distance increases.This is consistent with the conclusions drawn from Fig.5,since,as this happens,the vortex interaction decreases.This is especially true in the case corresponding to Fig.6(f),where the two vortexes annihilate each other during some period of time.This is obviously consistent,and explains the big growth of the regular island observed in Fig.5(f).

    To conclude this section,let us examine now in more detail how the interatomic interaction in a weakly interacting Bose gas relates to the onset of chaos.Notice that this is similar to what we did in the case of the vortex pair above(see Fig.4).For this purpose we analyze,as an example,the stroboscopic surfaces of section for the case corresponding to Fig.5(f),that is when the vortices in the dipole are located at positions(0.1,1),(-1.5,-1),respectively,for different values of the interaction parameter g2d=0.005,0.01,0.05,and 0.1.The results are shown in Fig.7.In it,the destruction of regular orbits with the appearance of an associated diffusion in phase space as the nonlinear interaction grows can be quantitatively appreciated.Interesting enough is the appearance of a conspicuous chain of islands around the regular region for the highest values of g2dconsidered.

    Fig.6 Plots of the moving orbits of the vortex dipole for each case in Fig.5.

    Fig.7 Considering the influence resulted from interatomic interaction,we increase the parameterg2d :(a)0.005,(b)0.01,(c)0.05,(d)0.1,and redraw the figure in Fig.5(f).The originally regular island diffuses

    4 Conclusion

    In summary,different vortex solutions were presented by a variational method.The dynamics of these different vortex clusters in the non-rotating BEC with weakly interatomic interaction were investigated analytically and by direct numerical simulations.Based on the variational vortex solutions,we studied the complexity of the QTs from the Bohmian quantum mechanics point of view.We found the moving orbits of the vortices,interatomic interaction and the interaction between vortices would influence the chaotic properties of the corresponding QTs dominantly.Deformation of single vortex orbit from a circular line to a elliptical one induces the onset of chaos in the Poincarésurface of section of QTs.The interatomic interaction,which destroys the periodicity of the velocity field,also makes the QTs change from regular to irregular.Finally,remoteness between two vortices in vortex dipole induced the growth of the regular island that embedded in the chaotic sea.

    [1] Vilenkin A and Shellard E P S.Cosmic strings and other topological defects[M].Cambridge:Cambridge University Press,1994.

    [2] Anderson P W,Itoh N.Pulsar glitches and restlessness as a hard superfluidity phenomenon[J].Nature(London),1975,256:25.

    [3] Blum T,Moore M A.Failure of hydrodynamics within the vortex-liquid phase[J].Phys.Rev.B,1995,51:15359.

    [4] Swartzlander G A and Law C T.Optical vortex solitons observed in Kerr nonlinear media[J].Phys.Rev.Lett.,1992,69:2503.

    [5] Madelung E.Quantentheorie in hydrodynamischer form[J].Z.Phys.,1927,40:322.

    [6] Wyatt R E.Quantum dynamics with trajectories:introduction to quantum hydrodynamics [M].New York:Springer,2005.

    [7] Donnelly R J.Quantized vortices in helium Ⅱ[M].Cambridge:Cambridge University Press,1991.

    [8] Vollhardt D,W?lfle P.The superfuid phase of helium 3[M].London:Taylor and Francis,1990.

    [9] Parks R D.Superconductivity [M].New York:Marcel Dekker,1969.

    [10] Matthews M R,et al.Vortices in a Bose-Einstein condensate [J].Phys.Rev.Lett.,1999,83:2498.

    [11] Madison K W,et al.Vortex formation in a stirred Bose-Einstein condensate[J].Phys.Rev.Lett.,2000,84:806.

    [12] Anderson B P,et al.Vortex precession in Bose-Einstein condensates:observations with filled and empty cores [J].Phys.Rev.Lett.,2000,85:2857.

