宋祥晨(綜述),梁 敏(審校)
(中山大學(xué)光華口腔醫(yī)學(xué)院附屬口腔醫(yī)院牙周病科 廣東省口腔醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室,廣州 510055)
人的一生中骨組織不斷地進(jìn)行著改建,骨改建是由骨吸收與骨形成精密控制的生理過(guò)程,其中破骨細(xì)胞、成骨細(xì)胞分別是骨吸收、骨形成的功能細(xì)胞[1]。細(xì)胞凋亡在胚胎肢體骨發(fā)育、骨改建中發(fā)揮重要作用,其中骨細(xì)胞即終末分化的成骨細(xì)胞凋亡增多被認(rèn)為是骨改建活躍的標(biāo)志;行使骨吸收功能后,破骨細(xì)胞迅速發(fā)生凋亡,骨吸收造成的骨陷窩由成骨細(xì)胞占據(jù)并形成新骨,隨后部分成骨細(xì)胞被骨基質(zhì)包埋轉(zhuǎn)變?yōu)楣且r細(xì)胞,其余發(fā)生凋亡。由此可見(jiàn),成骨細(xì)胞、破骨細(xì)胞凋亡對(duì)骨改建起著重要作用[2]。Bcl-2 interacting mediator of cell death(Bim)是Bcl-2家族促凋亡蛋白成員,介導(dǎo)內(nèi)在凋亡通路的發(fā)生,并廣泛參與健康細(xì)胞及腫瘤細(xì)胞凋亡[3-5]。該文就Bim在骨改建中的作用進(jìn)行綜述。
細(xì)胞凋亡是程序性細(xì)胞死亡,是受基因調(diào)控的細(xì)胞自滅過(guò)程,在維持機(jī)體正常發(fā)育,穩(wěn)定內(nèi)環(huán)境,清除腫瘤細(xì)胞、自身反應(yīng)性淋巴細(xì)胞和微生物感染細(xì)胞中具有重要意義。細(xì)胞凋亡主要由死亡受體信號(hào)通路、線粒體信號(hào)通路介導(dǎo)[6]。線粒體信號(hào)通路又稱內(nèi)在通路,由Bcl-2家族成員介導(dǎo)[7]。根據(jù)結(jié)構(gòu)與功能的差異,Bcl-2家族成員可分為三種亞型:①含有多個(gè)BH域的抗凋亡蛋白,包括Bcl-2、Bcl-xL等;②含有多個(gè)BH域的促凋亡蛋白,包括Bak和Bax;③唯BH3域蛋白,包括Bim、Bid、Bad、BNIP3等[8]。唯BH3域蛋白在組織發(fā)育、維持內(nèi)環(huán)境穩(wěn)定及防治腫瘤中發(fā)揮作用。在外界刺激作用下,唯BH3域蛋白表達(dá)增高或活性增強(qiáng)后激活Bak/Bax。活化的Bak/Bax形成六聚體聚集在線粒體外膜形成孔道,導(dǎo)致細(xì)胞色素C的釋放,與凋亡酶激活因子Apaf-1、ATP結(jié)合形成的多聚體募集并活化胱天蛋白酶(caspase)-9,最終激活下游執(zhí)行者caspase-3、caspase-7,導(dǎo)致細(xì)胞凋亡[8-9]。
2.1Bim的發(fā)現(xiàn)及結(jié)構(gòu) Bim是唯BH3域蛋白家族中的一員。O′Connor等[10]于1998年使用32P標(biāo)簽的Bcl-2蛋白是從T細(xì)胞淋巴瘤KO52DA20建立的λ噬菌體cDNA中篩選獲得;同年Hsu等[11],使用酵母二元雜交從卵巢cDNA中篩選出與髓細(xì)胞白血病基因1(Mcl-1)結(jié)合的Bcl-2-related ovarian death agonist(BOD),證實(shí)是Bim的直系同源蛋白質(zhì)。
