• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Method of Constructing Upper-Lower Solutions for Wave Profile Systems with Quasi-Monotonicity

    2013-10-28 03:53:30WENGPeixuan
    關(guān)鍵詞:博士點(diǎn)國家自然科學(xué)基金基金項(xiàng)目

    WENG Peixuan

    (School of Mathematical Sciences, South China Normal University, Guangzhou 510631,China)

    MethodofConstructingUpper-LowerSolutionsforWaveProfileSystemswithQuasi-Monotonicity

    WENG Peixuan*

    (School of Mathematical Sciences, South China Normal University, Guangzhou 510631,China)

    The wave profile systems corresponding to a reaction-diffusion system and an integro-partial differential system withn(>1) equations and quasi-monotonicity are considered. By analyzing the principal eigen-value and eigen-vector, a constructing method of upper-lower solutions for the wave profile systems is given. Some examples to illustrate the applications of our method are given.

    Keywords: reaction-diffusion system; integro-partial differential system; quasi-monotonicity; wave profile system; upper-lower solutions

    A classic system of reaction-diffusion equations is the following system called KPP type

    (1)

    and a typical system of integro-partial differential equations is of the form

    (2)

    Let [0,K] be an vector interval inn.fsatisfies so call quasi-monotonicity on [0,K] if

    (QM1) there exists a matrixβ=diag(β1,β2,…,βn) withβi≥0 such that

    f(u)-f(v)+β(u-v)≥0(0≤v≤u≤K).

    One can also define thatFsatisfies so call quasi-monotonicity on [0,K] if

    (QM2)F(u,w) is nondecreasing inw, and there exists a matrixβ=diag(β1,β2,…,βn) withβi≥0 such that

    F(u,w)-F(v,w)+β(u-v)≥0(0≤v≤u≤K).

    As we know, that systems like (1)~(2) are models arising from many real problems with temporal-spatial variation, such as those in epidemiology, ecology, biology, chemistry and physics[1-7]. System (2) is referred as nonlocal systems, and correspondingly (1) a local diffusion system. The main reason for the name of “nonlocal system” is that the variance radio ?u/?tat the locationxand timetdepend on the whole space(see, e.g. [8-14]). For these systems, one key element to the developmental process and dynamical study seems to be the appearance of traveling wave solutions. A traveling wave solution is a special solution traveling without change of shape, which has been widely studied for reaction-diffusion equations[6,15-20], integral and integro-partial differential equations[9-10,14,21].

    Consider the existence of traveling wavefrontu(x,t)=φ(s) (s=x+ct) for (1) and (2). It is already known that the quasi-monotonicity off(orF) leads to a conclusion that the existence of a pair of admissible upper-lower solutions for the wave profile system guarantees the existence of traveling wavefront, the proof of which is proceeded by using the monotonic iteration method accompanied with the upper-lower solutions[6,14,18-19]. Therefore, the existence of a pair of admissible upper-lower solutions is really very important for the study of traveling wavefront. However, the construction and verification of upper-lower solutions are very challenging, some time maybe said to be extremely difficult. By our best knowledge, most works in the literature concerned on the casen=1, and the works on the construction for the upper-lower solutions forn>1 is few. The first work which constructed upper-lower solutions on integro-differential systems is from Weng & Zhao[14], and the method in which is used for reaction-diffusion systems (even in the degenerate case) by Fang & Zhao[22]. Encouraged by the works of [14,19,22-24], we try to rule out the techniques on constructing the upper-lower solutions of (1) and (2) forn>1. In this article, accompanied with the analysis of constructing method, we also give a formula for the computation of minimal wave speed of traveling wavefronts.

    The organization of this paper is as follows. In Section 1, we consider the system (1), and in Section 2, we study the system (2).

    1 Reaction-diffusion System

    Assume that (1) has two equilibria0=(0,0,…,0)TandK=(k1,k2,…,kn)Tsuch thatf(0)=0,f(K)=0andf(u)≠0with0

    (GQM1) there exists a matrixβ=diag(β1,β2,…,βn) withβi≥0 such that

    f(u)-f(v)+β(u-v)≥0(-ω≤v≤u≤K),

    whereω=(ω1,…,ωn)T?0.

    By substitutingu(x,t)=φ(s) (s=x+ct) into the equation (1), we obtain the wave profile system of (1):

    cφ′(s)=dφ″(s)+f(φ(s)).

    (3)

    A traveling wavefront of (1) is a solution of (3) with monotonicity ons, satisfying

    Define a wave profile set:

    We now give a definition of upper-lower solutions for (3).

    Definition1A continuous vector functionφ=(φ1,φ2,…,φn)Tis called an upper solution of (3) ifφis twice continuously differentiable onSand satisfies

    dφ″(s)-cφ′(s)+f(φ(s))≤0

    (4)

    In the above definition, we do not demand that the upper-lower solutions are insideD, but we in fact construct the upper-lower solutions insideDin what follows.

    1.1ConstructingMethodofUpper-lowerSolutions

    In what follows, we shall mainly concern on the construction of upper-lower solutions of (3).

    Note the linearized system of (1) atu=0is

    (5)

    whereDf(0) is the Jacobi matrix offat0. Letu(x,t)=e-νxv(t), whereν≥0 is a parameter, andv(t)=(v1(t),v2(t),…,vn(t)). Substitutingu(x,t)=e-νx×v(t) into (5), we obtain

    v′(t)=ν2dv(t)+Df(0)v(t).

    (6)

    Consider the following matrix

    γ(ν)=(γ1(ν),γ2(ν),…,γn(ν))T

    express the principal eigenvector with regard toλ(ν). Thenγ(ν)>0forν≥0. In addition, in view of [25,Corollary 4.3.2], ifCνis irreducible, thenγ(ν)?0forν≥0.

    In view of the definitions of eigen-value and eigen-function, we obtain the following relation

    (i=1,2,…,n,ν≥0).

    (7)

    Note that if λ(0)>0, then it will yieldλ(ν)>0 forν≥0.

    Lemma1Assume λ(0)>0. Then the following statements are valid:

    The conclusion (2) is a direct corollary from the conclusion (1) andλ(ν)>0 forν≥0.

    In the following arguments, we always assume that the hypothesis (H) holds.

