申婷婷,劉素穩(wěn),趙 江,汪名春,常志勇,王 浩,*
根皮苷通過下調小腸NPC1L1和HMG-CoA還原酶表達降低血液膽固醇水平
申婷婷1,劉素穩(wěn)2,趙 江3,汪名春4,常志勇3,王 浩3,*
(1.天津科技大學生物工程學院,天津 300457;2.河北科技師范學院食品科技學院,河北 秦皇島 066604;3.天津科技大學食品工程與生物技術學院,天津 300457;4.安徽農業(yè)大學食品科學與工程系,安徽 合肥 230036)
以高脂高膽固醇膳食喂飼倉鼠為動物模型,研究根皮苷對倉鼠血脂水平及小腸膽固醇代謝相關基因的調控影響。36 只實驗動物隨機分成對照組和3 個不同劑量根皮苷干預組(3、6、9 g/kg),測定血清中總膽固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)及高密度脂蛋白膽固醇(high density lipoprotein cholesterol,HDL-C)水平,氣相色譜法檢測肝臟中膽固醇含量及糞便固醇排泄量,實時定量熒光聚合酶鏈式反應(real-time polymerase chain reaction,Real-Time PCR)分析小腸膽固醇合成、吸收、轉化及排泄基因的表達水平。血脂測定結果顯示,血清TC、TG水平隨給予根皮苷添加量增加而降低,且高劑量組具有顯著性(P<0.05或P<0.01);6、9 g/kg根皮苷劑量組,血清中HDL-C水平極顯著升高(P<0.01)。氣相色譜檢測結果顯示,根皮苷劑量組倉鼠肝臟中膽固醇含量較對照組隨根皮苷劑量增加而降低,且6、9 g/kg組具有極顯著差異(P<0.01);糞便中總中性固醇排泄量與根皮苷給予量正相關,且都具有顯著性差異(P<0.05或P<0.01),總酸性固醇排泄量根皮苷劑量組 相比對照組增加,且6 g/kg組顯著增加(P<0.05),9 g/kg組極顯著增加(P<0.01)。Real-Time PCR檢測結果顯示,根皮苷劑量組小腸中膽固醇合成限速酶HMG-CoA還原酶、小腸膽固醇吸收關鍵蛋白NPC1L1、膽固醇酯化酶ACAT2、微粒體轉運蛋白MTP的mRNA表達水平較對照組顯著降低(P<0.05或P<0.01);給予根皮苷后,腸道中促進膽固醇向外排泄基因ABCG5/8表達水平顯著升高(P<0.05或P<0.01)。因此,根皮苷對高脂高膽固醇膳食飼喂倉鼠膽固醇代謝平衡的調節(jié)可能是通過對小腸膽固醇吸收、轉化等基因表達的抑制,上調膽固醇排泄基因的表達實現的。
根皮苷;倉鼠;小腸;血脂;基因表達
高膽固醇血癥可以通過誘導局部炎癥、氧化應激損傷、損壞血管內皮細胞代謝和功能等導致動脈粥樣硬化,因此維持機體膽固醇代謝平衡,在預防心血管疾病中有重要意義[1]。流行病學研究表明,攝食蘋果與心血管疾病[2]、糖尿病[3]及高膽固醇血癥[4]等疾病的發(fā)生負相關。根皮苷屬于植物類黃酮中的二氫查兒酮苷類,多存在于蘋果和多穗柯甜茶嫩葉中,且在蘋果多酚中含量較高。蘋果具有降膽固醇的功效,但是大多數研究都是關注凍干蘋果粉[5]、蘋果果膠[6]和蘋果纖維[4]降膽固醇的作用,本實驗以蘋果多酚中的一種特征多酚根皮苷為研究對象,以高脂高膽固醇飼喂倉鼠為動物模型,研究根皮苷對倉鼠機體內膽固醇代謝的影響。
1.1 材料與試劑
礦物質混合物(AIN-93)、維生素混合物(AIN-93)美國Harlan公司;蘋果根皮苷(95%) 天津尖峰公司;血脂測定試劑盒(總膽固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)、高密度脂蛋白膽固醇(high density lipoprotein cholesterol,HDL-C))中生北控生物科技股份有限公司;Trizol試劑、cDNA合成試劑盒、SYBR Green染料 日本TaKaRa公司;TMS(六甲基二硅胺、三甲基氯硅烷、吡啶體積比3∶1∶9)衍生化試劑 美國Sigma公司。
1.2 儀器與設備
Myclcyer聚合酶鏈式反應(polymerase chain reaction,PCR)儀、MyiQ2實時(real-time)定量熒光PCR儀 美國Bio-Rad公司;UVmini-1240紫外-可見分光光度計 日本島津公司;冷凍離心機 美國Thermo公司;Agilent 7890A氣相色譜儀 美國安捷倫公司。
1.3 動物
倉鼠(黃金地鼠),雄性,(125±5)g,清潔級,購自北京維通利華實驗動物技術有限公司。
1.4 方法
1.4.1 動物及分組
