• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time Periodic Solution of the Relativistic Boltzmann Equation

    2013-10-28 03:54:07YUHongjun
    關(guān)鍵詞:霍英東方程解國(guó)家自然科學(xué)基金

    YU Hongjun

    (School of Mathematical Sciences, South China Normal University, Guangzhou 510631,China)

    TimePeriodicSolutionoftheRelativisticBoltzmannEquation

    YU Hongjun*

    (School of Mathematical Sciences, South China Normal University, Guangzhou 510631,China)

    The existence and stability of the time periodic solution to the relativistic Boltzmann equation around the relativistic Maxwellian in the torus are obtained. The time decay of solution to the linearized relativistic Boltzmann equation is obtained by using compensating function and basic energy estimates. By this and the contraction mapping methods the existence and stablility of time periodic solution to the relativistic Boltzmann equation are shown.

    Keywords: relativistic Boltzmann equation; relativistic Maxwellian; time periodic solution; existence; stability

    In this paper, we consider time periodic solution of the relativistic Boltzmann equation

    (1)

    F(u)G(v)]dudω,

    (2)

    where dωis a surface measure on the unit sphere2, andσis the scattering kernel satisfying some conditions given later. As usual, we abbreviateF(t,x,u) byF(u), etc., and use prime to represent the moment after collision. For the relativistic model, the conservations of momentum and energy are given by

    (3)

    (4)

    (5)

    Lf=μ-1/2{Q(μ,μ1/2f)+Q(μ1/2f,μ)},

    and the nonlinear collision operator is

    Γ(g1,g2)=μ-1/2Q(μ1/2g1,μ1/2g2).

    It is well-known thatLcan be written asLf=ν(v)f+Kfwith the collision frequencyν(v) defined by

    (6)

    and the operatorKby

    μ1/2(u′)f(v′)-μ1/2(v′)f(u′)]dudω.

    For the scattering kernelσ(g,θ) as in[2-3], we assume

    (7)

    wherec1andc2are positive constants, 0≤δ<1/2, 0≤β<2-2δ, and eitherγ≥0 or

    Under these conditions onσ(g,θ), it was shown in [4] thatKis compact onL2(3). And from [2-3], we know that there is a constantC>1 such that

    (8)

    By the H-theorem,Lis dissipative and the null space ofLis spanned by the five collision invariants

    (9)

    LetPbe the projection of the spaceL2(3) to the null spaceinvvariable. We can decomposef(t,x,v) as

    f(t,x,v)=Pf+(I-P)f.

    (10)

    Here,Iis identity,Pfrepresents the macroscopic part and (I-P)fthe microscopic part respectively.

    (11)

    furnished with the same norm. Throughout this paper, we useCto denote a generic positive constant which may vary from line to line.

    Time periodic solution of classical Boltzmann equation was first solved by Ukai[5]through the results of spectral analysis[6-7]and contraction mapping methods. It was shown in [8] that the Boltzmann equation with external force admits the time periodic solution by the energy estimates and the results of [6]. On the other hand, the linearized relativistic Boltzmann equation was solved by Dudy1/2ski and Ekiel-Jezewska[4]. Later Glassey and Strauss[2]obtained the global solution of the relativistic Boltzmann equation near a relativistic Maxwellian in the torus, where a more restrictive assumption on the scattering kernel. And then they also obtained the global solution of the relativistic Boltzmann equation near a relativistic Maxwellian in the whole space[3]. The restrictive assumption on the scattering kernel[2]in the torus was removed and the results[2-3]were also obtained[9]by the energy methods. Based on the compensating function[3,10], the new energy methods was devised[11]to obtain both existence and the optimal time decay rate of relativistic Boltzmann and Landau equations without using the results of spectral analysis[6-7]. There are also other studies on the classical or relativistic Boltzmann, see [1,12-14] and the references therein.

    Although there are some investigations about the time periodic solution to the classical Boltzmann equation, there is no study about relativistic Boltzmann equation. In this paper, we study the existence and stability of the time periodic solution to the relativistic Boltzmann equation around the relativistic Maxwellian in the torus. We first obtain the time decay of solution to the linearized equation by the compensating function[3,10-11]and by this we use contraction mapping methods to show the existence of time periodic solution to the relativistic Boltzmann equation by the similar methods as[5]. Finally we also show the stability of such a time periodic solution.

    1 Existence of the Time Periodic Solution

    In this section, we will establish the basic energy estimates in order to obtain the time decay of solution to the linearized relativistic Boltzmann equation and then show the existence of the time periodic solution to (5). For this, we write the linearized equation as

    (12)

    Lemma1Assumek≥1,α>3/2 andf0satisfies (11). For the solution of the equation (12), we have the following time decay estimate

    [[f(t)]]k,α≤ce-c1t[[f0]]k,α.

