楊維平,田 芳,胡雪莉
寄生蠕蟲通常以免疫逃避機(jī)制在感染宿主體內(nèi)建立慢性感染。蠕蟲感染后立即產(chǎn)生蟲源性分子并促進(jìn)先天性免疫和適應(yīng)性免疫反應(yīng)的過程和發(fā)展。蠕蟲感染可以誘導(dǎo)調(diào)節(jié)性T細(xì)胞(Tregs)、調(diào)節(jié)性B細(xì)胞(Bregs)、樹突狀細(xì)胞(DCs)和巨噬細(xì)胞(AAMs)等活化,形成免疫調(diào)節(jié)網(wǎng)絡(luò),介導(dǎo)免疫抑制。從而在Th1型自身免疫性疾病和Th2型過敏性疾病中抑制寄生蟲特異性損傷和與免疫無關(guān)的病理損傷。然而,一些寄生蟲感染則促進(jìn)或加重過敏反應(yīng)[1]。本文主要介紹蠕蟲感染誘導(dǎo)Tregs和Bregs,介導(dǎo)免疫抑制及其對(duì)免疫相關(guān)疾病影響的研究進(jìn)展。
蠕蟲感染可引起Th2型為主的免疫反應(yīng),涉及的細(xì)胞因子主要是IL-3、IL-4、IL-5、IL-9、IL-10和IL-13。這些細(xì)胞因子介導(dǎo)免疫反應(yīng)的典型特征是提高循環(huán)IgG抗體、嗜酸性粒細(xì)胞、嗜堿性粒細(xì)胞和肥大細(xì)胞水平[2]。在感染過程中,不同的蠕蟲蟲源分子包括蛋白質(zhì)、脂類和多聚糖,無論是蠕蟲表面抗原或是排泄分泌(ES)抗原都可以誘導(dǎo)機(jī)體免疫系統(tǒng)活化[3]。蟲源性分子與宿主細(xì)胞的相互作用可導(dǎo)致宿主免疫反應(yīng)向一種類型發(fā)展。蟲源性分子可以誘導(dǎo)調(diào)控網(wǎng)絡(luò),下調(diào)適應(yīng)性免疫。在誘導(dǎo)免疫抑制網(wǎng)絡(luò)過程中,寄生蟲可以通過誘導(dǎo)免疫調(diào)節(jié)細(xì)胞活化和產(chǎn)生細(xì)胞因子發(fā)揮抑制效應(yīng),從而影響其他免疫相關(guān)疾病[4]。然而,蠕蟲感染與過敏性和自身免疫性疾病之間的調(diào)節(jié)機(jī)制尚無明確的結(jié)論。一些蠕蟲感染可以預(yù)防或抑制這些炎性疾病[5],而另一些蠕蟲卻加劇疾病的免疫病理損害[6]。
2.1Tregs Tregs控制外周免疫反應(yīng),可能在自身免疫性疾病、感染性或過敏性疾病中發(fā)揮核心作用。根據(jù)Tregs的來源、功能和細(xì)胞表面標(biāo)志物將其分為自然Tregs(CD4+CD25+Foxp3+)和可誘導(dǎo)Tregs(包括IL-10 Tr1細(xì)胞和在外周誘導(dǎo)的Foxp3+T細(xì)胞)兩類[7],而蠕蟲感染誘導(dǎo)的CD4+CD25+Foxp3+Tregs是最主要的免疫調(diào)節(jié)細(xì)胞[4]。早期的研究已經(jīng)表明在慢性寄生蟲感染者體內(nèi)存在Tregs。研究發(fā)現(xiàn)絲蟲病淋巴水腫與Tregs表達(dá)的Foxp3、GITR(糖皮質(zhì)激素誘導(dǎo)的腫瘤壞死因子受體相關(guān)蛋白)、TGF-β和CTLA-4(細(xì)胞毒性T淋巴細(xì)胞相關(guān)抗原4)有關(guān)[8],而在腸道線蟲(蛔蟲,鞭蟲)感染兒童,除T細(xì)胞為低反應(yīng),IL-10和TGF-β均為高水平[9-10]。