• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Very Expressive Intuitionistic Fuzzy Rough Description Logics for the Semantic Web

    2013-10-28 03:54:40JIANGYuncheng
    關(guān)鍵詞:國家自然科學(xué)基金直覺責(zé)編

    JIANG Yuncheng

    (School of Computer Science, South China Normal University, Guangzhou 510631, China)

    VeryExpressiveIntuitionisticFuzzyRoughDescriptionLogicsfortheSemanticWeb

    JIANG Yuncheng*

    (School of Computer Science, South China Normal University, Guangzhou 510631, China)

    The state-of-the-art and some existing problems of intuitionistic fuzzy rough Description Logics(DLs) for the Semantic Web are analyzed. An integration between the theories of intuitionistic fuzzy DLs and rough DLs, i.e., intuitionistic fuzzy rough DLs, has been provided based on (,)-intuitionistic fuzzy rough set theory. Concretely, the intuitionistic fuzzy rough DLIFRSROIQ(D) is presented, which is the extension of the expressive DLSROIQ(D) behind OWL 2. It is proved that the reasoning tasks (knowledge base satisfiability, concept satisfiability, subsumption, logical consequence, ABox consistency, BTCB, and BSB reasoning) in the intuitionistic fuzzy rough DLIFRSROIQ(D) may be reduced to the corresponding reasoning in the fuzzy DL over complete latticesL*-SROIQ(D), respectively.

    Keywords: description logics; fuzzy description logics; rough description logics; (,)-intuitionistic fuzzy rough sets; Semantic Web

    In the last years, the use of ontologies as formalisms for knowledge representation in many different application domains has grown significantly[1]. Ontologies have been successfully used as part of expert and multi-agent systems, as well as a core element in the Semantic Web, which proposes to extend the current Web to give information a well-defined meaning[2-3]. An ontology is defined as an explicit and formal specification of a shared conceptualization[4], which means that ontologies represent the concepts and the relationships in a domain promoting interrelation with other models and automatic processing. Ontologies allow to add semantics to data, making knowledge maintenance, information integration as well as the reuse of components easier[1].

    The current standard language for ontology creation is the Web Ontology Language (OWL)[1,5], which consists of the three increasingly expressive sublanguages OWL Lite, OWL DL, and OWL Full. OWL Full is the most expressive level but reasoning within it becomes undecidable, OWL Lite has the lowest complexity and OWL DL is a balanced tradeoff between expressiveness and reasoning complexity. However, since its first development, several limitations on expressiveness of OWL have been identified, and consequently several extensions to the language have been proposed[1].

    Description Logics (DLs for short)[6]are a family of knowledge representation languages which can be used to represent the terminological knowledge of an application domain in a structured and formally well-understood way. Each logic is denoted by using a string of capital letters which identify the constructors of the logic and therefore its complexity[1]. Important characteristics of DLs are high expressivity together with decidability, which guarantee that reasoning algorithms always terminate with correct answers. Nowadays, DLs have been proved to be very useful as ontology languages. For example, OWL Lite, OWL DL, and OWL 2 have a formal semantics and a reasoning support through a mapping to the expressive DLsSHIF(D),SHOIN(D), andSROIQ(D), respectively[1,5-9]. More precisely, without regarding annotation properties of OWL, the OWL Lite, OWL DL, and OWL 2 are equivalent to DLsSHIF(D),SHOIN(D), andSROIQ(D), respectively.

    Nevertheless, it has been widely pointed out that classical DLs[6]are not appropriate to deal with imprecise and vague knowledge, which is inherent to several real world domains[1,10]. The rising popularity of DLs and their use, and the need to deal with uncertainty and vagueness, both especially in the Semantic Web[2-3], is increasingly attracting the attention of many researchers and practitioners towards DLs able to cope with uncertainty and vagueness[11]. Several extensions of DLs have been proposed relying on various extensions of classic logic: there have been probabilistic[12], possibilistic[13], fuzzy[1,14-18], and rough[19-20]extensions that have fundamental differences in terms of semantics and thus in the types of knowledge they model. The probabilistic and possibilistic approaches capture uncertainty and make it possible to represent uncertain knowledge, whereas the fuzzy approach captures vagueness and allows to represent fuzzy knowledge, and the rough approach deal withes rough (or imprecise) knowledge.

    Despite the growing popularity of these extended DLs such as probabilistic DLs, possibilistic DLs, fuzzy DLs, and rough DLs, relatively little work has been carried out in integrating them to the management of uncertain and imprecise information, the aim being to develop some new DL theories of uncertainty and vagueness stronger than both of them. At this aspect, we have carried out some works. For instance, we integrated fuzzy DLs (resp., intuitionistic fuzzy DLs) and rough DLs based on fuzzy rough set theory[21-22](resp., intuitionistic fuzzy rough set theory[22-25]), in other words, we presented fuzzy rough DLs[26](resp., intuitionistic fuzzy rough DLs[27]). There also are some related works. For example, Lukasiewicz and Straccia[28]present probabilistic fuzzy description logic programs, which combine fuzzy description logics, fuzzy logic programs, and probabilistic uncertainty in a uniform framework for the Semantic Web, and define important concepts dealing with both probabilistic uncertainty and fuzzy vagueness, such as the expected truth value of a crisp sentence and the probability of a vague sentence. In this paper, we will further study intuitionistic fuzzy rough DLs. The main reasons are as follows.

    (i) The intuitionistic fuzzy rough DLIFRALCpresented in [27] is an intuitionistic fuzzy rough extension of the DLALC[9]. It is well-known that inALC, there only exist concept negation, concept conjunction, concept disjunction, existential quantification, and universal quantification constructors. Therefore,IFRALCcan not deal with number restrictions, nominals, concrete domain, inverse roles, and role hierarchies, which are important ingredients of the DLsSHIF(D),SHOIN(D), andSROIQ(D). Moreover, these DLsSHIF(D),SHOIN(D), andSROIQ(D) are essentially the theoretical basis of the Web Ontology Language OWL, the state of the art language to specify ontologies[1,5-9]. In this paper, we will extend the intuitionistic fuzzy rough DLIFRALC[27]with the underlying DLSROIQ(D) which is the corresponding DL of the ontology description language OWL 2.

    (ii) The intuitionistic fuzzy rough DLIFRALCpresented in[27] is based on the intuitionistic fuzzy rough set theory presented in[24]. It is well-known that combining intuitionistic fuzzy set theory and rough set theory may result in a new hybrid mathematical structure for the requirement of knowledge processing systems. Research on this topic has been investigated by a number of authors[23-25]. Various tentative definitions of intuitionistic fuzzy rough sets were explored to extend rough set theory to the intuitionistic fuzzy environment[23]. For example, Zhou and Wu[24]explored a general framework for the study of various relation-based intuitionistic fuzzy rough approximation operators when the intuitionistic fuzzy triangular norm=min. However, rough set models for approximations of intuitionistic fuzzy sets with respect to an arbitrary intuitionistic fuzzy approximation space on the basis of general intuitionistic fuzzy logical operators have not been studied. Since the intuitionistic fuzzy rough DLIFRALCpresented in[27] is based on the intuitionistic fuzzy rough set theory presented in[24], therefore, theIFRALCcan not express general intuitionistic fuzzy logical operators correspondingly. Zhou et al.[25]present a generalized (,)-intuitionistic fuzzy rough set theory by employing intuitionistic fuzzy logical operators in the intuitionistic fuzzy set theory proposed by Cornelis et al.[29]. This paper will present new intuitionistic fuzzy rough DLs based on the (,)-intuitionistic fuzzy rough set theory[25].

    (iii) In fuzzy DLs (resp., fuzzy rough DLs, intuitionistic fuzzy rough DLs), there are crisp subsumption and fuzzy subsumption for fuzzy concepts (resp., fuzzy rough concepts, intuitionistic fuzzy rough concepts)[1,15-17]. The intuitionistic fuzzy rough DLIFRALC[27]considers the crisp subsumption. This paper will consider the fuzzy subsumption, i.e., subsumption relationship may hold to some degree which is taken from a complete lattice. The adopted approach is more general than the crisp subsumption based approach.

    In this paper we extend the intuitionistic fuzzy rough DLIFRALC[27]from the above mentioned three aspects. More concretely, an intuitionistic fuzzy extension of the DLSROIQ(D) is defined[1,7-8], i.e., we present the intuitionistic fuzzy rough DLIFRSROIQ(D) based on the (,)-intuitionistic fuzzy rough set theory[25], and provide its syntax, semantics, and reasoning algorithms.

    1 Preliminaries

    1.1 Description Logic SROIQ(D)

    DLs[6]are based on a common family of languages, called description languages, which provide a set of constructors to build concept (class) and role (property) descriptions. Such descriptions can be used in axioms and assertions of DL knowledge bases and can be reasoned about with respect to DL knowledge bases by DL systems[15].

    SROIQ(D)[1,7]extendsSROIQ[1,8]with concrete domains[30], in other words,SROIQ(D) extendsALCstandard DL[9]with transitive roles (ALCplus transitive roles is calledS), complex role axioms (R), nominals (O), inverse roles (I), qualified number restrictions (Q) and concrete domains (D).