    (13)

    ProofBy using compensating function of (12), we can obtain the key estimate as[3,10-11]:

    Herek>0 is small enough and(t,ξ,v) is the Fourier transform off(t,x,v) aboutx.

    By the properties of the Fourier transform, we have

    δ2|||xPf|||k-12≤0.

    (14)

    By the definition of the projectionP, we can write

    Pf=a(t,x)μ1/2+b(t,x)·vμ1/2+c(t,x)|v|2μ1/2.

    By the assumption (11), we have

    By this and the Poincaré inequality we can obtain

    C‖x(a,b,c)‖2≤C.

    (15)

    On the other hand, we can have from the properties of compensating function[3,11]that

    We define

    (16)

    which implies that

    (17)

    We rewrite the linearized equation (12) as

    (18)

    Thus we have from the Duhamel’s formula that

    f(t)=e-tBf0=e-tAf0-(e-tAK)*e-tBf0.

    Or we have

    (19)

    Recall the properties of the operatorKin [2-3] that for anyα≥0 andk≥0,

    K:Gα(Hk)Gα+η(Hk) andL2(Hk)G0(Hk) boundedly,

    (20)

    whereη>0. Notice from (8) thatν(v)≥cfor some constantc>0. By this and the first relation of (20), we iterate in this manner

    [[f(t)]]k,m≤Ce-ct[[f0]]k,m+

    C(1+t)e-ct[[f0]]k,m+

    Eventually we have the following: for somec0>0

    [[f(t)]]k,m≤Ce-c0t[[f0]]k,m+

    (21)

    By using (21) and the second relation of (20), we also obtain

    [[f(t)]]k,m≤Ce-c0t[[f0]]k,m+

    (22)

    Notice that for anyα>3/2,|||h|||k≤C[[h]]k,α. By this we combine (17) and (22) to obtain

    [[f(t)]]k,α≤ce-c1t[[f0]]k,α.

    In the following we will use Lemma 1 to prove the existence of time periodic solution to (5), which is our first main results.

    Then there exist positive constantsa0anda1such that whenever supt[[(t)]]k,α≤a0, the problem (5) has a unique solutionfper=fper(t,x,v) which is periodic intwith the same periodTand satisfies (11) and

    ProofIn order to obtain the time periodic solution of (5). We will use the arguments developed in [5]. For this we define

    (f)(t)=e-(t-s)B{Γ(f(s),f(s))+(s)}ds.

    Thus it suffices to find the fixed point ofin a proper complete metric space.

    (23)

    By the Duhamel’s formula, we obtain

    For the termI1(t), we can obtain

    For the termI2(t), we can have from (20) that

    By the above three estimates, we have

    (24)

    By (23) and (24) we can iterate the following inequality

    (25)

    We have from (25) that

    (26)

    In what follows we shall show that(f) has a unique fixed point(t).

    By the above definition ofΦ, we have

    (27)

    By Theorem 2.1 in [2], for anyα≥β/2 andk>3/2, one has

    C[[h1]]k,α[[h2]]k,α.

    (28)

    It follows from this and (26) that

    (29)

    By the assumption, we have

    (30)

    We define the complete metric space

    k>3/2,α>(3+β)/2}.

    By (29) and (30) it follows from (27) that

    (31)

    Noticing thatΓ(h1,h2) is a bilinear operator, we have

    Γ(f1,f1)-Γ(f2,f2)=

    Γ(f1+f2,f1-f2)+Γ(f1-f2,f1+f2).

    By this and (28), we have

    [[ν-1Γ(f1+f2,f1-f2)]]k,α+

    [[ν-1Γ(f1-f2,f1+f2)]]k,α≤

    C[[f1+f2]]k,α[[f1-f2]]k,α.

    This implies that

    By (27) and the above estimates, we have

    (32)

    2 Stability of the Time Periodic Solution

    In the preceding section we show the existence of the time periodic solution to (5) with time periodic source term. In this section we shall prove the stability of such a time periodic solution. For this, for any fixed timet0, we consider the problem

    (33)

    Settingg(t)=f(t)-fper(t), the problem (33) takes the form

    (34)

    withg(t0,x,v)=f0(x,v)-fper(t0). HereLperg=Γ(fper,g)+Γ(g,fper).

    Our main results in this section are as follows.