由于mRNA選擇性剪接的差異,Bim mRNA存在三種亞型:BimEL、BimL、BimS。O′Connor等[10]發(fā)現(xiàn) 3種翻譯后產(chǎn)物BimEL、BimL、BimS均可通過(guò)BH3結(jié)構(gòu)域與Bcl-2蛋白結(jié)合,其中BimS拮抗Bcl-2的抗凋亡作用最強(qiáng)。Adachi等[12]根據(jù)結(jié)構(gòu)的差異,將后續(xù)發(fā)現(xiàn)的18種Bim亞型分為6組:BimEL、BimL、BimS、BimD、BimDd和BimEDd。其中小鼠BimEL含196個(gè)氨基酸,除含有BH3結(jié)構(gòu)域外,還包含2個(gè)泛素化位點(diǎn)、3個(gè)核糖體蛋白S6激酶磷酸化位點(diǎn)、1個(gè)β-transducinrepeats-containingproteins(β-TrCP)結(jié)合模板、3個(gè)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)磷酸化位點(diǎn)和1個(gè)c-Jun氨基端激酶磷酸化位點(diǎn)[13]。
2.2Bim的生物學(xué)功能 正常情況下,BimEL/L結(jié)合于微管動(dòng)力蛋白輕鏈1/動(dòng)力蛋白輕鏈亞基(LC8),形成微管動(dòng)力蛋白復(fù)合體。在凋亡信號(hào)刺激下,c-Jun氨基端激酶活化,并磷酸化Bim位于動(dòng)力蛋白結(jié)合域的Ser56,致Bim與LC8同時(shí)從動(dòng)力蛋白復(fù)合體上釋放,并參與凋亡活動(dòng)[14]。
Bim可通過(guò)直接結(jié)合和間接替代兩種模式激活Bak/Bax。①直接結(jié)合模式:Bim直接與Bak/Bax結(jié)合致其發(fā)生構(gòu)象改變而活化;②間接替代模式:Bim與所有Bcl-2抗凋亡蛋白家族成員均具較高的親和力,故Bim可將Bak/Bax從Mcl-1/Bcl-xL中替代出來(lái)而活化[15]。除此之外,Weber等[16]發(fā)現(xiàn)BimS還可直接插入線粒體外膜,致細(xì)胞發(fā)生凋亡,而不依賴與Bcl-2/Mcl-1或Bak/Bax的結(jié)合。
2.3Bim在骨改建中的作用及調(diào)節(jié)機(jī)制 骨改建過(guò)程包括破骨細(xì)胞激活期、吸收期、逆轉(zhuǎn)期、成骨細(xì)胞成骨期,由基礎(chǔ)多細(xì)胞單位完成[17]?;A(chǔ)多細(xì)胞單位含有3種細(xì)胞成分:破骨細(xì)胞、成骨細(xì)胞、骨細(xì)胞。細(xì)胞凋亡影響成骨細(xì)胞與破骨細(xì)胞的數(shù)量及功能,從而調(diào)節(jié)骨代謝平衡,而B(niǎo)im作為細(xì)胞凋亡的重要調(diào)節(jié)因子,在骨改建中發(fā)揮關(guān)鍵作用。
2.3.1Bim在破骨細(xì)胞中的作用及調(diào)節(jié)機(jī)制 骨改建往往由破骨細(xì)胞行使骨吸收開(kāi)始,Bim在破骨細(xì)胞凋亡中的作用及調(diào)節(jié)研究較多。Akiyama等[18]發(fā)現(xiàn),破骨細(xì)胞在營(yíng)養(yǎng)因子(巨噬細(xì)胞集落刺激因子)缺乏時(shí)迅速凋亡并伴隨Bim表達(dá)上調(diào);而敲除bim基因的破骨細(xì)胞,體內(nèi)外存活率均升高。Houde等[19]和Sugatani等[20]通過(guò)siRNA干擾破骨細(xì)胞bim基因表達(dá)后均發(fā)現(xiàn)破骨細(xì)胞凋亡減少及存活率增加。Bim在破骨細(xì)胞凋亡中的作用機(jī)制研究表明,巨噬細(xì)胞集落刺激因子、核因子κB受體活化因子配體缺乏時(shí),轉(zhuǎn)化生長(zhǎng)因子β可上調(diào)Smad2及p38 Bim表達(dá)而誘導(dǎo)破骨細(xì)胞凋亡[19]。Matsumoto等[21]證實(shí),含氮二磷酸利塞膦酸鹽經(jīng)內(nèi)在凋亡通路上調(diào)Bim表達(dá)來(lái)誘導(dǎo)破骨細(xì)胞凋亡,而對(duì)敲除bim基因(bim-/-)小鼠及轉(zhuǎn)染促分裂原活化的蛋白激酶激酶1的破骨細(xì)胞無(wú)凋亡作用。以上研究提示,Bim在破骨細(xì)胞凋亡中發(fā)揮重要作用。