    A concrete domain is a pairΔD,ΦD, whereΔDis a concrete interpretation domain andΦDis a set of concrete predicatesdwith a predefined aritynand an interpretationdD?(ΔD)n.

    SROIQ(D) assumes three alphabets of symbols, for individuals, roles and concepts. Abstract individuals are denoteda,b. Concrete individuals are denotedv. The abstract roles (denoted byR) of the language can be built inductively according to the following syntax rule:R→RA|R-|U. Concrete roles are denotedTand cannot be complex. The concepts (denoted byCorD) of the language can be built inductively from atomic concepts (A), top concept, bottom concept ⊥, named individuals (oi), abstract roles (R), concrete roles (T), simple roles (S, which will be defined below) and concrete predicatesdas follows, wheren,mdenote natural numbers:

    C,D→A||⊥|CD|CD|C|?R.C|?R.C|

    ?R.d|?R.d|{o1,…,om}|(≥nS.C)| (≤nS.

    C)| (≥nT.d)| (≤nT.d)| ?S.self.

    Expression of the form (≥nS.C), (≤nS.C) are called qualified number restrictions, while expression of the form (≥nS), (≤nS) are called unqualified number restrictions. (=nS.C) is an abbreviation for (≥nS.C)(≤nS.C), and (=nS) is an abbreviation for (≥nS)(≤nS). The case for concrete number restrictions is similar.

    AnSROIQ(D) knowledge base (KB) comprises two parts: the intensional knowledge, i.e., general knowledge about the application domain (a Terminological Box or TBoxTB, and a Role Box or RBoxRB), and the extensional knowledge, i.e., particular knowledge about some specific situation (an Assertional Box or ABoxABwith statements about individuals).

    An ABox consists of a finite set of assertions about individuals:

    ?concept assertionsa:C;

    ?role assertions (a,b):R;

    ?negated role assertions (a,b):R;

    ?concrete role assertions (a,v):T;

    ?negated concrete role assertions (a,v):T;

    ?inequality assertionsa≠b;

    ?equality assertionsa≠b.

    A TBox consists of a finite set of general concept inclusion (GCI) axiomsCD. We also say thatDis a superclass ofC, and thatCis a subclass ofD. A concept equivalenceC≡Dis a shorthand for the pair of axiomsCDandDC.

    Letwbe a role chain (a finite string of roles not including the universal roleU). An RBox consists of a finite set of role axioms:

    ?role inclusion axioms (RIAs)wRorT1T2, in RIAs of the formR1R2we also say thatR2is a super-role ofR1, and thatR1is a sub-role ofR2;

    ?transitive role axiomstrans(R);

    ?disjoint role axiomsdis(S1,S2) ordis(T1,T2);

    ?reflexive role axiomsref(R);

    ?irreflexive role axiomsirr(S);

    ?symmetric role axiomssym(R);

    ?asymmetric role axiomsasy(S).

    A role equivalenceR≡R′ is a shorthand for the pair of axiomsRR′ andR′R.

    Simple roles are inductively defined as follows:

    ?RAis simple if does not occur on the right side of aRIA;

    ?R-is simple ifRis;

    ?ifRoccurs on the right side of aRIA,Ris simple if, for eachwR,w=Sfor a simple roleS.

    Note that concrete roles are always simple and non-complex.

    ?w=RR, or

    ?w=R-, or

    ?w=S1…SnandSiRfor alli=1,…,n, or

    ?w=RS1…SnandSiRfor alli=1,…,n, or

    ?w=S1…SnRandSiRfor alli=1,…,n.

    In order to guarantee the decidability of the logic, there are some restrictions in the use of roles:

    ?some concept constructors require simple roles: non-concrete qualified number restrictions and local reflexivity;

    ?some role axioms also require simple roles: disjoint, irreflexive and asymmetric role axioms;

    ?role axioms cannot contain the universal roleU;

    An interpretationIwith respect to a concrete domainDis a pair (ΔI, ?I) consisting of a non empty setΔI(the interpretation domain) disjoint withΔDand an interpretation function ?Imapping:

    ?every abstract individualaonto an elementaIofΔI;

    ?every concrete individualvonto an elementvDofΔD;

    ?every atomic conceptAonto a setAI?ΔI;

    ?every abstract atomic roleRAonto a relation (RA)I?ΔI×ΔI;

    ?every concrete roleTonto a relationTI?ΔI×ΔD;

    ?everyn-ary concrete predicatedonto the interpretationdD?(ΔD)n.

    The interpretation is extended to complex concepts and roles by the inductive definitions as follows, where #Xdenotes the cardinality of the setX:

    ?UI=ΔI×ΔI; ()I=ΔI; (⊥)I=;

    ?(CD)I=CIDI; (CD)I=CIDI;

    ?Ia:C iffaICI;

    ?I(a,b):Riff (aI,bI)RI;

    ?I(a,b):Riff (aI,bI)RI;

    ?I(a,v):Tiff (aI,vD)TI;

    ?I(a,v):Tiff (aI,vD)TI;

    ?Ia=biffaI=bI;

    ?Ia≠biffaI≠bI;

    ?ICDiffCI?DI;

    ?IR1…Rn…RnI?RI;

    ?IT1T2iff (T1)I?(T2)I;

    ?Itrans(R) iff (x,y)RIand (y,z)RIimply (x,z)RI, ?x,y,zΔI;

    ?Idis(S1,S2) iff (S1)I(S2)I=;

    ?Idis(T1,T2) iff (T1)I(T2)I=;

    ?Iref(R) iff (x,x)RI, ?xΔI;

    ?Iirr(S) iff (x,x)SI, ?xΔI;

    ?Isym(R) iff (x,y)RIimply (y,x)RI, ?x,yΔI;

    ?Iasy(S) iff (x,y)SIimply (y,x)SI, ?x,yΔI.

    The interpretationI=(ΔI, ?I) satisfies the axiom (or assertion)ω, orIis a model ofω, iffIω. We say thatIsatisfies a knowledge baseKB=(AB,TB,RB), orIis a model ofKB, denotedIKB, iffIωfor each axiom (or assertion) inAB,TB,RB. We say thatKBis satisfiable (resp., unsatisfiable) iffKBhas a (resp., no) model. An axiom (or assertion)ωis a logical consequence ofKB, denotedKBω, iff each model ofKBsatisfiesω.

    A DL not only stores axioms and assertions, but also offers some reasoning services. Some important reasoning problems inSROIQ(D) are summarized as follows:

    KBsatisfiability: given a knowledge baseKB, decide whetherKBis satisfiable;

    concept satisfiability: given a knowledge baseKBand a conceptC, decide whetherKB/C⊥;

    subsumption: given a knowledge baseKBand conceptsCandD, decide whetherKBCD;

    instance: given a knowledge baseKB, an individuala, andaconceptC, decide whetherKBC(a); given a knowledge baseKB, individualsa,b(resp., an individualaand a valuev), and a roleR(resp.,), decide whetherKBR(a,b) (resp.,KBT(a,v)).

    We can obtain the reasoning algorithm of concept satisfiability ofSROIQ(D) by integrating the reasoning algorithms of concept satisfiability ofSROIQ[8]andSHOQ(D)[30], that is to say, we need to extend theSROIQ-tableau algorithm[8]with datatype-rules[30-31].

    1.2(,)-IntuitionisticFuzzyRoughSets

    We first review a special lattice on [0, 1]×[0, 1] (where [0, 1] is the unit interval) and its logical operations originated by Cornelis et al.[29].

    DenoteL*={(x1,x2)([0, 1]×[0, 1]|x1+x2≤1}. We define a relation ≤L*onL*as follows:

    x1≤y1andx2≥y2.

    Then the relation ≤L*is a partial ordering onL*and the pair (L*, ≤L*) is a complete lattice with the smallest element 0L*=(0, 1) and the greatest element 1L*=(1, 0)[25,29]. The meet operatorand the join operatoron (L*, ≤L*) which are linked to the ordering ≤L*are, respectively, defined as follows: ?(x1,x2), (y1,y2)L*,

    (x1,x2)(y1,y2)=(min(x1,y1), max(x2,y2)),

    (x1,x2)(y1,y2)=(max(x1,y1), min(x2,y2)).

    (y1,y2)≥L*(x1,x2)?(x1,x2)≤L*(y1,y2),

    andx=y?x≤L*yandx≥L*y.

    An intuitionistic fuzzy negator onL*is a decreasing mapping:L*→L*satisfying(0L*)=1L*and(1L*)=0L*. If((x))=xfor allxL*, thenis called an involutive intuitionistic fuzzy negator. The mappingS, defined asS(x1,x2)=(x2,x1), ?(x1,x2)L*, is called the standard intuitionistic fuzzy negator.

    Since ≤L*is a partial ordering, the order-theoretic definitions of conjunction and disjunction onL*called intuitionistic fuzzy triangular norm (intuitionistic fuzzy t-norm for short) and intuitionistic fuzzy triangular conorm (intuitionistic fuzzy t-conorm for short) are introduced as follows:

    An intuitionistic fuzzy t-norm onL*is an increasing, commutative, associative mapping:L*×L*→L*satisfying(1L*,x)=xfor allxL*. An intuitionistic fuzzy t-conorm onL*is an increasing, commutative, associative mappingS:L*×L*→L*satisfyingS(0L*,x)=xfor allxL*.