    Theorem2Letk>3/2 andα>(3+β)/2. Assume that (7) on the scattering kernelσ(g,θ). Letfper(t) be the time periodic solution constructed in Theorem 1. Then there exist positive constantsδ0andδ1such that whenever initial dataf0satisfies

    [[f0(x,v)-fper(t0)]]k,α≤δ0,

    the problem (33) has a unique global solutionf=f(t,x,v) satisfies

    δ1[[f0(x,v)-fper(t0)]]k,α.

    (35)

    δ1e-ct[[f0(x,v)-fper(t0)]]k,α.

    (36)

    ProofBy the preceding section, we shall show

    Γ(g(s),g(s))}ds

    (37)

    has a unique fixed point in the following space

    We define

    By Lemma 1 we have for any fixed timet0≤0,

    which implies that

    By the Duhamel’s formula, we obtain

    For the termJ1(t), we can obtain

    For the termJ2(t), we can obtain

    By the above three estimates, we have

    Finally we can iterate the following inequality

    (38)

    We can rewrite (37) as follow:

    N[g](t)=e-(t-t0)Bg0+Φ[ν-1Lperg]+

    Φ[ν-1Γ(g,g)].

    (39)

    It follows from Lemma 1 that

    ClearlyPΓ(f,g)=0. By (28) and (38) we can obtain

    and

    Finally we have

    Notice that

    N[g1](t)-N[g2](t)=Φ[ν-1Lper(g1-g2)]+

    Φ[ν-1(Γ(g1,g1)-Γ(g2,g2))].

    (40)

    By the similar arguments we can obtain

    Choosingδ0anda0small enough, we know that[g] is a contraction mapping and has a unique fixed pointg(t), which is our desired solution. Thus (36) is shown and (35) can be shown by a similar methods. This completes the proof of Theorem 2.

    [1] CERCIGNANI C,KREMER M G. The relativistic Boltzmann equation: Theory and applications[M]. Switzerland:Birkhauser Verlag, 2002.

    [2] GLASSEY R T,STRAUSS W A. Asymptotic stability of the relativistic Maxwellian[J]. Publ Res Inst Math Sci,1993,29:301-347.

    [3] GLASSEY R T, STRAUSS W A.Asymptotic stability of the relativistic Maxwellian via fourteen moments[J].Transport Theor Stat,1995,24:657-678.

    [4] DUDY1/4SKI M,EKIEL-JEZEWSKA M. On the linearized relativistic Boltzmann equation[J]. Comm Math Phys, 1988,115:607-629.

    [5] UKAI S. Time period solutions of the Boltzmann equation[J].Discrite Continuous Dynamical Sys:Ser A,2006,14:579-596.

    [6] UKAI S. On the existence of global solutions of mixed problem for non-linear Boltzmann equation[J]. Proc Japan Acad,1974,50:179-184.

    [7] UKAI S, YANG T. Mathematical theory of Boltzmann equation[M/OL]. Lecture Notes Series-No 8, Hongkong: Liu Bie Ju Center of Mathematical Sciences, City University of Hongkong, 2006.http:∥www6.cityu.edu.hk/rcms/publications.htm.

    [8] DUAN R J, UKAI S, YANG T,et al. Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications[J].Comm Math Phys,2008,277:189-236.

    [9] HSIAO L,YU H J. Asyptotic stability of the relativistic Maxwellian[J]. Math Meth Appl Sci,2006,29:1481-1499.

    [10] KAWASHIMA S.The Boltzmann equation and thirteen moments[J].Japan J Appl Math,1990,7:301-320.

    [11] YANG T,YU H J. Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space[J]. J Differ Equations, 2010,248(3):1518-1560.

    [12] DUDY1/4SKI M,EKIEL-JEZEWSKA M. Global existence proof for relativistic Boltzmann equation[J]. J Stat Phys,1992,66:991-1001.

    [13] GLASSEY R. The Cauchy problem in kinetic theory[M].Philadelphia, PA: SIAM, 1996.

    [14] STRAIN R M. Asyptotic stability of the relativistic the Boltzmann equation with soft potentials[J]. Comm Math Phys,2010,300:529-597.

    2013-06-20

    國(guó)家自然科學(xué)基金項(xiàng)目(11071085);霍英東教育基金會(huì)高等院校青年教師基金項(xiàng)目(121002)

    1000-5463(2013)06-0019-07

    O175.29

    A

    10.6054/j.jscnun.2013.09.003

    相對(duì)論Boltzmann方程的時(shí)間周期解

    喻洪俊*

    (華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,廣東廣州 510631)

    得到了周期區(qū)域上靠近穩(wěn)態(tài)的相對(duì)論Boltzmann方程的時(shí)間周期解的存在性和穩(wěn)定性.通過利用補(bǔ)償函數(shù)和基本的能量估計(jì),得到了線性化的相對(duì)論Boltzmann方程解的時(shí)間衰減,根據(jù)此結(jié)果和壓縮映像原理,證明了相對(duì)論Boltzmann方程的時(shí)間周期解的存在性和穩(wěn)定性.

