• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    功能化微納米硅膠表面亞鐵配位化學及其催化降解鄰苯二酚的性質

    2013-10-17 03:03:08魏振宏劉文明劉小明
    無機化學學報 2013年10期
    關鍵詞:劉小明化學系鄰苯二酚

    劉 建 魏振宏 鐘 偉 劉文明 劉 笑 劉小明*,,

    (1南昌大學化學系,南昌 330031)

    (2嘉興學院生物與化學工程學院,嘉興 314001)

    0 Introduction

    Iron is one of the most abundant elements in the earth crust and consequently one of the most favoured elements adopted by nature in the course of evolutions of “devising” enzymes to achieve specific functions required by a variety of life forms.Indeed,ironcontaining metalloenzymes are a large category of biocatalysts which are responsible for a wide range of catalytic functions,from the activation of C-H bond to degradation of aromatic molecules[1-4].Mononuclear nonheme iron-containing enzymes are one of the subgroups of a large enzymatic family,for example,protocatechuate 3,4-dioxygenase (3,4-PCD), 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC).In these metalloenzymes,the iron centre is coordinated by number of essential biological ligands provided by surrounding amino acid residues in addition to one or two loosely bound small molecules,for example,water and anions (such as carbonate,acetate etc.)where usually a substrate binds.The metal centre under the coordination of these ligands sits in a highly confined environment composed by its surrounding protein backbones. The highly confined coordination atmosphere renders the metal centre less saturated coordination compared to its behaviours in solution chemistry.The protein domains show also certain flexibility in geometric conformations upon substrate binding.These structural features ensure the natural metalloenzymes high efficiency and selectivity in catalysis,and particularly capability of activating recalcitrant substrates, for instance, methane oxidation.The incredible capabilities ofnatural systems have greatly inspired synthetic chemists to mimic the natural systems although precisely duplicating the features is extremely challenging,particularly in solution chemistry.

    Enzymatic catalysis is intrinsically homogenous.In practical applications,such a process has difficulties in catalyst-separation and thus catalystrecycling although high catalytic efficiency is an advantage. Therefore, developing a strategy in mimicking natural enzymes is highly desirable to ensure catalyst-recovery and-recycling via simple filtration or centrifugation.Such a strategy should compromise at the least loss of the catalytic efficiency.To this end,immobilising homogenous catalyst onto a solid matrix is an option.A variety of materials can be employedforsuchapurpose[5-12].Among those materials,micro/nano silica gel(NSiG)have a particular interest in this regard to chemists owing to a number of advantageous properties,for example,high specific area,appropriate particle size which allows forming stable suspension,more or less behaving as a“true solution”,feasibility for surface modification,and wide availability with low cost.Because of these advantages,NSiG has been found applications in many areas as a favourable matrix,for instance,drug delivery[13-14],fluorescent labelling[15-16],adsorption[17-19],and catalysis[20-22].NSiG functionalised by organic moieties loading with or without transition metals has been able to achieve a variety of catalytic functionalities[5,23-24].

    The instauration in coordination around a metal centre is crucial for the catalyst to function.In metalloenzymes,the instauration is partially achieved,for instance,by loosely bound water molecule as mentioned above.Owing to steric reason,this essential feature could be achieved for the metal centre loaded at the surface of functionalised NSiG if an appropriate functional moiety with multidentate ligating atoms is chemically grafted.

    Herein,we report the functionalisation of NSiG with a bidentate ligand possessing “NS”-donor-set analogous to the ligand L (2-(ethylthiomethyl)pyridine).The functionalised silica gel,L-NSiG,was further reacted with Feギ,and the system,ironギ-complex@SiO2,was examined as a catalyst in catalytic degradation of catechol by hydrogen peroxide.This chemistry is also inspired generally by mononuclear nonheme ironギ enzyme,forexample,catechol dioxygenases of extradiol dioxygenase. All the materials were characterised by FTIR,SEM,and TGA.In the metallation,both ferrous chloride and sulphate were employed to examine the influence of the coordination chemistry of the metal ion on the silica gel on the catalysis.To shed light on the possible coordination mode of the iron centre anchored at the surface of the functionalised NSiG and therefore,its correlation to its catalytic behaviours,ligand L was employed to react with the precursor,FeCl2,to synthesise a control monoiron complex whose structure was confirmed using X-ray single crystal diffraction analysis.Its catalysis on the degradation of catechol by hydrogen peroxide was also examined.Our results indicate that catalytic efficiency is compromised when the catalyst is immobilised on the surface of the NSiG.But the negative influence can be offset by tuning the coordination mode via altering the auxiliary ligand around the Feギ centre.

    1 Experimental

    1.1 General procedures

    Reactions involved in this work were routinely performed and Schlenk technique was employed when necessary.All chemicals were purchased from local suppliers unless otherwise stated.Organic solvents were freshly distilled prior to use with appropriate drying agents.FTIR spectral data (KBr pellets)were collected in the range of 400~4 000 cm-1on VARIAN 2000 FT-IR.UV-Vis spectra were recorded in the range of 200~800 nm on a VARIAN 50 Conc.The particle diameter of silica gel was determined on a Quanta 200F (FEI,Netherlands)in the SEM mode.Thermal gravimetric analysis of the functionalised NSiG was performed on a TA SDTQ600 under N2flow at a heating rate of 10 ℃·min-1.

