• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Very Expressive Intuitionistic Fuzzy Rough Description Logics for the Semantic Web

    2013-10-28 03:54:40JIANGYuncheng
    關(guān)鍵詞:國家自然科學(xué)基金直覺責(zé)編

    JIANG Yuncheng

    (School of Computer Science, South China Normal University, Guangzhou 510631, China)

    VeryExpressiveIntuitionisticFuzzyRoughDescriptionLogicsfortheSemanticWeb

    JIANG Yuncheng*

    (School of Computer Science, South China Normal University, Guangzhou 510631, China)

    The state-of-the-art and some existing problems of intuitionistic fuzzy rough Description Logics(DLs) for the Semantic Web are analyzed. An integration between the theories of intuitionistic fuzzy DLs and rough DLs, i.e., intuitionistic fuzzy rough DLs, has been provided based on (,)-intuitionistic fuzzy rough set theory. Concretely, the intuitionistic fuzzy rough DLIFRSROIQ(D) is presented, which is the extension of the expressive DLSROIQ(D) behind OWL 2. It is proved that the reasoning tasks (knowledge base satisfiability, concept satisfiability, subsumption, logical consequence, ABox consistency, BTCB, and BSB reasoning) in the intuitionistic fuzzy rough DLIFRSROIQ(D) may be reduced to the corresponding reasoning in the fuzzy DL over complete latticesL*-SROIQ(D), respectively.

    Keywords: description logics; fuzzy description logics; rough description logics; (,)-intuitionistic fuzzy rough sets; Semantic Web

    In the last years, the use of ontologies as formalisms for knowledge representation in many different application domains has grown significantly[1]. Ontologies have been successfully used as part of expert and multi-agent systems, as well as a core element in the Semantic Web, which proposes to extend the current Web to give information a well-defined meaning[2-3]. An ontology is defined as an explicit and formal specification of a shared conceptualization[4], which means that ontologies represent the concepts and the relationships in a domain promoting interrelation with other models and automatic processing. Ontologies allow to add semantics to data, making knowledge maintenance, information integration as well as the reuse of components easier[1].

    The current standard language for ontology creation is the Web Ontology Language (OWL)[1,5], which consists of the three increasingly expressive sublanguages OWL Lite, OWL DL, and OWL Full. OWL Full is the most expressive level but reasoning within it becomes undecidable, OWL Lite has the lowest complexity and OWL DL is a balanced tradeoff between expressiveness and reasoning complexity. However, since its first development, several limitations on expressiveness of OWL have been identified, and consequently several extensions to the language have been proposed[1].

    Description Logics (DLs for short)[6]are a family of knowledge representation languages which can be used to represent the terminological knowledge of an application domain in a structured and formally well-understood way. Each logic is denoted by using a string of capital letters which identify the constructors of the logic and therefore its complexity[1]. Important characteristics of DLs are high expressivity together with decidability, which guarantee that reasoning algorithms always terminate with correct answers. Nowadays, DLs have been proved to be very useful as ontology languages. For example, OWL Lite, OWL DL, and OWL 2 have a formal semantics and a reasoning support through a mapping to the expressive DLsSHIF(D),SHOIN(D), andSROIQ(D), respectively[1,5-9]. More precisely, without regarding annotation properties of OWL, the OWL Lite, OWL DL, and OWL 2 are equivalent to DLsSHIF(D),SHOIN(D), andSROIQ(D), respectively.

    Nevertheless, it has been widely pointed out that classical DLs[6]are not appropriate to deal with imprecise and vague knowledge, which is inherent to several real world domains[1,10]. The rising popularity of DLs and their use, and the need to deal with uncertainty and vagueness, both especially in the Semantic Web[2-3], is increasingly attracting the attention of many researchers and practitioners towards DLs able to cope with uncertainty and vagueness[11]. Several extensions of DLs have been proposed relying on various extensions of classic logic: there have been probabilistic[12], possibilistic[13], fuzzy[1,14-18], and rough[19-20]extensions that have fundamental differences in terms of semantics and thus in the types of knowledge they model. The probabilistic and possibilistic approaches capture uncertainty and make it possible to represent uncertain knowledge, whereas the fuzzy approach captures vagueness and allows to represent fuzzy knowledge, and the rough approach deal withes rough (or imprecise) knowledge.

    Despite the growing popularity of these extended DLs such as probabilistic DLs, possibilistic DLs, fuzzy DLs, and rough DLs, relatively little work has been carried out in integrating them to the management of uncertain and imprecise information, the aim being to develop some new DL theories of uncertainty and vagueness stronger than both of them. At this aspect, we have carried out some works. For instance, we integrated fuzzy DLs (resp., intuitionistic fuzzy DLs) and rough DLs based on fuzzy rough set theory[21-22](resp., intuitionistic fuzzy rough set theory[22-25]), in other words, we presented fuzzy rough DLs[26](resp., intuitionistic fuzzy rough DLs[27]). There also are some related works. For example, Lukasiewicz and Straccia[28]present probabilistic fuzzy description logic programs, which combine fuzzy description logics, fuzzy logic programs, and probabilistic uncertainty in a uniform framework for the Semantic Web, and define important concepts dealing with both probabilistic uncertainty and fuzzy vagueness, such as the expected truth value of a crisp sentence and the probability of a vague sentence. In this paper, we will further study intuitionistic fuzzy rough DLs. The main reasons are as follows.

    (i) The intuitionistic fuzzy rough DLIFRALCpresented in [27] is an intuitionistic fuzzy rough extension of the DLALC[9]. It is well-known that inALC, there only exist concept negation, concept conjunction, concept disjunction, existential quantification, and universal quantification constructors. Therefore,IFRALCcan not deal with number restrictions, nominals, concrete domain, inverse roles, and role hierarchies, which are important ingredients of the DLsSHIF(D),SHOIN(D), andSROIQ(D). Moreover, these DLsSHIF(D),SHOIN(D), andSROIQ(D) are essentially the theoretical basis of the Web Ontology Language OWL, the state of the art language to specify ontologies[1,5-9]. In this paper, we will extend the intuitionistic fuzzy rough DLIFRALC[27]with the underlying DLSROIQ(D) which is the corresponding DL of the ontology description language OWL 2.

    (ii) The intuitionistic fuzzy rough DLIFRALCpresented in[27] is based on the intuitionistic fuzzy rough set theory presented in[24]. It is well-known that combining intuitionistic fuzzy set theory and rough set theory may result in a new hybrid mathematical structure for the requirement of knowledge processing systems. Research on this topic has been investigated by a number of authors[23-25]. Various tentative definitions of intuitionistic fuzzy rough sets were explored to extend rough set theory to the intuitionistic fuzzy environment[23]. For example, Zhou and Wu[24]explored a general framework for the study of various relation-based intuitionistic fuzzy rough approximation operators when the intuitionistic fuzzy triangular norm=min. However, rough set models for approximations of intuitionistic fuzzy sets with respect to an arbitrary intuitionistic fuzzy approximation space on the basis of general intuitionistic fuzzy logical operators have not been studied. Since the intuitionistic fuzzy rough DLIFRALCpresented in[27] is based on the intuitionistic fuzzy rough set theory presented in[24], therefore, theIFRALCcan not express general intuitionistic fuzzy logical operators correspondingly. Zhou et al.[25]present a generalized (,)-intuitionistic fuzzy rough set theory by employing intuitionistic fuzzy logical operators in the intuitionistic fuzzy set theory proposed by Cornelis et al.[29]. This paper will present new intuitionistic fuzzy rough DLs based on the (,)-intuitionistic fuzzy rough set theory[25].

    (iii) In fuzzy DLs (resp., fuzzy rough DLs, intuitionistic fuzzy rough DLs), there are crisp subsumption and fuzzy subsumption for fuzzy concepts (resp., fuzzy rough concepts, intuitionistic fuzzy rough concepts)[1,15-17]. The intuitionistic fuzzy rough DLIFRALC[27]considers the crisp subsumption. This paper will consider the fuzzy subsumption, i.e., subsumption relationship may hold to some degree which is taken from a complete lattice. The adopted approach is more general than the crisp subsumption based approach.

    In this paper we extend the intuitionistic fuzzy rough DLIFRALC[27]from the above mentioned three aspects. More concretely, an intuitionistic fuzzy extension of the DLSROIQ(D) is defined[1,7-8], i.e., we present the intuitionistic fuzzy rough DLIFRSROIQ(D) based on the (,)-intuitionistic fuzzy rough set theory[25], and provide its syntax, semantics, and reasoning algorithms.

    1 Preliminaries

    1.1 Description Logic SROIQ(D)

    DLs[6]are based on a common family of languages, called description languages, which provide a set of constructors to build concept (class) and role (property) descriptions. Such descriptions can be used in axioms and assertions of DL knowledge bases and can be reasoned about with respect to DL knowledge bases by DL systems[15].

    SROIQ(D)[1,7]extendsSROIQ[1,8]with concrete domains[30], in other words,SROIQ(D) extendsALCstandard DL[9]with transitive roles (ALCplus transitive roles is calledS), complex role axioms (R), nominals (O), inverse roles (I), qualified number restrictions (Q) and concrete domains (D).