    相對(duì)論Boltzmann方程; 相對(duì)論Maxwellian; 時(shí)間周期解; 存在性; 穩(wěn)定性

    *通訊作者:喻洪俊,教授,Email:yuhj2002@sina.com.

    【中文責(zé)編:莊曉瓊 英文責(zé)編:肖菁】

    猜你喜歡
    霍英東方程解國(guó)家自然科學(xué)基金
    Navier-Stokes-Coriolis方程解的長(zhǎng)時(shí)間存在性
    霍英東捐贈(zèng)字典
    做人與處世(2022年3期)2022-05-26 00:18:36
    霍英東捐贈(zèng)字典
    常見基金項(xiàng)目的英文名稱(一)
    天安門上痛哭的香港富豪霍英東
    東西南北(2019年21期)2019-01-06 02:22:08
    我校喜獲五項(xiàng)2018年度國(guó)家自然科學(xué)基金項(xiàng)目立項(xiàng)
    一類Choquard型方程解的存在性
    2017 年新項(xiàng)目
    國(guó)家自然科學(xué)基金項(xiàng)目簡(jiǎn)介
    一類Kirchhoff-Poisson方程解的存在性
    久久这里只有精品19| 日日夜夜操网爽| or卡值多少钱| 久久精品影院6| 天堂动漫精品| 国产高清激情床上av| 九九久久精品国产亚洲av麻豆 | 亚洲av电影在线进入| 最近视频中文字幕2019在线8| 成人特级av手机在线观看| 嫩草影院精品99| 观看美女的网站| av在线天堂中文字幕| 夜夜爽天天搞| 亚洲成av人片免费观看| bbb黄色大片| 在线免费观看不下载黄p国产 | 真人一进一出gif抽搐免费| 色老头精品视频在线观看| 国产成+人综合+亚洲专区| 真人做人爱边吃奶动态| 99久久99久久久精品蜜桃| 麻豆一二三区av精品| 99久久精品一区二区三区| 亚洲中文日韩欧美视频| 99热精品在线国产| 亚洲国产日韩欧美精品在线观看 | 手机成人av网站| 99国产精品一区二区三区| av福利片在线观看| 日本黄色视频三级网站网址| 日韩欧美国产一区二区入口| 村上凉子中文字幕在线| 国产精品久久久av美女十八| 日韩 欧美 亚洲 中文字幕| 丰满人妻一区二区三区视频av | 国产三级在线视频| 国产av在哪里看| 亚洲国产精品999在线| 欧美日本亚洲视频在线播放| 亚洲自拍偷在线| 国产精品久久久久久精品电影| 国产高清视频在线观看网站| 亚洲中文av在线| 亚洲性夜色夜夜综合| 成人午夜高清在线视频| 国产成人精品无人区| 亚洲国产欧美一区二区综合| 毛片女人毛片| 午夜福利在线观看吧| 久久性视频一级片| av女优亚洲男人天堂 | 男人舔奶头视频| 精华霜和精华液先用哪个| 男女午夜视频在线观看| 成人三级黄色视频| 久久亚洲精品不卡| 99热只有精品国产| 亚洲精品美女久久久久99蜜臀| 视频区欧美日本亚洲| 欧美在线一区亚洲| 国产精华一区二区三区| 午夜激情福利司机影院| 免费在线观看亚洲国产| 成人亚洲精品av一区二区| 日本一本二区三区精品| 中文字幕av在线有码专区| 白带黄色成豆腐渣| 一区二区三区激情视频| 亚洲电影在线观看av| 午夜福利在线在线| 国产精品久久久久久精品电影| 19禁男女啪啪无遮挡网站| 久久久久久久午夜电影| 国产成人精品无人区| av女优亚洲男人天堂 | 人人妻人人澡欧美一区二区| 国产精品久久久久久亚洲av鲁大| 亚洲片人在线观看| 亚洲国产欧洲综合997久久,| 亚洲av日韩精品久久久久久密| 日本a在线网址| 亚洲精品久久国产高清桃花| 99精品久久久久人妻精品| 亚洲欧美激情综合另类| 欧美中文综合在线视频| 91老司机精品| 黑人操中国人逼视频| 曰老女人黄片| 成人av一区二区三区在线看| 