    (1)Df(0) is irreducible;

    Remark1We may in fact need ?fi(u)/?uj≥0 (i,j=1,2,…,n,i≠j) and -ω≤u≤Kfor some nonnegative vectorωin the practical applications.

    Now we begin to state our idea of constructing upper-lower solutions of (3). For anyc>c*, in view of Lemma 1, there existν1>0 such thatΦ(ν1)=c. Here, if there exist more than oneν>0 such thatΦ(ν)=c, we always choose the smallest one, denoted asν1. Letε>0 be small andνε:=ν1+ε, such thatν1<νε<ν*and 2ν1>νε. Thus, there exists acε=Φ(νε) such thatc*

    Φ(ν1)=c,Φ(νε)=cε,Φ(ν*)=c*.

    (i=1,2,…,n).

    (8)

    ξ(s):=(ξ1(s),ξ2(s),…,ξn(s))T,

    ξi(s):=γi(ν1)eν1s-δγi(νε)eνεs=

    i:=ln<0 ifδ>0 is large.

    We then have

    ξi(i)=0,ξi(s)>0 (si).

    That is, we can haveMi>0 being very small withε>0 small enough.

    (9)

    fi(γ1(ν1)eν1s,γ2(ν1)eν1s,…,γn(ν1)eν1s)=

    fi(γ1(ν1)eν1s,γ2(ν1)eν1s,…,γn(ν1)eν1s)=

    γ2(ν1)eν1s,…,γn(ν1)eν1s).

    γ2(ν1)eν1s,…,γn(ν1)eν1s)≤0(s

    (10)

    We begin to verify the lower solution. Note the following facts:

    (11)

    Fors≥i, we haveφi(s)=0,φj(s)≥0 (j=1,2,…,n,j≠i) and then

    (12)

    Fors

    δθνεγi(νε)eνεs+fi(ξ(s))=

    fi(ξ(s))+δθνεγi(νε)eνεs,

    whereθ=c-cε. Here we used the factφj(s)≥ξj(s) (j≠i) in (11) and Remark 1. If we use another fact in (11) thatφj(s)≥0 (j=1,2,…,n,j≠i), then we obtain

    fi(0,…, 0,ξi(s),0,…,0)+δθνεγi(νε)eνεs.

    Therefore, in order thatφ(s) is a lower solution of (3), we need either

    fi(ξ(s))+δθνεγi(νε)eνεs≥0 (s

    (13)

    or

    fi(0,…, 0,ξi(s),0,…,0)+δενεγi(νε)eνεs≥0

    (s

    (14)

    Summarizing the above arguments, we obtain a conclusion as follows:

    Remark2λ(0)>0 is an obvious assumptions in order to guarantee the instability of zero equilibrium, which leads to the wave propagation from zero to the positive equilibrium. Consider the cooperative system

    (15)

    where all constants are nonnegative. Thenλ(0)>0 is equivalent to max{r1,r2}>0.

    Note that we need to substituteφn(s)≡0 into other formulas (i=1,2,…,n-1) in (13).

    1.2Applications

    In this subsection, we shall give two reaction-diffusion systems to illustrate the applications of conclusion (C). One system is irreducible, and another is reducible.

    Example1Consider a system generalized in biochemical control circuit[25]:

    (16)

    wheredi>0,αi>0 andgis a bounded continuously differentiable function satisfying

    M>g(v)>0,g′(v)>0 (v>0).

    Typical choices ofgin the applications are

    For simplicity and certainty, we consider the situation ofg(u)=u/(1+u), and thus if we assume thatα<1, then there are two equilibria of (16) as follows:

    0:=(0,…,0),K:=(k1,…,kn), wherekn=1/α-1.

    The corresponding form ofCνand (7) are as follows:

    [λ(ν)-(d1ν2+α1)]γ1(ν)-g′(0)γn(ν)=0,

    -γi-1(ν)+[λ(ν)-(diν2+αi)]γi(ν)=0

    (i=2,3,…,n).

    (17)

    Forg(u)=u/(1+u), we haveg′(0)=1, and thusCνis irreducible.

    We want to show thatλ:=λ(0)>0, and therefore, (1) in (H) is satisfied. In fact, note

    detC0=(-1)nα+(-1)n+1g′(0)=(-1)n(α-1)

    and det[λI-C0]=0 is equivalent to the algebra equation

    p(λ):=λn+a1λn-1+a2λn-2+…+an-1λ+an=0,

    wherean=p(0)=(-1)ndetC0=(-1)2n(α-1)<0. Sincep(+∞)=+∞, we know thatp(λ)=0 has positive real root, that isλ(0)>0.

    Now we have

    …,γn(ν1)eν1s)=eν1s[α1γ1(ν1)-g′(0)γn(ν1)]+

    g(eν1sγn(ν1))-α1eν1sγ1(ν1)≤0(s

    …,γn(ν1)eν1s)=eν1s[αiγi(ν1)-γi-1(ν1)]+

    eν1sγi-1(ν1)-αieν1sγi(ν1)=0(s

    That is, (10) is true.

    We verify (13) in the following.

    f1(ξ(s))+δθνεγ1(νε)eνεs=eν1s[α1γ1(ν1)-

    g′(0)γn(ν1)]-δeνεs[α1γ1(νε)-

    g′(0)γn(νε)]+g(eν1sγn(ν1)-δeνεsγn(νε))-

    α1[eν1sγ1(ν1)-δeνεsγ1(νε)]+δθνεγi(νε)eνεs=

    -g′(0)[eν1sγn(ν1)-δeνεsγn(νε)]+

    g(eν1sγn(ν1)-δeνεsγn(νε))+δθνεγ1(νε)eνεs=

    δθνεγ1(νε)eνεs=-e2ν1s{γn(ν1)-

    δe(νε-ν1)sγn(νε)}2+δθνεγ1(νε)eνεs.

    Since 2ν1>νε, we can chooseδ>0 large enough such that

    -e2ν1s{γn(ν1)-δe(νε-ν1)sγn(νε)}2+

    δθνεγ1(νε)eνεs≥0(s

    As fori=2,…,n, we have

    fi(ξ(s))+δθνεγi(νε)eνεs=eν1s[αiγi(ν1)-

    γi-1(ν1)]-δeνεs[αiγi(νε)-γi-1(νε)]+

    [eν1sγi-1(ν1)-δeνεsγi-1(νε)]-αi[eν1sγi(ν1)-

    δeνεsγi(νε)]+δθνεγi(νε)eνεs=

    δθνεγi(νε)eνεs≥0(s

    The above example is the irreducible case (1) in (H). In what follows, we shall give another example which is of the reducible case (2) in (H).