36 只倉鼠適應1 周后,隨機分成4 組,每組9 只,分別為對照組,3 個不同添加量(3、6、9 g/kg)根皮苷組,飼養(yǎng)條件為室溫(22±2) ℃,相對濕度40%~60%,控制照明(12 h/12 h晝夜循環(huán))。實驗6 周,期間動物自由攝食,每3 d更換新糧,收集糞便。飼喂鼠糧基礎糧(1 kg)配方:玉米淀粉 408 g、酪蛋白242 g、蔗糖119 g、豬油150 g、礦物質混合物40 g、維生素混合物20 g、膽固醇1 g、明膠20 g,根皮苷劑量組在基礎糧基礎上分別添加3、6、9 g根皮苷,制備后-20 ℃保存。在飼喂的第0、6周末,動物禁食14 h后輕微麻醉(克他命、甲苯噻嗪等),眼底靜脈叢采血,1 000×g離心10 min分離血清,-20 ℃保存待測。第6周末取血后,動物CO2麻醉處死,取肝、小腸,生理鹽水清洗,-80 ℃保存待測。
1.4.2 血脂水平測定
血清中TC、TG、HDL-C的測定具體方法參照試劑盒說明書。
non-HDL-C含量/(mmol/L)=TC含量/(mmol/L)-HDL-C含量/(mmol/L)
1.4.3 肝臟膽固醇的測定
組織中膽固醇的測定采用氣相色譜法(g a s chromatography,GC),具體參見實驗室已有的方法[7]。具體為:組織經氯仿-甲醇(2∶1,V/V)溶液勻漿,提取出不皂化物。經N2吹干,TMS衍生化后N2吹干,正己烷溶解,GC檢測,其中以豆甾醇為內標。
1.4.4 糞中中性固醇和酸性固醇的測定
糞樣品凍干,磨粉,中性固醇萃取到環(huán)己烷層,TMS衍生化后GC檢測;酸性固醇在下層水層,經皂化、提取后再轉化為其TMS衍生物,其中中性固醇以豆甾醇內標,酸性固醇以豬去氧膽酸為內標。
1.4.5 Real-Time PCR檢測小腸中相關蛋白mRNA的表達
運用Real-Time PCR檢測倉鼠小腸中3-羥基-3-甲基戊二酰輔酶A還原酶(3-hydroxy-3-methyl glutaryl-CoA reductase,HMG-CoA還原酶)、固醇脂質吸收關鍵蛋白NPC1L1(niemann-pick C1-like1)、微粒體甘油三酯轉運蛋白(microsomal triglyceride transfer protein,MTP)、ABCG5/8(ATP binding cassette transporter subfamily G members 5/8)、?;o酶A-膽固醇?;D移酶(acyl coenzyme A-cholesterol acyltransferase 2,ACAT2)mRNA的表達。相關蛋白mRNA的相對表達量以GAPDH為內參基因計算而得。
Trizol法提取小腸中的總RNA,反轉錄得到cDNA,-80 ℃保存,SYBR Green法檢測基因表達水平?;蛞镄畔⒁姳?。
表1 倉鼠小腸中膽固醇代謝基因Real-Time PCR引物Table 1 Real-Time PCR primers used to measure small intestine mRNA levels
1.5 統(tǒng)計分析
實驗數據以x±s表示,用t檢驗法檢驗,P<0.05表示有統(tǒng)計學意義。
2.1 根皮苷對血脂水平的影響
圖1 不同劑量根皮苷對高脂高膽固醇膳食喂飼倉鼠血液TC、TG和HDL-C水平的影響Fig.1 Changes in serum TC, TG and HDL-C in hamsters fed the control diet and three experimental diets supplemented with 3, 6, and 9 g/kg phlorizin, respectively
如圖1所示,0 周時,各組倉鼠血清TC、TG、HDL-C水平接近,無顯著性差異(P>0.05)。飼喂倉鼠9 g/kg根皮苷6 周后,血清TC、TG與對照組相比顯著降低(P<0.05或P<0.01);6、9 g/kg根皮苷劑量組血清HD L-C與對照組相比極顯著升高(P<0.01);給予倉鼠根皮苷膳食干預后血清中non-HDL-C降低,且6、9 g/kg根皮苷劑量組極顯著降低(P<0.01)。
2.2 根皮苷對倉鼠肝臟膽固醇含量的影響
圖2 不同劑量根皮苷對高脂高膽固醇膳食喂飼倉鼠肝臟中膽固醇水平的影響Fig.2 Changes in hepatic cholesterol levels in hamsters fed the control diet and three experimental diets supplemented with 3, 6, and 9 g/kg phlorizin, respectively
如圖2所示,隨著根皮苷添加量增加,倉鼠肝臟中膽固醇含量逐漸減少,且6 g/kg和9 g/kg根皮苷劑量組具有極顯著差異(P<0.01)。