欧美日本亚洲视频在线播放| 18禁国产床啪视频网站| 淫秽高清视频在线观看| 亚洲七黄色美女视频| 99riav亚洲国产免费| 欧美日韩一级在线毛片| 国产精品亚洲av一区麻豆| 亚洲avbb在线观看| xxx96com| 国产伦在线观看视频一区| 亚洲中文字幕一区二区三区有码在线看 | 国产探花在线观看一区二区| 久久精品亚洲精品国产色婷小说| 国产一级毛片七仙女欲春2| 日韩 欧美 亚洲 中文字幕| 国产一区二区激情短视频| 久久亚洲真实| 在线观看免费午夜福利视频| 亚洲精品乱码久久久v下载方式 | 国产欧美日韩精品一区二区| 久久久久国产精品人妻aⅴ院| av福利片在线观看| 婷婷精品国产亚洲av在线| 日韩欧美一区二区三区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 搡老妇女老女人老熟妇| 两性夫妻黄色片| 91麻豆av在线| 脱女人内裤的视频| a级毛片在线看网站| 亚洲国产精品成人综合色| 99久久国产精品久久久| 制服人妻中文乱码| 欧美日本视频| 久久精品91蜜桃| 村上凉子中文字幕在线| 久久精品影院6| 日日干狠狠操夜夜爽| 久久久色成人| 99热这里只有精品一区 | 男人舔女人的私密视频| 国产蜜桃级精品一区二区三区| 天天添夜夜摸| 亚洲欧美日韩高清专用| 国产69精品久久久久777片 | 亚洲av免费在线观看| 91av网站免费观看| 国产亚洲精品久久久com| e午夜精品久久久久久久| 国内精品久久久久精免费| 成人国产综合亚洲| 色哟哟哟哟哟哟| 国产主播在线观看一区二区| 亚洲性夜色夜夜综合| 精品国产乱码久久久久久男人| ponron亚洲| 在线十欧美十亚洲十日本专区| 欧美大码av| 精品熟女少妇八av免费久了| 久久久久久久久久黄片| 亚洲精品一区av在线观看| 亚洲欧美精品综合一区二区三区| 一区二区三区国产精品乱码| 色av中文字幕| 亚洲成a人片在线一区二区| 男女那种视频在线观看| 久久久久免费精品人妻一区二区| 欧美三级亚洲精品| 国产又色又爽无遮挡免费看| 19禁男女啪啪无遮挡网站| 精品久久久久久久末码| 国产v大片淫在线免费观看| 级片在线观看| 日本熟妇午夜| 神马国产精品三级电影在线观看| 亚洲精品色激情综合| 18禁美女被吸乳视频| 在线免费观看不下载黄p国产 | 一级毛片女人18水好多| 一个人看的www免费观看视频| 成人国产一区最新在线观看| 久久天堂一区二区三区四区| 香蕉丝袜av| 国产成人一区二区三区免费视频网站| 天堂网av新在线| 国产乱人伦免费视频| 亚洲自拍偷在线| 国产精品日韩av在线免费观看| 一本久久中文字幕| 国产激情久久老熟女| 久久久久免费精品人妻一区二区| 亚洲电影在线观看av| 最新中文字幕久久久久 | 午夜激情福利司机影院| 精品国内亚洲2022精品成人| 三级男女做爰猛烈吃奶摸视频| 亚洲自拍偷在线| 麻豆国产97在线/欧美| 国产精品久久视频播放| 女人被狂操c到高潮| 国产亚洲精品av在线| 悠悠久久av| 精品乱码久久久久久99久播| 亚洲av熟女| 桃色一区二区三区在线观看| 天堂av国产一区二区熟女人妻| 我的老师免费观看完整版| 欧美午夜高清在线| 亚洲aⅴ乱码一区二区在线播放| 美女高潮的动态| 国产精品野战在线观看| 亚洲 欧美 日韩 在线 免费| 欧美在线黄色| 日本a在线网址| 免费看日本二区| 久久久久免费精品人妻一区二区| 亚洲av成人不卡在线观看播放网| 深夜精品福利| 国产精品久久视频播放| 精品久久蜜臀av无| 两性午夜刺激爽爽歪歪视频在线观看| 一区二区三区高清视频在线| 色吧在线观看| 99riav亚洲国产免费| 国产人伦9x9x在线观看| 亚洲中文字幕日韩| 国产精品久久久久久精品电影| 日本 欧美在线| 99久国产av精品| 国产亚洲精品一区二区www| 国产三级中文精品| 