    [13] Abo-Shaeer J R,et al.Observation of vortex lattices in Bose-Einstein condensates [J].Science,2001,292:476.

    [14] Coddington I,et al.Observation of Tkachenko oscillations in rapidly rotating Bose-Einstein condensates[J].Phys.Rev.Lett.,2003,91:100402.

    [15] Mateveenko S I.Vortex structures of rotating Bose-Einstein condensates in an anisotropic harmonic potential[J].Phys.Rev.A,2010,82:033628.

    [16] Middelkamp S,et al.Bifurcations,stability,and dynamics of multiple matter-wave vortex states[J].Phys.Rev.A,2010,82:013646.

    [17] Neely T W,et al.Observation of vortex dipoles in an oblate Bose-Einstein condensate[J].Phys.Rev.Lett.,2010,104:160401.

    [18] Madison K W,et al.Vortices in a stirred Bose-Einstein condensate[J].J.Mod.Opt.,2000,47:2715.

    [19] Ramman C,et al.Vortex nucleation in a stirred Bose-Einstein condensate[J].Phys.Rev.Lett.,2001,87:210402.

    [20] Leanhardt A E,et al.Imprinting vortices in a Bose-Einstein condensate using topological phases[J].Phys.Rev.Lett.,2002,89:190403.

    [21] Klein A,et al.Dynamics of vortices in weakly interacting Bose-Einstein condensates [J].Phys.Rev.A,2007,76:043602.

    [22] Crasovan L,et al.Globally linked vortex clusters in trapped wave fields[J].Phys.Rev.E,2002,66:036612.

    [23] Crasovan L,et al.Stable vortex dipoles in nonrotating Bose-Einstein condensates[J].Phys.Rev.A,2003,68:063609.

    [24] M?tt?nen M,et al.Stationary vortex clusters in nonrotating Bose-Einstein condensates[J].Phys.Rev.A,2005,71:033626.

    [25] Pietil?V,et al.Stability and dynamics of vortex clusters in nonrotated Bose-Einstein condensates[J].Phys.Rev.A,2006,74:023603.

    [26] Schweikhard V,et al.Vortex-lattice dynamics in rotating spinor Bose-Einstein condensates[J].Phys.Rev.Lett.,2004,93:210403.

    [27] Mueller E J,Ho T L.Two-component Bose-Einstein condensates with a large number of vortices[J].Phys.Rev.Lett.,2002,88:180403.

    [28] Kasamatsu K,Tsubota M,Ueda M.Vortex phase diagram in rotating two-component Bose-Einstein condensates[J].Phys.Rev.Lett.,2003,91:150406.

    [29] Choi S J,et al.Dynamics of vortex matter in rotating two-species Bose-Einstein condensates[J].Phys.Rev.A,2007,75:031604(R).

    [30] Corro I,et al.Dynamics of two-component Bose-Einstein condensates in rotating traps[J].Phys Rev.A,2009,80:033609.

    [31] Bohm D.A suggested interpretation of the quantum theory in terms of"hidden"variables.I[J].Phys.Rev.,1952,85:166.

    [32] von Neumann J.Mathematical foundations of quantum mechanics[M].Princeton:Princeton University Press,1955.

    [33] Maroney O,Hiley B J.Quantum state teleportation understood through the Bohm interpretation[J].Found.Phys.,1999,29:1403.

    [34] Dey B K,et al.Alternating direction implicit technique and quantum evolution within the hydrodynamical formulation of Schrodinger's equation[J].Chem.Phys.Lett.,1998,297:247.

    [35] Lopreore C L,Wyatt R E.Quantum wave packet dynamics with trajectories[J].Phys.Rev.Lett.,1999,82:5190.

    [36] Wyatt R E.Quantum wave packet dynamics with trajectories:application to reactive scattering[J].J.Chem.Phys.,1999,111:4406.

    [37] Prezhdo O V,Brooksby C.Quantum backreaction through the Bohmian particle [J].Phys.Rev.Lett.,2001,86:3215.