    Example2Consider a reaction diffusion model for competing pioneer and climax species[19]:

    (18)

    Assume

    then we can derive thatc11c22>1 and there are two equilibria of (18) as follows:

    Give another assumption for technical reason:

    (P2)w*≤u*.

    Letp=z0/c11-uandq=v. Then, (18) is transformed to the following system

    (19)

    andE1andE*are transformed to

    with0andKbeing ordered and no other equilibrium between0andK, under (P1) and (P2). Notez0/c11-u*>0, thusKis a positive equilibrium.

    The system (19) is a cooperative but reducible system in [0,K]. The corresponding form ofCνand (7) are as follows:

    and

    (20)

    The two eigenvalues ofCνare

    whereλ1(ν)=λ(ν) is the principal eigenvalue. Noteλ(0)>0, and the principal eigenvector corresponding toλ(ν) is (γ1(ν),γ2(ν))T, where

    γ1(ν)=λ1(ν)-λ2(ν)=

    Assume that there holds

    (P3)d1/d2≤2.

    Then we obtain by calculation that

    Noting that

    the assumption (P3) leads to

    Summarizing the above discussion, we know that the system (19) satisfies (2) in (H).

    We begin to verify (10). Fori=1 ands

    e2ν1sγ1(ν1)G′(ζ(s))[c22γ1(ν1)-γ2(ν1)],

    whereζ(s) is betweenz0/c11andz0/c11-γ2(ν1)eν1s+c22γ1(ν1)eν1s. Sincew*1, and we have

    andc22γ1(0)-γ2(0)>0, which leads to

    (21)

    ?G′(ζ(s))≤ 0,

    and thus

    e2ν1sγ1(ν1)G′(ζ(s))[c22γ1(ν1)-γ2(ν1)]≤0 (s

    Fori=2 ands

    [γ1(ν1)-c11γ2(ν1)],

    we have

    Therefore,

    z0-c11γ2(ν1)eν1s+γ1(ν1)eν1s=

    z0+[γ1(ν1)-c11γ2(ν1)]eν1s≥z0.

    In view of the convexity ofF, we know thatF′(z0)

    This leads to

    (s

    For this system, we takeφ2(s)≡0 (see Remark 3). Now, fori=1,s<1, we verify (14):

    f1(ξ1(s),0)+δθνεγ1(νε)eνεs=

    δθνεγ1(νε)eνεs+f1(γ1(ν1)eν1s-δeνεsγ1(νε),0)=

    δθνεγ1(νε)eνεs,

    whereζ(s) is betweenz0/c11andz0/c11+c22ξ1(s), which is bounded. Since |G′(ζ(s))| is bounded, and

    we have from 2ν1>νεthat

    ifδ>0 large enough.

    In view of conclusion (C) and Remark 3, we complete the verification of upper-lower solutions for the wave profile system of (18).

    2 Integro-partial Differential System

    (22)

    LetF(0,0)=0,F(K,K)=0, andF(u,u)≠0with0

    (23)

    Thus we know thatFsatisfies (QM2). In fact, for mostFwith (QM2), they may satisfies a more strong condition:

    (GQM2)F(u,w) is nondecreasing inw, and there exists a matrixβ=diag(β1,β2,…,βn) withβi≥0 such that

    F(u,w)-F(v,w)+β(u-v)≥0

    (-ω≤v≤u≤K,ω>0).

    By substitutingu(x,t)=φ(s) (s=x+ct) into the equation (2), we obtain the wave profile system of (2):

    (24)

    A traveling wavefront of (2) is a solution of (24) with monotonicity ons, satisfying

    We also give a definition of upper-lower solutions for (24).

    Definition2A continuous vector functionφ=(φ1,φ2,…,φn)Tis called an upper solution of (24) ifφis continuously differentiable onSand satisfies

    (25)

    2.1ConstructingMethodofUpper-lowerSolutions

    Note the linearized system of (3) atu=0is

    (26)

    whereD1F(0,0) is the Jacobi matrix ofF(u,w) onuatu=0,w=0, andD2F(0,0) is the Jacobi matrix ofF(u,w) onwatu=0,w=0.Letu(x,t)=e-νxv(t),whereν≥0 is a parameter, andv(t)=(v1(t),v2(t),…,vn(t)). Substitutingu(x,t)=e-νxv(t) into (26), we obtain

    (27)

    Consider the following quasi-positive matrix

    (cij(ν))n×n,

    where

    aij+bij(ν),

    Then (27) is equivalent to the vector equation

    (28)

    which is a cooperative system.

    (29)

    Lemma2Assume that λ(0)>0 and one of the following conditions holds:

    (ii)bii(0)>0 (i=1,2,…,n).

    Then the following statements are valid:

    (1)λ(ν)>0 (ν≥0);

    ProofSinceCν≥C0, we have λ(ν)≥λ(0)>0 forν≥0 (see [25, Corollary 4.3.2]). Therefore, the conclusion (1) holds.

    and hence

    (30)

    For fixed indexi, from the above discussion about (i) and (ii), we further know thatcij(ν)>0 for at least somej. It then follows from (29) that

    By using (1) and (2), we obtain (3) directly.

    (1)D1F(0,0) is irreducible, andbii(0)>0 (i=1,2,…,n);

    Remark5Either (1) or (2) yields a conclusion thatCνis irreducible, and thusγ(ν)?0forν≥0.

    The following idea is similar to what in Section 2. For anyc>c*, letΦ(ν1)=c,Φ(νε)=cε,Φ(ν*)=c*,whereε>0 is small andνε:=ν1+ε, such thatc*νε.

    F(K,K)=0.

    -cν1γi(ν1)eν1s+Fi(γ1(ν1)eν1s,…,γn(ν1)eν1s,

    (31)

    We begin to verify the lower solution. Fors≥i, we haveφi(s)=0,φj(s)≥0 (j=1,2,…,n,j≠i) and then

    F(0,0)=0.