同樣,在血吸蟲感染率較高的肯尼亞和加蓬,CD4+CD25+和CD4+CD25+FOXP3+T細(xì)胞的水平比未感染者高[11]。Wammes等的研究提供了寄生蟲感染者Tregs抑制效應(yīng)的證據(jù)[12]。在印度尼西亞的研究中,蠕蟲感染者比健康者能更有效地誘導(dǎo)T細(xì)胞對(duì)瘧原蟲抗原和結(jié)核活菌苗(BCG)的應(yīng)答,抑制T細(xì)胞增殖和產(chǎn)生IFN-γ。在一例馬來絲蟲病人發(fā)現(xiàn)分泌轉(zhuǎn)化生長(zhǎng)因子同源-2(TGH-2),是一種TGF-β同源因子[13]。由于重組TGH-2可以結(jié)合哺乳動(dòng)物TGF-β受體,所以認(rèn)為它可以促進(jìn)Tregs的產(chǎn)生,這已經(jīng)在哺乳動(dòng)物體內(nèi)證實(shí)。另一項(xiàng)研究,比較馬來絲蟲感染與非感染宿主感染期幼蟲和微絲蚴期的反應(yīng),感染宿主明顯不能增加Foxp3和調(diào)控效應(yīng)分子TGF-β、CTLA-4、程序性死亡1(PD-1)和ICOS(誘導(dǎo)共刺激分子)等的表達(dá)[14]。有關(guān)蠕蟲感染動(dòng)物模型中Tregs的作用已有多項(xiàng)研究報(bào)道。在小鼠感染血吸蟲過程中,CD25+Treg細(xì)胞可以抑制寄生蟲卵引起的病理損害[15],鼠鞭蟲腸道感染也有同樣現(xiàn)象[16]。此外,CD25+Treg隨著結(jié)合CD25和GITR抗體而耗竭,從而增強(qiáng)小鼠對(duì)棉鼠絲蟲(Litomosoidessigmodontis)的免疫力[17]。已證實(shí)在寄生蟲感染過程中隨著Foxp3的表達(dá),Tregs的數(shù)量逐漸增多。例如,彭亨布魯線蟲(Brugiapahangi)三期幼蟲(L3)感染的BALB / c小鼠表現(xiàn)為CD4+CD25+T細(xì)胞隨著Foxp3和IL-10基因的高表達(dá)而增多[18]。棉鼠絲蟲慢性感染小鼠早期,Tregs介導(dǎo)的應(yīng)答可殺滅和清除寄生蟲[19]。慢性腸道多形螺旋線蟲(Heligmosomoidespolygyrus)感染,在小鼠腸系膜淋巴結(jié)內(nèi)的CD4+T細(xì)胞Foxp3的表達(dá)水平增高并明顯增強(qiáng)CD4+CD25+Tregs的體外抑制活性[20]。用卵清蛋白(OVA)-TCR轉(zhuǎn)基因D011.10小鼠,體外研究旋毛蟲排泄/分泌產(chǎn)物(TspES)對(duì)T細(xì)胞活化的效果,分別加入TspESpulsed-DC+OVA孵育,結(jié)果表明存在高水平的Foxp3+表達(dá)的CD4+CD25+Tregs擴(kuò)增。這些Tregs顯示有抑制活性,并產(chǎn)生TGF-β。結(jié)果表明旋毛蟲分泌產(chǎn)物在體外有誘導(dǎo)Tregs增殖的功能[21]。