    [38] Wisniacki D A,Pujals E R.Motion of vortices implies chaos in Bohmian mechanics[J].Europhys.Lett.,2005,71:159.

    [39] Wisniacki D A,et al.Vortex interaction,chaos and quantum probabilities[J].Europhys.Lett.,2006,73:671.

    [40] Wisniacki D A,et al.Vortex dynamics and their interactions in quantum trajectories[J].J.Phys.A,2007,40:1

    [41] Oriols X.Quantum-trajectory approach to time-dependent transport in mesoscopic systems with electron-electron interactions[J].Phys.Rev.Lett.,2007,98:066803.

    [42] Englert B G,et al.Surrealistic Bohm trajectories[J].Z.Naturforsch.,1992,47:1175;Dürr D,et al.Comment on surrealistic Bohm trajectories[J].Z.Naturforsc.,1993,48:1261;Dewdney C,et al.How late measurements of quantum trajectories can fool a detector[J].Phys.Lett.A,1993,184:6.

    [43] Frisk H.Properties of the trajectories in Bohmian mechanics[J].Phys.Lett.A,1997,227:139.

    [44] Wisniacki D A,et al.Dynamics of quantum trajectories in chaotic systems[J].Europhys.Lett.,2003,64:44.

    [45] Cohen-Tannoudji C,Diu B,Lalo¨eF.Quantum mechanics[M].New York:Wiley-Interscience,1977.