    Fors

    -c[ν1eν1sγi(ν1)-δνεeνεsγi(νε)]+Fi(ξ1(s),

    δθeνεsγi(νε)+Fi(ξ1(s),…,ξn(s),

    Here we use the factφj(s)≥ξj(s) (j≠i) in (11). If we use another fact in (11) thatφj(s)≥0, then we obtain

    δθeνεsγi(νε)+Fi(0,…,0,ξi(s),0,…,0,

    Therefore, in order thatφ(s) is a lower solution of (24), we need either

    δθeνεsγi(νε)+Fi(ξ1(s),…,ξn(s),

    (32)

    or

    δθeνεsγi(νε)+Fi(0,…,0,ξi(s),0,…,0,

    (33)

    Summarizing the above arguments, we obtain a conclusion as follows.

    2.2Applications

    Example3Consider the following multi-type SIS epidemic model:

    μiui(x,t)(1≤i≤n).

    (34)

    Here

    F(u,w)=-μu+g(u)w,

    g(u)=diag(1-u1,1-u2,…,1-un),

    μ=diag(μ1,μ2,…,μn).

    (H2)σj≥0,λij≥0, and the matrixΛ:=(σjλij)n×nis irreducible.

    (H3) Eitherμi=0 for somei, orμ? 0 andρ(Γ)>1, whereρ(Γ)==max{|λ|: det(λI-Γ)=0}.

    Example4In (2), if we take

    F(u,w)=-u+f(u)+w,

    P(y)=J(y)=diag(J1(y),J2(y),…,Jn(y)),

    (35)

    (1)Df(0,0) is irreducible;

    Concretely, let us consider the biochemical control circuit in Example 1 withg(u)=u/(1+u):

    f1(u1,…,un)=g(un)-α1u1,

    fi(u1,…,un)=ui-1-αiui(i=2,…,n).

    By calculation, we obtain

    λ(ν)γi(ν)=ci(i-1)(ν)γi-1(ν)+cii(ν)γi(ν)=

    (i=2,…,n).

    (36)

    Now we have

    -eν1s[c11(ν1)γ1(ν1)+c1n(ν1)γn(ν1)]-

    (1+α1)γ1(ν1)eν1s+g(γn(ν1)eν1s)+

    g′(0)eν1sγn(ν1)≤0,

    -eν1s[ci(i-1)(ν1)γi-1(ν1)+cii(ν1)γi(ν1)]-

    (1+αi)γi(ν1)eν1s+γi-1(ν1)eν1s+

    eν1sγi-1(ν1)=0 (i=2,…,n).

    That is, (31) is true.

    We verify (32) in the following. Ifi=1, we have

    δθeνεsγ1(νε)+F1(ξ1(s),…,ξn(s),

    -eν1s[c11(ν1)γ1(ν1)+c1n(ν1)γn(ν1)]+

    δeνεs[c11(νε)γ1(νε)+c1n(νε)γn(νε)]+

    δθeνεsγ1(νε)-(1+α1)[γ1(ν1)eν1s-

    δeνεsγn(νε)]+g(eν1sγn(ν1)-δeνεsγn(νε))+

    g(eν1sγn(ν1)-δeνεsγn(νε))-

    g′(0)[eν1sγn(ν1)-δeνεsγn(νε)]+δθeνεsγ1(νε)=

    (s<1)

    by using the fact: 2ν1>νεandδ>0 large enough. As fori=2,…,n, we have

    δθeνεsγi(νε)+Fi(ξ1(s),…,ξn(s),

    -eν1s[ci(i-1)(ν1)γi-1(ν1)+cii(ν1)γi(ν1)]+

    δeνεs[ci(i-1)(νε)γi-1(νε)+cii(νε)γi(νε)]+

    δθeνεsγi(νε)-(1+αi)[γi(ν1)eν1s-

    δeνεsγi(νε)]+[eν1sγi-1(ν1)-δeνεsγi-1(νε)]+

    δeνεsγi-1(νε)≥0(s

    Therefore, (32) holds.

    Acknowledgments: I want to express my thanks to Professor Xiaoqiang Zhao in Memorial University of Newfoundland for his valuable discussions on the upper and lower solutions for higher dimensional (vector) systems.

    [1] ARONSON D G,WEINBERGER H F. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation[M]∥GOLDSTEIN J A. Partial differential equations and related topics. Lecture notes in mathematics. New York:Springer-Verlag, 1975,446:5-49.

    [2] ARONSON D G,WEINBERGER H F. Multidimensional nonlinear diffusion arising in population dynamics[J]. Adv Math,1978,30:33-76.

    [3] WEINBERGER H F. Asymptotic behavior of a model in population genetics[M]∥CHADAM J. Nonlinear partial differential equations and applications. Lecture notes in mathematics. New York:Springer-Verlag, 1978,648:47-97.

    [4] MURRAY J D. Mathematical biology:I & II[M]. New York:Springer-Verlag,2002.

    [5] RASS L,RADCLIFFE J. Spatial deterministic epidemics[M]∥Mathematical surveys and monographs.Providence, RI:American Mathematical Society,2003.

    [6] VOLPERT A I,VOLPERT Vitaly A,VOLPERT Vladimir A.Traveling wave solutions of parabolic systems[M]∥Translation of mathematical monographs. Providence, RI:American Mathematical Society,1994.

    [7] WEINBERGER H F. Some deterministic models for the spread of genetic and other alterations[M]∥JGER W,ROST H,TAUTU P. Biological growth and spread. Lecture notes in biomathematics. New York:Springer-Verlag, 1981,38:320-333.

    [8] AL-OMARI J F M,GOURLEY S A. A nonlocal reaction-diffusion model for a single species with stage structure and distributed maturation delay[J]. Eur J Appl Math,2005,16:37-51.

    [9] BRITTON N F. Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model[J]. SIAM J Appl Math, 1990,50:1663-1688.

    [10] DIEKMANN O. Thresholds and traveling waves for the geographical spread of infection[J]. J Math Biol,1978,6:109-130.

    [11] GOURLEY S A,WU J. Delayed nonlocal diffusive systems in biological invasion and disease spread[M]∥BRUNNER H,ZHAO X Q,ZOU X. Nonlinear dynamic and evolution equations, Fields Inst Commun.Providence,RI:American Mathematical Society,2006,48:137-200.

    [12] SO Joseph W H,WU J H, ZOU X F. A reaction-diffusion model for a single species with age structure, I. Travelling wavefronts on the unbounded domains[J].Proc R Soc Lond A,2001,457:1841-1853.