2.2Bregs B細(xì)胞的免疫調(diào)節(jié)功能最早是在自身免疫反應(yīng)中被發(fā)現(xiàn)的,Bregs在蠕蟲感染中也具有重要作用。缺少B細(xì)胞可導(dǎo)致在曼氏血吸蟲感染后增強(qiáng)Th2型免疫病理,在小鼠缺少FcγRs時(shí)也同樣出現(xiàn)相似的免疫病理反應(yīng),這表明抗體的分泌與B細(xì)胞的功能之間的關(guān)系復(fù)雜[22]。Bregs在血吸蟲感染中發(fā)揮重要作用,其活性與T細(xì)胞表面FasL表達(dá)增加和被激活的CD4+T細(xì)胞的凋亡有關(guān)[23]。盡管研究數(shù)據(jù)顯示寄生蟲感染后在抑制免疫病理方面有作用的B細(xì)胞對(duì)血吸蟲有限制作用,但是B細(xì)胞對(duì)中性粒細(xì)胞和細(xì)胞內(nèi)的利什曼原蟲感染的除蟲方面呈現(xiàn)負(fù)調(diào)節(jié)作用。因此,Bregs的調(diào)節(jié)也許代表了蠕蟲調(diào)節(jié)更寬廣的免疫機(jī)制。
在慢性炎性疾病中蠕蟲是強(qiáng)有力的調(diào)節(jié)者,原因可能是蠕蟲可以激活Bregs。相關(guān)證據(jù)是,曼氏血吸蟲誘導(dǎo)的Bregs可以通過IL-10依賴機(jī)制減輕過敏反應(yīng)。曼氏血吸蟲感染促進(jìn)腹膜的B1細(xì)胞和脾臟B細(xì)胞擴(kuò)散,從血吸蟲蟲卵獲得的低聚糖能夠促進(jìn)B細(xì)胞增殖并增加IL-10的分泌。多形螺旋線蟲感染也能誘導(dǎo)Bregs,可減輕OVA引起的過敏性氣道炎(AAI)。然而,在這一過程中只發(fā)現(xiàn)B2細(xì)胞群,并不包括產(chǎn)生IL-10的B細(xì)胞[24]。因此,認(rèn)為蠕蟲誘導(dǎo)的Bregs可能存在多種免疫調(diào)節(jié)機(jī)制。雖然這些結(jié)果都處于實(shí)驗(yàn)?zāi)P脱芯侩A段,但“蠕蟲療法”為治療慢性炎性疾病提供了一種新的越來越受歡迎的途徑。評(píng)估人體寄生蠕蟲誘導(dǎo)Bregs的作用和確定這些細(xì)胞對(duì)寄生蟲引起的炎性疾病具有潛在的調(diào)節(jié)功能具有重要意義。研究報(bào)道,分泌IL-10的B細(xì)胞在蠕蟲感染的多發(fā)性硬化癥(EAE)患者體內(nèi)成倍增加,并與減輕疾病的嚴(yán)重程度有關(guān)[25]。
Bregs的不同亞群在小鼠和人體中都已被發(fā)現(xiàn),包括能產(chǎn)生抑制性細(xì)胞因子IL-10的B10細(xì)胞亞群。B10細(xì)胞對(duì)調(diào)控Tregs介導(dǎo)的炎癥反應(yīng)、抑制EAE、膠原性關(guān)節(jié)炎(CIA)和炎癥性腸病(IBD)[26]具有潛在作用。在小鼠慢性血吸蟲感染模型中,也證實(shí)存在與保護(hù)和防止過敏性反應(yīng)有關(guān)的B10細(xì)胞[27]。此外,多形螺旋線蟲感染小鼠誘導(dǎo)的B10細(xì)胞可以在IL-10的獨(dú)立作用下抑制變態(tài)反應(yīng)和自身免疫病[28]。
Yoshizaki等的研究還發(fā)現(xiàn),依賴于IL-21和CD40與T細(xì)胞的同源相互作用是產(chǎn)生CD5+Bregs和IL-10的關(guān)鍵。這些信號(hào)在體外能夠誘導(dǎo)B10細(xì)胞增加數(shù)百萬倍,使B10細(xì)胞成為強(qiáng)有力的能夠調(diào)節(jié)自身免疫病的效應(yīng)細(xì)胞。除了B細(xì)胞受體的特異性,MHC-II的表達(dá)在B10細(xì)胞對(duì)EAE的調(diào)節(jié)性作用中也發(fā)揮著重要作用。此外,發(fā)現(xiàn)體外轉(zhuǎn)移擴(kuò)增的B10細(xì)胞仍可抑制EAE小鼠模型的癥狀。這項(xiàng)研究可為目前缺乏有效療法的嚴(yán)重自身免疫性疾病的治療提供一種新的有效方法。