    An intuitionistic fuzzy t-normand an intuitionistic fuzzy t-conormSonL*are said to dual with respect to an intuitionistic fuzzy negatorif

    ((x),(y))=((x,y)), ?x,yL*;

    ((x),(y))=((x,y)), ?x,yL*.

    (0L*, 0L*)=1L*,(1L*, 0L*)=0L*,
    (0L*, 1L*)=1L*,(1L*, 1L*)=1L*.

    Now we recall some basic notions of intuitionistic fuzzy sets presented by Atanassov[33]. LetUbe a nonempty set called the universe of discourse. The classes of all subsets (resp., fuzzy sets) ofUwill be denoted by(U) (resp.,(U)).

    Let a setUbe fixed. An intuitionistic fuzzy setAinUis an object having the form

    A={x,μA(x),γA(x)|xU},

    We introduce some basic operations onI(U) as follows[25,33]: ?A,BI(U),

    ?A?BiffB?A;

    ?A=BiffA?BandB?A;

    ?AB={x,min(μA(x),μB(x)),max(γA(x),γB(x))|xU};

    ?AB={x,max(μA(x),μB(x)),min(γA(x),γB(x))|xU}.

    We know that an intuitionistic fuzzy relationR[25,35-36]onUis an intuitionistic fuzzy subsetU×U, namely,Ris given by

    R={(x,y),μR(x,y),γR(x,y)|(x,y)U×U},

    In general the round composition of intuitionistic fuzzy relationsR1,R2, …,Rn-1,RninI(U×U) is the intuitionistic fuzzy relationsR1R2…Rn-1RninI(U×U) defined by

    (R1R2…Rn-1Rn)(x,y)=

    Rn-1(yn-2,yn-1),Rn(yn-1,y)).

    In what follows, we introduce the basic notions of (,)-intuitionistic fuzzy rough sets[25].

    LetUbe a non-empty universe of discourse andRbe an intuitionistic fuzzy relation onU. The pair (U,R) is called an intuitionistic fuzzy approximation space.

    Let (U,R) be an intuitionistic fuzzy approximation space,andbe a continuous intuitionistic fuzzy t-norm and an intuitionistic fuzzy implicator onL*, respectively. Then the-upper intuitionistic fuzzy rough approximation operatorand the-lower intuitionistic fuzzy rough approximation operatorhave the following properties: ?A,B,AiI(U) (?iJ,Jis an index set),

    2 Intuitionistic Fuzzy Description Logic IFSROIQ(D)

    The main goal of this paper is to provide intuitionistic fuzzy rough DLIFRSROIQ(D), which is the extension of intuitionistic fuzzy DLIFSROIQ(D).

    IFSROIQ(D) is the fuzzy extension ofSROIQ(D) presented in Section 1.1 based on intuitionistic fuzzy set theory[25,33,35]. Obviously,IFSROIQ(D) is an extension of the intuitionistic fuzzy DLIFALC[27].

    Definition1[7,17]A fuzzy concrete domainDis a pairΔD,ΦD, whereΔDis a concrete interpretation domain andΦDis a set of fuzzy concrete predicatesdwith an aritynand an interpretationdD: (ΔD)n→[0, 1], which is ann-ary fuzzy relation overΔD. In the following for simplicity we assume arity 1.

    C,D→A||⊥|CD|CD|C|?R.C|?R.C|

    ?T.d| ?T.d| {α1/o1,…,αm/om}| (≥mS.

    C)| (≤nS.C)| (≥mT.d)| (≤nT.d)|

    ?S.self|mod(C)| [C≥L*α]| [C≤L*β].

    The abstract roles (denoted byR) of the language can be built inductively according to the following syntax rule:R→RA|R-|U|mod(R)| [R≥L*α], whereUis a universal role.

    In the rest of this paper we will assumeL*{≥L*, >L*, ≤L*,

    Definition3An intuitionistic fuzzy knowledge baseIFKBcomprises an intuitionistic fuzzy ABoxIFAB, an intuitionistic fuzzy TBoxIFTBand an intuitionistic fuzzy RBoxIFRB, i.e.,IFKB=IFAB,IFTB,IFRB.

    An intuitionistic fuzzy ABoxIFABconsists of a finite set of intuitionistic fuzzy assertions of one of the following types:

    ?an intuitionistic fuzzy concept assertiona:C≥L*α,a:C>L*α,a:C≤L*αora:C

    ?an intuitionistic fuzzy role assertionψ≥L*α,ψ>L*α,ψ≤L*αorψ

    An intuitionistic fuzzy TBoxIFTBconsists of a finite set of intuitionistic fuzzy GCIs (IFGCIsfor short) of the form (CDL*α, whereL*stands for ≥L*or >L*.

    An intuitionistic fuzzy RBoxIFRBconsists of a finite set of intuitionistic fuzzy role axioms of the following types:

    ?intuitionistic fuzzyIFRIAswRL*α, wherew=R1R2…Rmis a role chain,T1T2L*α;

    ?transitive role axiomstrans(R);

    ?disjoint role axiomsdis(S1,S2),dis(T1,T2);

    ?reflexive role axiomsref(R);

    ?irreflexive role axiomsirr(S);

    ?symmetric role axiomssym(R);

    ?asymmetric role axiomsasy(S).

    Definition4Simple roles are defined as follows:

    ?RAis simple if it does not occur on the right side of anIFRIA;

    ?R-is simple ifRis simple;

    ?ifRoccurs on the right side of anIFRIA,Ris simple if, for each (wRL*α,w=Sfor a simple roleS.

    As inFSROIQ(D), there are also some restrictions in the use of roles, in order to guarantee the decidability ofIFSROIQ(D). These restrictions are the same as that ofFSROIQ(D) (see [1] and [7] for more details).

    Obviously, the syntax ofIFSROIQ(D) is the extension of that ofFSROIQ(D)[1,7], i.e., theIFSROIQ(D) allows to express that a sentence is true to some degree, which is not taken from the unit interval[0, 1], but from the complete latticeL*.

    The semantics ofIFSROIQ(D) is also the extension of the semantics of fuzzy DLFSROIQ(D)[1,7].

    Definition5An intuitionistic fuzzy interpretationIwith respect to a fuzzy concrete domainDis a tuple (ΔI, ?I) consisting of a non empty setΔI(the interpretation domain) disjoint withΔDand an interpretation function ?Imapping:

    ?every abstract individualaonto an elementaIofΔI;

    ?every concrete individualvonto an elementvDofΔD;

    ?every conceptConto a functionCI:ΔI→L*;

    ?every abstract roleRonto a functionRI:ΔI×ΔI→L*;

    ?every concrete roleTonto a functionTI:ΔI×ΔD→L*;

    ?everyn-ary concrete fuzzy predicatedonto the fuzzy relationdD: (ΔD)n→L*;

    ?every modifiermodonto a functionfmod:L*→L*.

    Given arbitrary intuitionistic fuzzy t-norm, intuitionistic fuzzy t-conorm, intuitionistic fuzzy negatorand intuitionistic fuzzy implicator, the intuitionistic fuzzy interpretationIis extended to complex concepts and roles as follows, ?xΔI:

    ?(⊥)I(x)=0L*;

    ?(CD)I(x)=(CI(x),DI(x));

    ?(CD)I(x)=(CI(x),DI(x));

    ?(?R.C)I(x)=y ΔI{(RI(x,y),CI(y))};

    ?(?R.C)I(x)=y ΔI{(RI(x,y),CI(y))};

    ?(?T.d)I(x)=v ΔD{(TI(x,v),dD(v))};

    ?(?T.d)I(x)=v ΔD{(TI(x,v),dD(v))};

    ?(≥mS.C)I(x)=y1,…,ymΔI[({(SI(x,yi),CI(yi))},j

    ?(≤nS.C)I(x)=y1,…,yn+1ΔI[({(SI(x,yi),CI(yi))},j

    ?(≥mT.d)I(x)=v1,…,vmΔD[({(TI(x,vi),dD(vi))},j

    ?(≤nT.d)I(x)=v1,…,vn+1ΔD[({(SI(x,vi),dD(vi))},j

    ?(?S.self)I(x)=SI(x,x);

    ?(mod(C))I(x)=fmod(CI(x));

    ?([C≥L*α])I(x)=1L*ifCI(x)(L*α, 0L*otherwise;

    ?([C(L*β])I(x)=1L*ifCI(x)(L*β, 0L*otherwise;

    ?(R-)I(x,y)=RI(y,x);

    ?(U)I(x,y)=1L*;

    ?(mod(R))I(x,y)=fmod(RI(x,y));

    ?([R≥L*α])I(x,y)=1L*ifRI(x,y)≥L*α, 0L*otherwise.

    As inFSROIQ(D), we do not impose unique name assumption, i.e., two nominals might refer to the same individual.