    [13] WENG P,HUANG H,WU J. Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction[J].IMA J Appl Math,2003,68:409-439.

    [14] WENG P,ZHAO X Q. Spreading speed and traveling waves for a multi-type SIS epidemic model[J].J Differ Equations,2006,229:270-296.

    [15] SMITH H L,ZHAO X Q. Global asymptotic stability of traveling waves in delayed reaction-diffusion equations[J].SIAM J Math Anal,2000,31:514-534.

    [16] WEINBERGER H F. On spreading speeds and traveling waves for growth and migration models in a periodic habitat[J].J Math Biol,2002,45:511-548.

    [17] WEINBERGER H F,LEWIS M A,LI B T. Analysis of linear determinacy for spread in cooperative models[J].J Math Biol,2002,45:183-218.

    [18] WU J,ZOU X. Traveling wave fronts of reaction-diffusion systems with delay[J].J Dyn Differ Equ,2001,13:651-687.

    [19] YUAN Z H,ZOU X F. Co-invasion waves in a reaction diffusion model for competing pioneer and climax species[J]. Nonlinear Anal-RWA,2010,11:232-245.

    [20] ZHAO X Q, WANG W D.Fisher waves in an epidemic model[J].Discrete Cont Dyn S:Ser B,2004,4:1117-1128.

    [21] DIEKMANN O. Run for your life. A note on the asymptotic speed of an epidemic[J]. J Differ Equations,1979,33:58-73.

    [22] FANG J,ZHAO X Q. Monotone wavefronts for partially degenerate reaction-diffusion systems[J]. J Dyn Diff Equat,2009,21:663-680.

    [23] LI B T,WEINBERGER H F,LEWIS M A. Spreading speeds as slowest wave speeds for cooperative systems[J].Math Biosci,2005,196:82-98.

    [24] LIANG X,ZHAO X Q. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications[J].Comm Pure Appl Math,2007,60:1-40. Erratum: Comm Pure Appl Math,2008,61:137-138.

    [25] SMITH H L. Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems[M]∥Mathematical surveys and monographs. Providence, RI:American Mathematical Society,1995.

    [26] BROWN J,CARR J. Deterministic epidemic waves of critical velocity[J]. Math Proc Cambridge Philos Soc,1977,81:431-433.

    2013-03-11

    國家自然科學(xué)基金項(xiàng)目(11171120);教育部博士點(diǎn)基金項(xiàng)目(20094407110001);廣東省自然科學(xué)基金項(xiàng)目(10151063101000003)

    1000-5463(2013)06-0006-13

    O175.2; O175.6; O175.1

    A

    10.6054/j.jscnun.2013.09.002

    擬單調(diào)波輪廓方程組構(gòu)造上下解的方法

    翁佩萱*

    (華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院, 廣東廣州 510631)

    研究了空間維數(shù)n>1情形下對(duì)應(yīng)于擬單調(diào)反應(yīng)擴(kuò)散系統(tǒng)和積分-偏微分系統(tǒng)的波輪廓方程組. 通過分析主特征值和主特征向量,給出了構(gòu)造上下解的方法和一些應(yīng)用例子.

    反應(yīng)擴(kuò)散方程組; 積分-偏微分方程組; 擬單調(diào); 波輪廓方程組; 上下解

    *通訊作者:翁佩萱,教授,Email: wengpx@scnu.edu.cn.