對(duì)小鼠的抗原特異性炎癥和依賴T細(xì)胞的自身免疫病有負(fù)調(diào)控作用的B10細(xì)胞數(shù)量并不多,在幼鼠中的比例為1%~5%[29]。但是在自身免疫的個(gè)體中數(shù)量增加,脾臟B10細(xì)胞的表型主要是CD1dhiCD5+,在體外條件下經(jīng)競(jìng)爭(zhēng)性CD40多克隆抗體或LPS誘導(dǎo)產(chǎn)生IL-10的B10前體細(xì)胞也是CD1dhiCD5+表型[29]。人和小鼠產(chǎn)生IL-10的B10細(xì)胞的主要功能是對(duì)炎癥和自身免疫病進(jìn)行負(fù)調(diào)控以及參與固有免疫和獲得性免疫反應(yīng),但是在體內(nèi)調(diào)控IL-10產(chǎn)生的信號(hào)仍然未知。B10細(xì)胞產(chǎn)生IL-10以及B10細(xì)胞調(diào)節(jié)抗原特異性免疫反應(yīng)并不能引起系統(tǒng)性的免疫抑制。其機(jī)理仍然未知。在EAE小鼠模型研究發(fā)現(xiàn),B10細(xì)胞分化為具有分泌IL-10功能性的成熟效應(yīng)細(xì)胞,這些細(xì)胞在體內(nèi)抑制自身免疫需要IL-21、CD40和T細(xì)胞的同源相互作用。然而,體外提供CD40和IL-21的受體信號(hào)可以促使B10細(xì)胞的形成并使其數(shù)量增加四百萬倍,將這些細(xì)胞轉(zhuǎn)移至具有自身免疫病癥狀的小鼠體內(nèi)能夠產(chǎn)生顯著抑制功能的B10效應(yīng)細(xì)胞,將體外B10細(xì)胞擴(kuò)增并回輸可為目前無法治療的嚴(yán)重自身免疫性疾病提供有效的治療[30]。
蠕蟲感染引起的免疫抑制網(wǎng)絡(luò)不僅有助于控制寄生蟲,而且有利于宿主減少過敏性和自身免疫性疾病。流行病學(xué)分析研究支持蠕蟲感染與過敏性疾病之間存在負(fù)相關(guān)[31-32],包括感染的線蟲,如似蚓蛔線蟲和美洲板口線蟲[33]。發(fā)現(xiàn)對(duì)感染似蚓蛔線蟲和毛首鞭形線蟲感染者驅(qū)蟲治療可增加皮膚對(duì)塵螨的反應(yīng)[34]。動(dòng)物模型研究證實(shí)寄生蟲感染可以防止過敏性疾病,特別是呼吸系統(tǒng)炎癥。例如,曼氏血吸蟲感染的BALB/c小鼠對(duì)OVA誘導(dǎo)的實(shí)驗(yàn)性AAI有保護(hù)作用[35]。Dittrich等發(fā)現(xiàn),慢性棉鼠絲蟲感染抑制所有OVA誘導(dǎo)的AAI模型的病理改變[36]。此外,還觀察到絲蟲感染的OVA處理鼠與OVA對(duì)照鼠相比,脾臟和縱隔淋巴結(jié)中的Tregs數(shù)量明顯增加。多形螺旋線蟲感染過程中的AAI抑制涉及Tregs效應(yīng)[37]。一些流行病學(xué)調(diào)查分析了寄生蟲感染對(duì)不同自身免疫性疾病的保護(hù)性影響,如EAE和1型糖尿病(T1D)[38]。