    A concrete domain is a pairΔD,ΦD, whereΔDis a concrete interpretation domain andΦDis a set of concrete predicatesdwith a predefined aritynand an interpretationdD?(ΔD)n.

    SROIQ(D) assumes three alphabets of symbols, for individuals, roles and concepts. Abstract individuals are denoteda,b. Concrete individuals are denotedv. The abstract roles (denoted byR) of the language can be built inductively according to the following syntax rule:R→RA|R-|U. Concrete roles are denotedTand cannot be complex. The concepts (denoted byCorD) of the language can be built inductively from atomic concepts (A), top concept, bottom concept ⊥, named individuals (oi), abstract roles (R), concrete roles (T), simple roles (S, which will be defined below) and concrete predicatesdas follows, wheren,mdenote natural numbers:

    C,D→A||⊥|CD|CD|C|?R.C|?R.C|

    ?R.d|?R.d|{o1,…,om}|(≥nS.C)| (≤nS.

    C)| (≥nT.d)| (≤nT.d)| ?S.self.

    Expression of the form (≥nS.C), (≤nS.C) are called qualified number restrictions, while expression of the form (≥nS), (≤nS) are called unqualified number restrictions. (=nS.C) is an abbreviation for (≥nS.C)(≤nS.C), and (=nS) is an abbreviation for (≥nS)(≤nS). The case for concrete number restrictions is similar.

    AnSROIQ(D) knowledge base (KB) comprises two parts: the intensional knowledge, i.e., general knowledge about the application domain (a Terminological Box or TBoxTB, and a Role Box or RBoxRB), and the extensional knowledge, i.e., particular knowledge about some specific situation (an Assertional Box or ABoxABwith statements about individuals).

    An ABox consists of a finite set of assertions about individuals:

    ?concept assertionsa:C;

    ?role assertions (a,b):R;

    ?negated role assertions (a,b):R;

    ?concrete role assertions (a,v):T;

    ?negated concrete role assertions (a,v):T;

    ?inequality assertionsa≠b;

    ?equality assertionsa≠b.

    A TBox consists of a finite set of general concept inclusion (GCI) axiomsCD. We also say thatDis a superclass ofC, and thatCis a subclass ofD. A concept equivalenceC≡Dis a shorthand for the pair of axiomsCDandDC.

    Letwbe a role chain (a finite string of roles not including the universal roleU). An RBox consists of a finite set of role axioms:

    ?role inclusion axioms (RIAs)wRorT1T2, in RIAs of the formR1R2we also say thatR2is a super-role ofR1, and thatR1is a sub-role ofR2;

    ?transitive role axiomstrans(R);

    ?disjoint role axiomsdis(S1,S2) ordis(T1,T2);

    ?reflexive role axiomsref(R);

    ?irreflexive role axiomsirr(S);

    ?symmetric role axiomssym(R);

    ?asymmetric role axiomsasy(S).

    A role equivalenceR≡R′ is a shorthand for the pair of axiomsRR′ andR′R.

    Simple roles are inductively defined as follows:

    ?RAis simple if does not occur on the right side of aRIA;

    ?R-is simple ifRis;

    ?ifRoccurs on the right side of aRIA,Ris simple if, for eachwR,w=Sfor a simple roleS.

    Note that concrete roles are always simple and non-complex.

    ?w=RR, or

    ?w=R-, or

    ?w=S1…SnandSiRfor alli=1,…,n, or

    ?w=RS1…SnandSiRfor alli=1,…,n, or

    ?w=S1…SnRandSiRfor alli=1,…,n.

    In order to guarantee the decidability of the logic, there are some restrictions in the use of roles:

    ?some concept constructors require simple roles: non-concrete qualified number restrictions and local reflexivity;

    ?some role axioms also require simple roles: disjoint, irreflexive and asymmetric role axioms;

    ?role axioms cannot contain the universal roleU;

    An interpretationIwith respect to a concrete domainDis a pair (ΔI, ?I) consisting of a non empty setΔI(the interpretation domain) disjoint withΔDand an interpretation function ?Imapping:

    ?every abstract individualaonto an elementaIofΔI;

    ?every concrete individualvonto an elementvDofΔD;

    ?every atomic conceptAonto a setAI?ΔI;

    ?every abstract atomic roleRAonto a relation (RA)I?ΔI×ΔI;

    ?every concrete roleTonto a relationTI?ΔI×ΔD;

    ?everyn-ary concrete predicatedonto the interpretationdD?(ΔD)n.

    The interpretation is extended to complex concepts and roles by the inductive definitions as follows, where #Xdenotes the cardinality of the setX:

    ?UI=ΔI×ΔI; ()I=ΔI; (⊥)I=;

    ?(CD)I=CIDI; (CD)I=CIDI;

    ?Ia:C iffaICI;

    ?I(a,b):Riff (aI,bI)RI;

    ?I(a,b):Riff (aI,bI)RI;

    ?I(a,v):Tiff (aI,vD)TI;

    ?I(a,v):Tiff (aI,vD)TI;

    ?Ia=biffaI=bI;

    ?Ia≠biffaI≠bI;

    ?ICDiffCI?DI;

    ?IR1…Rn…RnI?RI;

    ?IT1T2iff (T1)I?(T2)I;

    ?Itrans(R) iff (x,y)RIand (y,z)RIimply (x,z)RI, ?x,y,zΔI;

    ?Idis(S1,S2) iff (S1)I(S2)I=;

    ?Idis(T1,T2) iff (T1)I(T2)I=;

    ?Iref(R) iff (x,x)RI, ?xΔI;

    ?Iirr(S) iff (x,x)SI, ?xΔI;

    ?Isym(R) iff (x,y)RIimply (y,x)RI, ?x,yΔI;

    ?Iasy(S) iff (x,y)SIimply (y,x)SI, ?x,yΔI.

    The interpretationI=(ΔI, ?I) satisfies the axiom (or assertion)ω, orIis a model ofω, iffIω. We say thatIsatisfies a knowledge baseKB=(AB,TB,RB), orIis a model ofKB, denotedIKB, iffIωfor each axiom (or assertion) inAB,TB,RB. We say thatKBis satisfiable (resp., unsatisfiable) iffKBhas a (resp., no) model. An axiom (or assertion)ωis a logical consequence ofKB, denotedKBω, iff each model ofKBsatisfiesω.

    A DL not only stores axioms and assertions, but also offers some reasoning services. Some important reasoning problems inSROIQ(D) are summarized as follows:

    KBsatisfiability: given a knowledge baseKB, decide whetherKBis satisfiable;

    concept satisfiability: given a knowledge baseKBand a conceptC, decide whetherKB/C⊥;

    subsumption: given a knowledge baseKBand conceptsCandD, decide whetherKBCD;

    instance: given a knowledge baseKB, an individuala, andaconceptC, decide whetherKBC(a); given a knowledge baseKB, individualsa,b(resp., an individualaand a valuev), and a roleR(resp.,), decide whetherKBR(a,b) (resp.,KBT(a,v)).

    We can obtain the reasoning algorithm of concept satisfiability ofSROIQ(D) by integrating the reasoning algorithms of concept satisfiability ofSROIQ[8]andSHOQ(D)[30], that is to say, we need to extend theSROIQ-tableau algorithm[8]with datatype-rules[30-31].

    1.2(,)-IntuitionisticFuzzyRoughSets

    We first review a special lattice on [0, 1]×[0, 1] (where [0, 1] is the unit interval) and its logical operations originated by Cornelis et al.[29].

    DenoteL*={(x1,x2)([0, 1]×[0, 1]|x1+x2≤1}. We define a relation ≤L*onL*as follows:

    x1≤y1andx2≥y2.

    Then the relation ≤L*is a partial ordering onL*and the pair (L*, ≤L*) is a complete lattice with the smallest element 0L*=(0, 1) and the greatest element 1L*=(1, 0)[25,29]. The meet operatorand the join operatoron (L*, ≤L*) which are linked to the ordering ≤L*are, respectively, defined as follows: ?(x1,x2), (y1,y2)L*,

    (x1,x2)(y1,y2)=(min(x1,y1), max(x2,y2)),

    (x1,x2)(y1,y2)=(max(x1,y1), min(x2,y2)).

    (y1,y2)≥L*(x1,x2)?(x1,x2)≤L*(y1,y2),

    andx=y?x≤L*yandx≥L*y.

    An intuitionistic fuzzy negator onL*is a decreasing mapping:L*→L*satisfying(0L*)=1L*and(1L*)=0L*. If((x))=xfor allxL*, thenis called an involutive intuitionistic fuzzy negator. The mappingS, defined asS(x1,x2)=(x2,x1), ?(x1,x2)L*, is called the standard intuitionistic fuzzy negator.