    【中文責(zé)編:莊曉瓊 英文責(zé)編:肖菁】

    猜你喜歡
    博士點(diǎn)國家自然科學(xué)基金基金項(xiàng)目
    常見基金項(xiàng)目的英文名稱(一)
    常見基金項(xiàng)目的英文名稱(二)
    常見基金項(xiàng)目的英文名稱(一)
    我校喜獲五項(xiàng)2018年度國家自然科學(xué)基金項(xiàng)目立項(xiàng)
    淺談當(dāng)前形勢下創(chuàng)新創(chuàng)業(yè)博士點(diǎn)建設(shè)的意義
    考試周刊(2018年65期)2018-09-13 11:05:50
    教育部:全國完全新增博士點(diǎn)372個(gè)復(fù)審?fù)ㄟ^率為45.8%
    2017 年新項(xiàng)目
    這個(gè)世界需要博士點(diǎn)嗎?
    國家自然科學(xué)基金項(xiàng)目簡介
    從我國教育技術(shù)學(xué)博士點(diǎn)建設(shè)看其學(xué)科發(fā)展
    精品久久蜜臀av无| 免费观看无遮挡的男女| 曰老女人黄片| 精品一区二区三卡| 在线天堂最新版资源| 亚洲精品视频女| 中文字幕人妻熟女乱码| 99热国产这里只有精品6| 男女边摸边吃奶| 午夜日本视频在线| 亚洲av国产av综合av卡| 丝袜人妻中文字幕| 日韩一本色道免费dvd| 亚洲欧美一区二区三区黑人 | 国产高清不卡午夜福利| 熟女电影av网| 国产高清不卡午夜福利| 亚洲国产精品一区二区三区在线| 亚洲欧美精品自产自拍| 欧美精品人与动牲交sv欧美| 最新的欧美精品一区二区| 日韩制服骚丝袜av| 国语对白做爰xxxⅹ性视频网站| 亚洲精品国产av蜜桃| 伦精品一区二区三区| 婷婷色麻豆天堂久久| 日本猛色少妇xxxxx猛交久久| 中文字幕精品免费在线观看视频 | 男女边吃奶边做爰视频| 国产精品一区www在线观看| 国产又爽黄色视频| 日韩av不卡免费在线播放| 午夜激情久久久久久久| 五月天丁香电影| 久久久a久久爽久久v久久| 成人亚洲欧美一区二区av| 婷婷色综合大香蕉| 王馨瑶露胸无遮挡在线观看| 国产精品麻豆人妻色哟哟久久| 大香蕉久久网| 婷婷色麻豆天堂久久| 如日韩欧美国产精品一区二区三区| 丰满饥渴人妻一区二区三| 黄色视频在线播放观看不卡| 欧美日韩av久久| 一二三四在线观看免费中文在 | 99热这里只有是精品在线观看| 97精品久久久久久久久久精品| 99热全是精品| 国产成人欧美| 国产日韩欧美亚洲二区| 日本欧美视频一区| 中国美白少妇内射xxxbb| 18禁国产床啪视频网站| 国产一区二区三区综合在线观看 | 好男人视频免费观看在线| 亚洲,一卡二卡三卡| 美女内射精品一级片tv| a级毛片黄视频| 国产一级毛片在线| 精品亚洲乱码少妇综合久久| av视频免费观看在线观看| 欧美日本中文国产一区发布| 大香蕉久久成人网| 又粗又硬又长又爽又黄的视频| 制服人妻中文乱码| 香蕉精品网在线| 看免费成人av毛片| 99热国产这里只有精品6| 国产成人a∨麻豆精品| 中文字幕亚洲精品专区| 香蕉丝袜av| 桃花免费在线播放| 亚洲人与动物交配视频| 国产探花极品一区二区| 久久这里只有精品19| 亚洲,一卡二卡三卡| 内地一区二区视频在线| 国产免费福利视频在线观看| 中文字幕最新亚洲高清| 欧美 日韩 精品 国产| 黄色一级大片看看| 亚洲精品色激情综合| 亚洲国产日韩一区二区| 午夜av观看不卡| 天堂8中文在线网| 婷婷色av中文字幕| 久久女婷五月综合色啪小说| 最近最新中文字幕免费大全7| 春色校园在线视频观看| 在线观看一区二区三区激情| 91午夜精品亚洲一区二区三区| 在线观看国产h片| 韩国高清视频一区二区三区| 捣出白浆h1v1| 亚洲综合色惰| av不卡在线播放| 夜夜爽夜夜爽视频| 91国产中文字幕| 免费大片18禁| 18禁动态无遮挡网站| 看十八女毛片水多多多| 国产男人的电影天堂91| 麻豆乱淫一区二区| 九草在线视频观看| 桃花免费在线播放| 97精品久久久久久久久久精品| 欧美激情 高清一区二区三区| 国产精品无大码| 日日摸夜夜添夜夜爱| 亚洲伊人色综图| 老司机影院毛片| 日韩中文字幕视频在线看片| 少妇熟女欧美另类| 亚洲经典国产精华液单| 2018国产大陆天天弄谢| 免费黄色在线免费观看| 国产成人精品福利久久| 啦啦啦在线观看免费高清www| 国产精品一区www在线观看| 国产精品不卡视频一区二区| 少妇人妻久久综合中文| 大香蕉97超碰在线| 免费在线观看完整版高清| 哪个播放器可以免费观看大片| 久久韩国三级中文字幕| 亚洲精品国产av蜜桃| 亚洲,欧美精品.| 久久久久人妻精品一区果冻| 国产国拍精品亚洲av在线观看| 国产精品三级大全| 亚洲成人手机| 国产亚洲一区二区精品| 高清在线视频一区二区三区| 欧美人与善性xxx| 人成视频在线观看免费观看| 成人国产麻豆网| 伦理电影免费视频| av电影中文网址| 欧美亚洲日本最大视频资源| 另类亚洲欧美激情| 天天操日日干夜夜撸| 国产国语露脸激情在线看| 国产精品一区二区在线不卡| 又黄又粗又硬又大视频| 精品亚洲成a人片在线观看| 国产一区二区三区综合在线观看 | 精品国产国语对白av| 日日啪夜夜爽| 女人久久www免费人成看片| 草草在线视频免费看| 国产精品久久久久成人av| 国产精品国产av在线观看| 一区在线观看完整版| 精品久久久精品久久久| 久久久久久久久久成人| 亚洲国产欧美在线一区| 女人被躁到高潮嗷嗷叫费观| 欧美精品人与动牲交sv欧美| 丝袜美足系列| 久久这里有精品视频免费| 日本色播在线视频| 黄色视频在线播放观看不卡| 国产在线视频一区二区| 成人国产av品久久久| 两个人看的免费小视频| 国产亚洲av片在线观看秒播厂| av网站免费在线观看视频| 久久久久久久精品精品| 亚洲丝袜综合中文字幕| 日本wwww免费看| 女性被躁到高潮视频| 宅男免费午夜| 搡女人真爽免费视频火全软件| 亚洲精品日本国产第一区| a级片在线免费高清观看视频| 最新中文字幕久久久久| 在现免费观看毛片| www.av在线官网国产| 久久久久视频综合| 国产一级毛片在线| 久久免费观看电影| 嫩草影院入口| 