2.3 根皮苷對倉鼠糞便中中性及酸性固醇排出水平的影響氣相色譜分析糞便中固醇排泄量,如表2所示,3 g/kg根皮苷劑量組中性固醇排出量顯著高于對照組(P<0.05),6、9 g/kg根皮苷劑量組排出量較對照組極顯著升高(P<0.01)。6、9 g/kg根皮苷劑量組膽固醇排出量較對照組極顯著升高(P<0.01);3、6 g/kg根皮苷劑量組二氫膽甾醇醇 和菜籽固醇排泄量較對照組顯著增加(P<0.05),9 g/kg根皮苷劑量組排泄量較對照組極顯著增加(P<0.01)。
表2 飼喂倉鼠不同劑量根皮苷對攝食量和糞便中中性、酸性固醇排泄量的影響Table 2 Food intake and fecal excretion of neutral sterols and acidic sterols in hamsters fed the control diet or three experimental diets supplemented with 3, 6, 9 g/kg phlorizin, respectively at week 6
酸性固醇排出量隨根皮苷添加量增加而增加,且6 g/kg根皮苷劑量組較對照組顯著升高(P<0.05),9 g/kg根皮苷劑量組較對照組極顯著升高(P<0.01);其中,膽酸排出量與根皮苷添加量正相關,且6、9 g/kg根皮苷劑量組具有統(tǒng)計學差異性(P<0.05或P<0.01);熊去氧膽酸排出量根皮苷劑量組隨根皮苷添加量增加逐漸增加,且都有統(tǒng)計學差異性(P<0.05)。
2.4 根皮苷對小鼠小腸中HMG-CoA還原酶、NPC1L1、ABCG5/8、ACAT2、MTP mRNA表達的影響
小腸是機體膽固醇內源合成、吸收轉化和排泄的重要場所,其中小腸膽固醇合成占機體內源合成的10%。HMG-CoA還原酶是體內膽固醇合成的限速酶,主要調節(jié)體內膽固醇的內生合成[8],如圖3所示,檢測結果顯示給予根皮苷后倉鼠小腸內HMG-CoA 還原酶mRNA的轉錄水平受到抑制,6、9 g/kg劑量具有統(tǒng)計學差異(P<0.05);NPC1L1是腸道膽固醇吸收的關鍵蛋白,在腸道中膳食來源膽固醇在NPC1L1的調控下進入小腸絨毛上皮細胞[9],并在ACAT2的調控下由膽固醇轉化為膽固醇酯[10-11],后者被MTP轉移至乳糜微粒[12],最終經由淋巴系統(tǒng)進入血液循環(huán)。結果顯示給予根皮苷可以抑制NPC1L1和ACAT2轉錄,且3 g/kg劑量可以顯著抑制其轉錄(P<0.05),6、9 g/kg劑量可以極顯著降低其轉錄水平(P<0.01);實驗結果顯示根皮苷劑量組MTP mRNA表達水平極顯著降低(P<0.01);另外,小腸上皮細胞中ABCG5/8負責將未吸收的少量膽固醇清除回腸道[13],給予倉鼠3 g/kg根皮苷可以顯著升高ABCG5在小腸中的轉錄水平(P<0.05),6、9 g/kg根皮苷極顯著升高其轉錄水平(P<0.01);3、6 g/kg根皮苷劑量組ABCG8 mRNA表達水平顯著升高(P<0.05),9 g/kg根皮苷劑量組其表達水平極顯著升高(P<0.01)。
圖3 不同劑量根皮苷對高脂高膽固醇膳食喂飼倉鼠小腸HMG-CoA還原酶、NPC1L1、ACAT2、ABCG5/8和 MTP mRNA表達水平的影響(n=9)Fig.3 Effects of dietary 3, 6, and 9 g/kg phlorizin on mRNA levels of HMG-CoA reductase, NPC1L1, ACAT2, ABCG5/8 and MTP in hamstersfed a high fat and high cholesterol diet (n = 9)
小腸作為膽固醇代謝的重要器官,在機體膽固醇代謝平衡中 起著重要作用。Thilakarathna等[14]報道,蘋果皮提取物膳食干預高膽固醇倉鼠可以降低血液TC、TG及肝臟中膽固醇含量。本實驗研究根皮苷膳食干預對高脂高膽固醇飼喂倉鼠機體內膽固醇代謝的影響,實 驗結果顯示,給予倉鼠根皮苷干預后,倉鼠血液中TC、TG水平降低,HDL-C含量升高,non-HDL-C水平降低。氣相色譜分析肝臟中膽固醇含量及糞便中固醇的排泄結果顯示,根皮苷干預后倉鼠肝臟中膽固醇含量降低、糞便中固醇排泄增加,這與Lam等[15]報道的蘋果多酚可以增加倉鼠固醇排泄調節(jié)膽固醇的代謝平衡結果一致。
他汀類藥物通過抑制膽固醇內源合成酶HMG-CoA還原酶活性降低血液膽固醇水平[16],依澤替米貝類藥物通過抑制NPC1L1酶活從而抑制小腸內膽固醇的吸收,調節(jié)膽固醇平衡[17],給予根皮苷后小腸中基因表達檢測結果顯示,根皮苷可以降低HMG-CoA還原酶和NPC1L1的轉錄水平。另外,小腸中促進膽固醇排泄基因ABCG5/8的表達水平升高,根皮苷劑量組ACAT2和MTP mRNA表達水平降低,從而膽固醇酯化及非高密度脂蛋白的組裝可能降低。