    Since ≤L*is a partial ordering, the order-theoretic definitions of conjunction and disjunction onL*called intuitionistic fuzzy triangular norm (intuitionistic fuzzy t-norm for short) and intuitionistic fuzzy triangular conorm (intuitionistic fuzzy t-conorm for short) are introduced as follows:

    An intuitionistic fuzzy t-norm onL*is an increasing, commutative, associative mapping:L*×L*→L*satisfying(1L*,x)=xfor allxL*. An intuitionistic fuzzy t-conorm onL*is an increasing, commutative, associative mappingS:L*×L*→L*satisfyingS(0L*,x)=xfor allxL*.

    An intuitionistic fuzzy t-normand an intuitionistic fuzzy t-conormSonL*are said to dual with respect to an intuitionistic fuzzy negatorif

    ((x),(y))=((x,y)), ?x,yL*;

    ((x),(y))=((x,y)), ?x,yL*.

    (0L*, 0L*)=1L*,(1L*, 0L*)=0L*,
    (0L*, 1L*)=1L*,(1L*, 1L*)=1L*.

    Now we recall some basic notions of intuitionistic fuzzy sets presented by Atanassov[33]. LetUbe a nonempty set called the universe of discourse. The classes of all subsets (resp., fuzzy sets) ofUwill be denoted by(U) (resp.,(U)).

    Let a setUbe fixed. An intuitionistic fuzzy setAinUis an object having the form

    A={x,μA(x),γA(x)|xU},

    We introduce some basic operations onI(U) as follows[25,33]: ?A,BI(U),

    ?A?BiffB?A;

    ?A=BiffA?BandB?A;

    ?AB={x,min(μA(x),μB(x)),max(γA(x),γB(x))|xU};

    ?AB={x,max(μA(x),μB(x)),min(γA(x),γB(x))|xU}.

    We know that an intuitionistic fuzzy relationR[25,35-36]onUis an intuitionistic fuzzy subsetU×U, namely,Ris given by

    R={(x,y),μR(x,y),γR(x,y)|(x,y)U×U},

    In general the round composition of intuitionistic fuzzy relationsR1,R2, …,Rn-1,RninI(U×U) is the intuitionistic fuzzy relationsR1R2…Rn-1RninI(U×U) defined by

    (R1R2…Rn-1Rn)(x,y)=

    Rn-1(yn-2,yn-1),Rn(yn-1,y)).

    In what follows, we introduce the basic notions of (,)-intuitionistic fuzzy rough sets[25].

    LetUbe a non-empty universe of discourse andRbe an intuitionistic fuzzy relation onU. The pair (U,R) is called an intuitionistic fuzzy approximation space.

    Let (U,R) be an intuitionistic fuzzy approximation space,andbe a continuous intuitionistic fuzzy t-norm and an intuitionistic fuzzy implicator onL*, respectively. Then the-upper intuitionistic fuzzy rough approximation operatorand the-lower intuitionistic fuzzy rough approximation operatorhave the following properties: ?A,B,AiI(U) (?iJ,Jis an index set),

    2 Intuitionistic Fuzzy Description Logic IFSROIQ(D)

    The main goal of this paper is to provide intuitionistic fuzzy rough DLIFRSROIQ(D), which is the extension of intuitionistic fuzzy DLIFSROIQ(D).

    IFSROIQ(D) is the fuzzy extension ofSROIQ(D) presented in Section 1.1 based on intuitionistic fuzzy set theory[25,33,35]. Obviously,IFSROIQ(D) is an extension of the intuitionistic fuzzy DLIFALC[27].

    Definition1[7,17]A fuzzy concrete domainDis a pairΔD,ΦD, whereΔDis a concrete interpretation domain andΦDis a set of fuzzy concrete predicatesdwith an aritynand an interpretationdD: (ΔD)n→[0, 1], which is ann-ary fuzzy relation overΔD. In the following for simplicity we assume arity 1.

    C,D→A||⊥|CD|CD|C|?R.C|?R.C|

    ?T.d| ?T.d| {α1/o1,…,αm/om}| (≥mS.

    C)| (≤nS.C)| (≥mT.d)| (≤nT.d)|

    ?S.self|mod(C)| [C≥L*α]| [C≤L*β].

    The abstract roles (denoted byR) of the language can be built inductively according to the following syntax rule:R→RA|R-|U|mod(R)| [R≥L*α], whereUis a universal role.

    In the rest of this paper we will assumeL*{≥L*, >L*, ≤L*,

    Definition3An intuitionistic fuzzy knowledge baseIFKBcomprises an intuitionistic fuzzy ABoxIFAB, an intuitionistic fuzzy TBoxIFTBand an intuitionistic fuzzy RBoxIFRB, i.e.,IFKB=IFAB,IFTB,IFRB.

    An intuitionistic fuzzy ABoxIFABconsists of a finite set of intuitionistic fuzzy assertions of one of the following types:

    ?an intuitionistic fuzzy concept assertiona:C≥L*α,a:C>L*α,a:C≤L*αora:C

    ?an intuitionistic fuzzy role assertionψ≥L*α,ψ>L*α,ψ≤L*αorψ

    An intuitionistic fuzzy TBoxIFTBconsists of a finite set of intuitionistic fuzzy GCIs (IFGCIsfor short) of the form (CDL*α, whereL*stands for ≥L*or >L*.

    An intuitionistic fuzzy RBoxIFRBconsists of a finite set of intuitionistic fuzzy role axioms of the following types:

    ?intuitionistic fuzzyIFRIAswRL*α, wherew=R1R2…Rmis a role chain,T1T2L*α;

    ?transitive role axiomstrans(R);

    ?disjoint role axiomsdis(S1,S2),dis(T1,T2);

    ?reflexive role axiomsref(R);

    ?irreflexive role axiomsirr(S);

    ?symmetric role axiomssym(R);

    ?asymmetric role axiomsasy(S).

    Definition4Simple roles are defined as follows:

    ?RAis simple if it does not occur on the right side of anIFRIA;

    ?R-is simple ifRis simple;

    ?ifRoccurs on the right side of anIFRIA,Ris simple if, for each (wRL*α,w=Sfor a simple roleS.

    As inFSROIQ(D), there are also some restrictions in the use of roles, in order to guarantee the decidability ofIFSROIQ(D). These restrictions are the same as that ofFSROIQ(D) (see [1] and [7] for more details).

    Obviously, the syntax ofIFSROIQ(D) is the extension of that ofFSROIQ(D)[1,7], i.e., theIFSROIQ(D) allows to express that a sentence is true to some degree, which is not taken from the unit interval[0, 1], but from the complete latticeL*.

    The semantics ofIFSROIQ(D) is also the extension of the semantics of fuzzy DLFSROIQ(D)[1,7].

    Definition5An intuitionistic fuzzy interpretationIwith respect to a fuzzy concrete domainDis a tuple (ΔI, ?I) consisting of a non empty setΔI(the interpretation domain) disjoint withΔDand an interpretation function ?Imapping:

    ?every abstract individualaonto an elementaIofΔI;

    ?every concrete individualvonto an elementvDofΔD;

    ?every conceptConto a functionCI:ΔI→L*;

    ?every abstract roleRonto a functionRI:ΔI×ΔI→L*;

    ?every concrete roleTonto a functionTI:ΔI×ΔD→L*;

    ?everyn-ary concrete fuzzy predicatedonto the fuzzy relationdD: (ΔD)n→L*;

    ?every modifiermodonto a functionfmod:L*→L*.

    Given arbitrary intuitionistic fuzzy t-norm, intuitionistic fuzzy t-conorm, intuitionistic fuzzy negatorand intuitionistic fuzzy implicator, the intuitionistic fuzzy interpretationIis extended to complex concepts and roles as follows, ?xΔI:

    ?(⊥)I(x)=0L*;

    ?(CD)I(x)=(CI(x),DI(x));

    ?(CD)I(x)=(CI(x),DI(x));

    ?(?R.C)I(x)=y ΔI{(RI(x,y),CI(y))};

    ?(?R.C)I(x)=y ΔI{(RI(x,y),CI(y))};

    ?(?T.d)I(x)=v ΔD{(TI(x,v),dD(v))};

    ?(?T.d)I(x)=v ΔD{(TI(x,v),dD(v))};

    ?(≥mS.C)I(x)=y1,…,ymΔI[({(SI(x,yi),CI(yi))},j

    ?(≤nS.C)I(x)=y1,…,yn+1ΔI[({(SI(x,yi),CI(yi))},j

    ?(≥mT.d)I(x)=v1,…,vmΔD[({(TI(x,vi),dD(vi))},j

    ?(≤nT.d)I(x)=v1,…,vn+1ΔD[({(SI(x,vi),dD(vi))},j

    ?(?S.self)I(x)=SI(x,x);

    ?(mod(C))I(x)=fmod(CI(x));

    ?([C≥L*α])I(x)=1L*ifCI(x)(L*α, 0L*otherwise;

    ?([C(L*β])I(x)=1L*ifCI(x)(L*β, 0L*otherwise;

    ?(R-)I(x,y)=RI(y,x);

    ?(U)I(x,y)=1L*;

    ?(mod(R))I(x,y)=fmod(RI(x,y));

    ?([R≥L*α])I(x,y)=1L*ifRI(x,y)≥L*α, 0L*otherwise.

