• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Biogeographic and Phylogenetic Relationships of Some Scincella (Squamata: Scincidae) from China and North America Inferred from 12S rRNA Gene Sequences of Mitochondrial DNA

    2013-10-28 02:28:07QINGNingLINHungduTONGRanranZHANGXiaoqiLUWenhuaLAZELLJames
    關(guān)鍵詞:北美責編格雷

    QING Ning, LIN Hungdu, TONG Ranran, ZHANG Xiaoqi, LU Wenhua, LAZELL James

    (1. Key Laboratory of Ecology and Environment Sciences in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, China; 2. Department of Physical Therapy, Shu Zen College of Medicine and Management, Kaohsiung 821, Taiwan; 3. The Conservation Agency, 6 Swinburne Street, Jamestown, RI 02835, USA.)

    BiogeographicandPhylogeneticRelationshipsofSomeScincella(Squamata:Scincidae)fromChinaandNorthAmericaInferredfrom12SrRNAGeneSequencesofMitochondrialDNA

    QING Ning1*, LIN Hungdu2, TONG Ranran1, ZHANG Xiaoqi1, LU Wenhua3, LAZELL James3

    (1. Key Laboratory of Ecology and Environment Sciences in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, China; 2. Department of Physical Therapy, Shu Zen College of Medicine and Management, Kaohsiung 821, Taiwan; 3. The Conservation Agency, 6 Swinburne Street, Jamestown, RI 02835, USA.)

    Grayian distribution denotes the biological similarities between southeastern North America and East Asia. Using 12S rRNA gene sequences of mitochondrial DNA, we present evidence that the North American ground skinks inScincella(Squamata: Scincidae),Sc.lateralisand relatives, exhibit classic Grayian distribution, emerging genetically from within the Chinese group ofScincellathat includesSc.modestaandSc.tsinlingensis; all derivatives from ChineseSc.reevesii. A superficially similar undescribed species, as yet known only from Dinghushan, Guangdong Province, China, also arises within this group but lacks the lower eyelid “spectacle” usually thought diagnostic of the genusScincella. Our molecular analyses confirm previous work indicating that AsianSphenomorphusis paraphyletic with respect toScincella, confirm that the AmericanScincellainclude “Sphenomorphus”cherriei, necessitating that the spectacle scale has been independently either developed or lost in separate lineages of Scincidae, and provide further evidence for the separation ofKaestleatravancoricafromScincella. The separation time of North AmericanScincellafrom their Chinese congeners dates from the Miocene in Tertiary about 7.3-21.6 million years ago when Beringia was extant and mesic. Our studies contribute further to phylogenetics and biogeography ofScincellafrom North America and China and call for further international collaboration on resolution of taxonomic problems among lygosomine species.

    Keywords:Scincella;Sphenomorphus; Grayian distribution; genetic distance; separation time; 12S rRNA gene sequences

    Genetic investigation of potentially related plants and animals in southeastern North America and East Asia (mainly China and Japan), including mosses, magnolias, beetles, and alligators, may elucidate the origins and relationships of biodiversity in these two widely disjunct continental regions. This disjunct geographic pattern, often termed “Grayian” distribution, was popularized by botanist Asa Gray in the mid-1800s and has been observed for more than two centuries[1-6,56]. The wealth of examples showing this pattern provides unparalleled opportunities for international collaboration in genetics, molecular biology, paleontology, ecology, and climatology.

    A striking example of Grayian distribution is the nominal genusScincella(Squamata: Scincidae) of small, brown, ground skinks.Scincellais largely Asian with >10 species, of which more than half are Chinese[7-10], three Mexican and Central American species[11], and one,Sc.lateralis, found throughout much of the eastern half of the United States down into northern Mexico[12]. Eremchenko and Das[13]separated several Indian species from nominalScincellaas a new genus,Kaestlea, based on the presence of prominent, elongate postoculars (granular or absent inScincellasensostricto). Their work has refined and tightened the generic definition ofScincella.

    Boulenger[14]suggested, and later Van Denburgh[15]agreed, that the widespread American speciesSc.lateraliswas conspecific with the Chinese speciesSc.reevesiiandSc.modesta. Schmidt[16]agreed thatSc.lateralisandSc.modestawere conspecific, but retainedSc.reevesiias a valid species. Pope[17]acknowledged close relationships of the Chinese and American species but did not regard them as conspecific. Recently, Honda et al.[18-19]used molecular evidence to confirm the basic Grayian distribution hypothesis forScincellausing largely South Asian species. Using mtDNA, Macey et al.[6]included two Chinese species,Sc.potaniniandSc.tsinlingensis, finding that both were more closely related toSc.lateralisthan to the South AsianSc.rupicolaused by Honda et al.[18-19]. Nevertheless, the hypothesis going back a century-and-a-quarter that AmericanSc.lateralisand ChineseSc.modestaandSc.reevesiiare close relatives has yet to be tested phylogenetically. Furthermore,Sc.modestaandSc.reevesiiare widespread species and their relationships with each other, or others, remain unclear.

    While not addressing the relationships ofScincellaandSphenomorphusdirectly, Honda et al.[18-19]found some AmericanSphenomorphuswere nested within AmericanScincella, not related to AsianSphenomorphus, thus renderingSphenomorphuspolyphyletic, and that AsianSphenomorphus, as currently conceived, is paraphyletic. ThusScincellaMittleman (1950) would be a junior synonym ofSphenomorphusFitzinger. However, we follow Nguyen et al.[20]in deferring generic name changes until the entire complex of lygosomine scincid lizards can be reassessed. Most members ofScincellaare semifossorial and have a large transparent scale in the lower eyelid, the “window” or “palpebral disk” of Ouboter[7], or “spectacle,” which allows them to see with their eyes closed[21-22]. Most members ofSphenomorphus, including the Central American “Sp.”cherrieiclosely related toSc.lateralis, lack this scale. Furthermore, a new species (Scincellaindet.) from the Dinghushan Man and Biosphere Reserve in Guangdong Province, South China[23]lacks the spectacle. On the other hand, some AmericanSphenomorphus(assatus,incertus,rarus) have the spectacle scale in the lower eyelid. The Dinghushan “Scincellaindet.” may be related to or a range extension of a newly described species from Northern Vietnam and Hainan Island placed inSphenomorphus[24]based on our morphological comparison.

    The use of molecular data to estimate the divergence times of clades has been a topic of intense research interest in recent years. Lazell and Lu[3-4]suggest that many species pairs or sets demonstrating Grayian distribution may have evolved in the Pleistocene, but ancestralSc.lateralismay have dispersed from Asia via the Bering Land Bridge (BLB or Beringia) earlier in the Tertiary[18-19]. In his overview of the family Scincidae, Greer[25]recognized close relationships withinScincellaand suggested the BLB as the dispersal route for the congeners. In his revision of the nominal genusScincella, Ouboter[7]noted this route but also went so far as to say that post-glacial transport by humans was “not improbable.” These differences in hypothesized separation time between Asian and North AmericanScincellarequire further investigation. Our initial hypothesis is that the American representatives of nominalScincellaare derived from the richer Chinese species pool, arriving between the Pleistocene and now.

    The specific objectives here were to test whetherSc.lateraliswas derived from Chinese congeners and when that divergence occurred. In addition, we sought to clarify the phylogenetic relationships of the newly discoveredScincellaindet. from Dinghushan. We addressed these three issues using 12S rRNA gene sequences of mitochondrial DNA (mtDNA) fromSc.lateralisfrom Mississippi and Texas,Sc.modesta,Sc.reevesii,Sc.tsinlingensis, andScincellaindet. from South China (Hong Kong’s Lantau Island, Guangdong and Sichuan Provinces). We have limited taxon sampling ofScincellaspecies and a limited amount of data, but provide evidence supporting previous work by Honda et al.[18-19]on theScincellaandSphenomorphusrelationship and by Eremchenko and Das[13]on the distinctiveness of East Indian species in addition to testing our hypotheses. Our results call for more work internationally to gain an unbiased outcome of systematics and evolution of scincid lizards and contribute to the understanding of Grayian distribution.