    The intuitionistic fuzzy interpretation function is extended to intuitionistic fuzzy axioms as follows:

    ?(a:C)I=CI(aI);

    ?((a,b):R)I=RI(aI,bI);

    ?((a,b):R)I=(RI(aI,bI));

    ?((a,v):T)I=TI(aI,vD);

    ?((a,v):T)I=(TI(aI,vD));

    ?(CD)I=xΔI{(CI(x),DI(x))};

    ?(R1…RmR)I=x1,…,xm+1ΔI{(((x1,x2), …,(xm,xm+1)),RI(x1,xm+1))};

    ?(T1T2)I=xΔI,vΔD{((x,v),(x,v))}.

    The satisfaction of an intuitionistic fuzzy axiom (or assertion)ωin an intuitionistic fuzzy interpretationI, denotedIω, is defined as follows:

    ?Ia:CL*αiff (a:C)IL*α;

    ?I(a,b):RL*αiff ((a,b):R)IL*α;

    ?I((a,b):RL*αiff ((a,b):R)IL*α;

    ?I(a,v):TL*αiff ((a,v):T)IL*α;

    ?I((a,v):TL*αiff ((a,v):T)IL*α;

    ?Ia≠biffaI≠bI;

    ?Ia=biffaI=bI;

    ?ICDL*αiff (CD)IL*α;

    ?I(R1…RmRL*αiff (R1…RmR)IL*α;

    ?IT1T2L*αiff (T1T2)IL*α;

    ?Itrans(R) iff ?x,yΔI,RI(x,y)≥L*zΔI{(RI(x,z),RI(z,y))};

    ?Idis(S1,S2) iff ?x,yΔI,(x,y)=0L*or(x,y)=0L*;

    ?Idis(T1,T2) iff ?xΔI,yΔD,(x,y)=0L*or(x,y)=0L*;

    ?Iref(R) iff ?xΔI,RI(x,x)=1L*;

    ?Iirr(S) iff ?xΔI,SI(x,x)=0L*;

    ?Isym(R) iff ?x,yΔI,RI(x,y)=RI(y,x);

    ?Iasy(S) iff ?x,yΔI, ifSI(x,y)>L*0L*thenSI(y,x)=0L*.

    An intuitionistic fuzzy interpretationIsatisfies an intuitionistic fuzzy RBoxIFRB(writtenIIFRB) (resp., intuitionistic fuzzy TBoxIFTB(writtenIIFTB), intuitionistic fuzzy ABoxIFAB(writtenIIFAB)) iffIωfor all elementsωIFRB(resp.,ωIFTB,ωIFAB); in this case, we say thatIis a model ofIFRB(resp.,IFTB,IFAB).

    An intuitionistic fuzzy interpretationIsatisfies an intuitionistic fuzzy knowledge baseIFKB=IFAB,IFTB,IFRB, orIis a model ofIFKB, denotedIIFKB, iffIis a model ofIFRBIFTBIFAB, i.e.,IIFRB,IIFTB, andIIFAB. We sayIFKBis satisfiable (unsatisfiable) iff there exists (does not exist) an intuitionistic fuzzy interpretationIwhich satisfies all elements inIFKB.

    An intuitionistic fuzzy axiom (or assertion)ωis a logical consequence of an intuitionistic fuzzy knowledge baseIFKB, denotedIFKBω, iff every model ofIFKBsatisfiesω.

    LetCandDbe two concepts. We say thatCis subsumed byDto degreeαwith respect toIFKB(writtenFRKBCD≥L*α) if for every modelIofIFKBit holds thatICD≥L*α.

    An intuitionistic fuzzy ABoxIFABis consistent with respect toIFRBandIFTBif there exists a modelIofIFRBandIFTBsuch thatIIFAB.

    Similarly with the fuzzy DLFSHOIN(D)[11]andFSROIQ(D)[1,7], in addition to the standard reasoning problems defined above, two other important reasoning problems ofIFSROIQ(D) are the best truth certainty bound (BTCB) problem and the best satisfiability bound (BSB) problem, which we describe in the following.

    Given an intuitionistic fuzzy knowledge baseIFKBand a classical axiom (or assertion)ρ, whereρis neither a transitive role axiom, disjoint role axiom, reflexive role axiom, irreflexive role axiom, symmetric role axiom, or asymmetric role axiom nor an equality or inequality axiom, it is of interest to computeρ’s best lower and upper certainty value bounds (best certainty value bound). The greatest lower bound ofρwith respect toIFKB, denoted byglb(IFKB,ρ), is defined byglb(IFKB,ρ)={α|IFKBρ≥L*α}, whereφ=0L*. Similarly, the least upper bound ofρwith respect toIFKB, denoted bylub(IFKB,ρ), is defined bylub(IFKB,ρ)={α|IFKBρ≤L*α}, whereφ=1L*.

    The best satisfiability bound of a conceptCwith respect toIFKB, denoted byglb(IFKB,C), is defined byglb(IFKB,C)=IxΔI{CI(x)|IIFKB}. Intuitively, among all modelsIofIFKB, we determine the maximal degree of certainty that the conceptCmay have over all individualsxΔI.

    3 Intuitionistic Fuzzy Rough Description Logic IFRSROIQ(D)

    In the current section, we will provide the intuitionistic fuzzy roughIFRSROIQ(D). This includes the syntax, semantics, and reasoning ofIFRSROIQ(D). In fact,IFRSROIQ(D) is also a rough extension of the intuitionistic fuzzy DLIFSROIQ(D) presented in Section 2.

    3.1 Syntax and Semantics

    C,D→A||⊥|CD|CD|C|?R.C|?R.C|

    ?T.d|?T.d|{α1/o1,…,αm/om}|(≥mS.C)|

    (≤nS.C)|(≥mT.d)|(≤nT.d)|?S.self|

    Regarding the definitions of the abstract roles, concrete roles, intuitionistic fuzzy rough knowledge base, and simple roles ofIFRSROIQ(D), it is similar to that ofIFSROIQ(D). For example, an intuitionistic fuzzy rough TBoxIFRTBconsists of a finite set of intuitionistic fuzzy rough GCIs (IFRGCIsfor short) of the formCD≥L*αorCD>L*α, whereCandDare concepts ofIFRSROIQ(D). Comparing with theIFGCIofIFSROIQ(D), theIFRGCIofIFRSROIQ(D) can have intuitionistic fuzzy lower approximation concepts and intuitionistic fuzzy upper approximation concepts.

    Regarding the semantics of intuitionistic fuzzy rough knowledge base and the reasoning problems ofIFRSROIQ(D), they are similar to that ofIFSROIQ(D). For instance, an intuitionistic fuzzy rough interpretationIsatisfiesCDL*α, denotedICDL*α, iff (CD)IL*α.

    Comparing with classical DLs[6], fuzzy DLs[1,14-18], and intuitionistic fuzzy DLs (see Section 2 and [27]), the most distinguished characteristic of intuitionistic fuzzy rough DLIFRSROIQ(D) is that TBox and ABox have the intuitionistic fuzzy lower approximation concepts and intuitionistic fuzzy upper approximation concepts inIFRSROIQ(D).

    Theorem1For any conceptsC,D, and intuitionistic fuzzy-equivalence relationinIFRSROIQ(D), their intuitionistic fuzzy lower and intuitionistic fuzzy upper approximation concepts satisfy the following properties:

    (7)CD?

    (8)CD?).

    Proof to be omitted.

    3.2 Reasoning

    In this section, we will prove that the reasoning problems inIFRSROIQ(D) may be reduced to the corresponding reasoning in the intuitionistic fuzzy DLIFSROIQ(D).

    Given an arbitrary conceptCinIFRSROIQ(D), we define a translation function ?t:IFRSROIQ(D)→IFSROIQ(D) fromIFRSROIQ(D) toIFSROIQ(D) that fulfills the following conditions:

    ?At=A;

    ?⊥t=⊥;

    ?{α1/o1,…,αm/om}t={α1/o1,…,αm/om};

    ?(CD)t=CtDt;

    ?(CD)t=CtDt;

    ?(?R.C)t=?R.Ct;

    ?(?R.C)t=?R.Ct;

    ?(?S.Self)t=?S.Self;

    ?(≥mS.C)t=≥mS.Ct;

    ?(≤nS.C)t=≤nS.Ct;

    ?(?T.d)t=?T.d;

    ?(?T.d)t=?T.d;

    ?(≥mT.d)t=≥mT.d;

    ?(≤nT.d)t=≤nT.d;

    ?(mod(C))t=mod(Ct);

    ?([C≥L*α])t=[Ct≥L*α];

    ?([C≤L*β])t=[Ct≤L*β];

    Given an arbitraryIFRGCICDL*αinIFRSROIQ(D), we can translate theIFRGCICDL*αinIFRSROIQ(D) into anIFGCICtDtL*αinIFSROIQ(D) using the above translation function ?t.

    Given an arbitrary intuitionistic fuzzy rough TBoxIFRTB={C1D1L*α1, …,CkDkL*αk} inIFRSROIQ(D), we can translate theIFRTB={C1D1L*α1, …,CkDkL*αk} into an intuitionistic fuzzy TBoxIFRTBt={(C1)t(D1)tL*α1, …,(Ck)t(Dk)tL*αk} inIFSROIQ(D) using the above translation function ?t.