    猜你喜歡
    麻石玻色鋁質
    132廠
    “十里石城”丁字灣
    守信
    基于Dynaform有限元模擬的3104鋁質罐體再拉伸工藝優(yōu)化
    模具制造(2019年7期)2019-09-25 07:29:58
    麻石街
    速讀·下旬(2018年8期)2018-10-30 08:14:00
    鋁質發(fā)動機號碼顯現(xiàn)的實驗研究
    ——三種電解液配方的優(yōu)化
    玻色-愛因斯坦凝聚的研究
    科技視界(2015年13期)2015-08-15 00:54:11
    云霧中的古堡
    大陸集團推出車用鋁質渦殼渦輪增壓器
    汽車零部件(2014年9期)2014-09-18 09:24:28
    諧振子勢阱囚禁玻色氣體的玻色-愛因斯坦凝聚
    免费一级毛片在线播放高清视频| 九九久久精品国产亚洲av麻豆| 精品一区二区三区视频在线观看免费| 免费一级毛片在线播放高清视频| 国产激情偷乱视频一区二区| 亚洲国产精品成人综合色| 99热只有精品国产| 免费看a级黄色片| 亚洲成人久久性| 国产老妇女一区| 国产毛片a区久久久久| 18+在线观看网站| 真实男女啪啪啪动态图| 亚洲美女搞黄在线观看 | 欧美三级亚洲精品| 91狼人影院| 99热精品在线国产| 日韩欧美国产在线观看| 晚上一个人看的免费电影| 国产黄色视频一区二区在线观看 | 成年版毛片免费区| 国产午夜精品论理片| 国产色婷婷99| 国产乱人偷精品视频| 内地一区二区视频在线| 91精品国产九色| 亚洲成a人片在线一区二区| 老司机影院成人| 成人无遮挡网站| 毛片一级片免费看久久久久| 欧美性猛交╳xxx乱大交人| 九九热线精品视视频播放| 亚洲自偷自拍三级| 亚洲av.av天堂| 国产高清激情床上av| 美女大奶头视频| 亚洲成人精品中文字幕电影| 91午夜精品亚洲一区二区三区| 12—13女人毛片做爰片一| 亚洲成人av在线免费| 看十八女毛片水多多多| 搞女人的毛片| 久久久久免费精品人妻一区二区| 麻豆一二三区av精品| 国产av麻豆久久久久久久| 国产在线精品亚洲第一网站| 国产av一区在线观看免费| 高清毛片免费看| 男女视频在线观看网站免费| 一个人观看的视频www高清免费观看| 亚洲国产精品成人综合色| 精品人妻熟女av久视频| 91午夜精品亚洲一区二区三区| 亚洲最大成人中文| 色5月婷婷丁香| 国产午夜精品论理片| 久久久久久久久久成人| 亚洲精华国产精华液的使用体验 | 在线播放国产精品三级| 亚洲美女搞黄在线观看 | av中文乱码字幕在线| 亚洲精品亚洲一区二区| 国内少妇人妻偷人精品xxx网站| 亚洲第一区二区三区不卡| 精品熟女少妇av免费看| 国产精品久久久久久久电影| 免费av不卡在线播放| 波野结衣二区三区在线| 女人久久www免费人成看片| 99re6热这里在线精品视频| 久久久久久久久久成人| 日韩,欧美,国产一区二区三区| 少妇被粗大的猛进出69影院 | 伦理电影大哥的女人| 尾随美女入室| 欧美老熟妇乱子伦牲交| 日韩成人伦理影院| 国产伦在线观看视频一区| 国产精品人妻久久久久久| 成年人免费黄色播放视频 | 亚洲一区二区三区欧美精品| 国产精品国产三级专区第一集| 日本wwww免费看| 久久久午夜欧美精品| 午夜av观看不卡| 少妇人妻一区二区三区视频| 一区二区三区精品91| 欧美精品一区二区免费开放| 日产精品乱码卡一卡2卡三| 久久久亚洲精品成人影院| 成人毛片a级毛片在线播放| 国产精品一区二区性色av| 在现免费观看毛片| 一区二区三区乱码不卡18| 亚洲高清免费不卡视频| 欧美日韩国产mv在线观看视频| 嫩草影院入口| a 毛片基地| 秋霞在线观看毛片| 丝袜在线中文字幕| 国产乱人偷精品视频| 亚洲三级黄色毛片| 国产午夜精品一二区理论片| 蜜桃在线观看..