    1 Materials and methods

    1.1 Sample collection and DNA extraction

    A total of 7 species (29 specimens) were collected from Nan Ao Island, Shantou Prefecture; Dinghushan Man and Biosphere Reserve, Zhaoqing Prefecture; South China Normal University campus, Guangzhou Prefecture (all three are in Guangdong Province); Sichuan University campus, Chengdu Prefecture, Sichuan Province; Lantau Island, Hong Kong Special Administrative Region; Dallas, Dallas County, Texas; and Clinton, Hinds County, Mississippi (Table 1). They were hand-caught or noosed, fixed in 95% ethanol immediately, and replenished with it as necessary. Specimens were deposited at South China Normal University (SCNU), Chengdu Institute of Biology (CIB), and Museum of Comparative Zoology (MCZ), Harvard University. We also incorporated published sequence data of 13 species (13 specimens) from India, Indochina, the Philippines, Borneo, New Guinea, and some Pacific islands available from Genbank (Table 1), for a total of 20 species. A Genbank sample, AY308451, labeled “Scincellareevesii,” clustered withScincellarupicola. We believe it is a misidentification, but we have not examined the specimen and omitted it from our analyses. The mtDNA from liver or muscle tissue was extracted by standard proteinase K digestion followed by phenol/chloroform extraction[26].

    Table 1 Localities (for 7 skink species used in DNA sequencing) and geographic areas (for 13 species downloaded from Genbank), with SCNU=South China Normal University campus, and SU=Sichuan University campus

    SpeciesLocalitySampleSizeLocalecodeGenbankScincellagemmingeriMexico1AY308445Scincellaindet.Guangdong:Dinghushan2DHScincellalateralisUSA:Texas:DallasCo.2TXUSA:Mississippi:HindsCo.4MSScincellamodestaHongKong:LantauIsland8HKGuangdong:NanAoIsland2NAScincellareevesiiHongKong:LantauIsland4HKGuangdong:Dinghushan3DHGuangdong:Guangzhou:SCNU1GZScincellarupicolaMyanmartoVietnam1AB057388ScincellatsinlingensisSichuan:Chengdu:SU1CDSphenomorphuscherrieiCentralAmerica1AB057377SphenomorphusindicusGuangdong:NanAoIsland4NAChinawesttoIndia1AB028808SphenomorphusjobiensisNewGuinea1DQ915291SphenomorphusmaculatusYunnan,TibettoIndia1AY308461SphenomorphusmaindroniAustralia1AY308462SphenomorphusmelanopogonNewGuinea1AY308463SphenomorphusmuelleriNewGuinea1AY169599SphenomorphuspraesignisThailand,MalayPeninsula1AB028810SphenomorphussabanusBorneo1AY308465SphenomorphussarasinorusThailand,Vietnam1AY308466SphenomorphussolomonisSolomonstoNewGuinea1AY308467AteuchosauruschinensisGuangdong:NanAoIsland4NAKaestleatravancoricaIndia1AY308452

    1.2 PCR amplification and sequencing

    Total genomic DNA was extracted from muscle tissue with commercial kits in protocols of manufacturers (Sangon Biotech Co., Shanghai). Part of the 12S rRNA gene, approximately 348 base pairs (bp), ranging from 342 to 346 in the seven different species, were amplified by polymerase chain reaction (PCR) with the primers L1091 and H1478[27]. We ran PCR on PTC100 or PTC200 (MJ Research, Waltham, MA, USA) at least once for each specimen in a 50-μL PCR mixture that contained 100 ng template DNA, 5 μL 10×PCR buffer (MgCl220 mmol/L), 5 μL dNTP mix (10 mmol/L), 2 UTaqpolymerase (Promega), and 5 μL of each primer (55 ng/μL), using one cycle of denaturation at 95 ℃ for 4 min, 35 cycles of denaturation at 95 ℃ for 40 sec, annealing at 55 ℃ for 40 sec, and extension at 72 ℃ for 1 min (final extension for 8 min). The PCR products were stored at 4 ℃ for later purification and sequenced by the Yingjun DNA Biotechnologies Company (Guangzhou, Guangdong Province, China) on an automated sequencer (Applied Biosystems ABI 377, Foster City, CA, USA).

    1.3 Alignment and phylogenetic analysis

    Multiple haplotypic sequence alignments were performed with CLUSTALX 1.81[28]. Ribosomal DNA generally exhibit length variation (gaps in DNA sequences due to insertion or deletion), and therefore pose difficulty for alignment. The problematic sites were compared with closely related species (the same fragments from other scincid species deposited in Genbank) and then corrected manually. The pairwise 2-parameter genetic distance[29]was calculated by software MEGA 4[30]to estimate between-species variation, and the subsequent pairwise percentage of sequence divergence was calculated by hand, based on the pairwise number of mutations/total number of base pairs.

    Two different phylogenetic programs were performed to infer relationships: maximum parsimony (MP) and Bayesian inference (BI)[31-33]. The sequence gaps were treated as missing data. For outgroups we choseAteuchosauruschinensis, sympatric with our ChineseScincellaandSphenomorphusand often thought to be in Lygosominae[34]andKaestleatravancorica, formerly placed inScincella. This latter form was recently proven distinct from, but closely related to, and not paraphyletic with, bothScincellaandSphenomorphus[13]; its DNA is available from Genbank. We therefore used bothA.chinensisfor its distant and more primitive relationship with the ingroup andK.travancoricafor its close but non-paraphyletic relationship with the ingroup.

    MP analyses were performed with PAUP 4.0b10[35]based on p-distances. We conducted heuristic searches to estimate nodes and branches and assessed statistical support for the robustness of branches of all lineages with nonparametric bootstrap analysis, using tree-bisection-reconnection branch swapping for MP, with 500 random stepwise addition sequence replicates, 10 cladograms in memory in each step. When equally parsimonious trees were found, a strict consensus tree summarized resultant topologies. Tree topologies of phylograms with bootstrap values 70% or greater are regarded as sufficiently resolved[36].

    Bayesian analyses were performed with MRBAYES 3.1[37]. The posterior distributions were obtained by the Markov Chain Monte Carlo (MCMC) analyses with one cold chain and three heated chains (4 MCMC chains) from a total of 106MCMC generations; samples of trees and parameters were drawn at every 100 steps of the 106MCMC generations. We selected the HKY85 model in MRBAYES that best fit our data for this analysis. The first 25% of the sampled trees and estimated parameters were discarded as part of the burn-in. From the remaining trees (75%), a majority-rule consensus tree was subsequently produced. Bayesian probabilities based on the posterior distributions by MCMC are considered strongly supportive to split nodes if >0.95.

    It was used a Bayesian coalescent analysis in BEAST 1.4.7[38]with the MCMC procedure, to estimate lineage ages of the most recent common ancestor (TMRCA)[39]. Divergence times were calculated at 95% highest posterior density (HPD) intervals on a time-measured phylogeny. The 95% HPD is the shortest interval that contains 95% of all values sampled from the posterior. In all calibrations, it was allowed BEAST to conduct at least two independent MCMC analyses of 10×106to generate the posterior distribution, with the first 106generations discarded as the burn-in, and parameter values sampled every 1,000 generations. All resultant Bayesian parameters can be estimated by TRACER 1.4[40]for convergence to highest values, even with relatively low information content in the sequences and the small age range of the sequences. The posterior estimates of parameters were all distinctly unimodal even with wide 95% HPD; we checked for a highest coalescent value (θ). Because there is no available fossil calibration point for DNA sequences ofScincella, we estimated the divergence time by using a range of neutral mutation rates (μ) in proxy species. Maximum and minimum μ (0.65 and 0.22%, respectively) previously estimated rates were adopted (0.65%: Macey et al., 1998 for lizard; 0.22%: Emerson et al., 2000 for frog)[41-42].