因此,根皮苷對高脂高膽固醇膳食喂飼倉鼠膽固醇代謝平衡的調節(jié)機制,可能是通過增加小腸中膽固醇的排泄、抑制膽固醇的吸收及合成實現的。
[1] PRAMFALK C, ANGELIN B, ERIKSSON M, et al. Cholesterol regulates ACAT2 gene expression and enzyme activity in human hepatoma cells[J]. Atherosclerosis Supplements, 2008, 9(1): 33.
[2] SESSO H D, GAZIANO J M, LIU S, et al. Flavonoid intake and the risk of cardiovascular disease in women[J]. American Journal of Clinical Nutrition, 2003, 77(6): 1400-1408.
[3] SONG Yiqing , MANSON J A E, BURING J E, et al. Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis[J]. Journal of the American College of Nutrition, 2005, 24(5): 376-384.
[4] MEE K A, GEE D L. Apple fiber and gum arabic lowers total and low-density lipoprotein cholesterol levels in men with mild hypercholesterolemia[J]. Journal of the American Dietetic Association, 1997, 97(4): 422-424.
[5] KARVINEN E, MIETTINEN M. Effect of apple and pectin diets on serum and liver cholesterol in rats[J]. Acta Physiologica Scandinavica, 1968, 72(1/2): 62-64.
[6] APRIKIAN O, DUCLOS V, GUYOT S, et al. Apple pectin and a polyphenol-rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rats[J]. Journal of Nutrition, 2003, 133(6): 1860-1865.
[7] WANG Hao, ZHANG Zesheng, GUO Ying, et al. Hawthorn fruit increases the antioxidant capacity and reduces lipid peroxidation in senescence-accelerated mice[J]. Europe an Food Research Technology, 2011, 232(5): 743-751.
[8] GOLDSTEIN J L, BROWN M S. Regulation of the mevalonate pathway[J]. Nature, 1990, 343: 425-430.
[9] GE Liang, WANG Jing, QI Wei, e t al. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1[J]. Cell Metabolism, 2008, 7(6): 508-519.
[10] PARINI P, DAVIS M, LADA A T, et al. ACAT2 is localized to hepatocytes and is the major cholesterol-esterifying enzyme in human liver[J]. Circulation, 2004, 110(14): 2017-2023.
[11] REPA J J, BUHMAN K K, FARESE R V, et al. ACAT2 deficiency limits cholesterol absorption in the cholesterol-fed mouse: impact on hepatic cholesterol homeostasis[J]. Hepatology, 2004, 40(5): 1088-1097.