    2-(Bromomethyl)pyridine (1·HCl)was prepared using literature procedure[25].Sub-micro silica gel(100~250 nm)and 3-chloropropyltriethoxysilane were locally purchased (Qingdao Ocean Scientific Co.,Ltd.China and Novel Materials of Organosilicone Co.,Ltd.of Wuhan University,China,respectively,http://www.wdsilicone.cn/).2-methylpyridine and ethanethiol were purchased from Sigma-Aldrich and used as received.Unless otherwise stated, solvents for flash chromatography were purchased from local suppliers.

    Crystallographic data of complex[Fe(L)2Cl2]were collected on a Bruker SMART CCD diffractometer with graphite-monochromated Mo Kα radiation (λ=0.071 073 nm).The crystal structure was solved using direct methods in SHELXS and refined by full-matrix least-squares routines,based on F2,using the SHELXL package[26].

    The catalytic activities of complex[Fe(L)2Cl2]and the functionalised silica gel,FeC@L-NSiG and FeS@LNSiG,in catechol oxidation by hydrogen peroxide wereestimated usingHPLC (Agilent1200)by determining the remaining catechol in the sample after oxidative degradation.Typical procedure was as follows.Catechol(45 mg)was dissolved in H2O(50 mL).To this solution was added the catalyst(FeC@LNSiG(10 mg),FeS@L-NSiG(10 mg),or[Fe(L)2Cl2](2 mg))following the addition of H2O2(2 mL,30%,V/V).The control experiment was performed using the same procedure as described but without addition of any catalyst.The reaction mixture was stirred at 30oC for 160 min.To examine the remaining catechol,sampling for HPLC analysis was taken every 15 min.The high-performance liquid chromatography using a UV-Vis detector set at 270 nm.The stationary phase is a kromasil C-18 (4.6 mm ×250 mm),while the mobile phase is a mixture of methanol and water,50:50(V/V),at a flow rate of 1.0 mL·min-1.

    1.2 Synthesis

    Ligand L,2-(ethylthiomethyl)pyridine,compound 2 and the complex,[Fe(L)2Cl2]

    2-(Ethylthiomethyl)pyridine (L):Sodium lumps(0.50 g,21.7 mmol)were dissolved in ethanol(20 mL)at ice-temperature, to which was then added ethanethiol(0.65 mL,7.2 mmol)under stirring for 1 h underargon atmosphere.Afterthereaction was warmed to room temperature,a solution of compound 1HCl(1.00 g,4.8 mmol)in ethanol(10 mL)was added through a pressure-equalized funnel.After the addition,the reaction was kept under stirring at room temperature for further 2 h.After any insoluble materials were filtered off,the obtained filtrate was evaporated by rotary evaporation to produce a residue which was dissolved in water(10 mL).The aqueous solution was extracted successively with ether(35 mL×3).All the extracts were combined before being dried with anhydrous Na2SO4.Removal of the solvents under reduced pressure gave a crude product which was further purified using flash chromatography on silica gel column (ethyl acetate∶petroleum ether=1∶4)to produce pale yellow and stinky oily liquid(536 mg,73%).1H NMR (600 MHz,CDCl3):8.53(m,1H,6-PyH),7.65(m,1H,4-PyH),7.38(d,J=7.8 Hz,1H,3-PyH),7.16(m,1H,5-PyH),3.85(s,2H,PyCH2),2.51(m,2H,SCH2),1.24(d,J=7.2 Hz,3H,CH3).

    Pyridin-2-ylmethanethiol (2):2-(bromomethyl)pyridine hydrochloride(5.00 g,24 mmol)and thiourea(4.57 g,60 mmol)were dissolved in H2O(50 mL)in a round-bottom flask under argon.The solution was stirred for 3 h at 90℃.Then the reaction was degassed using Arflow while being cooled to an icetemperature.To the pre-cooled solution was added sodium hydroxide (5.30 g,0.13 mol)in four portions over the period of 2 h while maintaining the reaction at ice temperature.The solution was further stirred overnight at room temperature under Ar before it was extracted with diethyl ether(35 mL×3).The aqueous phase was collected and cooled to ice-temperature before its acidity was adjusted to pH=7 with concentrated hydrochloric acid.The neutralised aqueous phase was extracted with dichloromethane(15 mL×3).The organic phases were combined,washed twice with brine(20 mL,26.5%,m/m),and dried with anhydrous MgSO4before it was evaporated by rotary evaporation to produce a pungent oily liquid (1.50 g,50%).1HNMR(600 MHz,CDCl3):8.53(s,1H,6-PyH),7.64(m,1H,4-PyH),7.33 (d,J=7.8 Hz,1H,3-PyH),7.15(m,1H,5-PyH),3.84(d,J=7.2 Hz,2H,PyCH2),2.027(t,J=7.8 Hz,1H,SH).

    [Fe(L)2Cl2]:FeCl2(100 mg,0.787 mmol)and ligand L (296 mg,1.934 mmol)were dissolved in methanol (6 mL)under argon and the mixture was stirred for 2 h at room temperature to give a yellow solid.The solid was collected via filtration,then washed with methanol(1 mL×3)and ether(3 mL×3),respectively, and finally dried under vacuum.Recrystallisation was performed by dissolving the solid in a minimum methanol layered with diethyl ether.Yellow crystals(247 mg,72%)suitable for X-ray single crystallographic analysis were collected in a few days at room temperature.Anal.Calcd.for[Fe(L)2Cl2](%):C,44.36;H,5.12;N,6.47.Found:C,44.02;H,4.87;N,6.43.