亚洲无线在线观看| 1024手机看黄色片| 国产高清三级在线| 在线观看66精品国产| 男人舔女人下体高潮全视频| 90打野战视频偷拍视频| 熟女人妻精品中文字幕| 脱女人内裤的视频| 国产精品久久久久久久电影 | 91麻豆精品激情在线观看国产| 亚洲天堂国产精品一区在线| 亚洲成av人片在线播放无| 日本免费一区二区三区高清不卡| 岛国视频午夜一区免费看| 中亚洲国语对白在线视频| 中出人妻视频一区二区| 国产精品亚洲美女久久久| 精品久久久久久,| 国产精品自产拍在线观看55亚洲| 麻豆成人午夜福利视频| 日本一本二区三区精品| 婷婷亚洲欧美| 99久久精品热视频| 成人无遮挡网站| 制服人妻中文乱码| 中文亚洲av片在线观看爽| av欧美777| 91久久精品国产一区二区成人 | 91久久精品国产一区二区成人 | tocl精华| 成人精品一区二区免费| 97碰自拍视频| 噜噜噜噜噜久久久久久91| 99久久精品国产亚洲精品| 国产熟女xx| 午夜影院日韩av| 国产精品女同一区二区软件 | 99国产精品一区二区三区| 国产一区在线观看成人免费| 亚洲精品中文字幕一二三四区| 91麻豆av在线| 又紧又爽又黄一区二区| 国产精品免费一区二区三区在线| 嫁个100分男人电影在线观看| 黑人欧美特级aaaaaa片| 999精品在线视频| 99在线人妻在线中文字幕| 一级作爱视频免费观看| 国产成人精品久久二区二区免费| 美女免费视频网站| 成在线人永久免费视频| 亚洲avbb在线观看| 精品一区二区三区视频在线观看免费| 久久久久久久久久黄片| 亚洲人成伊人成综合网2020| 国产乱人伦免费视频| 久久精品影院6| 精品日产1卡2卡| 在线观看免费视频日本深夜| 亚洲中文av在线| 99在线视频只有这里精品首页| 国产伦在线观看视频一区| 国产欧美日韩一区二区三| 可以在线观看的亚洲视频| 免费看光身美女| 十八禁网站免费在线| 亚洲欧美精品综合久久99| 日本黄色视频三级网站网址| 国产亚洲欧美在线一区二区| 欧美日韩亚洲国产一区二区在线观看| 全区人妻精品视频| 极品教师在线免费播放| 97超级碰碰碰精品色视频在线观看| 国产伦一二天堂av在线观看| 女人高潮潮喷娇喘18禁视频| 岛国在线免费视频观看| 欧美中文综合在线视频| 午夜两性在线视频| 久久久水蜜桃国产精品网| 欧美丝袜亚洲另类 | 成人av一区二区三区在线看| 90打野战视频偷拍视频| 亚洲第一欧美日韩一区二区三区| 国产黄片美女视频| 欧美黑人欧美精品刺激| 精品一区二区三区四区五区乱码| 成人高潮视频无遮挡免费网站| 99热只有精品国产| 狂野欧美白嫩少妇大欣赏| 特级一级黄色大片| 亚洲美女视频黄频| 亚洲色图 男人天堂 中文字幕| 午夜日韩欧美国产| 五月伊人婷婷丁香| 亚洲国产欧美一区二区综合| 日本一本二区三区精品| 日韩精品青青久久久久久| 国产黄色小视频在线观看| 国产av一区在线观看免费| 亚洲成人久久性| 免费大片18禁| 午夜成年电影在线免费观看| 99久久久亚洲精品蜜臀av| 国产精品女同一区二区软件 | 亚洲人成网站高清观看| 成人国产一区最新在线观看| 男女之事视频高清在线观看| 在线播放国产精品三级| 午夜视频精品福利| 淫秽高清视频在线观看| 午夜福利成人在线免费观看| 精品一区二区三区视频在线观看免费| 视频区欧美日本亚洲| 欧美成人免费av一区二区三区| 午夜两性在线视频| 亚洲无线在线观看| 亚洲av电影不卡..在线观看| 麻豆久久精品国产亚洲av| 成在线人永久免费视频| www.