    Given an arbitrary intuitionistic fuzzy rough ABoxIFRAB={a1:C1L*α1, …,ap:CpL*αp,ψ1L*β1, …,ψqL*βq,a11=b11, …,a1s=b1s,a21≠b21, …,a2t≠b2t} inIFRSROIQ(D), whereψiis of the form (a,b):R, (a,b):R, (a,v):T, or (a,v):T, we can translate the intuitionistic fuzzy rough ABoxIFRABinto an intuitionistic fuzzy ABoxIFRABt={a1:L*α1, …,ap:L*αp,ψ1L*β1, …,ψqL*βq,a11=b11, …,a1s=b1s,a21≠b21, …,a2t≠b2t} inIFSROIQ(D) using the above translation function ?t.

    Given an arbitrary intuitionistic fuzzy (rough) RBoxIFRRB={ω1, …,ωl} inIFRSROIQ(D), whereωi(1≤i≤l) is anIFRRIAof the formwiRiL*αiorT1iT2iL*βi, or a role assertion of the formtrans(R),dis(S1,S2),dis(T1,T2),ref(R),irr(S),sym(R) orasy(S), we can translate the intuitionistic fuzzy (rough) RBoxIFRRBinto an intuitionistic fuzzy RBoxIFRRBt={ref(),sym(),trans(), …,ref(),sym(),trans(),ω1, …,ωl} inIFSROIQ(D) using the above translation function ?t.

    Given an arbitrary intuitionistic fuzzy rough knowledge baseIFRKB=IFRAB,IFRTB,IFRRBinIFRSROIQ(D), we can theIFRKBinto an intuitionistic fuzzy knowledge baseIFRKBt=IFRABt,IFRTBt,IFRRBtinIFSROIQ(D) using the above translation function ?t.

    In the following, we prove the correctness of the translation function ?t, i.e., we prove that the satisfiability, subsumption, logical consequence, ABox consistency, BTCB, and BSB reasoning inIFRSROIQ(D) may be reduced to the corresponding reasoning inIFSROIQ(D).

    Theorem2Given an intuitionistic fuzzy rough knowledge baseIFRKB=IFRAB,IFRTB,IFRRBinIFRSROIQ(D),IFRKBt=IFRABt,IFRTBt,IFRRBtis the intuitionistic fuzzy knowledge base inIFSROIQ(D) obtained from the translation function ?t.IFRKBis satisfiable, iffIFRKBtis satisfiable.

    Theorem3Given a conceptC, an intuitionistic fuzzy rough knowledge baseIFRKB=IFRAB,IFRTB,IFRRBinIFRSROIQ(D),CtandIFRKBt=IFRABt,IFRTBt,IFRRBtare the concept and the intuitionistic fuzzy knowledge base inIFSROIQ(D) obtained from the translation function ?t, respectively.Cisα-satisfiable with respect toIFRKB, iffCtisα-satisfiable with respect toIFRKBt.

    Theorem4Given two conceptsC,D, and an intuitionistic fuzzy rough knowledgeIFRKBinIFRSROIQ(D),CtandDt, andIFRKBtare the concepts, and intuitionistic fuzzy knowledge base inIFSROIQ(D) obtained from the translation function ?t, respectively.Cis subsumed byDto degreeαwith respect toIFRKBiffCtis subsumed byDtto degreeαwith respect toIFRKBt. Formally,IFRKBCDL*αiffIFRKBtCtDtL*α.

    Theorem5Given an intuitionistic fuzzy rough axiom (or assertion)ω, and an intuitionistic fuzzy rough knowledgeIFRKBinIFRSROIQ(D),ωtandIFRKBtare the intuitionistic fuzzy axiom (or assertion) and intuitionistic fuzzy knowledge base inIFSROIQ(D) obtained from the translation function ?t, respectively.ωis a logical consequence ofIFRKB, iffωtis a logical consequence ofIFRKBt. Formally,IFRKBωiffIFRKBtωt.

    Theorem6Given an intuitionistic fuzzy rough ABoxIFRAB, an intuitionistic fuzzy rough TBoxIFRTB, and an intuitionistic fuzzy rough RBoxIFRRBinIFRSROIQ(D),IFRABt,IFRTBt, andIFRRBtare the intuitionistic fuzzy ABox, intuitionistic fuzzy TBox, and intuitionistic fuzzy RBox inIFSROIQ(D) obtained from the translation function ?t, respectively.IFRABis consistent with respect toIFRRBandIFRTB, iffIFRABtis consistent with respect toIFRRBtandIFRTBt.

    Theorem7Given an intuitionistic fuzzy rough knowledgeIFRKB=IFRAB,IFRTB,IFRRB, an axiom (or assertion)ρ, whereρis neither a transitive role axiom, disjoint role axiom, reflexive role axiom, irreflexive role axiom, symmetric role axiom, or asymmetric role axiom nor an equality or inequality axiom, and a conceptCinIFRSROIQ(D),IFRKBt=IFRABt,IFRTBt,IFRRBt,ρt, andCtare the intuitionistic fuzzy knowledge base, axiom (or assertion), and concept inIFSROIQ(D) obtained from the translation function ?t, respectively. Then

    (1)glb(IFRKB,ρ)=glb(IFRKBt,ρt);

    (2)lub(IFRKB,ρ)=lub(IFRKBt,ρt);

    (3)glb(IFRKB,C)=glb(IFRKBt,Ct).

    4 Conclusion

    Handling uncertainty and vagueness has started to play an important role in ontology languages for the Semantic Web. An integration between the theories of expressive intuitionistic fuzzy DLs and expressive rough DLs has been provided. More concretely, towards sophisticated formalisms for reasoning under fuzzy uncertainty and rough uncertainty in the Semantic Web, we have presented a kind of very expressive intuitionistic fuzzy rough DLIFRSROIQ(D), which is the intuitionistic fuzzy rough extension of the expressive DLSROIQ(D) behind OWL 2 based on (,)-intuitionistic fuzzy rough set theory. We have proved that the main reasoning tasks in theIFRSROIQ(D) may be reduced to the corresponding reasoning in the fuzzy DL over complete latticesL*-SROIQ(D). As far as future directions are concerned, these will include the extension of the DLSROIQ(D) based on probabilistic rough set theory and interval-valued (fuzzy) rough set theory, in order to provide reasoning support for the probabilistic rough DLs and interval-valued (fuzzy) rough DLs, respectively.

    [1] BOBILLO F,DELGADO M,GOMEZ-ROMERO J,et al.Fuzzy description logics under G?del semantics[J]. Int J Approx Reason, 2009,50(3): 494-514.

    [2] BERNERS-LEE T, HENDLER J, LASSILA O. The semantic Web[J]. Scientific American,2001,284(5):34-43.

    [3] PATEL-SCHNEIDER P F,HORROCKS I.A comparison of two modelling paradigms in the Semantic Web[J]. J Web Semant,2007,5(4):240-250.

    [4] GRUBER T R. A translation approach to portable ontology specifications[J].Knowledge Acquisition,1993, 5(2):199-220.

    [5] HORROCKS I,PATEL-SCHNEIDER P F,HARMELEN F V. From SHIQ and RDF to OWL: The making of a Web ontology language[J]. J Web Semant,2003,1(1):7-26.

    [6] BAADER F,CALVANESE D,MCGUINNESS D,et al.The description logic handbook: Theory, implementation and applications[M]. 2nd Ed. Cambridge:Cambridge University Press, 2007.

    [7] BOBILLO F. Managing vagueness in ontologies[D]. Spain:University of Granada, 2008.

    [8] HORROCKS I,KUTZ O,SATTLER U.The even more irresistible SROIQ[C]∥DOHERTY P, MYLOPOULOS J, WELTY C.Proceedings of the 10th international conference of knowledge representation and reasoning.Palo Alto, California, USA:AAAI Press, 2006:57-67.

    [9] HORROCKS I, PATEL-SCHNEIDER P.Reducing OWL entailment to description logic satisfiability[J]. J Web Semant,2004,1(4):345-357.

    [10] SANCHEZ E.Fuzzy logic in the Semantic web: Covering a missing link[M]∥SANCHEZ E.Capturing intelligence: Fuzzy logic and the semantic web, Elsevier, 2006:ix-xiii.

    [11] LUKASIEWICZ T,STRACCIA U.Managing uncertainty and vagueness in description logics for the Semantic Web[J].J Web Semant,2008,6(4):291-308.

    [12] LUKASIEWICZ T.Expressive probabilistic description logics[J].Artif Intell,2008,172(6-7) : 852-883.

    [13] HOLLUNDER B.An alternative proof method for possibilistic logic and its application to terminological logics[J]. Int J Approx Reason,1995,12(2):85-109.

    [14] BOBILLO F,STRACCIA U. Fuzzy description logics with general t-norms and datatypes[J]. Fuzzy Set Syst,2009,160(23):3382-3402.

    [15] STOILOS G,STAMOU G,PAN J Z, et al.Reasoning with very expressive fuzzy description logics[J].J Artif Intell Res, 2007,30(8):273-320.