    1.3 Functionalisation of NSiG

    Preparation of Cl-NSiG:NSiG(3 g)was vacuumdried for 8 h at 160℃in Schelenk flask.To the flask was then successively added toluene(150 mL)and 3-chloropropyl-triethoxysilane(2.25 g,6.84 mmol)after being cooled to room temperature.The mixture was heated under reflux for 48 h.After the reaction mixture being cooled to room temperature,the silica gel was separated,and washed successively with toluene(20 mL×3),ethanol(20 mL×3)and diethyl ether(20 mL×3)to remove any unreacted 3-chloropropyltriethoxysilane.The collected off-white solid (2.87 g),Cl-NSiG,was dried under vacuum for 6 h at 80℃.Microanalysis(%):2.65(C),1.47(H),0.80(N).

    Preparation of L-NSiG:Under argon,Cl-NSiG(2.0 g)was dispersed in toluene (100 mL).To the suspension was added compound 2 (1.20 g,9.60 mmol),K2CO3(1.12 g,8.11 mmol)and KI(0.67 g,4.04 mmol).The mixture was refluxed for 48 h at 120℃.After the reaction mixture being cooled to temperature,the silica gel was separated and washed successively with distilled water(20 mL×3),ethanol(20 mL×3),toluene (20 mL×3),and finally diethyl ether (20 mL×3)to remove any inorganic salts and unreacted compound 2.The off-white solid (1.67 g),L-NSiG,was dried under vacuum for 6 h at 80℃.Microanalysis(%):1.18(C),1.14(H),0.18(N).

    Preparation of FeC@L-NSiG:FeCl2was employed as a precursor to load the functionalised silica gel(LNSiG)with Feギto achieve the functionalised silica gel,FeC@L-NSiG.Typical procedure was as follows.L-NSiG(300 mg)and FeCl2(100 mg)were dispersed in methanol (10 mL)under argon,and the mixture wasstirred for8 h atroom temperature.The metallated solid was collected by filtration,washed successively with distilled water degassed using argon,methanol and finally diethyl ether as described above before it was dried under vacuum for 6 h at 80℃.Microanalysis(%):2.18(C)1.23(H),0.21(N).FeS@L-NSiG was analogously achieved except for that ferrous sulphate was used to replace the ferrous chloride.Microanalysis(%):3.19(C),1.44(H),0.17(N).

    1.4 Catalytic activity of functionalised silica gel loaded with Feギ

    The catalytic activity of the functionalised silica gel after being loaded with Feギwas assessed using the degradation of catechol by H2O2in aqueous solution.In the assessment,the emphasis was placed on the conversion of catechol and the identification of the degradation products was not pursued.To assess the catalytic behaviours of the control complex and the two functionalised materials,unmodified silica gel(NSiG)was employed as a control.To ensure that the iron content of the silica gel-based was approximately equal to that of the control complex,TGA data were employed to justify the amount of the functionalised materials used in the catalysis assessment.

    2 Results and discussion

    2.1 Synthesis of ligand L,compound 2 and complex[Fe(L)2Cl2]

    The bidentate ligand 2-(ethylthiomethyl)pyridine(L)containing pyridine N and thioether S ligating atoms was synthesised by following the literature procedures[27],Scheme 1.Its proton NMR data are in agreement with those reported[28-29].The 2-(bromomethyl)pyridine (1)was synthesised from the reaction of 2-(methyl)pyridine with NBS and AIBN under visible irradiation[25].The compound was kept in the form of chloride and was regenerated from using sodium ethoxide prior to use.From the same precursor,pyridin-2-ylmethanethiol(2)for use in functionalising NSiG (vide infra)was also prepared by following literature procedure[30],Scheme 1.

    Scheme 1 Synthesis of ligands L(2-(ethylthiomethyl)pyridine)and 2(pyridin-2-ylmethanethiol):(a)NBS,AIBN/CCl4,(b)ethanethiol,CH3CH2ONa/CH3CH2OH,(c)thiourea,H2O and NaOH

    Complex[Fe(L)2Cl2]was synthesised from the reaction of ligand L with FeCl2in methanol.Goldenyellow crystals were obtained from a solution of the complex in methanol into which diethyl ether was slowly diffused.Crystallographic details for complex[Fe(L)2Cl2]are shown in Table 1.Its structure and selected bond length and angles are listed in Fig.1 and Table 2,respectively.In the structure of complex[Fe(L)2Cl2],there is a symmetrical crystallographic centre locating at the Fe atom.The metal centre takes a slightly distorted octahedral geometry with the twopyridine nitrogen atoms and two thioether sulphur atoms from two ligands at the equatorial positions whereas the two Cl atoms reside at the axial positions.The three pairs of ligating atoms (N,S and Cl)are perfectly trans to each other.Analogous coordination geometryforFeギ wasfound in complex[Fe{(PyCH2SCH2)2CH2}Cl2][31].In complex[Fe(L)2Cl2],the values of Fe-N,Fe-S and Fe-Cl bond lengths are longer by ca.0.012 43,0.013 78 and 0.002 65 nm,respectively,than the corresponding bond lengths in complex[Fe(PyCH2SCH2)2CH2)Cl2]. This shortening may be attributed the chelating effectofthe tetradentate ligand(PyCH2SCH2)2CH2.

    Table 1 Crystallographic details for complex[Fe(L)2Cl2]

    Table 2 Selected bond distances(nm)and angles(°)for[Fe(L)2Cl2]

    CCDC:866526.