Bim除在破骨細(xì)胞凋亡中發(fā)揮作用外,對(duì)破骨細(xì)胞骨吸收能力也有影響。Akiyama等[18]發(fā)現(xiàn)與野生型(bim+/+)相比,bim-/-的小鼠破骨細(xì)胞,其骨吸收能力降低,同時(shí)bim-/-小鼠可出現(xiàn)輕微的骨質(zhì)硬化;而bim-/-的破骨細(xì)胞轉(zhuǎn)染bimL后細(xì)胞存活率降低,同時(shí)伴有骨吸收能力恢復(fù)。Bcl-2家族抗凋亡成員Bcl-xL的相關(guān)研究[23]表明,過(guò)表達(dá)Bcl-xL/SV40 T抗原基因的小鼠破骨細(xì)胞,其宿主小鼠同樣出現(xiàn)骨質(zhì)硬化現(xiàn)象;Iwasawa等[24]進(jìn)一步發(fā)現(xiàn),Bcl-xL可通過(guò)降低細(xì)胞外基質(zhì)的分泌而減弱破骨細(xì)胞的骨吸收能力,因此推測(cè)促凋亡蛋白Bim與Bcl-2家族抗凋亡蛋白之間的平衡對(duì)骨代謝至關(guān)重要。
大量研究發(fā)現(xiàn),在腫瘤細(xì)胞、神經(jīng)細(xì)胞、心肌細(xì)胞凋亡中Bim存在基因水平、蛋白合成水平及蛋白合成后水平等多層次調(diào)節(jié),而B(niǎo)im在破骨細(xì)胞凋亡中的調(diào)節(jié)主要是蛋白合成后水平的調(diào)節(jié)[4,25-29]。Akiyama等[18]、Wakeyama等[30]和Bradley等[31]相繼證實(shí)破骨細(xì)胞凋亡中bim mRNA表達(dá)并未發(fā)生改變,但Akiyama等[18]發(fā)現(xiàn)Bim在破骨細(xì)胞中受c-Cbl介導(dǎo)的泛素化蛋白酶體降解調(diào)控。Bradley等[31]研究同樣證實(shí)轉(zhuǎn)錄因子EGR-2可通過(guò)上調(diào)c-Cbl表達(dá)降解Bim。Purev等[32]進(jìn)一步證實(shí),敲除破骨細(xì)胞c-Cbl、Cbl-b基因可顯著上調(diào)Bim表達(dá)并誘導(dǎo)破骨細(xì)胞凋亡,同時(shí)破壞細(xì)胞偽足小體及微管系統(tǒng),推斷Cbl家族可通過(guò)調(diào)節(jié)細(xì)胞支架影響B(tài)im的泛素化降解。針對(duì)破骨細(xì)胞凋亡中Bim的調(diào)節(jié)機(jī)制,Sugatani等[20]、Wakeyama等[30]先后發(fā)現(xiàn)破骨細(xì)胞中存在mTOR-Bim、Caspase-Bim負(fù)反饋調(diào)控。Matsumoto等[21]對(duì)利塞膦酸鹽骨保護(hù)機(jī)制的研究顯示,破骨細(xì)胞敲除bim及轉(zhuǎn)染促分裂原活化的蛋白激酶激酶1均可抑制利塞膦酸鹽的破骨細(xì)胞凋亡誘導(dǎo)作用,但無(wú)法抑制利塞膦酸鹽的骨保護(hù)作用,而只有轉(zhuǎn)染蛋白激酶B(Akt)能夠促進(jìn)骨吸收;利塞膦酸鹽在bim-/-小鼠中起著與野生型小鼠相同的骨保護(hù)作用:證實(shí)ERK/Bim通路調(diào)控小鼠破骨細(xì)胞凋亡,而Akt通路可能通過(guò)細(xì)胞骨架調(diào)控破骨細(xì)胞骨吸收。