    [16] STRACCIA U.Reasoning within fuzzy description logics[J]. J Artif Intell Res, 2001, 14:137-166.

    [17] STRACCIA U.A fuzzy description logic for the Semantic Web[M]∥SANCHEZ E.Capturing intelligence: Fuzzy logic and the semantic web.Amsterdam, Netherlands:Elsevier Science Publishers, 2006:73-90.

    [18] STRACCIA U.Description logics over lattices[J].Int J Uncertain Fuzz,2006,14(1):1-16.

    [19] JIANG Y,WANG J,TANG S,et al.Reasoning with rough description logics: An approximate concepts approach[J]. Inform Sciences,2009,179(5):600-612.

    [20] SCHLOBACH S,KLEIN M,PEELEN L.Description logics with approximate definitions: Precise modeling of vague concepts[C]∥VELOSO M M.Proceedings of the 20th international joint conference on artificial intelligence, Palo Alto, California, USA:AAAI Press, 2007:557-562.

    [21] DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough sets[J].Int J Gen Syst, 1990,17(2-3):191-209.

    [22] MI J,LEUNG Y,ZHAO H,et al.Generalized fuzzy rough sets determined by a triangular norm[J].Inform Sciences,2008,178(16):3203-3213.

    [23] CORNELIS C,COCK M D,KERRE E E.Intuitionistic fuzzy rough sets: At the crossroads of imperfect knowledge[J]. Expert System, 2003,20(5):260-270.

    [24] ZHOU L,WU W.On generalized intuitionistic fuzzy rough approximation operators[J].Inform Sciences, 2008,178(11):2448-2465.

    [25] ZHOU L,WU W,ZHANG W.On characterization of intuitionistic fuzzy rough sets based on intuitionistic fuzzy implicators[J]. Inform Sciences,2009,179(7):883-898.

    [26] JIANG Y,WANG J,DENG P, et al.Reasoning within expressive fuzzy rough description logics[J].Fuzzy Set Syst,2009,160(23):3403-3424.

    [27] JIANG Y,TANG Y,WANG J,et al.Reasoning within intuitionistic fuzzy rough description logics[J].Inform Sciences,2009,179(14):2362-2378.

    [28] LUKASIEWICZ T,STRACCIA U.Description logic programs under probabilistic uncertainty and fuzzy vagueness[J]. Int J Approx Reason,2009,50(6):837-853.

    [29] CORNELIS C,DESCHRIJVER G, KERRE E E.Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: Construction, classification, application[J]. Int J Approx Reason,2004: 35(1):55-95.

    [30] LUTZ C,ARECES C,HORROCKS I,et al.Keys, nominals, and concrete domains[J].J Artif Intell Res,2005,23:667-726.

    [31] MOTIK B,HORROCKS I.OWL datatypes: Design and implementation[C]∥Proceedings of the 7th international Semantic Web conference, Lecture notes in computer science. New York:Springer-Verlag, 2008,5318:307-322.

    [32] PAWLAK Z. Rough sets: Theoretical aspects of reasoning about data[M].Dordrecht,Netherlands:Kluwer Academic Publishers, 1991.

    [33] ATANASSOV K. Intuitionistic fuzzy sets[M]. Heidelberg/New York :Physica-Verlag, 1999.

    [34] DESCHRIJVER G,KERRE E F. On the relationship between some extensions of fuzzy set theory[J].Fuzzy Set Syst,2003,133(2):227-235.

    [35] DESCHRIJVER G,KERRE E E.On the composition of intuitionistic fuzzy relations[J].Fuzzy Set Syst, 2003,136(3):333-361.

    [36] BUSTINCE H,BURILLO P. Structures on intuitionistic fuzzy relations[J].Fuzzy Set Syst,1996,78(3):293-303.

    2013-09-24

    國家自然科學(xué)基金項目(61272066);教育部新世紀(jì)優(yōu)秀人才支持計劃項目(NCET-12-0644);廣東省自然科學(xué)基金項目(S2012030006242,10151063101000031)

    1000-5463(2013)06-0042-14

    TP301

    A

    10.6054/j.jscnun.2013.09.006

    面向語義Web的直覺模糊粗描述邏輯

    蔣運承*

    (華南師范大學(xué)計算機(jī)學(xué)院,廣東廣州 510631)

    分析了面向語義Web的直覺模糊粗描述邏輯的研究現(xiàn)狀和存在的問題,基于(L,T)-直覺模糊粗集理論將直覺模糊描述邏輯和粗描述邏輯進(jìn)行了集成,即提出了一種新的直覺模糊粗描述邏輯.針對與本體語言O(shè)WL 2等價的描述邏輯SROIQ(D),對SROIQ(D)進(jìn)行了擴(kuò)充,提出了直覺模糊粗描述邏輯IFRSROIQ(D),給出了IFRSROIQ(D)的語法、語義和性質(zhì),證明了IFRSROIQ(D)的推理問題(包括知識庫可滿足性、概念可滿足性、概念包含、邏輯推導(dǎo)、ABox一致性推理等)可以歸約到基于完備格的描述邏輯L*-SROIQ(D)上對應(yīng)的推理.

    描述邏輯; 模糊描述邏輯; 粗描述邏輯;(L,T)-直覺模糊粗集; 語義Web

    *通訊作者:蔣運承,教授,Email: ycjiang@scnu.edu.cn, yunchengjiang@gmail.com.