    Fig.1 Crystal structure of complex[Fe(L)2Cl2]

    2.2 Functionalisation of NSiG

    To chemically graft compound 2 onto the surface of NSiG,the silica gel was first modified by reacting 3-chloropropyltriethoxysilane with silica gel[19].The introduction of chloropropyl group enables compound 2,the bidentate ligand for binding Feギ,to be anchored onto the surface of the silica gel to prepare the pre-modified silica gel,L-NSiG.Loading Feギonto the surface of L-NSiG was completed by stirring L-NSiG with FeCl2in methanol under room temperature to give the functionalised silica gel,FeC@L-NSiG,Scheme 2.Using FeSO4to metallate L-NSiG produced analogous material FeS@L-NSiG.The successful functionalisation was supported by microanalysis and infrared spectroscopic characterisation.

    Scheme 2 Preparations of Cl-NSiG,L-NSiG,FeC@LNSiG and possible binding mode of Feギon the surface of the silica gel

    Please note that FeS@L-NSiG ought to have similar coordination sphere to that of its chloride analogue as suggested by the UV-Vis spectra(Fig.4)with the two chlorides replaced with solvent molecules.

    Fig.2 FTIR spectra for NSiG,L-NSiG,FeC@L-NSiG,and FeS@L-NSiG(KBr pellets)

    The infrared spectra of the silica gel at various stages are shown in Fig.2.Apart from the absorption bands(ca.3 500 cm-1)arising from water and Si-O bond at ca.1 200 cm-1,there are other absorption bands indicating the successful immobilisation of organic groups on the surface of silica gel.The band at about 2 900 cm-1,which is absent in the spectrum of the silica gel(NSiG)before any modification,is a direct evidence of the immobilisation of organic moieties since this band is attributed to the stretching frequency of C-H bond from both CH2and CH3groups.Successful functionalisation of compound 2 is further confirmed by UV-Vis spectra in Fig.4.

    Fig.3 TGA curves for NSiG,Cl-NSiG,L-NSiG,FeC@LNSiG and FeS@L-NSiG

    Fig.5 SEM images of the functionalised silica gel

    The thermal stability ofthesilicagelwas assessed using thermal gravimetric analysis(TGA)in the range of 20~800 ℃.As shown in Fig.3,for the unmodified NSiG,only one major weight-loss(about 4%)was observed and attributed to the physically adsorbed water.After modifications,at least one more weight-loss approximately at 400℃was observed in addition to the water-loss.The second process accounts for about 5%weight-loss.Loading Feギonto the functionalised silica gel does not significantly alter the overall TGA trace as shown in Fig.3.The TGA traces show that the residue after thermal decomposition decreases steadily with the immobilisation of organic moiety onto the surface of the silica gel particles.The SEM images of silica gel at various stages are shown in Fig.5.These materials do not show substantially variations in their morphologies as revealed by the SEM images in Fig.5.It is also true that the diameters of the particles of these materials are comparable to that of the precursor.

    2.3 Possible binding modes of Feギon the functionalised silica gel

    As revealed by both FTIR and TGA data,Feギis readily loaded to the functionalised silica gel(LNSiG).This is certainly through coordination between the metal ion and the donating atoms (S and N).To probe the binding mode of Feギwith the binding sites on the surface of the silica gel,we employed ligand L(Scheme 1)which is analogous to the functional group with “SN”donor-set to react with FeCl2via solution chemistry.As shown in Fig.1 and Table 2,it is a binary complex with the two bound chloride ions perfectly trans to each other.Essentially,the overall structure is an octahedral geometry as pointed out earlier.

    Fig.4 UV-Vis spectra of ligand L and complex[Fe(L)2Cl2]in CH3CN(inset:solid-state UV-Vis spectra of[Fe(L)2Cl2],NSiG,FeC@L-NSiG and FeS@L-NSiG)

    But we need to bear in mind that the binding mode found in the solution chemistry ought to be rather different from that on the surface of L-NSiG due to steric effect caused by the constrain by the solid state of the organic moiety after immobilisation.Since pyridinyl group is a π-acceptor and metal-toligand charge transfer (MLCT)bands are expected when the low valent Feギis coordinated.Therefore,electronic spectra would be informative in probing the coordination chemistry of the metal ion. For comparison,the spectrum of the control complex is also shown in Fig.4.The MLCT bands found in the controlcomplexbetween 300 and 400 nm are analogously observed as a broad band in its solid state,Fig.4 (inset).The absorption of the control complex at the region below 600 nm is significantly different from that of the two materials.The electronic spectra in solid state indicate that,わthe metallation is successful since there is no any absorption bands observed for NSiG from 300 to 500 nm,which is also supported by Fe content from inductively coupled plasma (ICP)analysis results of FeC@L-NSiG and FeS@L-NSiG with 0.087 mmol·g-1and 0.10 mmol·g-1,respectively.ぷthe ironギon the surface of the functionalised silica gel shows different coordination chemistries from that of the control complex,[Fe(L)2Cl2].ぺrather similar chemistry is expected for both FeC@L-NSiG and FeS@L-NSiG since there are hardly differences observed except for a slight“red”shift by a few nanometres for the latter material.