    As inFSROIQ(D), we do not impose unique name assumption, i.e., two nominals might refer to the same individual.

    The intuitionistic fuzzy interpretation function is extended to intuitionistic fuzzy axioms as follows:

    ?(a:C)I=CI(aI);

    ?((a,b):R)I=RI(aI,bI);

    ?((a,b):R)I=(RI(aI,bI));

    ?((a,v):T)I=TI(aI,vD);

    ?((a,v):T)I=(TI(aI,vD));

    ?(CD)I=xΔI{(CI(x),DI(x))};

    ?(R1…RmR)I=x1,…,xm+1ΔI{(((x1,x2), …,(xm,xm+1)),RI(x1,xm+1))};

    ?(T1T2)I=xΔI,vΔD{((x,v),(x,v))}.

    The satisfaction of an intuitionistic fuzzy axiom (or assertion)ωin an intuitionistic fuzzy interpretationI, denotedIω, is defined as follows:

    ?Ia:CL*αiff (a:C)IL*α;

    ?I(a,b):RL*αiff ((a,b):R)IL*α;

    ?I((a,b):RL*αiff ((a,b):R)IL*α;

    ?I(a,v):TL*αiff ((a,v):T)IL*α;

    ?I((a,v):TL*αiff ((a,v):T)IL*α;

    ?Ia≠biffaI≠bI;

    ?Ia=biffaI=bI;

    ?ICDL*αiff (CD)IL*α;

    ?I(R1…RmRL*αiff (R1…RmR)IL*α;

    ?IT1T2L*αiff (T1T2)IL*α;

    ?Itrans(R) iff ?x,yΔI,RI(x,y)≥L*zΔI{(RI(x,z),RI(z,y))};

    ?Idis(S1,S2) iff ?x,yΔI,(x,y)=0L*or(x,y)=0L*;

    ?Idis(T1,T2) iff ?xΔI,yΔD,(x,y)=0L*or(x,y)=0L*;

    ?Iref(R) iff ?xΔI,RI(x,x)=1L*;

    ?Iirr(S) iff ?xΔI,SI(x,x)=0L*;

    ?Isym(R) iff ?x,yΔI,RI(x,y)=RI(y,x);

    ?Iasy(S) iff ?x,yΔI, ifSI(x,y)>L*0L*thenSI(y,x)=0L*.

    An intuitionistic fuzzy interpretationIsatisfies an intuitionistic fuzzy RBoxIFRB(writtenIIFRB) (resp., intuitionistic fuzzy TBoxIFTB(writtenIIFTB), intuitionistic fuzzy ABoxIFAB(writtenIIFAB)) iffIωfor all elementsωIFRB(resp.,ωIFTB,ωIFAB); in this case, we say thatIis a model ofIFRB(resp.,IFTB,IFAB).

    An intuitionistic fuzzy interpretationIsatisfies an intuitionistic fuzzy knowledge baseIFKB=IFAB,IFTB,IFRB, orIis a model ofIFKB, denotedIIFKB, iffIis a model ofIFRBIFTBIFAB, i.e.,IIFRB,IIFTB, andIIFAB. We sayIFKBis satisfiable (unsatisfiable) iff there exists (does not exist) an intuitionistic fuzzy interpretationIwhich satisfies all elements inIFKB.

    An intuitionistic fuzzy axiom (or assertion)ωis a logical consequence of an intuitionistic fuzzy knowledge baseIFKB, denotedIFKBω, iff every model ofIFKBsatisfiesω.

    LetCandDbe two concepts. We say thatCis subsumed byDto degreeαwith respect toIFKB(writtenFRKBCD≥L*α) if for every modelIofIFKBit holds thatICD≥L*α.

    An intuitionistic fuzzy ABoxIFABis consistent with respect toIFRBandIFTBif there exists a modelIofIFRBandIFTBsuch thatIIFAB.

    Similarly with the fuzzy DLFSHOIN(D)[11]andFSROIQ(D)[1,7], in addition to the standard reasoning problems defined above, two other important reasoning problems ofIFSROIQ(D) are the best truth certainty bound (BTCB) problem and the best satisfiability bound (BSB) problem, which we describe in the following.

    Given an intuitionistic fuzzy knowledge baseIFKBand a classical axiom (or assertion)ρ, whereρis neither a transitive role axiom, disjoint role axiom, reflexive role axiom, irreflexive role axiom, symmetric role axiom, or asymmetric role axiom nor an equality or inequality axiom, it is of interest to computeρ’s best lower and upper certainty value bounds (best certainty value bound). The greatest lower bound ofρwith respect toIFKB, denoted byglb(IFKB,ρ), is defined byglb(IFKB,ρ)={α|IFKBρ≥L*α}, whereφ=0L*. Similarly, the least upper bound ofρwith respect toIFKB, denoted bylub(IFKB,ρ), is defined bylub(IFKB,ρ)={α|IFKBρ≤L*α}, whereφ=1L*.

    The best satisfiability bound of a conceptCwith respect toIFKB, denoted byglb(IFKB,C), is defined byglb(IFKB,C)=IxΔI{CI(x)|IIFKB}. Intuitively, among all modelsIofIFKB, we determine the maximal degree of certainty that the conceptCmay have over all individualsxΔI.

    3 Intuitionistic Fuzzy Rough Description Logic IFRSROIQ(D)

    In the current section, we will provide the intuitionistic fuzzy roughIFRSROIQ(D). This includes the syntax, semantics, and reasoning ofIFRSROIQ(D). In fact,IFRSROIQ(D) is also a rough extension of the intuitionistic fuzzy DLIFSROIQ(D) presented in Section 2.

    3.1 Syntax and Semantics

    C,D→A||⊥|CD|CD|C|?R.C|?R.C|

    ?T.d|?T.d|{α1/o1,…,αm/om}|(≥mS.C)|

    (≤nS.C)|(≥mT.d)|(≤nT.d)|?S.self|

    Regarding the definitions of the abstract roles, concrete roles, intuitionistic fuzzy rough knowledge base, and simple roles ofIFRSROIQ(D), it is similar to that ofIFSROIQ(D). For example, an intuitionistic fuzzy rough TBoxIFRTBconsists of a finite set of intuitionistic fuzzy rough GCIs (IFRGCIsfor short) of the formCD≥L*αorCD>L*α, whereCandDare concepts ofIFRSROIQ(D). Comparing with theIFGCIofIFSROIQ(D), theIFRGCIofIFRSROIQ(D) can have intuitionistic fuzzy lower approximation concepts and intuitionistic fuzzy upper approximation concepts.

    Regarding the semantics of intuitionistic fuzzy rough knowledge base and the reasoning problems ofIFRSROIQ(D), they are similar to that ofIFSROIQ(D). For instance, an intuitionistic fuzzy rough interpretationIsatisfiesCDL*α, denotedICDL*α, iff (CD)IL*α.

    Comparing with classical DLs[6], fuzzy DLs[1,14-18], and intuitionistic fuzzy DLs (see Section 2 and [27]), the most distinguished characteristic of intuitionistic fuzzy rough DLIFRSROIQ(D) is that TBox and ABox have the intuitionistic fuzzy lower approximation concepts and intuitionistic fuzzy upper approximation concepts inIFRSROIQ(D).

    Theorem1For any conceptsC,D, and intuitionistic fuzzy-equivalence relationinIFRSROIQ(D), their intuitionistic fuzzy lower and intuitionistic fuzzy upper approximation concepts satisfy the following properties:

    (7)CD?

    (8)CD?).

    Proof to be omitted.

    3.2 Reasoning

    In this section, we will prove that the reasoning problems inIFRSROIQ(D) may be reduced to the corresponding reasoning in the intuitionistic fuzzy DLIFSROIQ(D).

    Given an arbitrary conceptCinIFRSROIQ(D), we define a translation function ?t:IFRSROIQ(D)→IFSROIQ(D) fromIFRSROIQ(D) toIFSROIQ(D) that fulfills the following conditions:

    ?At=A;

    ?⊥t=⊥;

    ?{α1/o1,…,αm/om}t={α1/o1,…,αm/om};

    ?(CD)t=CtDt;

    ?(CD)t=CtDt;

    ?(?R.C)t=?R.Ct;

    ?(?R.C)t=?R.Ct;

    ?(?S.Self)t=?S.Self;

    ?(≥mS.C)t=≥mS.Ct;

    ?(≤nS.C)t=≤nS.Ct;

    ?(?T.d)t=?T.d;

    ?(?T.d)t=?T.d;

    ?(≥mT.d)t=≥mT.d;

    ?(≤nT.d)t=≤nT.d;

    ?(mod(C))t=mod(Ct);

    ?([C≥L*α])t=[Ct≥L*α];

    ?([C≤L*β])t=[Ct≤L*β];

    Given an arbitraryIFRGCICDL*αinIFRSROIQ(D), we can translate theIFRGCICDL*αinIFRSROIQ(D) into anIFGCICtDtL*αinIFSROIQ(D) using the above translation function ?t.