熟女人妻精品国产| 久久精品人妻少妇| 久久久久久久精品吃奶| 脱女人内裤的视频| 亚洲国产精品sss在线观看| 日韩高清综合在线| 一级毛片精品| 男人舔女人下体高潮全视频| 两性夫妻黄色片| 香蕉久久夜色| 日韩欧美一区二区三区在线观看| 一边摸一边抽搐一进一小说| 小蜜桃在线观看免费完整版高清| 99re在线观看精品视频| 久久久久九九精品影院| 国产伦精品一区二区三区四那| 日韩欧美一区二区三区在线观看| 午夜激情福利司机影院| 亚洲色图av天堂| 一二三四社区在线视频社区8| 少妇的丰满在线观看| 麻豆成人av在线观看| 国产亚洲欧美在线一区二区| 国产亚洲av嫩草精品影院| 精品一区二区三区av网在线观看| 亚洲精品一区av在线观看| 久久精品91无色码中文字幕| 免费一级毛片在线播放高清视频| 亚洲国产精品sss在线观看| 嫁个100分男人电影在线观看| 久久久久久久久中文| 久久精品aⅴ一区二区三区四区| 女警被强在线播放| 亚洲精品一卡2卡三卡4卡5卡| 丰满人妻一区二区三区视频av | 制服丝袜大香蕉在线| 观看免费一级毛片| 无遮挡黄片免费观看| 1024手机看黄色片| 无限看片的www在线观看| 五月玫瑰六月丁香| 久久久国产成人精品二区| 午夜福利在线观看免费完整高清在 | 日韩欧美免费精品| 久久热在线av| 亚洲欧美日韩无卡精品| 午夜免费激情av| 香蕉久久夜色| 中文字幕人妻丝袜一区二区| 亚洲成a人片在线一区二区| 精品国产亚洲在线| 俄罗斯特黄特色一大片| 中文字幕最新亚洲高清| 日韩人妻高清精品专区| 日日干狠狠操夜夜爽| 丁香六月欧美| 欧美又色又爽又黄视频| 夜夜爽天天搞| 看黄色毛片网站| 亚洲,欧美精品.| 久久久久国产一级毛片高清牌| 国产高清视频在线播放一区| 亚洲欧美一区二区三区黑人| 亚洲在线观看片| 亚洲国产看品久久| 一级作爱视频免费观看| 一个人看的www免费观看视频| 国产精品爽爽va在线观看网站| 国产激情久久老熟女| 日韩欧美国产一区二区入口| 这个男人来自地球电影免费观看| 国产亚洲精品综合一区在线观看| 久久中文看片网| 色综合欧美亚洲国产小说| 国产乱人视频| 国产精品久久视频播放| 9191精品国产免费久久| 在线免费观看的www视频| 亚洲av电影不卡..在线观看| 久久精品人妻少妇| 日本一二三区视频观看| 婷婷亚洲欧美| 90打野战视频偷拍视频| 久久国产精品人妻蜜桃| 精华霜和精华液先用哪个| 在线观看日韩欧美| 色老头精品视频在线观看| 嫩草影院精品99| 啦啦啦韩国在线观看视频| 丰满的人妻完整版| 国产单亲对白刺激| 婷婷精品国产亚洲av在线| 久久久国产成人免费| 亚洲av五月六月丁香网| 亚洲精品美女久久av网站| 亚洲精品乱码久久久v下载方式 | 亚洲成av人片在线播放无| 精品国产美女av久久久久小说| 免费观看的影片在线观看| 国产精品99久久久久久久久| 久久香蕉国产精品| 中文在线观看免费www的网站| 一级a爱片免费观看的视频| 久9热在线精品视频| 欧美日韩综合久久久久久 | 女生性感内裤真人,穿戴方法视频| 老熟妇乱子伦视频在线观看| 成人av一区二区三区在线看| 国产精品久久视频播放| 免费一级毛片在线播放高清视频| 久久婷婷人人爽人人干人人爱| 欧美丝袜亚洲另类 | 九九久久精品国产亚洲av麻豆 | 国产精品98久久久久久宅男小说| av在线天堂中文字幕| 天堂av国产一区二区熟女人妻| 亚洲av成人av| bbb黄色大片| 日韩人妻高清精品专区| 最近在线观看免费完整版| av天堂中文字幕网| 日韩欧美免费精品| 精品久久久久久久人妻蜜臀av| 国产高清视频在线观看网站| 制服人妻中文乱码| 欧美在线黄色| 桃色一区二区三区在线观看| 伊人久久大香线蕉亚洲五| 午夜福利视频1000在线观看| 手机成人av网站| 免费观看人在逋| 天堂av国产一区二区熟女人妻| 亚洲av免费在线观看| 伦理电影免费视频| 国产真人三级小视频在线观看| 亚洲一区高清亚洲精品| 亚洲av成人不卡在线观看播放网| 亚洲色图 男人天堂 中文字幕| 变态另类成人亚洲欧美熟女| 90打野战视频偷拍视频| 精品国内亚洲2022精品成人| 男女床上黄色一级片免费看| 两个人看的免费小视频| 