    Due to steric reason,the coordination of each metal ion on the functionalised silica gel could be satisfied by only one “NS” donor-set plus solvent(H2O)and anions,which is significantly different from the control complex as indicated by their UV-Vis spectra shown in Fig.4 (inset).For FeC@L-NSiG and FeS@L-NSiG,the most possible coordination sphere around the metal ion are “Fe(NS)Cl2(OH2)2”and “Fe(N,S)(X)4” (X=solvent or sulphate),respectively,if we assume that the metal ion requires six coordination number as well at the surface of the silica gel.But the binding of either the water molecule or the sulphate to Feギwould be rather weak.This would be advantageous in catalysis since those weakly bound molecules dissociate readily to provide vacant sites upon substrate binding. Indeed, the catalytic efficiency of the two materials in the degradation of catechol by hydrogen peroxide is significantly different(see section 2.4).

    2.4 Catalytic assessment of the functionalisedsilica gel(FeC@L-NSiG and FeS@L-NSiG)

    The conversion rates of catechol oxidation against the reaction coordinate are shown in Fig.6.As the catalytic data demonstrate,the monoiron complex shows both the fastest catalysis and the highest conversion rate.For the functionalised silica gel,FeS@L-NSiG,its conversion rate under the same conditions could be essentially comparable to that of the monoiron complex butits reaction rate is considerably slower.For FeC@L-NSiG,its conversion rate is one-fold lower compared to its analogue.

    Fig.6 Oxidation of catechol by H2O2with the presence of FeC@L-NSiG,FeS@L-NSiG,[Fe(L)2Cl2]and NSiG

    As heterogeneous catalysts,the reusability of FeC@L-NSiG and FeS@L-NSiG were investigated by recycling for three times.The conversion rate of catechol decreases from 31%to 2%for FeC@L-NSiG and from 61%to 10%for FeS@L-NSiG.To find out whether the efficiency-loss is due to losing the metal ion or the degradation of the systems during the catalysis,we added FeCl2to the recovered FeC@LNSiG isolated from the third cycle and performed the catalysis again under the same conditions.The nearly identical conversion rate to that obtained in the first round catalysis indicates that the catalyst is fully regenerated.This result suggests that the degradation of the systems caused by H2O2is neglectable if any.Indeed,when FeC@L-NSiG is treated with H2O2for 1 h,28% conversion rate is observed.This is in agreement with the above discussion that the decrease in catalytic efficiency in repetitive running is mainly caused by the loss of metal ion.

    Since the catalysis of the monoiron complex is a homogeneous process,it is not surprising that the complex exhibits the fastest reaction rate and the highest catalytic performance.What are interesting are the catalytic behaviours of the two functionalised materials,FeC@L-NSiG and FeS@L-NSiG.Apparently,immobilising the ferrous ion onto the surface of the silica gel particles via coordination reduces considerably the rate ofcatalytic reaction.The immobilisation compromises the advantage possessed by the Feギcomplex in homogenous catalysis.As suggested by the electronic spectra of the two materials(inset in Fig.4),the coordination chemistry of the Feギon the surface of the two materials is essentially similar.As discussed earlier,the most possible difference between the two lies in the coordination sphere around the metal ion,“Fe(NS)Cl2(OH2)2” for FeC@L-NSiG and“Fe(N,S)(X)4” for FeS@L-NSiG(X=solvent or sulphate).Either the binding of H2O or sulphate (if any)is more labile compared to that of chloride.As mentioned earlier,this lability offers easier access for the binding of the substrate compared to FeC@L-NSiG.Therefore,the coordination sphere of the Feギwith more loosely bound ligands on the surface of FeS@L-NSiG is beneficial to the catalysis.Although electronic effect originated from the variation in coordination chemistry has also a role to play in affecting the catalysis,easy access for the binding of the substrate to the catalytic centre is certainly important as well in improving the catalysis.The results show that exploiting the steric effect possessed intrinsically by the solid material functionalised with organic functional groups is a feasible strategy to tune the catalytic property of the metal centre anchored onto the surface of micro/nano silica gel via coordination chemistry.

    3 Conclusions

    In summary,two functionalised materials,FeC@L-NSiG and FeS@L-NSiG,were prepared from micro/nano silica gel.The functionalisation is confirmed using FTIR andUV-Visspectroscopy,TGA andSEM techniques.On the surface of the materials are anchored organic functional groups analogous to a bidentate ligand L.Using complexes[Fe(L)2Cl2]as a control fully characterised using a variety of techniques,the coordination chemistry of the Feギon the surface of the two solid materials and their catalytic performance towards the oxidative degradation of catechol by hydrogen peroxide were explored. Although immobilising the catalytic centre onto the surface of the silica gel does compromise its catalytic efficiency,the functionalised silica gel materials have the advantages of easy separation and recycling.Furthermore,the steric effect could be exploited to tune the coordination chemistry around the metal centre and thus to improve the catalytic performance.Improvement in catalysis of the functionalised materials of this type could be further achieved by tuning the length of the linkage between the organic functional group and the silica gel particle,the steric and electronic effect of the organic moiety.Therefore,applying the coordination features found in metalloenzymes to functionalising solid materials such as micro/nano silica gel will be of great potentials in developing novel catalytic materials.Such materials would have high catalytic efficiency,easy separation,recycling and possibly improved selectivity.

    Acknowledgements:We thank the National Natural Science Foundation of China(Grant Nos.20871064,21171073)for financial support and the provincial government of Zhejiang is also acknowledged for the Qianjiang Professorship (XL)at Jiaxing University.