研究表明,慢性寄生蟲感染者比未感染者的炎癥性腸病(IBD)發(fā)病率低[39]。人類自身免疫性疾病動(dòng)物模型實(shí)驗(yàn)表明,寄生蠕蟲可以干預(yù)自身免疫性疾病。曼氏血吸蟲感染顯示有保護(hù)T1D[40]和減輕EAE的嚴(yán)重程度[41],而感染多形螺旋線蟲可抑制實(shí)驗(yàn)性IBD[42]。感染棉鼠絲蟲可阻止NOD鼠糖尿病,其保護(hù)作用與增加Th2應(yīng)答及Tregs數(shù)量增加有關(guān)[43]。比較研究旋毛蟲和弓首蛔蟲對(duì)炎性疾病的效果,結(jié)果旋毛蟲抑制炎癥[44],而弓首蛔蟲加劇炎癥[45]。旋毛蟲感染也能改善NOD小鼠自身免疫性糖尿病[46]和EAE的嚴(yán)重程度[47]。蟲源性產(chǎn)物的免疫調(diào)節(jié)機(jī)制已被廣泛研究,雖然大多數(shù)研究表明蠕蟲感染具有抑制過敏性和相關(guān)自身免疫反應(yīng),但是一些研究出現(xiàn)了相反的結(jié)果。流行病學(xué)研究表明,感染弓首蛔蟲、肝片形吸蟲、鉤蟲、蛔蟲或蟯蟲沒有保護(hù)作用,甚至增強(qiáng)過敏性反應(yīng)[48]。一些實(shí)驗(yàn)研究也表明感染蠕蟲對(duì)過敏有促進(jìn)作用,如巴西日?qǐng)A線蟲(Nippostrongylusbrasiliensis)[49]和馬來布魯線蟲(Brugia.malayi)[50]可誘發(fā)或加重過敏反應(yīng)。寄生蠕蟲感染與自身免疫性疾病之間的關(guān)系是復(fù)雜的,在蠕蟲誘導(dǎo)或促進(jìn)自身免疫反應(yīng)方面尚缺乏證據(jù)[51]。
綜上所述,蠕蟲感染可誘導(dǎo)免疫細(xì)胞活化,產(chǎn)生細(xì)胞因子,形成免疫調(diào)節(jié)網(wǎng)絡(luò),介導(dǎo)免疫抑制,改善過敏性和自身免疫性疾病。然而,并非所有蠕蟲普遍具有這種特性。蠕蟲種類、是否正常宿主、寄生蟲負(fù)荷、急性感染或慢性感染等可能是影響其結(jié)果的相關(guān)因素。研究蠕蟲免疫調(diào)控與過敏性和自身免疫性疾病之間的免疫學(xué)關(guān)系,評(píng)估寄生蠕蟲誘導(dǎo)調(diào)節(jié)細(xì)胞的作用,明晰免疫調(diào)節(jié)細(xì)胞在過敏性和自身免疫性疾病中的潛在作用與功能,闡明蟲源有效分子誘導(dǎo)免疫抑制的途徑與機(jī)制,對(duì)于探索過敏性和自身免疫性疾病防治的新策略具有重要意義。
參考文獻(xiàn):
[1]Aranzamendi C, Sofronic-Milosavljevic L, Pinelli E. Helminths: Immunoregulation and inflammatory diseases-which side areTrichinellaspp. andToxocaraspp. on?[J]. J Parasitol Res, 2013: 1-11. DOI: 10.1155/2013/329438
[2]Allen JE, Maizels RM. Diversity and dialogue in immunity to helminthes[J]. Nat Rev Immunol, 2011, 11(6): 375-388. DOI: 10.1038/nri2992.