亚洲激情在线av| 久久久久国产一级毛片高清牌| 日本五十路高清| 亚洲成人久久爱视频| 亚洲中文字幕一区二区三区有码在线看 | 国产欧美日韩精品一区二区| 亚洲激情在线av| 日本三级黄在线观看| 亚洲成人中文字幕在线播放| e午夜精品久久久久久久| 又粗又爽又猛毛片免费看| 麻豆国产av国片精品| 999精品在线视频| 亚洲五月婷婷丁香| 日本黄色视频三级网站网址| 成人无遮挡网站| 99国产精品一区二区三区| 亚洲九九香蕉| 啦啦啦观看免费观看视频高清| 香蕉av资源在线| 精品久久久久久久久久久久久| 国产蜜桃级精品一区二区三区| 法律面前人人平等表现在哪些方面| 亚洲欧美日韩无卡精品| 午夜激情福利司机影院| 日韩欧美 国产精品| 男插女下体视频免费在线播放| 国产精品98久久久久久宅男小说| 久久久久久久精品吃奶| 欧美日韩瑟瑟在线播放| 亚洲七黄色美女视频| 特级一级黄色大片| 午夜亚洲福利在线播放| 搡老熟女国产l中国老女人| 免费大片18禁| 久久精品亚洲精品国产色婷小说| 日韩欧美免费精品| 91九色精品人成在线观看| 女生性感内裤真人,穿戴方法视频| 中文字幕久久专区| 老汉色av国产亚洲站长工具| 日韩大尺度精品在线看网址| 国产91精品成人一区二区三区| 国内久久婷婷六月综合欲色啪| 在线永久观看黄色视频| 日韩欧美在线二视频| 日韩欧美一区二区三区在线观看| 亚洲精品乱码久久久v下载方式 | 精品国产美女av久久久久小说| 亚洲国产中文字幕在线视频| 最新中文字幕久久久久 | 国产毛片a区久久久久| av视频在线观看入口| 亚洲无线观看免费| 久久久精品欧美日韩精品| 亚洲成av人片在线播放无| 国产精品爽爽va在线观看网站| 色综合婷婷激情| 国产精品自产拍在线观看55亚洲| 免费在线观看视频国产中文字幕亚洲| 国产伦人伦偷精品视频| 黑人操中国人逼视频| 偷拍熟女少妇极品色| 中文字幕av在线有码专区| 九九热线精品视视频播放| 在线国产一区二区在线| 久久中文字幕一级| 欧美绝顶高潮抽搐喷水| 日韩欧美免费精品| 亚洲最大成人中文| 色精品久久人妻99蜜桃| 日本黄色视频三级网站网址| 国产欧美日韩一区二区精品| 日韩免费av在线播放| aaaaa片日本免费| 成人三级黄色视频| 99热这里只有精品一区 | 欧美在线一区亚洲| 成人国产综合亚洲| 国内毛片毛片毛片毛片毛片| 中文资源天堂在线| 三级国产精品欧美在线观看 | 91字幕亚洲| 免费在线观看成人毛片| 久久国产乱子伦精品免费另类| 婷婷丁香在线五月| 色综合亚洲欧美另类图片| 两个人看的免费小视频| 天堂√8在线中文| 色综合婷婷激情| 日本免费a在线| 黄色日韩在线| 男人的好看免费观看在线视频| 精品国产超薄肉色丝袜足j| 熟女人妻精品中文字幕| 人人妻人人澡欧美一区二区| 欧美3d第一页| 国产精品av视频在线免费观看| 久久午夜综合久久蜜桃| 在线免费观看的www视频| 99热精品在线国产| 国产精品女同一区二区软件 | 伊人久久大香线蕉亚洲五| 国产69精品久久久久777片 | 色综合欧美亚洲国产小说| 久久99热这里只有精品18| 亚洲人成网站高清观看| 久久久国产精品麻豆| 国产精品99久久久久久久久| 亚洲国产欧美一区二区综合| 午夜两性在线视频| 国产精品美女特级片免费视频播放器 | 久久中文看片网| 观看免费一级毛片| 国产精品日韩av在线免费观看| 久久久久免费精品人妻一区二区| 啪啪无遮挡十八禁网站| 国产精品亚洲一级av第二区| 在线观看日韩欧美| 午夜免费成人在线视频| 亚洲avbb在线观看| 欧美黑人欧美精品刺激| 99久久99久久久精品蜜桃| 最近最新中文字幕大全免费视频| 三级男女做爰猛烈吃奶摸视频| 欧美色视频一区免费| 午夜福利18| 一本精品99久久精品77| 床上黄色一级片| 亚洲专区字幕在线| 欧美黑人巨大hd| 久久久久久人人人人人|