| 日韩一区二区视频免费看| 亚洲,欧美,日韩| 少妇高潮的动态图| 熟女电影av网| 最新的欧美精品一区二区| 精品久久久久久久久亚洲| 女人精品久久久久毛片| av免费在线看不卡| 亚洲一级一片aⅴ在线观看| 高清av免费在线| 国产精品三级大全| 久久影院123| 中文字幕av电影在线播放| 久久99热这里只频精品6学生| 嫩草影院入口| 亚洲国产精品成人久久小说| 麻豆成人午夜福利视频| 亚洲精品第二区| 中文字幕亚洲精品专区| 免费黄频网站在线观看国产| kizo精华| 国产有黄有色有爽视频| 寂寞人妻少妇视频99o| 一级,二级,三级黄色视频| 日本与韩国留学比较| 人人妻人人澡人人看| 有码 亚洲区| 在线观看美女被高潮喷水网站| av国产久精品久网站免费入址| 男人和女人高潮做爰伦理| 亚洲精品中文字幕在线视频 | 欧美人与善性xxx| 国产黄片美女视频| 久久久亚洲精品成人影院| 国产一区二区在线观看av| 亚洲内射少妇av| 偷拍熟女少妇极品色| 美女福利国产在线| 国产黄色视频一区二区在线观看| 欧美 日韩 精品 国产| 观看免费一级毛片| 国产伦在线观看视频一区| 亚洲成人av在线免费| 免费人妻精品一区二区三区视频| 草草在线视频免费看| 国产亚洲欧美精品永久| 久久久久久久精品精品| 99九九在线精品视频 | 大陆偷拍与自拍| 国产乱人偷精品视频| 三上悠亚av全集在线观看 | 极品少妇高潮喷水抽搐| 亚洲精品第二区| 中文乱码字字幕精品一区二区三区| 一区二区三区免费毛片| 国产成人免费无遮挡视频| 校园人妻丝袜中文字幕| 免费观看性生交大片5| 免费久久久久久久精品成人欧美视频 | 国内揄拍国产精品人妻在线| 欧美日韩精品成人综合77777| 深夜a级毛片| 国产黄色免费在线视频| 天天操日日干夜夜撸| 国产女主播在线喷水免费视频网站| 在线播放无遮挡| 亚洲欧美日韩东京热| 你懂的网址亚洲精品在线观看| 成人亚洲精品一区在线观看| 午夜福利,免费看| 免费大片黄手机在线观看| 九草在线视频观看| 日韩,欧美,国产一区二区三区| 亚洲性久久影院| a级片在线免费高清观看视频| 在线播放无遮挡| 亚洲av二区三区四区| 成人免费观看视频高清| 成人免费观看视频高清| 精品酒店卫生间| 久久女婷五月综合色啪小说| 亚洲无线观看免费| 日韩精品免费视频一区二区三区 | 男女无遮挡免费网站观看| 青青草视频在线视频观看| 国产精品三级大全| 伦理电影免费视频| 成人影院久久| 伦理电影免费视频| 成人18禁高潮啪啪吃奶动态图 | 久久精品夜色国产| 夜夜骑夜夜射夜夜干| 成人无遮挡网站| 91在线精品国自产拍蜜月| 校园人妻丝袜中文字幕| 亚洲色图综合在线观看| 久久 成人 亚洲| 久久97久久精品| 欧美国产精品一级二级三级 | 最近中文字幕高清免费大全6| 久久97久久精品| 亚洲精品久久午夜乱码| 国产成人a∨麻豆精品| 久久久国产一区二区| 亚洲国产欧美在线一区| 国产亚洲欧美精品永久| av在线播放精品| 好男人视频免费观看在线| 99久国产av精品国产电影| a 毛片基地| 国产69精品久久久久777片| 男人狂女人下面高潮的视频| 如何舔出高潮| 免费黄频网站在线观看国产| 中文字幕久久专区| 亚洲无线观看免费| 大陆偷拍与自拍| 日韩欧美 国产精品| 欧美亚洲 丝袜 人妻 在线| 亚洲精品日韩av片在线观看| 久久精品久久久久久噜噜老黄| 欧美三级亚洲精品| 