    2 Results

    2.1 Mitochondrial 12S rRNA variation

    Length polymorphism of the 12S rRNA gene sequences occurred among the 7 species, indels ranging from 2 forSc.reevesiito 6 forSc.lateralis. A total of 348 bp of nucleotide sequences were amplified with 146 variable sites (V) in the total dataset (including outgroups), of which 24 were singleton polymorphic sites (S) and 122 were parsim-informpolymorphic sites (Pi). Between-species variation in nucleotide divergence and genetic distance among all eight species ofScincellaincluding “Sphenomorphus”cherrieiwere respectively between 0.071-0.152 and 0.079-0.183 (Table 2); among them, interspecific nucleotide replacements varied from the lowest, 26 bp (0.071:Sc.modestavs.Sc.indet.), to the highest, 45 bp (0.152:Sc.rupicolavs. “Sp.”cherriei). Variations in nucleotide divergence and genetic distance between AmericanSc.lateralisand the five AsianScincellaspanned 0.100-0.123 and 0.113-0.145, respectively; here the divergence ofS.lateralisfromSc.tsinlingensiswas the least and fromSc.reevesiithe greatest. The divergences ofSc.indet. fromSc.modestaorSc.rupicolawere equally low, 0.071-0.080 and 0.079-0.080, respectively.

    Consistently, in contrast to between-species variation (Table 2), there was little within-species variation among individuals or populations ofScincella. Within-species variation in genetic distance was all small, 0.001 amongSc.reevesii, 0.002 amongSc.indet., 0.005 amongSc.modesta, and 0.006 amongSc.lateralis. However, within-species variation ofS.modestain nucleotide sequences was relatively high at V sites (1 S and 7 Pi sites) between the Lantau (HK) and Nan Ao (NA) populations, consisting of about 2.2% of the total nucleotides. The greatest within-species variation in nucleotide sequences was inS.lateralis; the two geographically distant populations (Texas and Mississippi) had high V sites (1 S and 7 Pi sites), also consisting of about 2.2% of the total nucleotides. This striking difference has been explained by Jackson and Austin[12]as resulting from rivers as barriers separating glacial maximum refugia in southern North America. The Guangdong and Hong KongSc.reevesiishowed the least within-species variation, with only one V site (1 Pi site) among its three populations.

    Table 2 Nucleotide divergence (upper matrix) and genetic distance (lower matrix) of mitochondrial 12s rRNA sequences among North American and AsianScincellaspecies, with Sc.=Scincella, Sp.=Sphenomorphus, andAteuchosaurusandSphenomorphusas Outgroups

    Variation betweenScincellaand the two sympatric nominal genera was strikingly different (Table 2). Nucleotide divergence and genetic distance betweenAteuchosauruschinensisandSphenomorphusexcluding “Sp.”cherrieiwere great, 0.155-0.169 and 0.197-0.215, respectively; those betweenAteuchosauruschinensisandScincellawere also great, 0.158-0.195 and 0.197-0.257, respectively. However, nucleotide divergence and genetic distance betweenSphenomorphusindicusandScincella(including “Sp.”cherriei) were much smaller, only between 0.100-0.149 and 0.114-0.179, respectively; these were well within the variation amongScincellaspecies. The smallest variation betweenSp.indicusandScincellawas remarkably between it andSc.indet.; the nucleotide divergence of 0.100 and genetic distance of 0.114 were comparable to the variation amongScincellaspecies, not as great as expected for different genera.

    Interestingly, variation betweenScincellaand the allopatricKaestleawas large (Table 2);Scincellawas much more distant genetically from the newly separatedK.travancorica, in the same subfamily, than fromAteuchosauruschinensis, whose subfamilial status remains unclear.

    2.2 Phylogenetic analyses

    Both the MP and BI analyses presented an identical topology of phylograms (Figure 1, showing only BI values), resulting in a well-supportedScincellagroup (node a) including “Sp.”cherrieiand all otherScincellaspecies. This node emerges fromSphenomorphusand is closest toSp.indicusandSp.maculatus. It divides into two lineages; one contains clade C with onlySc.reevesii. The other lineage contains two clades: A and B. Clade A contains four species,Sc.modesta,Sc.tsinlingensis,Sc.indet., andSc.rupicola; clade B includes all the New World species available to us:Sc.lateralis, “Sp.”cherriei, and Sc.gemmingeri. Monophyly of each of theScincellaspecies for which we have a series of specimens was supported with bootstrap values and Bayesian posterior probabilities of 100%, exceptSc.modesta(89%). Although theScincellataxa fell into clades corresponding to their geographical distributions, the North American clade B separates notably the East Asian clades A and C.

    Clade A (4 species) branches into two subclades,S.modestaandS.tsinlingensisin one andSc.indet. andS.rupicolain the other; notably, populations ofSc.modestashared no haplotypes between Lantau (HK) and Nan Ao (NA) Islands (Figure 1). Clade B (3 species) notably contains “Sp.”cherriei, which is taxonomically classified in the genusSphenomorphus, as in Honda et al.[18-19]; however, phylogenetically it clusters with the AmericanScincellaspecies (Figure 1). Clade C has onlySc.reevesii; its populations shared one haplotype among Lantau Island (HK), Dinghushan (DH), and Guangzhou (GZ); another haplotype occurs only on Lantau (Figure 1).

    2.3 Estimates of divergence times

    We estimated divergence times of the 12S rRNA gene among species at two distinct nodes; the highest value ofθ=45.32 for node a andθ=33.07 for node b; these BI analyses under different evolutionary models estimate consistent mean rates of evolution (μ) for the 12S rRNA gene, given the range from 2.2×10-9[42]to 6.5×10-9[41]substitutions /site/year. Node a represents the origin ofScincellawith a mean age from 10.0 Mya (95% HPD=34.77: 8.8-11.2 Mya) to 29.6 Mya (95% HPD=49.16: 26.2-33.1 Mya), meaning the age of TMRCA of the genusScincellawas in the lower Miocene of Tertiary. Node b represents the separation of the East Asian clade A from the North American clade B at a mean age from 7.3 Mya (95% HPD=25.20: 6.3-8.2 Mya) to 21.6 Mya (95% HPD=36.51: 18.8-24.2 Mya), meaning the time of isolation of the East Asian species from the North American species includingSp.cherrieioccurred only slightly later in the Miocene.

    Figure 1 Bayesian phylograms of 20 skink species collected from America and South China (7 species with locale codes and individual identification number) and downloaded from Genbank (13 species without locale codes), based on mitochondrial 12S rRNA sequences, with Bayesian posterior probabilities shown above internode branches, Sc.=Scincella, Sp.=Sphenomorphus, A.=Ateuchosaurus, K.=Kaestlea, and locale codes CD=Chengdu, DH=Dinghushan, GZ=Guangzhou, HK=Hong Kong, MS=Mississippi, NA=Nan Ao, TX=Texas

    3 Discussion

    3.1SeparationofSc.lateralisanditsAsianrelatives

    Our principal hypotheses, the Chinese origin and Grayian distribution of AmericanScincella, are strongly supported. The phylograms not only show monophyly for theScincellaspecies tested, but also support an American lineage and two Asian lineages, withSc.reevesiiancestral to both. The North American species ofScincellaare a monophyletic lineage nested within Asian taxa, indicating a single dispersal event.

    The Beringian land bridge (BLB) and the putative North Atlantic Land Bridge (NALB) have been postulated as routes of floristic interchange between Eurasia and North America in the Tertiary that have contributed to modern global floral and faunal disjunctions[43]. The BLB was a determining factor in the structure and biogeography of terrestrial faunas across the Nearctic and Neotropical regions during the Pliocene and Quaternary[44]. Because there are no relevant species in Europe, we reject the NALB and postulate the BLB route for ancestralSc.lateralis. Several North American lineages may have entered this region from Asia during the Miocene; particularly important was a mid-Miocene connection of continuous temperate deciduous forest providing habitats for amphibians and reptiles otherwise excluded from high latitudes[6]. Our molecular clock estimate, 7.3-21.6 Mya, agrees with this mid-Miocene timing. The BLB existed through most of the Miocene, being first interrupted around 4.8-7.4 Mya but still existing intermittently until 11 000 years ago[45-46]. Other disjunct taxa should be tested genetically and compared to climatic and sea level data to verify separation times.