    Given an arbitrary intuitionistic fuzzy rough TBoxIFRTB={C1D1L*α1, …,CkDkL*αk} inIFRSROIQ(D), we can translate theIFRTB={C1D1L*α1, …,CkDkL*αk} into an intuitionistic fuzzy TBoxIFRTBt={(C1)t(D1)tL*α1, …,(Ck)t(Dk)tL*αk} inIFSROIQ(D) using the above translation function ?t.

    Given an arbitrary intuitionistic fuzzy rough ABoxIFRAB={a1:C1L*α1, …,ap:CpL*αp,ψ1L*β1, …,ψqL*βq,a11=b11, …,a1s=b1s,a21≠b21, …,a2t≠b2t} inIFRSROIQ(D), whereψiis of the form (a,b):R, (a,b):R, (a,v):T, or (a,v):T, we can translate the intuitionistic fuzzy rough ABoxIFRABinto an intuitionistic fuzzy ABoxIFRABt={a1:L*α1, …,ap:L*αp,ψ1L*β1, …,ψqL*βq,a11=b11, …,a1s=b1s,a21≠b21, …,a2t≠b2t} inIFSROIQ(D) using the above translation function ?t.

    Given an arbitrary intuitionistic fuzzy (rough) RBoxIFRRB={ω1, …,ωl} inIFRSROIQ(D), whereωi(1≤i≤l) is anIFRRIAof the formwiRiL*αiorT1iT2iL*βi, or a role assertion of the formtrans(R),dis(S1,S2),dis(T1,T2),ref(R),irr(S),sym(R) orasy(S), we can translate the intuitionistic fuzzy (rough) RBoxIFRRBinto an intuitionistic fuzzy RBoxIFRRBt={ref(),sym(),trans(), …,ref(),sym(),trans(),ω1, …,ωl} inIFSROIQ(D) using the above translation function ?t.

    Given an arbitrary intuitionistic fuzzy rough knowledge baseIFRKB=IFRAB,IFRTB,IFRRBinIFRSROIQ(D), we can theIFRKBinto an intuitionistic fuzzy knowledge baseIFRKBt=IFRABt,IFRTBt,IFRRBtinIFSROIQ(D) using the above translation function ?t.

    In the following, we prove the correctness of the translation function ?t, i.e., we prove that the satisfiability, subsumption, logical consequence, ABox consistency, BTCB, and BSB reasoning inIFRSROIQ(D) may be reduced to the corresponding reasoning inIFSROIQ(D).

    Theorem2Given an intuitionistic fuzzy rough knowledge baseIFRKB=IFRAB,IFRTB,IFRRBinIFRSROIQ(D),IFRKBt=IFRABt,IFRTBt,IFRRBtis the intuitionistic fuzzy knowledge base inIFSROIQ(D) obtained from the translation function ?t.IFRKBis satisfiable, iffIFRKBtis satisfiable.

    Theorem3Given a conceptC, an intuitionistic fuzzy rough knowledge baseIFRKB=IFRAB,IFRTB,IFRRBinIFRSROIQ(D),CtandIFRKBt=IFRABt,IFRTBt,IFRRBtare the concept and the intuitionistic fuzzy knowledge base inIFSROIQ(D) obtained from the translation function ?t, respectively.Cisα-satisfiable with respect toIFRKB, iffCtisα-satisfiable with respect toIFRKBt.

    Theorem4Given two conceptsC,D, and an intuitionistic fuzzy rough knowledgeIFRKBinIFRSROIQ(D),CtandDt, andIFRKBtare the concepts, and intuitionistic fuzzy knowledge base inIFSROIQ(D) obtained from the translation function ?t, respectively.Cis subsumed byDto degreeαwith respect toIFRKBiffCtis subsumed byDtto degreeαwith respect toIFRKBt. Formally,IFRKBCDL*αiffIFRKBtCtDtL*α.

    Theorem5Given an intuitionistic fuzzy rough axiom (or assertion)ω, and an intuitionistic fuzzy rough knowledgeIFRKBinIFRSROIQ(D),ωtandIFRKBtare the intuitionistic fuzzy axiom (or assertion) and intuitionistic fuzzy knowledge base inIFSROIQ(D) obtained from the translation function ?t, respectively.ωis a logical consequence ofIFRKB, iffωtis a logical consequence ofIFRKBt. Formally,IFRKBωiffIFRKBtωt.

    Theorem6Given an intuitionistic fuzzy rough ABoxIFRAB, an intuitionistic fuzzy rough TBoxIFRTB, and an intuitionistic fuzzy rough RBoxIFRRBinIFRSROIQ(D),IFRABt,IFRTBt, andIFRRBtare the intuitionistic fuzzy ABox, intuitionistic fuzzy TBox, and intuitionistic fuzzy RBox inIFSROIQ(D) obtained from the translation function ?t, respectively.IFRABis consistent with respect toIFRRBandIFRTB, iffIFRABtis consistent with respect toIFRRBtandIFRTBt.

    Theorem7Given an intuitionistic fuzzy rough knowledgeIFRKB=IFRAB,IFRTB,IFRRB, an axiom (or assertion)ρ, whereρis neither a transitive role axiom, disjoint role axiom, reflexive role axiom, irreflexive role axiom, symmetric role axiom, or asymmetric role axiom nor an equality or inequality axiom, and a conceptCinIFRSROIQ(D),IFRKBt=IFRABt,IFRTBt,IFRRBt,ρt, andCtare the intuitionistic fuzzy knowledge base, axiom (or assertion), and concept inIFSROIQ(D) obtained from the translation function ?t, respectively. Then

    (1)glb(IFRKB,ρ)=glb(IFRKBt,ρt);

    (2)lub(IFRKB,ρ)=lub(IFRKBt,ρt);

    (3)glb(IFRKB,C)=glb(IFRKBt,Ct).

    4 Conclusion

    Handling uncertainty and vagueness has started to play an important role in ontology languages for the Semantic Web. An integration between the theories of expressive intuitionistic fuzzy DLs and expressive rough DLs has been provided. More concretely, towards sophisticated formalisms for reasoning under fuzzy uncertainty and rough uncertainty in the Semantic Web, we have presented a kind of very expressive intuitionistic fuzzy rough DLIFRSROIQ(D), which is the intuitionistic fuzzy rough extension of the expressive DLSROIQ(D) behind OWL 2 based on (,)-intuitionistic fuzzy rough set theory. We have proved that the main reasoning tasks in theIFRSROIQ(D) may be reduced to the corresponding reasoning in the fuzzy DL over complete latticesL*-SROIQ(D). As far as future directions are concerned, these will include the extension of the DLSROIQ(D) based on probabilistic rough set theory and interval-valued (fuzzy) rough set theory, in order to provide reasoning support for the probabilistic rough DLs and interval-valued (fuzzy) rough DLs, respectively.

    [1] BOBILLO F,DELGADO M,GOMEZ-ROMERO J,et al.Fuzzy description logics under G?del semantics[J]. Int J Approx Reason, 2009,50(3): 494-514.

    [2] BERNERS-LEE T, HENDLER J, LASSILA O. The semantic Web[J]. Scientific American,2001,284(5):34-43.

    [3] PATEL-SCHNEIDER P F,HORROCKS I.A comparison of two modelling paradigms in the Semantic Web[J]. J Web Semant,2007,5(4):240-250.

    [4] GRUBER T R. A translation approach to portable ontology specifications[J].Knowledge Acquisition,1993, 5(2):199-220.

    [5] HORROCKS I,PATEL-SCHNEIDER P F,HARMELEN F V. From SHIQ and RDF to OWL: The making of a Web ontology language[J]. J Web Semant,2003,1(1):7-26.

    [6] BAADER F,CALVANESE D,MCGUINNESS D,et al.The description logic handbook: Theory, implementation and applications[M]. 2nd Ed. Cambridge:Cambridge University Press, 2007.

    [7] BOBILLO F. Managing vagueness in ontologies[D]. Spain:University of Granada, 2008.

    [8] HORROCKS I,KUTZ O,SATTLER U.The even more irresistible SROIQ[C]∥DOHERTY P, MYLOPOULOS J, WELTY C.Proceedings of the 10th international conference of knowledge representation and reasoning.Palo Alto, California, USA:AAAI Press, 2006:57-67.

    [9] HORROCKS I, PATEL-SCHNEIDER P.Reducing OWL entailment to description logic satisfiability[J]. J Web Semant,2004,1(4):345-357.

    [10] SANCHEZ E.Fuzzy logic in the Semantic web: Covering a missing link[M]∥SANCHEZ E.Capturing intelligence: Fuzzy logic and the semantic web, Elsevier, 2006:ix-xiii.

    [11] LUKASIEWICZ T,STRACCIA U.Managing uncertainty and vagueness in description logics for the Semantic Web[J].J Web Semant,2008,6(4):291-308.

    [12] LUKASIEWICZ T.Expressive probabilistic description logics[J].Artif Intell,2008,172(6-7) : 852-883.

    [13] HOLLUNDER B.An alternative proof method for possibilistic logic and its application to terminological logics[J]. Int J Approx Reason,1995,12(2):85-109.