    [1]Costas M,Mehn M P,Jensen M P,et al.Chem.Rev.,2004,104(2):939-986

    [2]Bugg T D H,Winfield C J.Nat.Prod.Rep.,1998,15(5):513-530

    [3]Bugg T D H,Lin G.Chem.Commun.,2001:941-952

    [4]Que L,Ho R Y N.Chem.Rev.,1996,96(7):2607-2624

    [5]Maldotti A,Molinari A,Varani G,et al.J.Catal.,2002,209(1):210-216

    [6]Marion R,Muthusamy G,Geneste F.J.Catal.,2012,286:266-272

    [7]Zhou H,Wang Y M,Zhang W Z,et al.Green Chem.,2011,13(3):644-650

    [8]Alvaro M,Baleizao C,Carbonell E,et al.Tetrahedron,2005,61(51):12131-12139

    [9]Motokura K,Itagaki S,Iwasawa Y,et al.Green Chem.,2009,11(11):1876-1880

    [10]Park D W,Yu B S,Jeong E S,et al.Catal.Today,2004,98(4):499-504

    [11]Sun D,Zhai H,Catal.Commun.,2007,8(7):1027-1030

    [12]Xiao L F,Li F W,Xia C G.Appl.Catal.A-Gen.,2005,279(1-2):125-129

    [13]Huang S S,Fan Y,Cheng Z Y,et al.J.Phys.Chem.C,2009,113(5):1775-1784

    [14]Klichko Y,Liong M,Choi E,et al.J.Amer.Cer.Soc.,2009,92(1):S2-S10

    [15]Burns A,Ow H,Wiesner U.Chem.Soc.Rev.,2006,35(11):1028-1042

    [16]Yao G,Wang L,Wu Y R,et al.Anal.Bioanal.Chem.,2006,385(3):518-524

    [17]Arguello J,Leidens V L,Magosso H A,et al.Electrochim.Acta,2008,54(2):560-565

    [18]Boddi K,Takatsy A,Szabo S,et al.J.Sep.Sci.,2009,32(2):295-308

    [19]Peng Y,Li Z M,Zeng Y B,et al.Microchim.Acta,2010,170(1-2):17-26

    [20]Hlatky G G.Chem.Rev.,2000,100(4):1347-1376

    [21]Li K T,Dai C L,Kuo C W.Catal.Commun.,2007,8(8):1209-1213

    [22]Jin Y H,Li A Z,Hazelton S G,et al.Coord.Chem.Rev.,2009,253(23-24):2998-3014

    [23]Bigi F,Moroni L,Maggi R,et al.Chem.Commun.,2002:716-717

    [24]Heravi M M,Sadjadi S,Oskooie H A,et al.Ultrason.Sonochem.,2009,16(6):718-720

    [25]Ijuin R,Umezawa N,Higuchi T.Bioorgan.Med.Chem.,2006,14(10):3563-3570

    [26]Sheldrick G.Acta Crystallogr.Sect.A,2008,64:112-122

    [27]Reisner E,Abikoff T C,Lippard S J.Inorg.Chem.,2007,46(24):10229-10240

    [28]van Bommel K J C,de Jong M R,Metselaar G A,et al.Chem.Eur.J.,2001,7(16):3603-3615

    [29]Canovese L,Visentin F,Uguagliati P,et al.Inorg.Chim.Acta,1998,275-276:385-394