2.3.2Bim在成骨細(xì)胞中的作用及調(diào)節(jié)機(jī)制 成骨細(xì)胞形成新骨是骨改建的完成階段。成骨細(xì)胞凋亡在骨改建過(guò)程中同樣發(fā)揮作用,而B(niǎo)im是成骨細(xì)胞凋亡的重要調(diào)節(jié)因子[33]。Espina等[34]證實(shí),生理狀態(tài)下小鼠前成骨細(xì)胞系小鼠骨髓間質(zhì)細(xì)胞中促凋亡蛋白Bim表達(dá)很低,高濃度腎上腺皮質(zhì)激素作用24~48 h后Bim的表達(dá)增高,同時(shí)伴有大量細(xì)胞凋亡,且隨著腎上腺皮質(zhì)激素作用時(shí)間及濃度的增加,Bim的表達(dá)及細(xì)胞凋亡也隨之上調(diào);siRNA干擾bim表達(dá)可降低小鼠骨髓間質(zhì)細(xì)胞凋亡比例。血清饑餓致成骨細(xì)胞凋亡機(jī)制的研究進(jìn)一步證實(shí)Bim在介導(dǎo)成骨細(xì)胞凋亡過(guò)程中起關(guān)鍵作用[35]。Kawamura等[36]在血清饑餓誘導(dǎo)小鼠前成骨細(xì)胞MC3T3-E1凋亡中同樣證實(shí),Bim表達(dá)呈時(shí)間依賴性升高,而B(niǎo)ax、Bcl-2及Bcl-xL表達(dá)均未發(fā)生改變;siRNA干擾bim后活化的胱天蛋白酶3表達(dá)也隨之降低。以上研究說(shuō)明,Bim介導(dǎo)成骨細(xì)胞凋亡。
Bim在成骨細(xì)胞凋亡中存在多水平調(diào)節(jié)。Espina等[34]證實(shí),血清饑餓從基因水平上調(diào)成骨細(xì)胞Bim mRNA表達(dá)。Kawamura等[36]進(jìn)一步對(duì)Bim基因水平調(diào)節(jié)的研究表明,叉頭樣轉(zhuǎn)錄因子O3a結(jié)合bim啟動(dòng)子后可啟動(dòng)其轉(zhuǎn)錄,增強(qiáng)轉(zhuǎn)錄活性,而Akt1可通過(guò)磷酸化叉頭樣轉(zhuǎn)錄因子O3a、阻止其核轉(zhuǎn)移而抑制bim轉(zhuǎn)錄活性及成骨細(xì)胞凋亡,另一方面敲除Akt1(Akt1-/-)的成骨細(xì)胞叉頭樣轉(zhuǎn)錄因子O3a磷酸化減弱、核轉(zhuǎn)移降低、成骨細(xì)胞凋亡率下降。Purev等[32]同樣發(fā)現(xiàn)ERK/蛋白激酶B抑制Bim mRNA及蛋白表達(dá),推斷ERK/蛋白激酶B通路下調(diào)Bim基因表達(dá)。Guo等[37]敲除成骨細(xì)胞miR-17~92a可促進(jìn)地塞米松誘導(dǎo)的成骨細(xì)胞凋亡,而過(guò)表達(dá)miR-17~92a可加強(qiáng)雌激素對(duì)成骨細(xì)胞的抗凋亡作用,進(jìn)一步研究發(fā)現(xiàn)miR-17~92a可與Bim 3′-非翻譯區(qū)域結(jié)合而抑制Bim表達(dá)。Liang等[35]在成骨細(xì)胞凋亡中發(fā)現(xiàn)Bim受蛋白水平調(diào)節(jié)。蛋白合成后,蛋白酶體抑制劑MG132可顯著上調(diào)成骨細(xì)胞Bim的表達(dá),提示Bim受蛋白酶體的降解調(diào)控[35]。
骨改建包括骨形成與骨吸收,兩者的平衡對(duì)骨穩(wěn)態(tài)十分重要。目前的研究已證實(shí),除在破骨細(xì)胞凋亡中發(fā)揮重要作用外,Bim對(duì)破骨細(xì)胞的骨吸收能力也有一定的影響,但具體機(jī)制尚不清楚。Bim在破骨細(xì)胞凋亡中存在c-Cbl介導(dǎo)的泛素化蛋白酶體降解調(diào)控,但基因水平及蛋白合成水平調(diào)控目前尚未證實(shí)。與破骨細(xì)胞相比,生理狀態(tài)下成骨細(xì)胞中Bim的表達(dá)很低;而在腎上腺素、血清饑餓等刺激下,Bim表達(dá)上調(diào)并伴有細(xì)胞凋亡。Bim同樣介導(dǎo)成骨細(xì)胞凋亡并存在多水平、多層次調(diào)節(jié)。
[1] 于世鳳.骨吸收與骨形成[J].現(xiàn)代康復(fù),2001,5(2):10-13.