    [14] BOBILLO F,STRACCIA U. Fuzzy description logics with general t-norms and datatypes[J]. Fuzzy Set Syst,2009,160(23):3382-3402.

    [15] STOILOS G,STAMOU G,PAN J Z, et al.Reasoning with very expressive fuzzy description logics[J].J Artif Intell Res, 2007,30(8):273-320.

    [16] STRACCIA U.Reasoning within fuzzy description logics[J]. J Artif Intell Res, 2001, 14:137-166.

    [17] STRACCIA U.A fuzzy description logic for the Semantic Web[M]∥SANCHEZ E.Capturing intelligence: Fuzzy logic and the semantic web.Amsterdam, Netherlands:Elsevier Science Publishers, 2006:73-90.

    [18] STRACCIA U.Description logics over lattices[J].Int J Uncertain Fuzz,2006,14(1):1-16.

    [19] JIANG Y,WANG J,TANG S,et al.Reasoning with rough description logics: An approximate concepts approach[J]. Inform Sciences,2009,179(5):600-612.

    [20] SCHLOBACH S,KLEIN M,PEELEN L.Description logics with approximate definitions: Precise modeling of vague concepts[C]∥VELOSO M M.Proceedings of the 20th international joint conference on artificial intelligence, Palo Alto, California, USA:AAAI Press, 2007:557-562.

    [21] DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough sets[J].Int J Gen Syst, 1990,17(2-3):191-209.

    [22] MI J,LEUNG Y,ZHAO H,et al.Generalized fuzzy rough sets determined by a triangular norm[J].Inform Sciences,2008,178(16):3203-3213.

    [23] CORNELIS C,COCK M D,KERRE E E.Intuitionistic fuzzy rough sets: At the crossroads of imperfect knowledge[J]. Expert System, 2003,20(5):260-270.

    [24] ZHOU L,WU W.On generalized intuitionistic fuzzy rough approximation operators[J].Inform Sciences, 2008,178(11):2448-2465.

    [25] ZHOU L,WU W,ZHANG W.On characterization of intuitionistic fuzzy rough sets based on intuitionistic fuzzy implicators[J]. Inform Sciences,2009,179(7):883-898.

    [26] JIANG Y,WANG J,DENG P, et al.Reasoning within expressive fuzzy rough description logics[J].Fuzzy Set Syst,2009,160(23):3403-3424.

    [27] JIANG Y,TANG Y,WANG J,et al.Reasoning within intuitionistic fuzzy rough description logics[J].Inform Sciences,2009,179(14):2362-2378.

    [28] LUKASIEWICZ T,STRACCIA U.Description logic programs under probabilistic uncertainty and fuzzy vagueness[J]. Int J Approx Reason,2009,50(6):837-853.

    [29] CORNELIS C,DESCHRIJVER G, KERRE E E.Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: Construction, classification, application[J]. Int J Approx Reason,2004: 35(1):55-95.

    [30] LUTZ C,ARECES C,HORROCKS I,et al.Keys, nominals, and concrete domains[J].J Artif Intell Res,2005,23:667-726.

    [31] MOTIK B,HORROCKS I.OWL datatypes: Design and implementation[C]∥Proceedings of the 7th international Semantic Web conference, Lecture notes in computer science. New York:Springer-Verlag, 2008,5318:307-322.

    [32] PAWLAK Z. Rough sets: Theoretical aspects of reasoning about data[M].Dordrecht,Netherlands:Kluwer Academic Publishers, 1991.

    [33] ATANASSOV K. Intuitionistic fuzzy sets[M]. Heidelberg/New York :Physica-Verlag, 1999.

    [34] DESCHRIJVER G,KERRE E F. On the relationship between some extensions of fuzzy set theory[J].Fuzzy Set Syst,2003,133(2):227-235.

    [35] DESCHRIJVER G,KERRE E E.On the composition of intuitionistic fuzzy relations[J].Fuzzy Set Syst, 2003,136(3):333-361.

    [36] BUSTINCE H,BURILLO P. Structures on intuitionistic fuzzy relations[J].Fuzzy Set Syst,1996,78(3):293-303.

    2013-09-24

    國家自然科學(xué)基金項目(61272066);教育部新世紀(jì)優(yōu)秀人才支持計劃項目(NCET-12-0644);廣東省自然科學(xué)基金項目(S2012030006242,10151063101000031)

    1000-5463(2013)06-0042-14

    TP301

    A

    10.6054/j.jscnun.2013.09.006

    面向語義Web的直覺模糊粗描述邏輯

    蔣運承*

    (華南師范大學(xué)計算機(jī)學(xué)院,廣東廣州 510631)

    分析了面向語義Web的直覺模糊粗描述邏輯的研究現(xiàn)狀和存在的問題,基于(L,T)-直覺模糊粗集理論將直覺模糊描述邏輯和粗描述邏輯進(jìn)行了集成,即提出了一種新的直覺模糊粗描述邏輯.針對與本體語言O(shè)WL 2等價的描述邏輯SROIQ(D),對SROIQ(D)進(jìn)行了擴(kuò)充,提出了直覺模糊粗描述邏輯IFRSROIQ(D),給出了IFRSROIQ(D)的語法、語義和性質(zhì),證明了IFRSROIQ(D)的推理問題(包括知識庫可滿足性、概念可滿足性、概念包含、邏輯推導(dǎo)、ABox一致性推理等)可以歸約到基于完備格的描述邏輯L*-SROIQ(D)上對應(yīng)的推理.

    描述邏輯; 模糊描述邏輯; 粗描述邏輯;(L,T)-直覺模糊粗集; 語義Web

    *通訊作者:蔣運承,教授,Email: ycjiang@scnu.edu.cn, yunchengjiang@gmail.com.