    3.2 Systematic position of Scincella indet

    Recognition ofScincellarenders AsianSphenomorphusparaphyletic. Although Macey et al.[6]considered only one species ofSphenomorphus,Sp.indicus, their phylogram suggests the generic paraphyly as well. Our results show that the morphological basis for generic separation ofScincellaandSphenomorphusis compromised by not only the ChineseSc.indet., but also the Central American “Sp.”cherriei, both of which lack the spectacle scale. The presence of a spectacle scale has previously resulted in the placement of the Indian speciestravancoricainScincella. It is now placed in the genusKaestleaby Eremchenko and Das[13]based on the prominent elongate postoculars that are either granular or absent inScincellaandSphenomorphus. Our only Genbank sample ofKaestleatravancoricaemerged nearAteuchosaurus. Since the spectacle scale is presumably a derived character, the obvious implication is that this spectacle has been independently either developed or lost in separate lineages of Scincidae. Close relationship ofSc.indet. withSc.rupicolaconfirmed by our mtDNA assessment adds to the difficulties of generic definition ofScincellaandSphenomorphusbut reinforces our view that this character cannot be definitive for the genusScincella. Ouboter[7]notes a specimen ofSc.reevesiiwith a spectacle on one side but a pair of scales on the other. The problems involved in framing definitions in this complex of small brown skinks are exemplified in Shea and Greer[47], where species were reshuffled among different genera. Addressing the taxonomy requires consideration of many characters and lies far beyond our essentially biogeographical purview.

    Scincellaindet. andSc.rupicolaof Thailand are so similar that we would have suspected them conspecific.Sc.indet. is known from at least five specimens collected from 1984 to 2006[23,48-51]. Except for missing a spectacle scale, it appears to be aScincella. Allen Greer, then of Australian Museum at Sydney, prophetically opined that it was similar toSc.rupicolain most respects, despite the generic character discrepancy (pers. comm. to JL, 1998). The history of its recognition and other details are provided by Li et al.[23]. AlthoughSc.indet. andSc.rupicolaare closely related, as revealed by our molecular analysis, the two species do not share haplotypes of the 12S rRNA gene (Figure 1), and the variation between them (genetic distance=0.089) is greater than the expected variation among populations within a species (largest=0.006 withinSc.lateralis). All this makes it doubtful that Sc.indet. is just a new distribution record or range extension ofSc.rupicola. However, its relationship with the new species of Nguyen et al. (2011)[24]from Vietnam and Hainan Island needs evaluation.

    The relationship ofSc.indet. withSc.modestais interesting.Sc.indet. is the closest relative ofSc.modestaon mainland Guangdong (Figure 1).Sc.modestaranges from east of the Guangdong border into Fujian Province on the mainland[8], but the Guangdong provincial records are only for islands such as Nan Ao and Hong Kong’s Lantau; these two populations do not share haplotypes of the 12S rRNA gene (Figure 1), suggesting relict populations and possible replacement on most of the Guangdong mainland by the abundantSc.reevesi. Comparisons between the island and mainland populations ofSc.modestamay shed light on their biogeography.Sc.modestaandSc.tsinlingensisare the most recent species, deriving from the same common ancestor. Based on our data,Sc.modestadivides into two populations: Nan Ao and Lantau, but our sample size for Nan Ao is very small. We did, in addition, note a striking color difference in the field: Nan AoSc.modestahad brilliant red undersides of their tails, as opposed to the dull rosaceous tints of Lantau individuals.

    3.3RelationshipsofAteuchosauruswithSphenomorphusandScincella

    Ateuchosaurusis a genus of skinks containing only two Asian species:A.chinensisin North Vietnam (most recently rediscovered by Truong et al., 2008)[52]and South China, andA.pellopleurusin the Ryukyus. Karyotypic study of both species[53]suggests that the genus is closer to theEugongylusgroup of Greer[54]than to theSphenomorphusgroup. Austin and Arnold[55]moved it from Lygosominae to Acontinae based on molecular evidence. Our evidence, surprisingly, indicates thatAteuchosaurusis closer toSphenomorphusandScincellathan is the recently described genusKaestlea, whose species were formerly placed inScincellaof Lygosominae[13]. The subfamilial status of the two genera,AteuchosaurusandKaestlea, needs further examination.

    4 Conclusions

    North AmericanSc.lateralisand its relatives are close to theSc.modestagroup and derived from ancestral ChineseSc.reevesiiin a single trans-Beringian dispersal event, a typical demonstration of Grayian distribution. The timing of separation ofSc.lateralisfrom its Chinese congeners is calculated as about 7.3 to 21.6 Mya in the Miocene of Tertiary when the Beringian land bridge existed. Our DNA data and absence of the spectacle scale in both ChineseScincellaindet. and Central American “Sphenomorphus”cherrieiprove that this character has arisen or been lost independently and cannot be used for generic definition ofScincella.Sc.indet. is both morphologically and molecularly a new species different fromSc.rupicola, but phylogenetically closer toSc.rupicolathan to any other Indochinese species tested.

    AcknowledgmentsWe are indebted to Enge K, Hou M, Huang S H, Kolby J, Krysko K, Mann T, Moore J, Su Z P, Watkins-Colwell G, Willard T, and Xiong J L for specimens. Brandley M provided critical insight.

    [1] BOUFFORD D E, SPONGBERG S A. Eastern Asian-Eastern North American phytogeographical relationships-A history from the time of Linnaeus to the twentieth century[J]. Ann Missouri Bot Gard, 1983, 70: 423-439.

    [2] QIAN H, RIKLEFFS R E. Large-scale processes and the Asian bias in species diversity of temperate plants[J]. Nature, 2000, 407: 180-182.

    [3] LAZELL J, LU W H. Grayian distribution and the herpetofaunas of East Asia and eastern North America[C]∥Fourth Asian Herpetological Conference. Chengdu, Sichuan, China, 2000: 104.

    [4] LAZELL J, LU W H. Grayian distributions: The China-America biogeographic connection[C]∥ PANG X F. Proceedings of the Biodiversity of Guangdong Nanling National Nature Reserve. Guangzhou: Guangdong Science and Technology Press, 2003: 65-88.

    [5] LAZELL J, LU W H. Grayian trans-Beringian distributions: new twists to the old tale[C]∥Proceedings of the XIX International Congress of Zoology. Beijing, China, 2004: 16-18.

    [6] MACEY J R, SCHULTE J A, STRASBURG J L,et al. Assembly of the eastern North American herpetofauna: New evidence from lizards and frogs[J]. Biol Letters, 2006, 2(3): 388-392.

    [7] OUBOTER P E. A revision of the genus Scincella (Reptilia: Sauria: Scincidae) of Asia, with some notes on its evolution[J]. Zool Verh, 1986, 229: 1-66.

    [8] ZHAO E M, ADLER K. Herpetology of China[M]. Oxford, OH, USA: Society for the study of Amphibians and Reptiles, 1993.

    [9] ZHAO E M, ZHAO K T, ZHOU K Y. Fauna Sinica, Reptilia 2, Squamata, Lacertilia[M]. Beijing: Science Press, 1999.

    [10] EREMCHENKO V K. Generic and specific redefinition and redescription of the North-Vietnam skink Scincella melanosticta (Boulenger, 1887)[J]. Izvestiya Vuzov, Bishkek, 2003: 1-2, 20-28.

    [11] GARCIA-VAZQUEZ U O, CANSECO-MARQUEZ L, NIETO-MONTES DE OCA A. A new species of Scincella (Squamata: Scincidae) from the Cuatro Cienegas Basin, Coahuila, Mexico[J]. Copeia, 2010, 3: 373-381.

    [12] JACKSON N D, AUSTIN C C. The combined effects of rivers and refugia generate extreme cryptic fragmentation within the common ground skink (Scincella lateralis)[J]. Evolution, 2010, 64: 409-428.

    [13] EREMCHENKO V K, DAS I. Kaestlea: A new genus of scincid lizards (Scincidae: Lygosominae) from the Western Ghats, south-western India[J]. Hamadryad, 2004, 28: 43-50.

    [14] BOULENGER A. Lacertidae, Gerrhosauridae, Scincidae, Anelytropsidae, Dibamidae, Chamaeleontidae[J]. Catalogue of the Lizards in the British Museum (Nat. Hist.),1887, 3: 1-575.