午夜日本视频在线| 久久国产乱子免费精品| 亚洲美女黄色视频免费看| 日本vs欧美在线观看视频 | 日韩欧美精品免费久久| 美女福利国产在线| 插阴视频在线观看视频| 国产 精品1| 嘟嘟电影网在线观看| 国产精品伦人一区二区| 亚洲国产精品国产精品| 久久国产精品男人的天堂亚洲 | 久久久a久久爽久久v久久| 日日啪夜夜爽| 成年av动漫网址| 久久久a久久爽久久v久久| 美女中出高潮动态图| 人人妻人人看人人澡| 国产在线男女| 国产精品人妻久久久久久| 极品教师在线视频| 国产91av在线免费观看| 国产亚洲av片在线观看秒播厂| tube8黄色片| 80岁老熟妇乱子伦牲交| 久久久久久久久久成人| 久久国产精品大桥未久av | 精品久久国产蜜桃| 欧美国产精品一级二级三级 | 欧美 日韩 精品 国产| 熟妇人妻不卡中文字幕| av在线app专区| 赤兔流量卡办理| 日本黄色日本黄色录像| 亚洲经典国产精华液单| 性高湖久久久久久久久免费观看| 欧美三级亚洲精品| 中文天堂在线官网| 免费高清在线观看视频在线观看| 国产 一区精品| 精品国产一区二区久久| 国产成人精品婷婷| 日日爽夜夜爽网站| 精品久久久精品久久久| 久久久久网色| 国产精品伦人一区二区| 97超碰精品成人国产| 国产成人精品福利久久| 蜜臀久久99精品久久宅男| 日本午夜av视频| 国产成人精品久久久久久| 日本黄大片高清| 亚洲av二区三区四区| 一级毛片黄色毛片免费观看视频| 亚洲激情五月婷婷啪啪| 日韩伦理黄色片| 亚洲国产欧美在线一区| 国产视频首页在线观看| 久久综合国产亚洲精品| 两个人的视频大全免费| 欧美日韩在线观看h| 亚州av有码| 在线观看国产h片| 亚洲色图综合在线观看| 亚洲精品日本国产第一区| 久久人人爽人人片av| av黄色大香蕉| 赤兔流量卡办理| 人妻一区二区av| 黑丝袜美女国产一区| av有码第一页| 久久免费观看电影| 又大又黄又爽视频免费| 亚洲av男天堂| 亚洲欧洲日产国产| 六月丁香七月| 97精品久久久久久久久久精品| 性色av一级| 成人美女网站在线观看视频| 自线自在国产av| 成年女人在线观看亚洲视频| 人妻一区二区av| 99精国产麻豆久久婷婷| 久久久久久久久久久久大奶| 国产一区二区在线观看日韩| 大码成人一级视频| 我要看日韩黄色一级片| 最近手机中文字幕大全| 国产欧美日韩一区二区三区在线 | 一区二区三区免费毛片| 精品卡一卡二卡四卡免费| 下体分泌物呈黄色| 啦啦啦啦在线视频资源| 不卡视频在线观看欧美| 永久网站在线| 亚洲av福利一区| 黄色怎么调成土黄色| 大香蕉97超碰在线| 日本黄色片子视频| a级一级毛片免费在线观看| av福利片在线观看| 亚洲精品日韩在线中文字幕| 成人国产av品久久久| 少妇裸体淫交视频免费看高清| 一区二区三区乱码不卡18| 亚洲成人一二三区av| 国产在线男女| 欧美三级亚洲精品| 最黄视频免费看| 精品国产乱码久久久久久小说| 一本色道久久久久久精品综合| 在线观看免费高清a一片| 亚洲精品日本国产第一区| 高清毛片免费看| 国产毛片在线视频| 精品国产露脸久久av麻豆| 欧美日韩在线观看h| 久久久国产一区二区| 日韩免费高清中文字幕av| 欧美3d第一页| 极品少妇高潮喷水抽搐| 亚洲人成网站在线观看播放| 在线精品无人区一区二区三| 亚洲精品日韩在线中文字幕| 国产一区亚洲一区在线观看| 嫩草影院新地址| 国产精品嫩草影院av在线观看| 亚洲国产欧美日韩在线播放 | 成年美女黄网站色视频大全免费 | 国产深夜福利视频在线观看| 尾随美女入室| 伊人亚洲综合成人网| 日本vs欧美在线观看视频 | 