中国美白少妇内射xxxbb| 少妇人妻久久综合中文| 超碰97精品在线观看| 美女脱内裤让男人舔精品视频| 97在线视频观看| 午夜精品国产一区二区电影| 午夜福利在线观看免费完整高清在| 欧美少妇被猛烈插入视频| 欧美 日韩 精品 国产| 欧美xxⅹ黑人| 久久 成人 亚洲| 青春草视频在线免费观看| 2022亚洲国产成人精品| 亚洲av免费高清在线观看| 色5月婷婷丁香| 99热网站在线观看| 婷婷成人精品国产| 国产一区二区三区综合在线观看 | 国产亚洲精品久久久com| 啦啦啦中文免费视频观看日本| xxxhd国产人妻xxx| 五月天丁香电影| 亚洲精品国产av蜜桃| 欧美97在线视频| 午夜福利,免费看| 国产成人精品无人区| 亚洲天堂av无毛| 亚洲欧洲日产国产| 黄色视频在线播放观看不卡| 亚洲第一av免费看| 制服丝袜香蕉在线| 中文精品一卡2卡3卡4更新| 少妇猛男粗大的猛烈进出视频| videos熟女内射| www.av在线官网国产| 蜜臀久久99精品久久宅男| 有码 亚洲区| a 毛片基地| 亚洲丝袜综合中文字幕| 国产女主播在线喷水免费视频网站| 亚洲综合色惰| 老司机亚洲免费影院| 国产日韩欧美在线精品| 免费播放大片免费观看视频在线观看| 天堂俺去俺来也www色官网| 你懂的网址亚洲精品在线观看| 青青草视频在线视频观看| 免费少妇av软件| 欧美日韩精品成人综合77777| 曰老女人黄片| 免费观看av网站的网址| av卡一久久| 国产精品国产av在线观看| 桃花免费在线播放| 免费黄网站久久成人精品| 亚洲精品自拍成人| 女性被躁到高潮视频| 大香蕉久久网| 欧美日韩视频高清一区二区三区二| 国产爽快片一区二区三区| 国产av码专区亚洲av| 99热国产这里只有精品6| 免费女性裸体啪啪无遮挡网站| 国产成人精品在线电影| 中文欧美无线码| 99久久综合免费| 亚洲国产精品国产精品| 妹子高潮喷水视频| 国产一区二区激情短视频 | 国产精品欧美亚洲77777| 美国免费a级毛片| 如何舔出高潮| 久久久久久久久久久免费av| 黑人高潮一二区| 国产乱来视频区| 中国美白少妇内射xxxbb| 欧美精品人与动牲交sv欧美| 中文字幕最新亚洲高清| 久久久久久久国产电影| 人人妻人人澡人人爽人人夜夜| av片东京热男人的天堂| 一区二区三区乱码不卡18| 亚洲欧美日韩另类电影网站| 女人久久www免费人成看片| 美女脱内裤让男人舔精品视频| 中文精品一卡2卡3卡4更新| 丰满饥渴人妻一区二区三| 日韩欧美一区视频在线观看| 成人手机av| 咕卡用的链子| 日韩一区二区视频免费看| 久久99蜜桃精品久久| 咕卡用的链子| 午夜福利乱码中文字幕| 欧美日韩成人在线一区二区| 久久精品久久精品一区二区三区| 性色av一级| 黄色配什么色好看| 亚洲色图 男人天堂 中文字幕 | 黄色 视频免费看| 国产成人精品福利久久| 日本vs欧美在线观看视频| 国内精品宾馆在线| 久久这里有精品视频免费| 久久99精品国语久久久| 最近中文字幕高清免费大全6| 日日啪夜夜爽| 亚洲av日韩在线播放| 男女高潮啪啪啪动态图| 如何舔出高潮| 在线天堂最新版资源| 97在线视频观看| 亚洲国产欧美日韩在线播放| 国产精品久久久久久久电影| 伦理电影免费视频| 日本91视频免费播放| 免费人妻精品一区二区三区视频| 亚洲精品久久午夜乱码| 巨乳人妻的诱惑在线观看| 久久这里只有精品19| 飞空精品影院首页| 亚洲色图 男人天堂 中文字幕 | 国产成人精品久久久久久| 大片免费播放器 马上看| 欧美日本中文国产一区发布| 亚洲精品久久午夜乱码| 十八禁网站网址无遮挡| 亚洲精品久久午夜乱码| 捣出白浆h1v1| 看免费av毛片| 久久鲁丝午夜福利片| 久久午夜综合久久蜜桃| 国产精品人妻久久久久久| 久久久国产一区二区| 国产亚洲精品第一综合不卡 | 日韩电影二区| 国产亚洲欧美精品永久| 国产免费又黄又爽又色| 黑人高潮一二区| 涩涩av久久男人的天堂| 国产精品秋霞免费鲁丝片| 蜜桃国产av成人99| 日本与韩国留学比较| 51国产日韩欧美| 成人毛片60女人毛片免费| 亚洲欧美清纯卡通| 亚洲第一区二区三区不卡| videossex国产| 久久久久久久久久久免费av| 18禁在线无遮挡免费观看视频| 国产在线免费精品| 久久国产亚洲av麻豆专区| 亚洲成av片中文字幕在线观看 | 久久午夜福利片| 大香蕉久久网| 亚洲婷婷狠狠爱综合网| 精品国产一区二区三区久久久樱花| 91精品国产国语对白视频| 99国产精品免费福利视频| 中国国产av一级| 18+在线观看网站| 男女高潮啪啪啪动态图| 亚洲欧美成人精品一区二区| 丰满乱子伦码专区| 亚洲精华国产精华液的使用体验| 久久午夜综合久久蜜桃| 国产成人一区二区在线| 国产综合精华液| 午夜福利,免费看| 中国国产av一级| 欧美老熟妇乱子伦牲交| 综合色丁香网| 国产在线免费精品| 一二三四中文在线观看免费高清| 90打野战视频偷拍视频| 精品少妇内射三级| 免费av不卡在线播放| 大片免费播放器 马上看| 久久精品人人爽人人爽视色| 久久精品国产综合久久久 | 一二三四在线观看免费中文在 | 欧美国产精品va在线观看不卡| 欧美日韩一区二区视频在线观看视频在线| 高清不卡的av网站| 久久久久久久久久久免费av| 嫩草影院入口| 国产精品久久久久久久电影| 亚洲精品日本国产第一区| 最近最新中文字幕大全免费视频 | 一区二区三区精品91| 建设人人有责人人尽责人人享有的| 亚洲av国产av综合av卡| 妹子高潮喷水视频| 99热国产这里只有精品6| 中文字幕免费在线视频6| 国产极品粉嫩免费观看在线| 97在线人人人人妻| 亚洲精品乱久久久久久| 成年动漫av网址| 一边亲一边摸免费视频| 80岁老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| 九草在线视频观看| 咕卡用的链子| 久久99一区二区三区| 五月天丁香电影| 成人毛片a级毛片在线播放| 水蜜桃什么品种好| 久久99蜜桃精品久久| 999精品在线视频| 日本色播在线视频| av线在线观看网站| 亚洲成国产人片在线观看| 在线观看一区二区三区激情| 免费av中文字幕在线| 久久这里有精品视频免费| 男女国产视频网站| 不卡视频在线观看欧美| 