    [15] VAN DENBURGH J. Concerning certain species of reptiles and amphibians from China, Japan, the Loo Choo Islands, and Formosa[J]. Proceedings of the California Academy of Sciences, 1912, 4: 187-258.

    [16] SCHMIDT K P. The reptiles of Hainan[J]. Bulletin of the American Museum of Natural History, 1927,54: 467-551.

    [17] POPE C H. The Reptiles of China[M]. American Museum of Natural History, New York, NY, USA. 1935.

    [18] HONDA M, OTA H, KOHLER G, et al.Phylogeny of the lizard subfamily Lygosominae (Reptilia: Scincidae), with special reference to the origin of the New World taxa[J]. Genes and Genetic Systems, 2003, 78(1): 71-80.

    [19] HONDA M, OTA H, MURPHY R W, et al. Phylogeny and biogeography of water skinks of the genus Tropidophorus (Reptilia: Scincidae): A molecular approach[J]. Zoologica Scripta, 2006, 35(1): 85-95.

    [20] NGUYEN Q T, NGUYEN V S, BOHME W, et al. A new species of Scincella (Squamata: Scincidae) from Vietnam[J]. Folia Zool, 2010, 59(2): 115-121.

    [21] PALMER W M, BRASWELL A L, KUHLER R. Reptiles of North Carolina[M]. Chapel Hill, NC, USA: University of North Carolina Press, 1995.

    [22] BEANE J. Love Skinks[J]. Wildlife in North Carolina, 2006, 70: 14-19.

    [23] LI Z C, XIAO Z, QING N, et al. Amphibians and reptiles of Dinghushan in Guangdong Province, China’s oldest nature reserve[J]. IRCF Reptiles & Amphibia, 2009, 16: 130-151.

    [24] NGUYEN T Q, SCHMITZ A, NGUYEN T T, et al. Review of the genus Sphenomorphus Fitzinger, 1843 (Squamata: Sauria: Scincidae) in Vietnam, with description of a new species from northern Vietnam and southern China and the first record of Sphenomorphus mimicus Taylor, 1962 from Vietnam[J]. J Herpetol, 2011, 45(2): 145-154.

    [25] GREER A E. The generic relationships of the scincid lizard genus Leiolopisma and its relatives[J]. Australian Journal of Zoology Supplemental Series, 1974, 22(31): 1-67.

    [26] SAMBROOK J, FRITSCH E F, MANIATIS T. Molecular Cloning[M]. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press, 1989.

    [27] KOCHER T D, THOMAS W K, MEYER A, et al. Dynamics of mitochondrial DNA evolution in mammals: Amplification and sequencing with conserved primers[J]. PNAS, 1989, 86(16): 6169-6200.

    [28] THOMPSON J D, GIBSON T J, PLEWNIAKl F, et al. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acid Research, 1997,25(24): 4876-4882.

    [29] KIMURA M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences[J]. Journal of Molecular Evolution, 1980, 16(2): 111-120.

    [30] TAMURA K, DUDLEY J, NEI M, et al. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution, 2007, 24(8): 1596-1599.

    [31] MAU B. Bayesian phylogenetic inference via Markov chain Monte Carlo methods[D]. USA: University of Wisconsin, Madison, 1996.

    [32] RANNALA B, YANG Z. Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference[J]. Journal of Molecular Evolution, 1996, 43(3): 304-311.

    [33] LARGET B, SIMON D. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees[J]. Molecular Biology and Evolution, 1999, 16: 750-759.

    [34] GREER A E. A subfamilial classification of scincid lizards[J]. Bulletin of the Museum of Comparative Zoology, 1970, 139: 151-183.

    [35] SWOFFORD D L. PAUP*, Phylogenetic Analysis Using Parsimony (*and Other Methods)[EB/OL]. Sinauer Associates, Sunderland, MA, USA.(2002)[2013-8-31]. http:∥paup.csit.fsu.edu.

    [36] HILLIS D M, BULL J J. An empirical test of bootstrapping as a method assessing confidence in phylogenetic analysis[J]. Systematic Biology, 1993, 42(2): 182-192.

    [37] RONQUIST F, HUELSENBECK J P. MRBAYES 3: Bayesian phylogenetic inference under mixed models[J]. Bioinformatics, 2003, 19(12): 1572-1574.

    [38] DRUMMOND A J, RAMBAUT A. BEAST: Bayesian evolutionary analysis by sampling trees[J]. BMC Evolutionary Biology, 2007, 7: 214.

    [39] RUTCHMAN F. Molecular dating of phylogenetic trees: a brief review of current methods that estimate divergence times[J]. Diversity and Distributions, 2006, 12(1): 35-48.

    [40] RAMBAUT A, DRUMMOND A J. TRACER 1.4.[CP/OL].(2007)[2013-8-31]. http:∥beast.bio.ed.ac.uk/tracer

    [41] MACEY J R, SCHULTE II J A, ANANJEVA N B, et al. Phylogenetic relationships among agamid lizards of the Laudakia caucasia species group: Testing hypotheses of biogeographic fragmentation and an area cladogram for the Iranian Plateau[J]. Molecular Phylogenetics and Evolution, 1998, 10(1): 118-131.

    [42] EMERSON S B, INGER R F, ISKANDAR D T. Molecular systematics and biogeography of the fanged frogs of Southeast Asia[J]. Molecular Phylogenetics and Evolution, 2000, 16(1): 131-142.

    [43] EUGENIA Y Y L, STEFANOVIC S, CHRISTENSEN K, et al. Evidence for genetic association between East Asian and western North American Crataegus L. (Rosaceae) and rapid divergence of the eastern North American lineages based on multiple DNA sequences[J]. Molecular Phylogenetics and Evolution, 2009, 51(2): 157-168.

    [44] COOK J A, HOBERG E P, KOEHLER A, et al. Beringia: Intercontinental exchange and diversification of high latitude mammals and their parasites during the Pliocene and Quaternary[J]. Mammal Science, 2005, 30(sp1): S33-S44.

    [45] MARINCOVICH L J, GLADENKOV A Y. Evidence for an early opening of the Bering strait[J]. Nature, 1999, 397: 149-151.

    [46] SHER A. Traffic lights at the Beringian crossroads[J]. Nature, 1999, 397: 103-104.

    [47] SHEA G M, GREER A E. From Sphenomorphus to Lipinia: generic reassignment of two poorly known New Guinea skinks[J]. Journal of Herpetology, 2002, 36(2): 148-156.

    [48] LAZELL J, LIAO W P. Contribution to the herpetofauna of Dinghushan, Guangdong[J]. Acta Herpetologica Sinica, 1986, 5: 70-71.

    [49] LAZALL J. Herpetology in South China[J]. Herpetological Review, 1988, 19: 49-51.

    [50] LAU M. Amphibians and reptiles, Dinghushan 3[J]. Porcupine(University of Hong Kong), 1996, 14: 19.

    [51] LAU M. Cebaling herpetofauna[J]. Porcupine(University of Hong Kong), 1996, 15: 28.

    [52] TRUONG N Q, TUNG T T, NGOC H V, et al. Rediscovery and redescription of Ateuchosaurus chinensis Gray, 1845 (Squamata: Sauria: Scincidae) from northeastern Vietnam[J]. Herpetology Notes, 2008, 1: 17-21.

    [53] OTA H, LINi J T, BOGADEK A, et al. Karyotype of the Lygosomine genus Ateuchosaurus from East Asia[J]. Journal of Herpetology, 1997, 31(4): 604-607.

    [54] GREER A E. A phylogenetic subdivision of Australian skinks[J]. Records of the Australian Museum, 1979, 32: 339-371.

    [55] AUSTIN J J, AMOLD E N. Using ancient and recent DNA to explore relationships of extinct and endangered Leiolopisma skinks (Reptilia: Scincidae) in the Mascarene Islands[J]. Molecular Phylogenetics and Evolution, 2006, 39(2): 503-511.

    [56] NALEPA C A, LI L, LU W H, et al. Rediscovery of the wood-eating cockroach Cryptocercus primarius (Dictyoptera: Cryptocercidae) in China, with notes on ecology and distribution[J]. Acta Zootaxonomica Sinica, 2001, 26: 184-190.