    [30]Remuzon P,Bouzard D,Dicesare P,et al.Tetrahedron,1995,51(35):9657-9670

    [31]Patra A,Sarkar S,Drew M G B,et al.Polyhedron,2009,28(7):1261-1264

    猜你喜歡
    劉小明化學系鄰苯二酚
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    納米氧化鋅修飾玻碳電極–電化學法測定水中的對苯二酚與鄰苯二酚
    氧化石墨烯-金納米粒子電化學鄰苯二酚傳感器的制備
    首都師范大學化學系自充電功能材料研究取得重要進展
    石油烴降解菌對鄰苯二酚、苯甲酸鈉降解特性的研究
    劉小明:正視“六重六輕”問題,切實抓好道路運輸安全工作
    中小學體育教師創(chuàng)新行為的現(xiàn)狀與促進策略*
    體育科技(2019年6期)2019-06-03 08:05:08
    一個二重互穿的鎘配合物:合成、結構和雙功能熒光傳感性質
    劉小明:以互聯(lián)網(wǎng)推動客運轉型升級
    楊梅酮的抗氧化活性
    中文字幕免费在线视频6| 久久国内精品自在自线图片| 麻豆精品久久久久久蜜桃| 久久久久久久久久久丰满| 亚洲精品乱码久久久v下载方式| 97超碰精品成人国产| 麻豆久久精品国产亚洲av| 99热国产这里只有精品6| 久久人人爽人人爽人人片va| 亚洲国产最新在线播放| 午夜激情福利司机影院| 看黄色毛片网站| 国产熟女欧美一区二区| 少妇人妻 视频| 在线观看美女被高潮喷水网站| 日韩 亚洲 欧美在线| 久久久a久久爽久久v久久| .国产精品久久| 久久精品国产自在天天线| 久久人人爽av亚洲精品天堂 | 99久国产av精品国产电影| 亚洲成人av在线免费| 亚洲激情五月婷婷啪啪| 少妇的逼好多水| 一本一本综合久久| 成人欧美大片| 蜜臀久久99精品久久宅男| 国国产精品蜜臀av免费| 五月天丁香电影| 男女那种视频在线观看| 麻豆久久精品国产亚洲av| 国产一区亚洲一区在线观看| 老司机影院成人| 国产一区有黄有色的免费视频| 国产老妇女一区| 亚洲怡红院男人天堂| 啦啦啦中文免费视频观看日本| 久久精品久久久久久久性| 国产精品人妻久久久久久| 中文字幕av成人在线电影| 国产国拍精品亚洲av在线观看| 国产亚洲精品久久久com| 亚洲美女搞黄在线观看| 亚洲人成网站在线观看播放| 亚洲人成网站在线观看播放| xxx大片免费视频| 激情 狠狠 欧美| 2021少妇久久久久久久久久久| 嘟嘟电影网在线观看| 18+在线观看网站| 纵有疾风起免费观看全集完整版| 欧美激情久久久久久爽电影| 联通29元200g的流量卡| 亚洲国产精品999| 伊人久久精品亚洲午夜| 大香蕉久久网| 天堂中文最新版在线下载 | 国产黄频视频在线观看| 精品国产三级普通话版| 又粗又硬又长又爽又黄的视频| 国产精品精品国产色婷婷| 毛片女人毛片| 啦啦啦啦在线视频资源| 久久久a久久爽久久v久久| 成人综合一区亚洲| 日韩在线高清观看一区二区三区| 国产毛片a区久久久久| 亚洲国产高清在线一区二区三| 日韩av在线免费看完整版不卡| 七月丁香在线播放| 色哟哟·www| 日本爱情动作片www.在线观看| 色视频在线一区二区三区| 婷婷色综合www| 免费在线观看成人毛片| 日韩欧美一区视频在线观看 | 韩国高清视频一区二区三区| 亚洲最大成人中文| 国产精品一及| 下体分泌物呈黄色| 亚洲国产精品专区欧美| 亚洲四区av| 欧美一级a爱片免费观看看| 制服丝袜香蕉在线| 激情 狠狠 欧美| 又爽又黄无遮挡网站| 精品少妇黑人巨大在线播放| 亚洲国产精品专区欧美| 国产精品一区www在线观看| 午夜免费观看性视频| 国产免费福利视频在线观看| 搡女人真爽免费视频火全软件| 免费看a级黄色片| av在线app专区| 亚洲人成网站高清观看| 成人欧美大片| 高清视频免费观看一区二区| 精品国产露脸久久av麻豆| 少妇丰满av| 日韩av免费高清视频| 亚洲,一卡二卡三卡| 97精品久久久久久久久久精品| 亚洲图色成人| 欧美人与善性xxx| 大话2 男鬼变身卡| 亚洲怡红院男人天堂| 久久综合国产亚洲精品| 国产人妻一区二区三区在| 久久精品国产亚洲av天美| 午夜免费男女啪啪视频观看| 国产熟女欧美一区二区| 哪个播放器可以免费观看大片| 国产欧美另类精品又又久久亚洲欧美| 丰满乱子伦码专区| 亚洲精品国产av成人精品| av线在线观看网站| 亚洲性久久影院| 国产爱豆传媒在线观看| 爱豆传媒免费全集在线观看| 国产成人免费无遮挡视频| 在现免费观看毛片| 日韩成人伦理影院| 国产精品久久久久久精品电影| 99久久精品国产国产毛片| 成人综合一区亚洲| 亚洲精品成人久久久久久| 激情 狠狠 欧美| 欧美xxxx性猛交bbbb| 老师上课跳d突然被开到最大视频| 如何舔出高潮| 久久综合国产亚洲精品| 国模一区二区三区四区视频| 国产精品蜜桃在线观看| 日日摸夜夜添夜夜添av毛片| 欧美精品一区二区大全| 国产精品av视频在线免费观看| 我的女老师完整版在线观看| 久久久久久久久久久免费av| 亚洲成色77777| 免费观看av网站的网址| 国产久久久一区二区三区| 久久久久久久精品精品| 亚洲精品视频女| av福利片在线观看| 麻豆乱淫一区二区| 91精品国产九色| 最后的刺客免费高清国语| 一级毛片电影观看| 搡女人真爽免费视频火全软件| 99热国产这里只有精品6| 汤姆久久久久久久影院中文字幕| 男女边摸边吃奶| h日本视频在线播放| 一级毛片aaaaaa免费看小| 91精品国产九色| 蜜桃久久精品国产亚洲av| 国产欧美日韩一区二区三区在线 | 成人国产麻豆网| av在线app专区| 