    【中文責(zé)編:莊曉瓊 英文責(zé)編:肖菁】

    猜你喜歡
    國家自然科學(xué)基金直覺責(zé)編
    “好一個裝不下”直覺引起的創(chuàng)新解法
    常見基金項目的英文名稱(一)
    林文月 “人生是一場直覺”
    海峽姐妹(2020年7期)2020-08-13 07:49:22
    一個“數(shù)學(xué)直覺”結(jié)論的思考
    我校喜獲五項2018年度國家自然科學(xué)基金項目立項
    2017 年新項目
    數(shù)學(xué)直覺謅議
    Optimization and application of protein C-terminal labeling by carboxypeptidase Y
    國家自然科學(xué)基金項目簡介
    Graphene Based Electrochemical Sensor for the Detection of Volatile Organic Compounds
    免费黄频网站在线观看国产| 老鸭窝网址在线观看| 国产不卡av网站在线观看| 99久久精品国产国产毛片| 亚洲一级一片aⅴ在线观看| 永久免费av网站大全| 久久女婷五月综合色啪小说| 纯流量卡能插随身wifi吗| 咕卡用的链子| 亚洲情色 制服丝袜| 久久久久久伊人网av| 一区二区三区精品91| 欧美变态另类bdsm刘玥| 国产深夜福利视频在线观看| 国产精品久久久久久精品电影小说| 国产无遮挡羞羞视频在线观看| 欧美日韩视频精品一区| 美女中出高潮动态图| 国产精品久久久久久精品古装| 男女高潮啪啪啪动态图| 18在线观看网站| 九草在线视频观看| 国产日韩欧美亚洲二区| 亚洲欧美日韩另类电影网站| 激情五月婷婷亚洲| 日韩一卡2卡3卡4卡2021年| 最新的欧美精品一区二区| 久久女婷五月综合色啪小说| 免费黄网站久久成人精品| 最近的中文字幕免费完整| 亚洲婷婷狠狠爱综合网| 久久久久人妻精品一区果冻| 午夜日本视频在线| 女人久久www免费人成看片| 一个人免费看片子| 亚洲欧美精品综合一区二区三区 | 欧美最新免费一区二区三区| 久久这里有精品视频免费| 男女午夜视频在线观看| 香蕉精品网在线| 夜夜骑夜夜射夜夜干| 观看美女的网站| 桃花免费在线播放| 久久精品亚洲av国产电影网| 最近最新中文字幕大全免费视频 | 国产av精品麻豆| 高清视频免费观看一区二区| 午夜免费观看性视频| 天堂俺去俺来也www色官网| 婷婷色综合www| 在线观看美女被高潮喷水网站| 国产欧美日韩综合在线一区二区| 肉色欧美久久久久久久蜜桃| 亚洲国产日韩一区二区| 国产无遮挡羞羞视频在线观看| 国产一区二区 视频在线| 亚洲激情五月婷婷啪啪| 大话2 男鬼变身卡| 亚洲少妇的诱惑av| 一边摸一边做爽爽视频免费| 嫩草影院入口| 伦理电影免费视频| 欧美国产精品一级二级三级| 国产精品秋霞免费鲁丝片| 亚洲欧美精品自产自拍| 日韩熟女老妇一区二区性免费视频| 成年av动漫网址| av国产精品久久久久影院| 男女国产视频网站| 日韩三级伦理在线观看| xxx大片免费视频| 在线观看免费日韩欧美大片| 99精国产麻豆久久婷婷| 欧美黄色片欧美黄色片| 日韩视频在线欧美| 亚洲国产精品国产精品| 狂野欧美激情性bbbbbb| 老司机亚洲免费影院| 国产精品嫩草影院av在线观看| 美女xxoo啪啪120秒动态图| 中文精品一卡2卡3卡4更新| 看非洲黑人一级黄片| 国产有黄有色有爽视频| 熟女av电影| 国产精品国产av在线观看| 看非洲黑人一级黄片| 免费观看av网站的网址| 国产精品.久久久| 日韩在线高清观看一区二区三区| 欧美亚洲日本最大视频资源| 国产成人欧美| 国产乱来视频区| 麻豆乱淫一区二区| 色婷婷久久久亚洲欧美| 婷婷色综合www| 高清欧美精品videossex| av电影中文网址| 美女xxoo啪啪120秒动态图| 国产精品 欧美亚洲| 又粗又硬又长又爽又黄的视频| 七月丁香在线播放| 少妇人妻久久综合中文| 制服诱惑二区| 亚洲人成电影观看| 男的添女的下面高潮视频| 久久女婷五月综合色啪小说| 精品人妻熟女毛片av久久网站| 涩涩av久久男人的天堂| 午夜精品国产一区二区电影| 国产深夜福利视频在线观看| 久久久久久人人人人人| 蜜桃国产av成人99| 国产精品久久久久久精品电影小说| 美女xxoo啪啪120秒动态图| 国产精品欧美亚洲77777| 日本wwww免费看| 国产一区二区三区av在线| 成人毛片60女人毛片免费| 欧美在线黄色| 日韩电影二区| 精品人妻在线不人妻| 18禁国产床啪视频网站| 国产免费又黄又爽又色| videos熟女内射| 国产精品久久久久久久久免| 建设人人有责人人尽责人人享有的| 嫩草影院入口| 卡戴珊不雅视频在线播放| 天堂8中文在线网| 成人漫画全彩无遮挡| 中文精品一卡2卡3卡4更新| 大码成人一级视频| 桃花免费在线播放| 国产成人免费观看mmmm| 日韩不卡一区二区三区视频在线| 国产av一区二区精品久久| av线在线观看网站| 日韩制服丝袜自拍偷拍| 飞空精品影院首页| 蜜桃国产av成人99| 一个人免费看片子| 一区福利在线观看| 秋霞伦理黄片| 精品视频人人做人人爽| 国产免费又黄又爽又色| 亚洲美女搞黄在线观看| 女的被弄到高潮叫床怎么办| 热re99久久精品国产66热6| 亚洲五月色婷婷综合| 少妇熟女欧美另类| 一级a爱视频在线免费观看| 曰老女人黄片| 五月天丁香电影| 亚洲av免费高清在线观看| 一本大道久久a久久精品| 日韩免费高清中文字幕av| 一本大道久久a久久精品| 亚洲国产欧美网| 99九九在线精品视频| 亚洲综合精品二区| 一本大道久久a久久精品| 午夜福利影视在线免费观看| 2021少妇久久久久久久久久久| 久久热在线av| 久久综合国产亚洲精品| 国产一区二区 视频在线| 久久韩国三级中文字幕| 午夜福利视频精品| 高清欧美精品videossex| 男人爽女人下面视频在线观看| 老司机亚洲免费影院| 国产片特级美女逼逼视频| 天堂俺去俺来也www色官网| 久久久久久人人人人人| 97在线人人人人妻| 高清在线视频一区二区三区| 男女午夜视频在线观看| 久久狼人影院| 尾随美女入室| videosex国产| 国产女主播在线喷水免费视频网站| 精品人妻偷拍中文字幕| 亚洲国产欧美网| 极品人妻少妇av视频| 日韩一卡2卡3卡4卡2021年| av又黄又爽大尺度在线免费看| 大码成人一级视频| 又粗又硬又长又爽又黄的视频| 少妇人妻 视频| 男女边吃奶边做爰视频| 亚洲欧洲日产国产| 有码 亚洲区| 国产成人精品婷婷| 国产日韩一区二区三区精品不卡| 亚洲内射少妇av| 777米奇影视久久| 在线观看国产h片| 久久久久久久精品精品| 成年人午夜在线观看视频| 欧美亚洲日本最大视频资源| 日日啪夜夜爽| 人妻 亚洲 视频| a级片在线免费高清观看视频| 久热这里只有精品99| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 九九爱精品视频在线观看| 男女午夜视频在线观看| 日韩电影二区| 欧美激情 高清一区二区三区| 在线精品无人区一区二区三| 99国产综合亚洲精品| 美女大奶头黄色视频| 哪个播放器可以免费观看大片| av免费观看日本| 日韩三级伦理在线观看| 精品第一国产精品| 精品国产国语对白av| 亚洲精品在线美女| 国产一区有黄有色的免费视频| 久久精品熟女亚洲av麻豆精品| 精品视频人人做人人爽| 老汉色av国产亚洲站长工具| 免费在线观看完整版高清| 日韩熟女老妇一区二区性免费视频| 国产精品av久久久久免费| 久久99蜜桃精品久久| 亚洲精品乱久久久久久| 亚洲精品国产一区二区精华液| 少妇人妻 视频| 免费久久久久久久精品成人欧美视频| 国产男人的电影天堂91| 久久影院123| 在线观看免费高清a一片| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产精品国产精品| 欧美av亚洲av综合av国产av | 欧美 日韩 精品 国产| 亚洲第一av免费看| 免费大片黄手机在线观看| 国产成人精品久久久久久| 国产一区二区三区av在线| 可以免费在线观看a视频的电影网站 | 亚洲人成网站在线观看播放| 国产欧美亚洲国产| 亚洲精品日韩在线中文字幕| 中国三级夫妇交换| 我的亚洲天堂| 777久久人妻少妇嫩草av网站| 女的被弄到高潮叫床怎么办| 国产精品香港三级国产av潘金莲 | 精品午夜福利在线看| 亚洲精品久久午夜乱码| 一二三四在线观看免费中文在| 一二三四在线观看免费中文在| 久久久久久人妻| 久久久精品免费免费高清| 国产成人精品久久二区二区91 | 999精品在线视频| 精品亚洲成a人片在线观看| 欧美激情 高清一区二区三区| 亚洲精品美女久久av网站| 午夜福利网站1000一区二区三区| 在线观看免费日韩欧美大片| av片东京热男人的天堂| 成人影院久久| 日韩欧美精品免费久久| 亚洲av综合色区一区| 成人午夜精彩视频在线观看| 午夜福利在线免费观看网站| 丝袜人妻中文字幕| 99热网站在线观看| 人人妻人人添人人爽欧美一区卜| av国产久精品久网站免费入址| 九色亚洲精品在线播放| av在线老鸭窝| 亚洲中文av在线| 男女边摸边吃奶| 又大又黄又爽视频免费| 亚洲精品国产色婷婷电影| 少妇猛男粗大的猛烈进出视频| 王馨瑶露胸无遮挡在线观看| 久久精品久久久久久久性| 999精品在线视频| 在线观看人妻少妇| a级片在线免费高清观看视频| 