[3]Van Die I, Cummings RD. Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response[J]. Glycobiology, 2010, 20(1): 2-12. DOI: 10.1093/glycob/cwp140
[4]Taylor MD, van der Werf N, Maizels RM. T cells in helminth infection: the regulators and the regulated[J]. Trends Immunol, 2012, 33(4): 181-189. DOI: 10.1016/j.it.2012.01.001
[5]Smits HH, Everts B, Hartgers FC, et al. Chronic helminth infections protect against allergic diseases by active regulatory processes[J]. Curr All Asthma Reports, 2010, 10(1): 3-12. DOI: 10.1007/s11882-009-0085-3
[6]Pinelli E, Aranzamendi C. Toxocara infection and its association with allergic manifestations[J]. Endocrine Metabolic Immune Disorders Drug Targets, 2012, 12(1): 33-44.
[7]Belkaid Y, Chen W. Regulatory ripples[J]. Nat Immunol, 2010, 11(12): 1077-1078. DOI: 10.1038/ni1210-1077
[8]Babu S, Bhat SQ, Kumar NP, et al. Filarial lymphedema is characterized by antigen-specific 1 and 17 proinflammatoryresponses and a lack of regulatory T cells[J].PLoS Negl Trop Dis, 2009, 3(4): e420.DOI: 10.1371/journal.pntd.0000420
[9]Turner JD, Jackson JA, Faulkner H, et al. Intensity of intestinal infection with multiple worm species is related to regulatory cytokine output and immune hyporesponsiveness[J].J Infect Dis, 2008, 197: 1204-1212.1212.DOI: 10.1086/586717
[10]Figueiredo CA, Barreto ML, Rodrigues LC, et al. Chronic intestinal helminth infections are associated with immune hyporesponsiveness and induction of a regulatory network[J]. Infect Immun, 2010, 78(7): 3160-3167.DOI: 10.1128/IAI.01228-09
[11]Watanabe K, Mwinzi PNM, Black CL, et al. T regulatory cell levels decrease in people infected withSchistosomamansonion effective treatment[J]. Am J Trop Med Hyg, 2007, 77(4): 676-682.
[12]Wammes LJ, Hamid F, Wiria AE, et al. Regulatory T cells in human geohelminth infection suppress immune responses to BCG andPlasmodiumfalciparum[J]. Eur J Immunol, 2010, 40: 437-442.DOI: 10.1002/eji.200939699
[13]Gomez-Escobar N, Gregory WF, Maizels RM. Identification of tgh-2, a filarial nematode homolog of Caenorhabditis elegans daf-7 and human transforming growth factor, expressed in microfilarial and adult stages of Brugia malayi[J]. Infect Immun, 2000, 68(11): 6402-6410.
[14]Babu S, Blauvelt CP, Kumaraswami V, et al. Regulatory networks induced by live parasites impair both 1 and 2 pathways in patent lymphatic lariasis: implications for parasite persistence[J]. J Immunol, 2006, 176(5): 3248-3256.
[15]Layland LE, Rad R, Wagner H, et al. Immunopathology in schistosomiasis is controlled by antigen-specific regulatory T cells primed in the presence of TLR2[J]. Europ J Immunol, 2007, 37(8): 2174-2184.
[16]D’Elia R, Behnke JM, Bradley JM, et al. Regulatory T cells: a role in the control of helminth-driven intestinal pathology and worm survival[J]. J Immunol, 2009, 182(4): 2340-2348. DOI: 10.4049/jimmunol.0802767
[17]Taylor MD, LeGoff L, Harris A, et al. Removal of regulatory T cell activity reverses hyporesponsiveness and leads to filarial parasite clearanceinvivo[J]. J Immunol, 2005, 174(8): 4924-4933.
[18]Gillan V, Devaney E. Regulatory T cells modulate 2 responses induced byBrugiapahangithird-stage larvae[J]. Infect Immun, 2005, 73(7): 4034-4042.