    2013-06-30

    廣東省自然科學基金項目(06025054);美國Falconwood Foundation資助項目

    1000-5463(2013)06-0129-11

    Q349

    A

    10.6054/j.jscnun.2013.09.017

    基于線粒體DNA的12S rRNA基因序列推斷中國及北美部分滑蜥屬物種的生物地理和親緣關(guān)系

    慶 寧1*, 林弘都2, 仝冉冉1, 張小奇1, 盧文華3, LAZELL James3

    (1.華南師范大學生命科學學院,廣東省水產(chǎn)健康安全養(yǎng)殖重點實驗室,廣東省高等學校生態(tài)與環(huán)境科學重點實驗室,廣東廣州 510631; 2. 樹人醫(yī)護管理??茖W校, 臺灣高雄821; 3.美國羅德島州生物保護所,美國詹姆斯鎮(zhèn))

    許多東亞和北美的生物類群之間呈現(xiàn)較近的親緣關(guān)系,格雷分布即指這種生物洲際間斷分布的現(xiàn)象.本文通過線粒體DNA (mtDNA) 12S rRNA基因序列分析,證明北美的滑蜥屬Scincella(Squamata: Scincidae)物種Sc.lateralis與中國的滑蜥屬南滑蜥種組呈現(xiàn)典型的格雷分布. 南滑蜥種組包括寧波滑蜥Sc.modesta,秦嶺滑蜥Sc.tsinlingensis,南滑蜥Sc.reevesii,和一個采自廣東鼎湖山自然保護區(qū)的未命名種Scincellaindet..這個鼎湖山未命名種并不具備滑蜥屬所特有的鑒別性特征“瞼窗”,但顯示它與Sc.modesta,Sc.tsinlingensis都是由Sc.reevesii演化而來的近緣種.證實了之前認為亞洲的蜓蜥屬Sphenomorphus與滑蜥屬Scincella是復系的觀點,目前美洲物種Sp.cherriei應隸屬于滑蜥屬Scincella,具瞼窗或不具瞼窗的物種分別出現(xiàn)在系統(tǒng)樹的不同分支中.研究結(jié)果支持前人將Kaestleatravancorica從滑蜥屬中劃分出去的觀點.根據(jù)分子鐘估算,北美的滑蜥從它們的中國祖先分化出來的時間可追溯到第三紀中新世,約7.3-21.6百萬年前,當時白令陸橋還露出海平面而且氣候濕潤. 該研究為洲際分布的物種的系統(tǒng)發(fā)育和生物地理研究提供了理論依據(jù).

    Scincella;Sphenomorphus; 格雷分布; 遺傳距離; 分化時間; 12S rRNA基因序列

    *通訊作者:慶寧,教授,Email:qingn@scnu.edu.cn.