    【中文責(zé)編:莊曉瓊 英文責(zé)編:肖菁】

    猜你喜歡
    國家自然科學(xué)基金直覺責(zé)編
    “好一個裝不下”直覺引起的創(chuàng)新解法
    常見基金項目的英文名稱(一)
    林文月 “人生是一場直覺”
    海峽姐妹(2020年7期)2020-08-13 07:49:22
    一個“數(shù)學(xué)直覺”結(jié)論的思考
    我校喜獲五項2018年度國家自然科學(xué)基金項目立項
    2017 年新項目
    數(shù)學(xué)直覺謅議
    Optimization and application of protein C-terminal labeling by carboxypeptidase Y
    國家自然科學(xué)基金項目簡介
    Graphene Based Electrochemical Sensor for the Detection of Volatile Organic Compounds
    97超碰精品成人国产| 亚洲激情五月婷婷啪啪| 午夜精品国产一区二区电影 | 成人特级黄色片久久久久久久| 国产精品一二三区在线看| 嫩草影院精品99| 国内少妇人妻偷人精品xxx网站| 伦精品一区二区三区| 久久精品国产99精品国产亚洲性色| 国产精品人妻久久久影院| 国产爱豆传媒在线观看| 国产高清三级在线| 久久精品国产亚洲av香蕉五月| 亚洲电影在线观看av| 欧美激情国产日韩精品一区| 中国美女看黄片| 国产精品免费一区二区三区在线| 国产老妇女一区| 国产在线精品亚洲第一网站| 成人av在线播放网站| 俄罗斯特黄特色一大片| 国产精品久久久久久亚洲av鲁大| 看免费成人av毛片| 久久久国产成人精品二区| 在线观看美女被高潮喷水网站| avwww免费| 一个人看的www免费观看视频| 精品99又大又爽又粗少妇毛片| 欧美性感艳星| 最新中文字幕久久久久| 在线a可以看的网站| 欧美一级a爱片免费观看看| 男人的好看免费观看在线视频| 国产黄a三级三级三级人| 日韩一本色道免费dvd| 一个人看视频在线观看www免费| 亚洲av不卡在线观看| 午夜亚洲福利在线播放| 99久久精品热视频| 日本成人三级电影网站| 淫妇啪啪啪对白视频| 亚洲人与动物交配视频| 亚洲熟妇中文字幕五十中出| 亚洲精品一卡2卡三卡4卡5卡| 欧美xxxx性猛交bbbb| 色综合亚洲欧美另类图片| 免费看光身美女| 精品久久久噜噜| 麻豆乱淫一区二区| 国产亚洲91精品色在线| 亚洲av二区三区四区| 亚洲不卡免费看| 色哟哟·www| 精品人妻偷拍中文字幕| 搡老熟女国产l中国老女人| 极品教师在线视频| 俺也久久电影网| 国产欧美日韩精品亚洲av| 欧美日韩精品成人综合77777| 国产乱人视频| 国产高清三级在线| 最近的中文字幕免费完整| 日韩成人av中文字幕在线观看 | 亚洲乱码一区二区免费版| 久久久久久久久久成人| 久久久久久久久久久丰满| 内地一区二区视频在线| 精品99又大又爽又粗少妇毛片| 麻豆av噜噜一区二区三区| a级毛色黄片| 成人二区视频| 国产v大片淫在线免费观看| 亚洲精品久久国产高清桃花| 在线免费观看的www视频| 久久精品国产清高在天天线| 国产高清激情床上av| 九九久久精品国产亚洲av麻豆| 12—13女人毛片做爰片一| 国产精品人妻久久久久久| 国产精品一二三区在线看| 69av精品久久久久久| 村上凉子中文字幕在线| 日韩一本色道免费dvd| 国产精品99久久久久久久久| 天堂av国产一区二区熟女人妻| 如何舔出高潮| 人人妻人人看人人澡| 小说图片视频综合网站| 国产精品久久久久久亚洲av鲁大| 精品国产三级普通话版| АⅤ资源中文在线天堂| 观看美女的网站| 成人无遮挡网站| 精品无人区乱码1区二区| 日本三级黄在线观看| 午夜久久久久精精品| 免费人成在线观看视频色| 免费人成在线观看视频色| 一级毛片aaaaaa免费看小| 成人二区视频| 99热网站在线观看| 欧美一区二区精品小视频在线| 国产色爽女视频免费观看| 亚洲精品影视一区二区三区av| 久久久久久久久久成人| 在线播放国产精品三级| 亚洲aⅴ乱码一区二区在线播放| 国产一区二区在线av高清观看| 成人毛片a级毛片在线播放| 免费一级毛片在线播放高清视频| 韩国av在线不卡| 亚州av有码| 国产亚洲欧美98| 亚洲国产精品合色在线| 久久久久久久午夜电影| 欧美高清性xxxxhd video| 欧美日本亚洲视频在线播放| 亚洲人成网站在线观看播放| 久久久久国内视频| 不卡一级毛片| 亚洲天堂国产精品一区在线| 亚洲av成人精品一区久久| 女人被狂操c到高潮| 综合色丁香网| 国产精品综合久久久久久久免费| 久久久久久久亚洲中文字幕| 日本黄色片子视频| 波多野结衣高清作品| 亚洲第一区二区三区不卡| 99久久成人亚洲精品观看| 久久久久性生活片| 亚洲美女视频黄频| 夜夜看夜夜爽夜夜摸| 欧美激情国产日韩精品一区| 晚上一个人看的免费电影| 好男人在线观看高清免费视频| 色吧在线观看| 欧美日韩综合久久久久久| 97超碰精品成人国产| 女的被弄到高潮叫床怎么办| 国产精品国产三级国产av玫瑰| 1000部很黄的大片| 国产精品电影一区二区三区| av女优亚洲男人天堂| 黑人高潮一二区| 中文亚洲av片在线观看爽| 欧美最黄视频在线播放免费| 少妇人妻精品综合一区二区 | av专区在线播放| 日韩 亚洲 欧美在线| 欧美日韩乱码在线| 国产伦精品一区二区三区视频9| 欧美最新免费一区二区三区| 欧美一级a爱片免费观看看| 18禁在线无遮挡免费观看视频 | 日韩欧美三级三区| 此物有八面人人有两片| 日韩,欧美,国产一区二区三区 | 亚洲熟妇熟女久久| 一进一出抽搐动态| 久久国产乱子免费精品| av福利片在线观看| 日本三级黄在线观看| 国产亚洲av嫩草精品影院| а√天堂www在线а√下载| 深夜a级毛片| 中文字幕久久专区| 给我免费播放毛片高清在线观看| 亚洲内射少妇av| 国产高潮美女av| 国产成人freesex在线 | 中国国产av一级| 免费av不卡在线播放| 亚洲美女搞黄在线观看 | 麻豆成人午夜福利视频| 丰满人妻一区二区三区视频av| 午夜福利在线观看免费完整高清在 | av在线蜜桃| 免费黄网站久久成人精品| 美女高潮的动态| 天天躁日日操中文字幕| 亚洲熟妇中文字幕五十中出| 国产精品福利在线免费观看| 两个人的视频大全免费| 97超碰精品成人国产| 亚洲av电影不卡..在线观看| 久久精品夜色国产| 99久久无色码亚洲精品果冻| 超碰av人人做人人爽久久| 日本精品一区二区三区蜜桃| av免费在线看不卡| 美女免费视频网站| 天堂网av新在线| 桃色一区二区三区在线观看| а√天堂www在线а√下载| 亚洲无线在线观看| 亚洲自拍偷在线| 欧美绝顶高潮抽搐喷水| 99热这里只有是精品在线观看| 欧美三级亚洲精品| 欧美中文日本在线观看视频| 五月玫瑰六月丁香| 欧美日韩综合久久久久久| 日本在线视频免费播放| 国产成人福利小说| 国产男靠女视频免费网站| 亚洲av中文字字幕乱码综合| 午夜福利在线观看吧| 日产精品乱码卡一卡2卡三| 在线播放无遮挡| 久久精品国产亚洲网站| 色哟哟·www| 性欧美人与动物交配| 亚洲av成人av| 一区福利在线观看| 国产精品国产高清国产av| 晚上一个人看的免费电影| 国产精品日韩av在线免费观看| 久久久成人免费电影| 99久久久亚洲精品蜜臀av| 亚洲成人av在线免费| 国产精品亚洲一级av第二区| 白带黄色成豆腐渣| 色5月婷婷丁香| 国产久久久一区二区三区| 国产成年人精品一区二区| 在线天堂最新版资源| 欧美一级a爱片免费观看看| 晚上一个人看的免费电影| 亚洲成a人片在线一区二区| 欧美日韩乱码在线| 久久中文看片网| 全区人妻精品视频| 18+在线观看网站| 国产在视频线在精品| 欧美3d第一页| 亚洲精品国产av成人精品 | 国产真实乱freesex| 成人午夜高清在线视频| 成人漫画全彩无遮挡| 哪里可以看免费的av片| 丰满人妻一区二区三区视频av| 91狼人影院| 蜜桃亚洲精品一区二区三区| 搡老妇女老女人老熟妇| 在线免费观看的www视频| 国产精品乱码一区二三区的特点| 美女cb高潮喷水在线观看| 亚洲精品日韩av片在线观看| 国产欧美日韩精品一区二区| 毛片女人毛片| 亚洲综合色惰| 日韩精品中文字幕看吧| 狂野欧美白嫩少妇大欣赏| 亚洲自偷自拍三级| 在线观看66精品国产| 精品99又大又爽又粗少妇毛片| 淫秽高清视频在线观看| 中文字幕av在线有码专区| 插阴视频在线观看视频| 国产精品久久久久久av不卡| 性色avwww在线观看| 久久午夜亚洲精品久久| 国产一区二区三区在线臀色熟女| 亚洲av中文av极速乱| 日韩欧美 国产精品| 亚洲成av人片在线播放无| 精品久久久久久久人妻蜜臀av| 蜜桃久久精品国产亚洲av| 内地一区二区视频在线| 成人漫画全彩无遮挡| 久久久久久久午夜电影| 波多野结衣高清作品| 日韩精品青青久久久久久| 亚洲电影在线观看av| 熟女电影av网| 国产高清不卡午夜福利| 白带黄色成豆腐渣| 在线a可以看的网站| 人人妻人人澡人人爽人人夜夜 | 成年女人看的毛片在线观看| 国产精品1区2区在线观看.