[19]Taylor MD, van der Werf N, Harris A, et al. Early recruitment of natural CD4+Foxp3+Treg cells by infective larvae determines the outcome of filarial infection[J]. Europ J Immunol, 2009, 39(1): 192-206.DOI: 10.1002/eji.200838727
[20]Finney CAM, Taylor MD, Wilson MS, et al. Expansion and activation of CD4+CD25+regulatory T cells inHeligmosomoidespolygyrusinfection[J]. Europ J Immunol, 2007, 37(7): 1874-1886.
[21]Aranzamendi C, Fransen F, Langelaar M, et al.Trichinellaspiralis-secreted products modulate DC functionality and expand regulatory T cellsinvitro[J].Parasite Immunol, 2012, 34(4): 210-223. DOI: 10.1111/j.1365-3024.2012.01353.x
[22]Jankovic D, Cheever AW, Kullberg MC, et al. CD4+T cell-mediated granulomatous pathology in schistosomiasis is downregulated by a B cell-dependent mechanism requiring Fc receptor signaling[J]. J Exp Med, 1998, 187(4): 619-629.
[23]Lundy SK, Boros DL. Fas ligand-expressing B-1a lymphocytes mediate CD4(+)-T-cell apoptosis during schistosomal infection: induction by interleukin 4 (IL-4) and IL-10[J]. Infect Immun, 2002, 70(2): 812-819.
[24]Smelt SC, Cotterell SE, Engwerda CR, et al. B ell-deficient mice are highly resistant to Leishmania donovani infection, but develop neutrophil-mediated tissue pathology[J]. J Immunol, 2000, 164 (7): 3681-3688.
[25]Harris N, Gause WC. B cell function in the immune response to helminths[J].Trends Immunol,2011,32(2):80-88. DOI: 10.1016/j.it.2010.11.005
[26]Fillatreau S, Gray D, Anderton SM. Not always the bad guys: B cells as regulators of autoimmune pathology[J]. Nat Rev Immunol, 2008, 8(5): 391-397. DOI: 10.1038/nri2315
[27]Mangan NE, Fallon RE, Smith P, et al. Helminth infection protects mice from anaphylaxis via IL-10-producing B cells[J]. J Immunol, 2004, 173(10): 6346-6356.
[28]Wilson MS, Taylor MD, O’Gorman MT, et al. Helminthinduced CD19+CD23hi B cells modulate experimental allergic and autoimmune in flammation[J].Europ J Immonol,2010,40(6):1682-1696. DOI: 10.1002/eji.200939721
[29]Joffre O, Nolte MA, Sporri R, et al. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity[J]. Immunol Rev,2009,227(1):234-247.DOI: 10.1111/j.1600-065X.2008.00718.x
[30]Yoshizaki A, Miyagaki T, DiLillo DJ, et al. Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions[J]. Nature, 2012, 491(7423): 264-268. DOI: 10.1038/nature11501
[31]Flohr C, Quinnell RJ, Britton J. Do helminth parasites protect against atopy and allergic disease[J]. Clin Exper Allergy,2009,39(1):20-23.DOI: 10.1111/j.1365-2222.2008.03134.x
[32]Harnett W, Harnett MM. Parasitic nematode modulation of allergic disease[J]. Curr Allergy Asthma Reports, 2008, 8(5): 392-397.
[33]Selassie FG, Stevens RH, Cullinan P, et al. Total and specific IgE (house dust mite and intestinal helminths) in asthmatics and controls from Gondar, Ethiopia[J]. Clin Exper Allergy, 2000, 30(3): 356-358.
[34]Van Den Biggelaar AMJ, Rodrigues LC, Van Ree R, et al. Long-term treatment of intestinal helminths increases mite skin-test reactivity in Gabonese schoolchildren[J]. J Infect Dis, 2004, 189(5): 892-900.