    【中文責編:成文 英文責編:李海航】

    猜你喜歡
    北美責編格雷
    北美灰熊被殺案
    向西!穿越北美
    北美紀行
    中國三峽(2017年9期)2017-12-19 13:27:38
    我們生活在格雷河畔
    Optimization and application of protein C-terminal labeling by carboxypeptidase Y
    氯吡格雷治療不穩(wěn)定型心絞痛臨床觀察
    《道林·格雷的畫像》中的心理解讀
    城市地理(2015年24期)2015-08-15 00:52:57
    Graphene Based Electrochemical Sensor for the Detection of Volatile Organic Compounds
    只身闖北美
    海峽姐妹(2015年7期)2015-02-27 15:12:09
    一顰一笑
    當代工人(2014年19期)2014-11-07 22:24:38
    欧美日本中文国产一区发布| 欧美xxⅹ黑人| 日韩欧美 国产精品| 国产精品久久久久久精品电影小说| 免费观看a级毛片全部| 青春草视频在线免费观看| 日韩 亚洲 欧美在线| 美女福利国产在线| 国产伦精品一区二区三区视频9| 人体艺术视频欧美日本| 国产黄色视频一区二区在线观看| 国产91av在线免费观看| 女人久久www免费人成看片| 两个人的视频大全免费| www.av在线官网国产| 午夜久久久在线观看| av网站免费在线观看视频| www.av在线官网国产| 观看免费一级毛片| 日韩亚洲欧美综合| 国产免费视频播放在线视频| 国产精品三级大全| 草草在线视频免费看| 国产精品秋霞免费鲁丝片| 日韩中字成人| 熟女av电影| 亚洲精品日本国产第一区| 精品久久久久久久久av| 免费人妻精品一区二区三区视频| 亚洲美女黄色视频免费看| 国产精品三级大全| 97精品久久久久久久久久精品| 新久久久久国产一级毛片| 亚洲第一av免费看| 黄色欧美视频在线观看| videossex国产| 国产成人免费观看mmmm| 国产精品国产三级专区第一集| 91精品一卡2卡3卡4卡| 久久精品熟女亚洲av麻豆精品| 女性生殖器流出的白浆| 亚洲怡红院男人天堂| 纵有疾风起免费观看全集完整版| 国产精品三级大全| 韩国高清视频一区二区三区| 赤兔流量卡办理| 人人妻人人澡人人爽人人夜夜| 天堂中文最新版在线下载| 免费黄频网站在线观看国产| 成人无遮挡网站| 欧美精品亚洲一区二区| 日韩精品免费视频一区二区三区 | 插阴视频在线观看视频| 欧美三级亚洲精品| 一区二区三区精品91| 免费av中文字幕在线| 国产亚洲精品久久久com| av黄色大香蕉| 制服丝袜香蕉在线| 日韩av免费高清视频| 大香蕉97超碰在线| 亚洲丝袜综合中文字幕| 纵有疾风起免费观看全集完整版| 国产视频首页在线观看| 日韩一区二区三区影片| 不卡视频在线观看欧美| 久久99精品国语久久久| a级毛片免费高清观看在线播放| 成人无遮挡网站| 国内精品宾馆在线| 精品卡一卡二卡四卡免费| 精华霜和精华液先用哪个| 精品少妇黑人巨大在线播放| 亚洲三级黄色毛片| 黑人巨大精品欧美一区二区蜜桃 | 亚洲情色 制服丝袜| 简卡轻食公司| av在线app专区| av专区在线播放| 国产成人午夜福利电影在线观看| 国产日韩欧美在线精品| 欧美老熟妇乱子伦牲交| 成人黄色视频免费在线看| 天美传媒精品一区二区| 国产乱人偷精品视频| 黑丝袜美女国产一区| 亚洲国产av新网站| 亚洲国产精品成人久久小说| 日日摸夜夜添夜夜添av毛片| 最黄视频免费看| 久久青草综合色| 国产精品久久久久久精品古装| 欧美老熟妇乱子伦牲交| 成人国产麻豆网| 国产精品久久久久久av不卡| 高清在线视频一区二区三区| 天天操日日干夜夜撸| 亚洲av福利一区| 热99国产精品久久久久久7| 一级爰片在线观看| 日韩欧美 国产精品| 精品久久国产蜜桃| 男人和女人高潮做爰伦理| 亚洲精品中文字幕在线视频 | 国产成人免费无遮挡视频| 欧美另类一区| 亚洲自偷自拍三级| 在线观看国产h片| 国产精品一区二区在线不卡| 日本av手机在线免费观看| 最近的中文字幕免费完整| 少妇被粗大的猛进出69影院 | 久久狼人影院| 亚洲欧美精品专区久久| 久久99热这里只频精品6学生| 亚洲国产最新在线播放| 大香蕉97超碰在线| 老熟女久久久| 日韩精品免费视频一区二区三区 | 女的被弄到高潮叫床怎么办| 高清欧美精品videossex| 日韩免费高清中文字幕av| 99热全是精品| 国产乱来视频区| 国产高清三级在线| 日韩av不卡免费在线播放| 亚洲精品国产色婷婷电影| 色视频www国产| 熟女av电影| 观看av在线不卡| 精品少妇久久久久久888优播| 男人爽女人下面视频在线观看| 国产精品久久久久久久久免| 99久久中文字幕三级久久日本| 国产精品成人在线| 婷婷色综合大香蕉| 99久久精品热视频| 丰满人妻一区二区三区视频av| 精品久久久精品久久久| 国产午夜精品一二区理论片| 欧美亚洲 丝袜 人妻 在线| 亚洲精品色激情综合| 在线观看美女被高潮喷水网站| 国产亚洲最大av| 中文精品一卡2卡3卡4更新| 国产一区亚洲一区在线观看| 免费av中文字幕在线| 久久青草综合色| 久久久久精品性色| 亚洲图色成人| 国内少妇人妻偷人精品xxx网站| 国产亚洲最大av| 久热久热在线精品观看| 亚洲第一区二区三区不卡| √禁漫天堂资源中文www| 99热全是精品| 午夜影院在线不卡| 亚洲精华国产精华液的使用体验| 嫩草影院新地址| 91精品一卡2卡3卡4卡| 少妇被粗大的猛进出69影院 | 观看免费一级毛片| 一级毛片黄色毛片免费观看视频| 观看av在线不卡| 国产成人91sexporn| 欧美另类一区| 丰满迷人的少妇在线观看| 亚洲精品色激情综合| 精品午夜福利在线看| 国产精品三级大全| 日韩免费高清中文字幕av| 亚洲三级黄色毛片| 少妇被粗大猛烈的视频| 狂野欧美激情性bbbbbb| 99久久精品一区二区三区| 日本-黄色视频高清免费观看| 国产精品福利在线免费观看| 国产一区二区在线观看日韩| 日韩视频在线欧美| 又爽又黄a免费视频| 在线观看人妻少妇| 亚洲性久久影院| a级毛片在线看网站| 欧美国产精品一级二级三级 | 国产黄片美女视频| 男的添女的下面高潮视频| 亚洲一级一片aⅴ在线观看| 嫩草影院新地址| 男男h啪啪无遮挡| 黄色视频在线播放观看不卡| 国产精品一二三区在线看| 美女视频免费永久观看网站| 日日啪夜夜爽| 国产在线视频一区二区| 亚洲成人av在线免费| 深夜a级毛片| 国产精品女同一区二区软件| 中文在线观看免费www的网站| 日韩欧美 国产精品| 一级片'在线观看视频| 国语对白做爰xxxⅹ性视频网站| 2021少妇久久久久久久久久久| 亚洲婷婷狠狠爱综合网| 18禁在线无遮挡免费观看视频| 亚洲高清免费不卡视频| 99热6这里只有精品| 久久久国产欧美日韩av| 国产精品一区二区三区四区免费观看| 午夜激情久久久久久久| 国产深夜福利视频在线观看| 在线看a的网站| 大片电影免费在线观看免费| 国语对白做爰xxxⅹ性视频网站| 精品国产国语对白av| 一本—道久久a久久精品蜜桃钙片| 欧美亚洲 丝袜 人妻 在线| 日韩av免费高清视频| 亚洲欧美日韩卡通动漫| 人妻系列 视频| 伦理电影大哥的女人| 一边亲一边摸免费视频| 99热这里只有精品一区| 夫妻性生交免费视频一级片| 视频区图区小说| 日本猛色少妇xxxxx猛交久久| 男女高潮啪啪啪动态图| 高清在线国产一区| 人人妻人人爽人人添夜夜欢视频| av福利片在线| 精品福利观看| 久久精品人人爽人人爽视色| 国产97色在线日韩免费| 色播在线永久视频| 又紧又爽又黄一区二区| 亚洲精品第二区| 无遮挡黄片免费观看| 精品亚洲成国产av| 高清视频免费观看一区二区| 国产成人精品无人区| 狂野欧美激情性xxxx| 色婷婷久久久亚洲欧美| 十八禁网站免费在线| 亚洲国产欧美在线一区| 日本五十路高清| 亚洲欧美一区二区三区黑人| 欧美一级毛片孕妇| 黄片播放在线免费| 一区二区三区乱码不卡18| 日韩一区二区三区影片| 午夜影院在线不卡| 色94色欧美一区二区| 国产精品 国内视频| 欧美另类一区| tube8黄色片| 两性夫妻黄色片| 女人爽到高潮嗷嗷叫在线视频| 精品乱码久久久久久99久播| 亚洲国产av影院在线观看| 午夜福利影视在线免费观看| 999久久久国产精品视频| 成人国产一区最新在线观看| 亚洲成人免费av在线播放| 国产又色又爽无遮挡免| 国产成人精品久久二区二区91| 国产熟女午夜一区二区三区| 免费一级毛片在线播放高清视频 | 国产精品国产av在线观看| 后天国语完整版免费观看| 在线观看免费高清a一片| 成人av一区二区三区在线看 | 亚洲精华国产精华精| 美女主播在线视频| 国产成人啪精品午夜网站| 国产av国产精品国产| 亚洲中文字幕日韩| 另类亚洲欧美激情| 大型av网站在线播放| 多毛熟女@视频| 精品亚洲乱码少妇综合久久| 美女大奶头黄色视频| 成人影院久久| 超碰97精品在线观看| 亚洲国产看品久久| 男女床上黄色一级片免费看| 国产精品自产拍在线观看55亚洲 | www日本在线高清视频| h视频一区二区三区| 如日韩欧美国产精品一区二区三区| 国产精品久久久久成人av| 国产在线免费精品| 精品少妇久久久久久888优播| 午夜福利乱码中文字幕| 美女主播在线视频| 国产在视频线精品| 日韩电影二区| 欧美xxⅹ黑人| 欧美日韩成人在线一区二区| 法律面前人人平等表现在哪些方面 | 麻豆av在线久日| 老司机午夜十八禁免费视频| 9色porny在线观看| 777久久人妻少妇嫩草av网站| 在线精品无人区一区二区三| 丰满迷人的少妇在线观看| 国产精品香港三级国产av潘金莲| 欧美日韩视频精品一区| 国产精品国产三级国产专区5o| 久久久国产精品麻豆| 黑人欧美特级aaaaaa片| 亚洲精品国产av蜜桃| 91成年电影在线观看| 99精品久久久久人妻精品| 女警被强在线播放| 黄片播放在线免费| 国产视频一区二区在线看| 亚洲精品一二三| av福利片在线| 国产免费一区二区三区四区乱码| 男女午夜视频在线观看| videosex国产| 日日摸夜夜添夜夜添小说| 蜜桃在线观看..