毛片一级片免费看久久久久| 免费观看av网站的网址| 成年人午夜在线观看视频| 欧美精品一区二区大全| 天堂俺去俺来也www色官网| 欧美日韩视频精品一区| 男人舔女人的私密视频| 久久精品久久久久久噜噜老黄| 韩国高清视频一区二区三区| 制服丝袜香蕉在线| 日本av手机在线免费观看| 秋霞伦理黄片| 亚洲av成人精品一二三区| 成年人午夜在线观看视频| 国产有黄有色有爽视频| 九色成人免费人妻av| 啦啦啦啦在线视频资源| 天天操日日干夜夜撸| av电影中文网址| 成人免费观看视频高清| 久久ye,这里只有精品| 亚洲国产毛片av蜜桃av| 亚洲色图 男人天堂 中文字幕 | 赤兔流量卡办理| 日本vs欧美在线观看视频| 丝袜在线中文字幕| 汤姆久久久久久久影院中文字幕| 中文字幕精品免费在线观看视频 | 国产精品久久久久久av不卡| a级片在线免费高清观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲少妇的诱惑av| 观看av在线不卡| 麻豆精品久久久久久蜜桃| 久久久久久久久久久久大奶| 99九九在线精品视频| 免费大片黄手机在线观看| 成人影院久久| 久久精品熟女亚洲av麻豆精品| 桃花免费在线播放| 男人舔女人的私密视频| 欧美日韩成人在线一区二区| 国产69精品久久久久777片| 看非洲黑人一级黄片| 日日啪夜夜爽| 国产精品三级大全| 亚洲精品美女久久av网站| av国产久精品久网站免费入址| 制服丝袜香蕉在线| 黄网站色视频无遮挡免费观看| 看非洲黑人一级黄片| videos熟女内射| 精品久久国产蜜桃| 国产一区二区三区综合在线观看 | 一级,二级,三级黄色视频| 在线观看www视频免费| 亚洲欧洲国产日韩| 青春草视频在线免费观看| 一级a做视频免费观看| 男女无遮挡免费网站观看| 欧美精品一区二区大全| 国产精品久久久久久久电影| 人人妻人人添人人爽欧美一区卜| 丰满迷人的少妇在线观看| 久久久久久久精品精品| 亚洲欧美色中文字幕在线| 国产欧美日韩综合在线一区二区| 狂野欧美激情性bbbbbb| 最近最新中文字幕大全免费视频 | 少妇熟女欧美另类| 久久久久久久久久久久大奶| 色婷婷久久久亚洲欧美| 狠狠婷婷综合久久久久久88av| av国产久精品久网站免费入址| 色94色欧美一区二区| 精品少妇久久久久久888优播| 午夜福利,免费看| 青春草亚洲视频在线观看| 国产又色又爽无遮挡免| 亚洲内射少妇av| 免费少妇av软件| xxx大片免费视频| 亚洲欧美色中文字幕在线| 一本色道久久久久久精品综合| 乱码一卡2卡4卡精品| 十分钟在线观看高清视频www| av黄色大香蕉| av片东京热男人的天堂| 韩国精品一区二区三区 | 日韩制服丝袜自拍偷拍| 全区人妻精品视频| 亚洲一级一片aⅴ在线观看| 精品亚洲乱码少妇综合久久| 日本色播在线视频| 欧美亚洲日本最大视频资源| 日本与韩国留学比较| 99热这里只有是精品在线观看| 男女边摸边吃奶| 曰老女人黄片| 成人毛片a级毛片在线播放| 亚洲国产色片| 欧美精品人与动牲交sv欧美| 国产 精品1| 一级片免费观看大全| a级毛片黄视频| 久久久久久久久久久久大奶| 亚洲人与动物交配视频| 日本与韩国留学比较| 久久久久久久国产电影| 亚洲国产精品专区欧美| 黑人巨大精品欧美一区二区蜜桃 | 狂野欧美激情性bbbbbb| 一级,二级,三级黄色视频| 少妇 在线观看| av在线观看视频网站免费| 99热这里只有是精品在线观看| 大香蕉久久成人网| 婷婷色av中文字幕| 观看av在线不卡| 久久久久久人妻| 菩萨蛮人人尽说江南好唐韦庄| 亚洲少妇的诱惑av| 日日撸夜夜添| 久久精品aⅴ一区二区三区四区 | 女性被躁到高潮视频| av福利片在线| 亚洲丝袜综合中文字幕| 久久韩国三级中文字幕| 亚洲精品乱码久久久久久按摩| 亚洲美女搞黄在线观看| av一本久久久久| 性高湖久久久久久久久免费观看| 午夜激情av网站| 日韩精品有码人妻一区| 日韩欧美一区视频在线观看| 嫩草影院入口| 亚洲精品久久久久久婷婷小说| 新久久久久国产一级毛片| 久久影院123| 国产高清不卡午夜福利| 三级国产精品片| 久久久久久伊人网av| 亚洲,欧美精品.| 一本大道久久a久久精品| 欧美精品一区二区免费开放| 亚洲国产毛片av蜜桃av| 最近中文字幕高清免费大全6| 国产成人精品无人区| 纯流量卡能插随身wifi吗| 一边亲一边摸免费视频| videosex国产| 国产日韩欧美视频二区| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品999| 国产亚洲精品久久久com| 哪个播放器可以免费观看大片| 成人综合一区亚洲| 一二三四中文在线观看免费高清| 一级,二级,三级黄色视频| 伊人久久国产一区二区| 国产精品女同一区二区软件| 亚洲欧美精品自产自拍| 三上悠亚av全集在线观看| 免费av中文字幕在线| 黑丝袜美女国产一区| 久久精品久久久久久久性| 大码成人一级视频| 伦理电影大哥的女人| 51国产日韩欧美| 女人精品久久久久毛片| 亚洲精品美女久久久久99蜜臀 | 亚洲色图 男人天堂 中文字幕 | 最近最新中文字幕免费大全7| 亚洲成av片中文字幕在线观看 | 18禁动态无遮挡网站| 夫妻午夜视频| 久久久久国产网址| 午夜老司机福利剧场| 永久免费av网站大全| 97在线视频观看| 久久人人爽人人片av| 亚洲精品久久久久久婷婷小说| 少妇熟女欧美另类| 日本av免费视频播放| 亚洲国产精品国产精品| 人人澡人人妻人| 天天操日日干夜夜撸| 亚洲国产精品国产精品| 综合色丁香网| 国产精品 国内视频| 91成人精品电影| 亚洲色图综合在线观看| 视频在线观看一区二区三区| 国产色爽女视频免费观看| av在线播放精品| 这个男人来自地球电影免费观看 | 97精品久久久久久久久久精品| 成人国语在线视频| 黄色一级大片看看| 少妇熟女欧美另类| 亚洲综合色网址| 老司机影院毛片| 美女视频免费永久观看网站| 欧美另类一区| 永久网站在线| 久久久久久人人人人人| 久久久久人妻精品一区果冻| 高清黄色对白视频在线免费看| 天天躁夜夜躁狠狠躁躁| 制服人妻中文乱码| 纵有疾风起免费观看全集完整版| 久久精品国产亚洲av天美| 人人妻人人添人人爽欧美一区卜| 国产永久视频网站|