| 12—13女人毛片做爰片一| 国产一区二区三区av在线 | 国产极品精品免费视频能看的| 亚洲国产日韩欧美精品在线观看| 99热精品在线国产| 九九爱精品视频在线观看| 蜜桃久久精品国产亚洲av| 午夜视频国产福利| 青春草视频在线免费观看| 99久国产av精品国产电影| 天天躁夜夜躁狠狠久久av| 亚洲精品一区av在线观看| 日本成人三级电影网站| 亚洲欧美精品自产自拍| 欧美又色又爽又黄视频| 看非洲黑人一级黄片| 久久久久久伊人网av| 日韩,欧美,国产一区二区三区 | 97超视频在线观看视频| 亚洲精品日韩av片在线观看| 天天躁夜夜躁狠狠久久av| 久久久欧美国产精品| 欧美zozozo另类| 五月伊人婷婷丁香| 国产精品人妻久久久久久| 99久国产av精品国产电影| 亚洲自偷自拍三级| 国产男靠女视频免费网站| 国产伦一二天堂av在线观看| 亚洲欧美中文字幕日韩二区| 色综合站精品国产| 亚洲精品亚洲一区二区| 啦啦啦韩国在线观看视频| 最后的刺客免费高清国语| 国语自产精品视频在线第100页| 美女 人体艺术 gogo| 九色成人免费人妻av| 成人国产麻豆网| 丰满的人妻完整版| 婷婷色综合大香蕉| 国产av在哪里看| 三级国产精品欧美在线观看| 国产伦一二天堂av在线观看| 国产av麻豆久久久久久久| 国产在视频线在精品| 久久草成人影院| 午夜激情欧美在线| 麻豆精品久久久久久蜜桃| 97热精品久久久久久| 精品久久久久久久末码| 亚洲国产精品成人综合色| 超碰av人人做人人爽久久| 日本a在线网址| 深爱激情五月婷婷| 美女黄网站色视频| 国产高清激情床上av| 亚洲乱码一区二区免费版| 婷婷精品国产亚洲av在线| 亚洲五月天丁香| 欧美bdsm另类| 一进一出抽搐gif免费好疼| 熟女电影av网| 日韩av不卡免费在线播放| 99久久精品热视频| 天堂动漫精品| 哪里可以看免费的av片| 少妇丰满av| 成人国产麻豆网| 国产精品国产三级国产av玫瑰| www日本黄色视频网| 又粗又爽又猛毛片免费看| 日日啪夜夜撸| 日韩欧美三级三区| 久久中文看片网| 深夜a级毛片| 日韩制服骚丝袜av| 国产精品av视频在线免费观看| 人人妻,人人澡人人爽秒播| 99久久久亚洲精品蜜臀av| 午夜福利在线观看免费完整高清在 | 香蕉av资源在线| 国产精品爽爽va在线观看网站| 一边摸一边抽搐一进一小说| 精品久久久久久久末码| 少妇猛男粗大的猛烈进出视频 | 黄片wwwwww| av天堂中文字幕网| 精品国内亚洲2022精品成人| 真人做人爱边吃奶动态| 一个人看的www免费观看视频| 国产女主播在线喷水免费视频网站 | 女人十人毛片免费观看3o分钟| 国产精品人妻久久久影院| 成人漫画全彩无遮挡| 成人特级av手机在线观看| 99国产精品一区二区蜜桃av| 亚洲成a人片在线一区二区| 成人一区二区视频在线观看| 白带黄色成豆腐渣| 五月伊人婷婷丁香| 俄罗斯特黄特色一大片| 中文字幕精品亚洲无线码一区| 干丝袜人妻中文字幕| 一进一出抽搐动态| 一级毛片我不卡| 国产亚洲av嫩草精品影院| 色视频www国产| 99热这里只有精品一区| 精品久久久噜噜| 欧美人与善性xxx| 免费在线观看影片大全网站| 乱码一卡2卡4卡精品| 亚洲av免费高清在线观看| 成人性生交大片免费视频hd| 秋霞在线观看毛片| 91久久精品国产一区二区三区| 午夜a级毛片| 永久网站在线| 亚洲成a人片在线一区二区| 午夜亚洲福利在线播放| 丰满人妻一区二区三区视频av| 久久99热这里只有精品18| 午夜福利在线观看免费完整高清在 | 在线免费观看的www视频| 熟女电影av网| 欧美人与善性xxx| 人人妻人人澡人人爽人人夜夜 | 综合色av麻豆| 欧美精品国产亚洲| 亚洲av一区综合| 国产成人影院久久av| 男人和女人高潮做爰伦理| 久久久久性生活片| 三级毛片av免费| 又爽又黄无遮挡网站| 尤物成人国产欧美一区二区三区| 中文字幕久久专区| a级毛色黄片| 欧美高清性xxxxhd video| 成人午夜高清在线视频| 国产黄色视频一区二区在线观看 | 国产精品日韩av在线免费观看| 一区二区三区四区激情视频 | 日韩亚洲欧美综合| 少妇熟女欧美另类| 亚洲av成人精品一区久久| 亚洲av五月六月丁香网| 大型黄色视频在线免费观看| 最新中文字幕久久久久| 亚洲精品国产成人久久av| 免费高清视频大片| 国产男人的电影天堂91| 色播亚洲综合网| 插阴视频在线观看视频| 成人性生交大片免费视频hd| 欧美3d第一页| 国产精品久久电影中文字幕| 免费观看的影片在线观看| 国产精品日韩av在线免费观看| 国产一区二区在线观看日韩| 日韩制服骚丝袜av| av福利片在线观看| 午夜福利在线在线| 午夜激情欧美在线| 亚洲最大成人手机在线| 干丝袜人妻中文字幕| 久久精品国产鲁丝片午夜精品| 99久久精品一区二区三区| 熟妇人妻久久中文字幕3abv| 三级经典国产精品| 日本五十路高清| av在线观看视频网站免费| 99国产极品粉嫩在线观看| 丰满的人妻完整版| 日本精品一区二区三区蜜桃| 久久99热这里只有精品18| 菩萨蛮人人尽说江南好唐韦庄 | 色综合站精品国产| 2021天堂中文幕一二区在线观| 三级经典国产精品| 亚洲丝袜综合中文字幕| 看片在线看免费视频| 免费人成在线观看视频色| h日本视频在线播放| 久久精品人妻少妇| 国产男人的电影天堂91| 国产精品嫩草影院av在线观看| 国产黄a三级三级三级人| 在线观看美女被高潮喷水网站| 桃色一区二区三区在线观看| av专区在线播放| 日本黄色视频三级网站网址| 日韩欧美一区二区三区在线观看| 亚洲自偷自拍三级| 亚洲精品影视一区二区三区av| 晚上一个人看的免费电影| 人妻久久中文字幕网| 久久久久久久久中文| ponron亚洲| av免费在线看不卡| 国产精品免费一区二区三区在线| 欧美在线一区亚洲| 99在线视频只有这里精品首页| 久久久a久久爽久久v久久| av天堂中文字幕网| 久久精品久久久久久噜噜老黄 | 高清毛片免费观看视频网站| 女人十人毛片免费观看3o分钟| 18禁在线无遮挡免费观看视频 | 国产精品一及| 国国产精品蜜臀av免费| 日本欧美国产在线视频| 国产乱人偷精品视频| 免费一级毛片在线播放高清视频| 中文亚洲av片在线观看爽| 男人舔女人下体高潮全视频| 国产男靠女视频免费网站| 高清日韩中文字幕在线| 美女内射精品一级片tv| 一个人观看的视频www高清免费观看| 99热这里只有是精品在线观看| 日韩在线高清观看一区二区三区| 在线天堂最新版资源| 日韩精品有码人妻一区| a级毛片免费高清观看在线播放| 国产精品免费一区二区三区在线| 露出奶头的视频| 亚洲精品久久国产高清桃花| 精品99又大又爽又粗少妇毛片| 国产精品不卡视频一区二区| 免费看光身美女| 尾随美女入室| 国内少妇人妻偷人精品xxx网站| 久久久午夜欧美精品| 色噜噜av男人的天堂激情| 校园人妻丝袜中文字幕| 免费大片18禁| 美女黄网站色视频| 卡戴珊不雅视频在线播放| 99riav亚洲国产免费| 欧美色欧美亚洲另类二区| 搡老熟女国产l中国老女人| 亚洲国产高清在线一区二区三| 99热这里只有是精品50| 国产精品国产高清国产av| 国产精品久久久久久亚洲av鲁大| 色综合亚洲欧美另类图片| 九色成人免费人妻av| 午夜福利在线在线| 嫩草影院精品99| 美女 人体艺术 gogo| 欧美日韩国产亚洲二区| 国产av在哪里看| 深爱激情五月婷婷| 亚洲av免费高清在线观看| 国产中年淑女户外野战色| 日韩欧美国产在线观看| 一个人看视频在线观看www免费| 老熟妇乱子伦视频在线观看| 最近最新中文字幕大全电影3| 亚洲高清免费不卡视频| 国产成人a∨麻豆精品| 国产成人影院久久av| 成年av动漫网址| 天堂影院成人在线观看| 插逼视频在线观看| 色噜噜av男人的天堂激情| 国产成人a∨麻豆精品| 国产大屁股一区二区在线视频| 看免费成人av毛片| 九九久久精品国产亚洲av麻豆| 国产亚洲av嫩草精品影院| 成人综合一区亚洲| 午夜免费男女啪啪视频观看 | 婷婷亚洲欧美| 一进一出好大好爽视频| 热99re8久久精品国产| 国产欧美日韩精品亚洲av| 91在线观看av| 成人av一区二区三区在线看| 全区人妻精品视频| 久久精品夜夜夜夜夜久久蜜豆| 欧美日韩乱码在线| 国产蜜桃级精品一区二区三区| 国产女主播在线喷水免费视频网站 | 伊人久久精品亚洲午夜| .国产精品久久| 成人永久免费在线观看视频| 中文字幕av成人在线电影| 大型黄色视频在线免费观看| 一个人看的www免费观看视频| 午夜福利在线在线| 91狼人影院| av黄色大香蕉| 亚洲人与动物交配视频| 别揉我奶头~嗯~啊~动态视频| 老司机午夜福利在线观看视频| 欧美一级a爱片免费观看看| 日韩,欧美,国产一区二区三区 | 美女内射精品一级片tv| 久久精品国产自在天天线| 日本三级黄在线观看| 18禁裸乳无遮挡免费网站照片| 久久人人爽人人片av| 日本免费一区二区三区高清不卡| 男女视频在线观看网站免费| 成人精品一区二区免费| 国产黄a三级三级三级人| 尤物成人国产欧美一区二区三区| 国产真实伦视频高清在线观看| 午夜激情欧美在线| 在线天堂最新版资源| 亚洲精品影视一区二区三区av| 特级一级黄色大片| 中文字幕熟女人妻在线| 可以在线观看毛片的网站| 亚洲综合色惰| 国产精品久久电影中文字幕| 97人妻精品一区二区三区麻豆| 最近2019中文字幕mv第一页| 99久久久亚洲精品蜜臀av| 校园人妻丝袜中文字幕| 亚洲欧美成人精品一区二区| 99在线人妻在线中文字幕| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产亚洲av香蕉五月| 国产精品伦人一区二区| 欧美又色又爽又黄视频| 春色校园在线视频观看| 在线观看免费视频日本深夜| 一级毛片我不卡| av福利片在线观看| 岛国在线免费视频观看|