| 婷婷丁香在线五月| 午夜影院在线不卡| 老司机午夜福利在线观看视频 | 亚洲中文字幕日韩| 90打野战视频偷拍视频| 亚洲国产欧美在线一区| 亚洲一区中文字幕在线| 每晚都被弄得嗷嗷叫到高潮| 18禁国产床啪视频网站| 精品免费久久久久久久清纯 | av免费在线观看网站| 宅男免费午夜| 成人影院久久| 亚洲精品一二三| 高清av免费在线| 国产在线观看jvid| 久久久久国产一级毛片高清牌| 一区二区三区激情视频| 国产一区二区激情短视频 | 九色亚洲精品在线播放| 国产在线一区二区三区精| 色94色欧美一区二区| 精品欧美一区二区三区在线| 秋霞在线观看毛片| 在线精品无人区一区二区三| 国产成人免费观看mmmm| 老司机亚洲免费影院| av在线老鸭窝| 日韩欧美免费精品| 熟女少妇亚洲综合色aaa.| 亚洲一区中文字幕在线| 免费在线观看完整版高清| 熟女少妇亚洲综合色aaa.| 午夜影院在线不卡| 在线av久久热| 18禁观看日本| 国产成人精品无人区| 青春草亚洲视频在线观看| 侵犯人妻中文字幕一二三四区| 999久久久国产精品视频| 人妻一区二区av| 日韩大码丰满熟妇| 91老司机精品| 国产亚洲精品第一综合不卡| 国产不卡av网站在线观看| 亚洲熟女精品中文字幕| 99国产精品99久久久久| 91精品三级在线观看| 国产精品一区二区免费欧美 | 丝袜人妻中文字幕| 欧美精品啪啪一区二区三区 | 日日爽夜夜爽网站| 成人亚洲精品一区在线观看| 久久久久精品国产欧美久久久 | 老司机影院毛片| 99香蕉大伊视频| 久久久久精品国产欧美久久久 | 日日夜夜操网爽| 久久久久久久大尺度免费视频| 中文字幕人妻丝袜一区二区| 久久性视频一级片| 国产1区2区3区精品| 国产在线视频一区二区| 99国产精品99久久久久| 天天添夜夜摸| 热re99久久国产66热| 老汉色av国产亚洲站长工具| 18禁裸乳无遮挡动漫免费视频| 国产精品1区2区在线观看. | 国产熟女午夜一区二区三区| 两个人看的免费小视频| 亚洲五月色婷婷综合| 黄片小视频在线播放| 亚洲欧美成人综合另类久久久| 老司机影院成人| 亚洲成av片中文字幕在线观看| 制服诱惑二区| 夜夜骑夜夜射夜夜干| 日韩熟女老妇一区二区性免费视频| 中文字幕av电影在线播放| 亚洲精品美女久久av网站| 亚洲欧美日韩高清在线视频 | 精品一区二区三卡| 69av精品久久久久久 | 中文字幕另类日韩欧美亚洲嫩草| 性少妇av在线| 日韩免费高清中文字幕av| 在线精品无人区一区二区三| 亚洲伊人久久精品综合| a 毛片基地| 美女高潮到喷水免费观看| 一区二区三区四区激情视频| 午夜福利在线免费观看网站| 不卡av一区二区三区| 人成视频在线观看免费观看| 麻豆乱淫一区二区| 国产成人精品久久二区二区91| 大片电影免费在线观看免费| av一本久久久久| 日本五十路高清| 后天国语完整版免费观看| 咕卡用的链子| 国产伦理片在线播放av一区| 老司机福利观看| av在线老鸭窝| 日韩有码中文字幕| 午夜两性在线视频| 最新的欧美精品一区二区| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品美女久久av网站| 久久久久久亚洲精品国产蜜桃av| 自线自在国产av| 别揉我奶头~嗯~啊~动态视频 | 丝瓜视频免费看黄片| 久久免费观看电影| 老司机亚洲免费影院| 欧美激情高清一区二区三区| 99久久99久久久精品蜜桃| 91成年电影在线观看| 国产99久久九九免费精品| 久久亚洲国产成人精品v| av天堂久久9| 日本欧美视频一区| 大码成人一级视频| 十八禁高潮呻吟视频| 免费在线观看黄色视频的| 少妇粗大呻吟视频| 国产黄频视频在线观看| 亚洲欧美激情在线| av超薄肉色丝袜交足视频| av不卡在线播放| 侵犯人妻中文字幕一二三四区| 天天躁狠狠躁夜夜躁狠狠躁| tocl精华| 欧美激情久久久久久爽电影 | 在线十欧美十亚洲十日本专区| 国产三级黄色录像| 免费久久久久久久精品成人欧美视频| 成人国产一区最新在线观看| 后天国语完整版免费观看| 亚洲精品成人av观看孕妇| 日韩欧美免费精品| 美女福利国产在线| 男人添女人高潮全过程视频| 亚洲国产看品久久| 国产成人一区二区三区免费视频网站| 午夜两性在线视频| 亚洲七黄色美女视频| 99九九在线精品视频| 亚洲成av片中文字幕在线观看| 精品一区在线观看国产| 天天影视国产精品| av片东京热男人的天堂| 999久久久国产精品视频| 成人黄色视频免费在线看| 亚洲五月色婷婷综合| 天堂中文最新版在线下载| 亚洲av片天天在线观看| 亚洲精品美女久久久久99蜜臀| 午夜成年电影在线免费观看| tube8黄色片| 最黄视频免费看| 不卡一级毛片| 在线观看免费日韩欧美大片| 久久精品国产综合久久久| 久久中文看片网| svipshipincom国产片| 久久国产精品男人的天堂亚洲| 成人国产av品久久久| 亚洲欧洲日产国产| 国产精品久久久av美女十八| 99热国产这里只有精品6| 精品少妇久久久久久888优播| 老司机影院成人| 黑丝袜美女国产一区| 一区二区三区四区激情视频| 亚洲国产精品999| 伦理电影免费视频| h视频一区二区三区| 精品国产乱码久久久久久小说| 亚洲欧美激情在线| av网站免费在线观看视频| 亚洲自偷自拍图片 自拍| av电影中文网址| 久久久欧美国产精品| 熟女少妇亚洲综合色aaa.| 国产淫语在线视频| 桃花免费在线播放| 午夜视频精品福利| 成人黄色视频免费在线看| 超碰97精品在线观看| 免费人妻精品一区二区三区视频| 97精品久久久久久久久久精品| 国产亚洲精品久久久久5区| 一区二区三区四区激情视频| 免费在线观看完整版高清| www.熟女人妻精品国产| 日韩精品免费视频一区二区三区| 男人操女人黄网站| 欧美性长视频在线观看| 成年美女黄网站色视频大全免费| 我要看黄色一级片免费的| 免费观看av网站的网址| 精品卡一卡二卡四卡免费| 黑丝袜美女国产一区| 一本大道久久a久久精品| 免费观看av网站的网址| av不卡在线播放| 天天操日日干夜夜撸| 狂野欧美激情性bbbbbb| 亚洲人成电影观看| a 毛片基地| 大型av网站在线播放| 欧美日韩av久久| 国产成人精品无人区| 国产亚洲精品一区二区www | 99热国产这里只有精品6| 国产真人三级小视频在线观看| 亚洲欧美日韩高清在线视频 | 一级片'在线观看视频| 欧美黑人欧美精品刺激| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产av影院在线观看| 新久久久久国产一级毛片| 99久久精品国产亚洲精品| 国产精品麻豆人妻色哟哟久久| 久久热在线av| 国产伦人伦偷精品视频| 老汉色∧v一级毛片| 中文精品一卡2卡3卡4更新| 国产一区二区三区综合在线观看| 欧美性长视频在线观看| 69精品国产乱码久久久| 欧美在线黄色| 精品国内亚洲2022精品成人 | 日韩 欧美 亚洲 中文字幕| 黄色怎么调成土黄色| 性色av乱码一区二区三区2| 亚洲精品中文字幕在线视频| 一级片'在线观看视频| 大香蕉久久网| 一级a爱视频在线免费观看| 亚洲欧美成人综合另类久久久| 考比视频在线观看| 91九色精品人成在线观看| 国产精品偷伦视频观看了| 欧美精品高潮呻吟av久久| 人人妻人人添人人爽欧美一区卜| 国产福利在线免费观看视频| 悠悠久久av| 法律面前人人平等表现在哪些方面 | 男女国产视频网站| 天天添夜夜摸| 国产日韩欧美视频二区| 亚洲免费av在线视频| 亚洲,欧美精品.| 欧美性长视频在线观看| 日韩有码中文字幕| 他把我摸到了高潮在线观看 | 国产在线观看jvid| 国精品久久久久久国模美| 最近最新免费中文字幕在线| av在线app专区| 色视频在线一区二区三区| 男女免费视频国产| 久久久久久久国产电影| 多毛熟女@视频| 99国产综合亚洲精品| 欧美日韩黄片免| 欧美另类亚洲清纯唯美| 视频区欧美日本亚洲| 国产精品国产三级国产专区5o| 可以免费在线观看a视频的电影网站| 欧美日本中文国产一区发布| 国产精品一区二区精品视频观看| 99热网站在线观看| 久久久久精品人妻al黑| 九色亚洲精品在线播放| 十分钟在线观看高清视频www| 老汉色av国产亚洲站长工具| 国产精品99久久99久久久不卡| av片东京热男人的天堂| 99国产精品免费福利视频| 久久久久网色| 极品人妻少妇av视频| 亚洲久久久国产精品| 97人妻天天添夜夜摸| 免费不卡黄色视频| 在线精品无人区一区二区三| 黄色视频在线播放观看不卡| 国产成人免费观看mmmm| 在线天堂中文资源库| 黑人巨大精品欧美一区二区mp4|