丝袜脚勾引网站| 亚洲精品乱码久久久v下载方式| 亚洲欧美成人精品一区二区| 全区人妻精品视频| 最黄视频免费看| 国产精品一区二区在线不卡| 好男人视频免费观看在线| 久久久久久久久久人人人人人人| 永久网站在线| 极品人妻少妇av视频| 免费av中文字幕在线| 亚洲情色 制服丝袜| 国产精品久久久久久精品电影小说| videos熟女内射| 精品人妻熟女毛片av久久网站| a级毛片在线看网站| xxx大片免费视频| av卡一久久| a 毛片基地| 久久久a久久爽久久v久久| a级一级毛片免费在线观看| 黄色日韩在线| 精品久久久久久久久亚洲| av天堂久久9| 亚洲国产精品成人久久小说| 欧美 日韩 精品 国产| 免费看不卡的av| 午夜福利在线观看免费完整高清在| 黑丝袜美女国产一区| 交换朋友夫妻互换小说| 免费不卡的大黄色大毛片视频在线观看| 一区二区三区四区激情视频| 人妻系列 视频| 丰满饥渴人妻一区二区三| 中文字幕久久专区| 免费av不卡在线播放| 国产极品粉嫩免费观看在线 | 日本欧美国产在线视频| 韩国av在线不卡| h视频一区二区三区| 你懂的网址亚洲精品在线观看| 日韩中字成人| 五月玫瑰六月丁香| 一区二区三区乱码不卡18| 国产亚洲一区二区精品| 99久久精品一区二区三区| av福利片在线观看| 少妇丰满av| 嫩草影院新地址| 久久人人爽人人片av| 欧美成人午夜免费资源| 久久久久久久久久成人| 国产精品国产三级专区第一集| 成人国产av品久久久| 狂野欧美激情性bbbbbb| 国内少妇人妻偷人精品xxx网站| 日韩欧美 国产精品| 日韩伦理黄色片| 91在线精品国自产拍蜜月| 一区二区三区乱码不卡18| 特大巨黑吊av在线直播| 久久久久国产网址| 国产极品天堂在线| 一边亲一边摸免费视频| 99九九在线精品视频 | 日韩亚洲欧美综合| 久久精品国产a三级三级三级| 亚洲av二区三区四区| 我的女老师完整版在线观看| 99久久综合免费| 久久久久久久大尺度免费视频| 国产在线男女| 一级,二级,三级黄色视频| 一边亲一边摸免费视频| 在现免费观看毛片| 欧美精品高潮呻吟av久久| 人人妻人人澡人人爽人人夜夜| 一级,二级,三级黄色视频| 青春草亚洲视频在线观看| 国产一级毛片在线| 久久这里有精品视频免费| 亚洲欧美一区二区三区黑人 | 2018国产大陆天天弄谢| 亚洲国产精品成人久久小说| 国产又色又爽无遮挡免| 亚洲av中文av极速乱| 有码 亚洲区| 99久久精品国产国产毛片| 又黄又爽又刺激的免费视频.| 亚洲欧美一区二区三区黑人 | 日产精品乱码卡一卡2卡三| 亚洲自偷自拍三级| 水蜜桃什么品种好| 久久av网站| 一区在线观看完整版| 2018国产大陆天天弄谢| 亚洲国产色片| 欧美97在线视频| 天天躁夜夜躁狠狠久久av| 国产精品女同一区二区软件| 91精品国产九色| 国产高清不卡午夜福利| 日韩大片免费观看网站| 丝袜脚勾引网站| 另类亚洲欧美激情| 亚洲美女黄色视频免费看| 校园人妻丝袜中文字幕| 国产一级毛片在线| av福利片在线观看| 国内揄拍国产精品人妻在线| 91精品伊人久久大香线蕉| 高清在线视频一区二区三区| 女人久久www免费人成看片| 菩萨蛮人人尽说江南好唐韦庄| 高清欧美精品videossex| 亚洲人成网站在线观看播放| 99久久中文字幕三级久久日本| 大片免费播放器 马上看| 免费大片黄手机在线观看| 男女无遮挡免费网站观看| 男女啪啪激烈高潮av片| 一级二级三级毛片免费看| 成人无遮挡网站| 国产91av在线免费观看| 亚洲精品日本国产第一区| 久久精品国产鲁丝片午夜精品| 精品国产露脸久久av麻豆| 99热网站在线观看| 