[35]Pacifico LG, Marinho FA, Fonseca CT, et al. Schistosoma mansoni antigens modulate experimental allergic asthma in a murine model: a major role for CD4+CD25+Foxp3+T cells independent of interleukin-10[J]. Infect Immun, 2009, 77(1): 98-107. DOI: 10.1128/IAI.00783-07
[36]Dittrich AM, Erbacher A, Specht S, et al. Helminth infection withLitomosoidessigmodontisinduces regulatory T cells and inhibits allergic sensitization, airway inflammation, and hyperreactivity in a murine asthma model[J]. J Immunol, 2008, 180(3): 1792-1799.
[37]Wilson MS, Taylor MD, Balic A, et al. Suppression of allergic airway inflammation by helminth-induced regulatory T cells[J]. J Exper Med, 2005, 202(9): 1199-1212.
[38]Okada H, Kuhn C, Feillet H, et al. The "hygiene hypothesis" for autoimmune and allergic diseases: an update[J]. Clin Exper Immunol, 2010, 160(1): 1-9.
[39]Weinstock JV, Elliott DE. Helminths and the IBD hygiene hypothesis[J]. Inflammat Bowel Dis,2009,15(1):128-133.DOI: 10.1002/ibd.20633
[40]Cooke A, Tonks P, Jones FM, et al. Infection withSchistosomamansoniprevents insulin dependent diabetes mellitus in non-obese diabetic mice[J]. Parasit Immunol, 1999, 21(4): 169-176.
[41]La Flamme AC, Ruddenklau K, Backstrom BT. Schistosomiasis decreases central nervous system inflammation and alters the regression of experimental autoimmune encephalomyelitis[J]. Infect Immun, 2003, 71(9): 4996-5004.
[42]Elliott DE, Setiawan T, Metwali A, et al.Heligmosomoidespolygyrusinhibits established colitis in IL-10-deficient mice[J]. Europ J Immunol, 2004, 34(10): 2690-2698.
[43]Hubner MP, Stocker JT, Mitre E. Inhibition of type 1 diabetes in filaria-infected non-obese diabetic mice is associated with a T helper type 2 shift and induction of FoxP3+regulatory T cells[J].Immunlogy,2009,127(4):512-522. DOI: 10.1111/j.1365-2567.2008.02958.x
[44]Bruschi F, Chiumiento L. Immunomodulation in trichinellosis: doesTrichinellareally escape the host immune system[J]. Endocrine Metabolic Immune Disorders Drug Targets, 2012, 12(1): 4-15.
[45]Pinelli E, Aranzamendi C. Toxocara infection and its association with allergic manifestations[J]. Endocrine Metabolic Immune Disorders Drug Targets, 2012, 12(1): 33-44.
[46]Saunders KA, Raine T, Cooke A, et al. Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection[J]. Infect Immun, 2007, 75(1): 397-407.
[47]Gruden-Movsesijan A, Ilic N, Mostarica-Stojkovic M, et al.Trichinellaspiralis: modulation of experimental autoimmune encephalomyelitis in DA rats[J]. Exper Parasitol, 2008, 118(4): 641-647.
[48]Erb KJ. Can helminths or helminth-derived products be used in humans to prevent or treat allergic diseases[J]. Trends Immunol, 2009, 30(2): 75-82. DOI: 10.1016/j.it.2008.11.005
[49]Coyle AJ, Kohler G, Tsuyuki S, et al. Eosinophils are not required to induce airway hyperresponsiveness after nematode infection[J]. Europ J Immunol, 1998, 28(9): 2640-2647.
[50]Hall LR, Mehlotra RK, Higgins AW, et al. An essential role for interleukin-5 and eosinophils in helminth-induced airway hyperresponsiveness[J]. Infect Immun, 1998, 66(9): 4425-4430.
[51]Gounni AS, Spanel-Borowski K, Palacios M, et al. Pulmonary inflammation induced by a recombinant Brugia malayi γ-glutamyl transpeptidase homolog: involvement of humoral autoimmune responses[J]. Mol Med, 2001, 7(5): 344-354.