[2] Stevens HY,Reeve J,Noble BS.Bcl-2,tissue transglutaminase and p53 protein expression in the apoptotic cascade in ribs of premature infants[J].J Anat,2000,196(Pt 2):181-191.
[4] Suzuki S,Yokoyama U,Abe T,etal.Differential roles of epac in regulating cell death in neuronal and myocardial cells[J].J Biol Chem,2010,285(31):24248-24259.
[5] Mao H,Gu H,Qu X,etal.Involvement of the mitochondrial pathway and Bim/Bcl-2 balance in dihydroartemisinin-induced apoptosis in human breast cancer in vitro[J].Int J Mol Med,2013,31(1):213-218.
[6] Duprez L,Wirawan E,Vanden Berghe T,etal.Major cell death pathways at a glance[J].Microbes Infect,2009,11(13):1050-1062.
[8] Lomonosova E,Chinnadurai G.BH3-only proteins in apoptosis and beyond:an overview[J].Oncogene,2008,27 Suppl 1:S2-S19.
[9] Letai A,Bassik MC,Walensky LD,etal.Distinct BH3 domains either sensitize or activate mitochondrial apoptosis,serving as prototype cancer therapeutics[J].Cancer Cell,2002,2(3):183-192.
[10] O′Connor L,Strasser A,O′Reilly LA,etal.Bim:a novel member of the Bcl-2 family that promotes apoptosis[J].EMBO J,1998,17(2):384-395.
[11] Hsu SY,Lin P,Hsueh AJ.BOD(Bcl-2-related ovarian death gene) is an ovarian BH3 domain-containing proapoptotic Bcl-2 protein capable of dimerization with diverse antiapoptotic Bcl-2 members[J].Mol Endocrinol,1998,12(9):1432-1440.
[12] Adachi M,Zhao X,Imai K.Nomenclature of dynein light chain-linked BH3-only protein Bim isoforms[J].Cell Death Differ,2005,12(2):192-193.
[13] Akiyama T,Tanaka S.Bim:guardian of tissue homeostasis and critical regulator of the immune system,tumorigenesis and bone biology[J].Arch Immunol Ther Exp(Warsz),2011,59(4):277-287.
[14] Puthalakath H,Huang DC,O′Reilly LA,etal.The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex[J].Mol Cell,1993,3(3):287-296.
[15] Willis SN,Chen L,Dewson G,etal.Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xl,but not Bcl-2,until displaced by BH3-only proteins[J].Genes Dev,2005,19(11):1294-1305.
[16] Weber A,Paschen SA,Heger K,etal.BimS-induced apoptosis requires mitochondrial localization but not interaction with anti-apoptotic Bcl-2 proteins[J].J Cell Biol,2007,177(4):625-636.
[17] Doll B,Aleef M,Hollinger JO.Overview of fracture repair[M]//Pietrzak WS.Musculoskeletal Tissue Regeneration:Humana Press,2008:39-61.
[18] Akiyama T,Bouillet P,Miyazaki T,etal.Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim[J].EMBO J,2003,22(24):6653-6664.
[19] Houde N,Chamoux E,Bisson M,etal.Transforming growth factor-beta1(TGF-beta1) induces human osteoclast apoptosis by up-regulating Bim[J].J Biol Chem,2009,284(35):23397-23404.