久久午夜福利片| 伊人久久精品亚洲午夜| av免费在线看不卡| 曰老女人黄片| 大又大粗又爽又黄少妇毛片口| 日韩av在线免费看完整版不卡| 在线观看美女被高潮喷水网站| 十八禁高潮呻吟视频 | 国产免费视频播放在线视频| 欧美高清成人免费视频www| 亚洲av.av天堂| 亚洲国产成人一精品久久久| 国产黄频视频在线观看| 久久久久精品性色| 欧美日韩一区二区视频在线观看视频在线| 久久 成人 亚洲| 精品人妻熟女毛片av久久网站| 亚洲精品国产成人久久av| 欧美一级a爱片免费观看看| 看非洲黑人一级黄片| 人妻系列 视频| 天天躁夜夜躁狠狠久久av| 美女cb高潮喷水在线观看| 亚洲久久久国产精品| 一级毛片 在线播放| 亚洲精品成人av观看孕妇| 亚洲久久久国产精品| 各种免费的搞黄视频| 免费观看无遮挡的男女| 国产色婷婷99| 国产精品久久久久久久电影| 日韩av免费高清视频| 最近2019中文字幕mv第一页| 99国产精品免费福利视频| 精品国产乱码久久久久久小说| 春色校园在线视频观看| 午夜免费男女啪啪视频观看| 国产一区二区在线观看日韩| 美女cb高潮喷水在线观看| 久久毛片免费看一区二区三区| 亚洲欧美精品专区久久| 日韩免费高清中文字幕av| 少妇被粗大的猛进出69影院 | 久久av网站| av在线观看视频网站免费| 校园人妻丝袜中文字幕| 久久青草综合色| 极品少妇高潮喷水抽搐| 亚洲精品日韩在线中文字幕| 毛片一级片免费看久久久久| 国产欧美日韩精品一区二区| 在线观看免费日韩欧美大片 | av.在线天堂| 青春草亚洲视频在线观看| 亚洲人成网站在线播| 国产高清不卡午夜福利| 亚洲av男天堂| a级毛色黄片| 插逼视频在线观看| 美女xxoo啪啪120秒动态图| 妹子高潮喷水视频| 美女脱内裤让男人舔精品视频| 亚洲欧洲精品一区二区精品久久久 | 一区二区三区乱码不卡18| 黄色欧美视频在线观看| 久久国产乱子免费精品| 我要看黄色一级片免费的| 久久精品熟女亚洲av麻豆精品| 久久精品国产自在天天线| 夜夜骑夜夜射夜夜干| 秋霞伦理黄片| 2022亚洲国产成人精品| 国产精品免费大片| 久久午夜福利片| 久久狼人影院| 欧美bdsm另类| 我要看黄色一级片免费的| 精品人妻熟女毛片av久久网站| 观看美女的网站| 国产在线视频一区二区| 国产黄片视频在线免费观看| 内射极品少妇av片p| 一级a做视频免费观看| 久热这里只有精品99| 激情五月婷婷亚洲| 日本午夜av视频| 大码成人一级视频| 亚洲国产精品成人久久小说| 新久久久久国产一级毛片| 久久人妻熟女aⅴ| 伦理电影免费视频| 国产日韩欧美在线精品| 丰满乱子伦码专区| 最后的刺客免费高清国语| 亚洲第一区二区三区不卡| 女性被躁到高潮视频| 熟女电影av网| 最近的中文字幕免费完整| 中文天堂在线官网| 亚洲四区av| av福利片在线观看| 精品午夜福利在线看| 成年人免费黄色播放视频 | 一级黄片播放器| 国产亚洲5aaaaa淫片| 97精品久久久久久久久久精品| 视频区图区小说| 美女视频免费永久观看网站| 国产精品免费大片| h视频一区二区三区| 大片免费播放器 马上看| 国产欧美亚洲国产| 能在线免费看毛片的网站| 亚洲一区二区三区欧美精品| 久久精品国产亚洲网站| 国产精品秋霞免费鲁丝片| 亚洲国产毛片av蜜桃av| 在线观看美女被高潮喷水网站| av有码第一页| 久久人人爽人人片av| 久久99精品国语久久久| 夜夜爽夜夜爽视频| 国产视频首页在线观看| 夜夜看夜夜爽夜夜摸| av女优亚洲男人天堂| 国产伦精品一区二区三区视频9| 久久精品国产a三级三级三级| 亚洲国产精品一区三区|