[12] SORBERA L A, MARTIN L, SILVESTRE J, et al. Implitapide. Hypolipidemic, treatment of atherosclerosis, MTP inhibitor, ApoB secre tion inhibitor[J]. Drugs of the Future, 2000, 25(11): 1138-1144.
[13] JIAO Rui, GUAN Lei, YANG Nan, et al. Frequent cholesterol intake up-regulates intestinal NPC1L1, ACAT2, and MTP[J]. Journal of Agricultural and Food Chemistry, 2010, 58(9): 5851-5857.
[14] THILAKARATHNA S H, WANG Yanwen, RUPASINGHE H P, et al. Apple peel flavonoid-and triterpene-enriched extracts differentially affect cholesterol homeostasis in hamsters[J]. Journal of Functio nal Foods, 2012, 4(4): 963-971.
[15] LAM C K, ZHANG Zesheng, YU Hongjian, et al. Apple polyphenols inhibit pl asma CETP activity and reduce the ratio of non-HDL to HDL cholesterol[J]. Molecular Nutrition & Food Research, 2008, 52(8): 950-958.
[16] LAROSA J C, HE Jiang, VUPPUTURI S. Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials[J]. Jama, 1999, 282(24): 2340-2346.
[17] BETTERS J L, YU Liqing. NPC1L1 and cholesterol transport[J]. FEBS Lett ers, 2010, 584(13): 2740-2747.
Phlorizin Decreases Serum Cholesterol by Downregulating Intestinal NPC1L1 and HMG-CoA Reductase
SHEN Ting-ting1, LIU Su-wen2, ZHAO Jiang3, WANG Ming-chun4, CHANG Zhi-yong3, WANG Hao3,*
(1. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; 2. College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066604, China; 3. College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; 4. Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China)
Destroying the balance of plasma cholesterol into hypercholesterolemia is a major risk factor for atherosclerosis. The aim of this report was to investigate the effects of phlorizin on blood cholesterol level and gene expression of cholesterolregulating enzymes in Golden Syrian hamsters maintained on a 0.1% cholesterol high fat diet. Totally 36 hamsters were randomly divided into control group and three experimental groups with 3, 6, and 9 g/kg phlorizin, and serum total cholesterol (TC), triacylglycerols (TG) and high-density-lipoprotein-cholesterol (HDL-C) were detected. Then, the contents of cholesterol in liver and fecal neutral and acidic sterols were determined by GC. The gene expression of cholesterolregulating proteins in the small intestine was assayed with Real-Time PCR. Serum TC and TG we re significantly decreased in 9 g/kg phlorizin group compared with those in the control group, while HDL-C in 6 and 9 g/kg phlorizin groups were significantly increased (P < 0.01). The hepatic cholesterol level in the experimental groups supplemented with 6 and 9 g/kgphlorizin was significantly lower than that in the control group (P < 0.01). Higher excretion of fecal cholesterol was observed in the phlorizin groups. The amount of total fecal neutral sterols was increased compared with that in the control group (P < 0.05 or P < 0.01). The excretion of total fecal acidic sterols was increased as the amount of phlorizin increased (6 g/kg, P < 0.05; 9 g/kg, P < 0.01). It was also found that the cholesterol-lowering activity of phlorizin was associated with downregulation of intestinal 3-hydroxy-3-methyl glutaryl-CoA (HMG-CoA) reductase, niemann-pick C1-like 1 (NPC1L1), acyl-CoA-cholesterol acyltransferase 2 (ACAT2), microsomal triacylglycerol transport protein (MTP), and up-regulation of ATP-binding cassette transporter such as subfamily G member 5 and 8 (ABCG5/8) transporters. The mechanisms underlying the cholesterol-lowering activity of phlorizin were mediated most likely by increasing the sterol excretion and decreasing the cholesterol absorption and synthesis.
phlorizin; hamsters; small intestine; serum lipid; gene expression
R151.2
A
1002-6630(2014)17-0192-05
10.7506/spkx1002-6630-201417037
2013-11-06
國家自然科學基金青年科學基金項目(31201322);“十二五”國家科技支撐計劃項目(2012BAD33B05);天津市高等學??萍及l(fā)展基金計劃項目(20100609)
申婷婷(1988—),女,碩士研究生,主要從事食品營養(yǎng)學研究。E-mail:shenting890101@163.com
*通信作者:王浩(1979—),男,副教授,博士,主要從事食品營養(yǎng)學研究。E-mail:wanghao@tust.edu.cn