[20] Sugatani T,Hruska KA.Akt1/Akt2 and mammalian target of rapamycin/Bim play critical roles in osteoclast differentiation and survival,respectively,while Akt is dispensable for cell survival in isolated osteoclast precursors[J].J Biol Chem,2005,280(5):3583-3589.
[21] Matsumoto T,Nagase Y,Iwasawa M,etal.Distinguishing the proapoptotic and antiresorptive functions of risedronate in murine osteoclasts:role of the Akt pathway and the ERK/Bim axis[J].Arthritis Rheum,2011,63(12):3908-3917.
[22] Miyazaki T,Katagiri H,Kanegae Y,etal.Reciprocal role of ERK and NF-kappaB pathways in survival and activation of osteoclasts[J].J Cell Biol,2000,148(2):333-342.
[23] Hentunen TA,Reddy SV,Boyce BF,etal.Immortalization of osteoclast precursors by targeting Bcl-XL and Simian virus 40 large T antigen to the osteoclast lineage in transgenic mice[J].J Clin Invest,1998,102(1):88-97.
[24] Iwasawa M,Miyazaki T,Nagase Y,etal.The antiapoptotic protein Bcl-xL negatively regulates the bone-resorbing activity of osteoclasts in mice[J].J Clin Invest,2009,119(10):3149-3159.
[25] Ha Thi HT,Lim HS,Kim J,etal.Transcriptional and post-translational regulation of Bim is essential for TGF-β and TNF-α-induced apoptosis of gastric cancer cell[J].Biochim Biophys Acta,2013,1830(6):3584-3592.
[26] Xie B,Wang C,Zheng Z,etal.Egr-1 transactivates Bim gene expression to promote neuronal apoptosis[J].J Neurosci,2011,31(13):5032-5044.
[27] Yao M,Nguyen TV,Pike CJ.Estrogen regulates Bcl-w and Bim expression:role in protection against β-amyloid peptide-induced neuronal death[J].J Neurosci,2007,27(6):1422-1433.
[28] Lelièvre EC,Plestant C,Boscher C,etal.N-cadherin mediates neuronal cell survival through Bim down-regulation[J].PLoS One,2012,7(3):e33206.
[29] Qian L,Van Laake LW,Huang Y,etal.miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes[J].J Exp Med,2011,208(3):549-560.
[30] Wakeyama H,Akiyama T,Takahashi K,etal.Negative feedback loop in the Bim-caspase-3 axis regulating apoptosis and activity of osteoclasts[J].J Bone And Miner Res,2007,22(10):1631-1639.
[31] Bradley EW,Ruan MM,Oursler MJ.Novel pro-survival functions of the kruppel-like transcription factor Egr2 in promotion of macrophage colony-stimulating factor-mediated osteoclast survival downstream of the MEK/ERK pathway[J].J Biol Chem,2008,283(12):8055-8064.
[32] Purev E,Neff L,Horne WC,etal.c-Cbl and Cbl-b act redundantly to protect osteoclasts from apoptosis and to displace HDAC6 from beta-tubulin,stabilizing microtubules and podosomes[J].Mol Biol Cell,2009,20(18):4021-4030.
[33] Hock JM,Krishnan V,Onyia JE,etal.Osteoblast apoptosis and bone turnover[J].J Bone Miner Res,2001,16(6):975-984.
[34] Espina B,Liang M,Russell RG,etal.Regulation of bim in glucocorticoid-mediated osteoblast apoptosis[J].J Cell Physiol,2008,215(2):488-496.
[35] Liang M,Russell G,Hulley PA.Bim,Bak,and Bax regulate osteoblast survival[J].J Bone Miner Res,2008,23(5):610-620.
[36] Kawamura N,Kugimiya F,Oshima Y.Akt1 in osteoblasts and osteoclasts controls bone remodeling[J].PLoS ONE,2007,2(10):e1058.
[37] Guo L,Xu J,Qi J,etal.MicroRNA-17-92a upregulation by estrogen leads to Bim targeting and inhibition of osteoblasts apoptosis.[J].J Cell Sci,2013,126(Pt 4):978-988.