精品酒店卫生间| 2022亚洲国产成人精品| 亚洲av男天堂| 久久99热这里只频精品6学生| 女人被躁到高潮嗷嗷叫费观| 欧美激情 高清一区二区三区| 中文字幕人妻丝袜制服| 99热国产这里只有精品6| 亚洲精品国产色婷婷电影| 美国免费a级毛片| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品久久成人aⅴ小说| 黑丝袜美女国产一区| 久久精品久久久久久噜噜老黄| 男女国产视频网站| 日韩免费高清中文字幕av| 蜜桃国产av成人99| 亚洲欧美成人精品一区二区| 免费女性裸体啪啪无遮挡网站| 国产成人91sexporn| 黑人欧美特级aaaaaa片| 美国免费a级毛片| 天天躁夜夜躁狠狠躁躁| 国产成人一区二区在线| 欧美精品人与动牲交sv欧美| 亚洲av男天堂| 久久韩国三级中文字幕| 免费看av在线观看网站| 久热这里只有精品99| 黄频高清免费视频| 亚洲国产av新网站| 啦啦啦视频在线资源免费观看| 中文乱码字字幕精品一区二区三区| 国产成人欧美| 亚洲成av片中文字幕在线观看 | 亚洲av日韩在线播放| 亚洲欧洲国产日韩| 色播在线永久视频| 亚洲伊人色综图| 91精品三级在线观看| 国产精品无大码| 搡老乐熟女国产| 秋霞在线观看毛片| 亚洲人成网站在线观看播放| 母亲3免费完整高清在线观看 | 制服人妻中文乱码| 一级a爱视频在线免费观看| 久久婷婷青草| 欧美xxⅹ黑人| 熟女少妇亚洲综合色aaa.| 亚洲婷婷狠狠爱综合网| 日韩 亚洲 欧美在线| 欧美97在线视频| 成人毛片60女人毛片免费| 18禁裸乳无遮挡动漫免费视频| av国产久精品久网站免费入址| 妹子高潮喷水视频| 欧美精品高潮呻吟av久久| 美女脱内裤让男人舔精品视频| 黄片无遮挡物在线观看| 精品一区在线观看国产| 午夜激情av网站| 亚洲人成网站在线观看播放| 男女免费视频国产| 亚洲av福利一区| 咕卡用的链子| 国产精品久久久av美女十八| 丝袜美腿诱惑在线| 2018国产大陆天天弄谢| 丝袜美足系列| 狠狠精品人妻久久久久久综合| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲av电影在线进入| 69精品国产乱码久久久| 综合色丁香网| 国产精品久久久久久精品古装| 天堂俺去俺来也www色官网| 人妻 亚洲 视频| 中文天堂在线官网| 欧美精品av麻豆av| 麻豆乱淫一区二区| 精品一区二区三卡| 亚洲成人av在线免费| 免费不卡的大黄色大毛片视频在线观看| 美女xxoo啪啪120秒动态图| 人妻系列 视频| 亚洲国产精品999| 汤姆久久久久久久影院中文字幕| 久久久国产一区二区| 欧美日韩精品网址| 午夜福利乱码中文字幕| 国产精品 国内视频| 免费久久久久久久精品成人欧美视频| av电影中文网址| 免费黄频网站在线观看国产| av.在线天堂| 国产精品免费大片| 美女国产高潮福利片在线看| 午夜免费男女啪啪视频观看| 国产 一区精品| 久久国产亚洲av麻豆专区| 精品99又大又爽又粗少妇毛片| 国产精品二区激情视频| 久久精品国产自在天天线| 久久韩国三级中文字幕| 国产在线一区二区三区精| 制服丝袜香蕉在线| 亚洲av电影在线观看一区二区三区| 99热全是精品| 五月开心婷婷网| 亚洲熟女精品中文字幕| 午夜福利影视在线免费观看| 国产淫语在线视频| 男女啪啪激烈高潮av片| 欧美中文综合在线视频| 一边摸一边做爽爽视频免费| 亚洲在久久综合| videossex国产| av线在线观看网站| 亚洲欧美一区二区三区黑人 | 丝袜美足系列| 久久久a久久爽久久v久久| 国产成人精品久久久久久| 国产激情久久老熟女| 免费黄色在线免费观看| 久久精品人人爽人人爽视色| www.熟女人妻精品国产| 天天躁夜夜躁狠狠躁躁| 欧美日韩综合久久久久久| 99久久中文字幕三级久久日本| 久久午夜福利片| 国产成人精品一,二区| 日韩一本色道免费dvd| 国产一区二区 视频在线| 中文字幕制服av| 波野结衣二区三区在线| 免费久久久久久久精品成人欧美视频| 2021少妇久久久久久久久久久| 国产精品麻豆人妻色哟哟久久| 人成视频在线观看免费观看| 国产成人av激情在线播放| 日日啪夜夜爽| 国产女主播在线喷水免费视频网站| 久久午夜综合久久蜜桃| 成年av动漫网址| 狠狠婷婷综合久久久久久88av| 亚洲综合色网址| 人妻系列 视频| 夫妻性生交免费视频一级片| 大片电影免费在线观看免费| 丝袜脚勾引网站| 午夜福利,免费看| 七月丁香在线播放| 九色亚洲精品在线播放| 久久久欧美国产精品| 美女主播在线视频| 一本久久精品| 丝袜喷水一区| 中文字幕人妻丝袜一区二区 | 精品人妻一区二区三区麻豆| 亚洲精品aⅴ在线观看| 久久人人爽av亚洲精品天堂| 香蕉精品网在线| 美女脱内裤让男人舔精品视频| 啦啦啦在线观看免费高清www| 国产黄色视频一区二区在线观看| 亚洲视频免费观看视频| av免费观看日本| a 毛片基地| 日韩熟女老妇一区二区性免费视频| 日本wwww免费看| 777久久人妻少妇嫩草av网站| 黄片小视频在线播放| 亚洲伊人久久精品综合| 青春草国产在线视频| av.在线天堂| 制服人妻中文乱码| 日日啪夜夜爽| 亚洲精品日韩在线中文字幕| 美女福利国产在线| 国产淫语在线视频| 日本午夜av视频| 热99国产精品久久久久久7| 人妻一区二区av| 色吧在线观看| 美女视频免费永久观看网站| 免费观看在线日韩| 亚洲色图综合在线观看| 青春草视频在线免费观看| 成人国产麻豆网| 三级国产精品片| 五月开心婷婷网| 欧美精品av麻豆av| 国产精品麻豆人妻色哟哟久久| 1024视频免费在线观看| 91精品国产国语对白视频| 老熟女久久久| 美女大奶头黄色视频| 午夜福利视频精品| 少妇被粗大的猛进出69影院| 亚洲综合色惰| 亚洲成人一二三区av| 黄频高清免费视频| 国精品久久久久久国模美| 国产精品香港三级国产av潘金莲 | 国产1区2区3区精品| 久久精品熟女亚洲av麻豆精品| 欧美精品一区二区免费开放| 中文字幕精品免费在线观看视频| 午夜免费观看性视频| 日韩一卡2卡3卡4卡2021年| 妹子高潮喷水视频| 纵有疾风起免费观看全集完整版| 国产亚洲最大av| 波多野结衣av一区二区av| 国产精品一国产av| 精品少妇一区二区三区视频日本电影 | 亚洲熟女精品中文字幕| 下体分泌物呈黄色| 精品国产露脸久久av麻豆| 日本爱情动作片www.在线观看| 丁香六月天网| 日本午夜av视频| 99热全是精品| 黄频高清免费视频| 少妇猛男粗大的猛烈进出视频| 午夜福利一区二区在线看| 成年女人毛片免费观看观看9 | 爱豆传媒免费全集在线观看| 丝袜在线中文字幕| 精品人妻偷拍中文字幕| 我要看黄色一级片免费的| 国产成人精品在线电影| 在线观看美女被高潮喷水网站| 国产xxxxx性猛交| 日韩一卡2卡3卡4卡2021年| 国产精品蜜桃在线观看| 这个男人来自地球电影免费观看 | 午夜福利一区二区在线看| 国产熟女午夜一区二区三区| 水蜜桃什么品种好| 熟女电影av网| 在线观看免费高清a一片| 亚洲在久久综合| 多毛熟女@视频| 亚洲欧美色中文字幕在线| 少妇人妻 视频| 欧美亚洲日本最大视频资源| 亚洲精品视频女| 国产老妇伦熟女老妇高清| 国产男女超爽视频在线观看| 嫩草影院入口| 色94色欧美一区二区| 两个人看的免费小视频| 精品一品国产午夜福利视频| 亚洲一级一片aⅴ在线观看| 三上悠亚av全集在线观看| 免费人妻精品一区二区三区视频| videossex国产| 黄色一级大片看看| 天堂8中文在线网| 国产av一区二区精品久久| 在线观看三级黄色| av在线app专区| 精品一区二区三区四区五区乱码 | 91成人精品电影| 日韩伦理黄色片| 久久久久久久国产电影| 久久久久精品久久久久真实原创| 韩国高清视频一区二区三区| 久久99蜜桃精品久久| 丰满饥渴人妻一区二区三| 日产精品乱码卡一卡2卡三| 少妇 在线观看| 老鸭窝网址在线观看| 女性被躁到高潮视频| 精品国产乱码久久久久久男人| 大片免费播放器 马上看| 岛国毛片在线播放| 日本av手机在线免费观看| 人人妻人人爽人人添夜夜欢视频| 国产男女内射视频| 日韩视频在线欧美| 777米奇影视久久| 精品国产一区二区三区四区第35| 十分钟在线观看高清视频www| 国产爽快片一区二区三区| 五月伊人婷婷丁香| 999精品在线视频| 大香蕉久久成人网| 国产乱来视频区| 成人毛片60女人毛片免费| 亚洲精品国产av成人精品| 色网站视频免费| 国产在视频线精品| 你懂的网址亚洲精品在线观看| 少妇猛男粗大的猛烈进出视频| 国产伦理片在线播放av一区| 日本爱情动作片www.在线观看| 日韩在线高清观看一区二区三区| 色吧在线观看| 91成人精品电影| 亚洲av男天堂| 国产日韩欧美亚洲二区| 成人国产麻豆网| 九九爱精品视频在线观看| 少妇人妻 视频| 在线观看人妻少妇| 大片电影免费在线观看免费| 午夜福利一区二区在线看| 国产片内射在线| 国产不卡av网站在线观看| 久久久精品94久久精品| 赤兔流量卡办理| 国产激情久久老熟女| 国产精品香港三级国产av潘金莲 | 下体分泌物呈黄色| 男的添女的下面高潮视频| 久久久久精品性色| 国产女主播在线喷水免费视频网站| 亚洲国产最新在线播放| 99精国产麻豆久久婷婷| 性色avwww在线观看| 在线天堂最新版资源| 一本大道久久a久久精品| 久久99一区二区三区| 人妻少妇偷人精品九色| av网站免费在线观看视频| 狂野欧美激情性bbbbbb| 丝袜人妻中文字幕|