特大巨黑吊av在线直播| 亚洲国产av新网站| 国产综合精华液| 国产精品三级大全| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久热精品热| 国产精品成人在线| 久久久久精品久久久久真实原创| 亚洲怡红院男人天堂| 亚洲av男天堂| 午夜福利在线在线| 免费观看a级毛片全部| 日韩中字成人| 国产av不卡久久| 听说在线观看完整版免费高清| 日韩成人av中文字幕在线观看| 欧美日韩视频高清一区二区三区二| 高清av免费在线| 制服丝袜香蕉在线| 99视频精品全部免费 在线| 免费av不卡在线播放| 日本熟妇午夜| 亚洲国产精品国产精品| 亚洲精品第二区| a级毛色黄片| 99热6这里只有精品| 久久精品夜色国产| 中文字幕亚洲精品专区| 国产一区有黄有色的免费视频| 99热这里只有是精品50| 午夜免费观看性视频| 麻豆成人av视频| 免费大片黄手机在线观看| 国产精品久久久久久久电影| 午夜日本视频在线| 国产真实伦视频高清在线观看| 成人国产麻豆网| 亚洲精品国产色婷婷电影| 亚洲欧美一区二区三区国产| 成人午夜精彩视频在线观看| 午夜福利高清视频| 一区二区三区免费毛片| 亚洲性久久影院| 一级毛片 在线播放| 亚洲人与动物交配视频| 高清午夜精品一区二区三区| 91在线精品国自产拍蜜月| 国产乱人偷精品视频| 人妻夜夜爽99麻豆av| 午夜免费鲁丝| 美女被艹到高潮喷水动态| 精品国产乱码久久久久久小说| 91久久精品国产一区二区成人| av在线老鸭窝| 成人国产麻豆网| 日韩 亚洲 欧美在线| 成人免费观看视频高清| 我要看日韩黄色一级片| 国产色爽女视频免费观看| 国产午夜精品久久久久久一区二区三区| 六月丁香七月| 内射极品少妇av片p| 亚州av有码| 欧美3d第一页| 中文天堂在线官网| 欧美日韩国产mv在线观看视频 | 少妇人妻久久综合中文| 欧美3d第一页| 美女脱内裤让男人舔精品视频| 国产黄色免费在线视频| 成人欧美大片| 国产成人一区二区在线| 亚洲一区二区三区欧美精品 | 视频中文字幕在线观看| 黄色视频在线播放观看不卡| 久久久久久久久大av| 九色成人免费人妻av| 亚洲婷婷狠狠爱综合网| 狂野欧美白嫩少妇大欣赏| 久久人人爽人人片av| 亚洲精品一区蜜桃| 欧美人与善性xxx| 黄色日韩在线| 亚洲国产精品专区欧美| 欧美一区二区亚洲| 久久精品久久久久久久性| 国产午夜精品一二区理论片| 久久久午夜欧美精品| 久久久国产一区二区| 亚洲欧美中文字幕日韩二区| 大又大粗又爽又黄少妇毛片口| 一个人看视频在线观看www免费| 2021天堂中文幕一二区在线观| 偷拍熟女少妇极品色| 极品教师在线视频| 国产成人精品福利久久| 黄片wwwwww| 国产成人a∨麻豆精品| 亚洲天堂国产精品一区在线| 美女脱内裤让男人舔精品视频| 国产精品国产三级国产av玫瑰| 综合色丁香网| 亚洲精品中文字幕在线视频 | 日韩制服骚丝袜av| 春色校园在线视频观看| 尤物成人国产欧美一区二区三区| 亚洲国产精品国产精品| 国产高清国产精品国产三级 | 国产男女内射视频| 精品久久久久久久末码| 美女高潮的动态| 亚洲在线观看片| 身体一侧抽搐| 自拍欧美九色日韩亚洲蝌蚪91 | 久久精品国产自在天天线| 校园人妻丝袜中文字幕| 欧美丝袜亚洲另类| 久久国内精品自在自线图片| 日韩欧美精品免费久久| 国产 一区 欧美 日韩| 天天躁夜夜躁狠狠久久av| 一区二区三区四区激情视频| 久久精品久久久久久久性| 99久久九九国产精品国产免费| 亚洲激情五月婷婷啪啪| 各种免费的搞黄视频| 久久久久精品性色| 精品视频人人做人人爽| 国产极品天堂在线| 久久久久久久精品精品| 国产在线一区二区三区精| .国产精品久久| 在线播放无遮挡| 久久久久国产网址| freevideosex欧美| 欧美性感艳星| av线在线观看网站| 国产成人精品福利久久| 日日撸夜夜添| 大香蕉97超碰在线| 日本一本二区三区精品| 午夜日本视频在线| 亚洲欧美日韩卡通动漫| 亚洲天堂国产精品一区在线| 22中文网久久字幕| 久久97久久精品| 国产精品麻豆人妻色哟哟久久| 免费观看av网站的网址| av一本久久久久| 直男gayav资源| 色播亚洲综合网| 国产亚洲一区二区精品| 午夜精品一区二区三区免费看| 欧美+日韩+精品| 亚洲欧美精品专区久久| 啦啦啦中文免费视频观看日本| 午夜精品一区二区三区免费看| 一区二区三区四区激情视频| 成年免费大片在线观看| 老女人水多毛片| 欧美日韩一区二区视频在线观看视频在线 | 国产乱来视频区| 岛国毛片在线播放| 麻豆国产97在线/欧美| 欧美 日韩 精品 国产| 国产熟女欧美一区二区| 亚洲精品国产成人久久av| 亚洲人成网站在线播| 永久免费av网站大全| av国产精品久久久久影院| 日韩视频在线欧美| 日韩欧美精品v在线| 插阴视频在线观看视频| 久久久久网色| 日韩 亚洲 欧美在线| 国产伦理片在线播放av一区| 少妇人妻 视频| 美女内射精品一级片tv| 成人一区二区视频在线观看| 免费高清在线观看视频在线观看| 国产av国产精品国产| 久久久a久久爽久久v久久| 搡老乐熟女国产| 国产在线一区二区三区精| 99热这里只有是精品在线观看| 偷拍熟女少妇极品色| 国产淫语在线视频| 亚洲精品成人久久久久久| 国产在视频线精品| 内射极品少妇av片p| 精品午夜福利在线看| 国产视频内射| 亚洲av欧美aⅴ国产| 性插视频无遮挡在线免费观看| 熟女av电影| 一区二区av电影网| 超碰97精品在线观看| av网站免费在线观看视频| 97热精品久久久久久| 久久久欧美国产精品| 99热网站在线观看| 99热6这里只有精品| 免费观看在线日韩| av一本久久久久| 一级毛片aaaaaa免费看小| 美女国产视频在线观看| 超碰97精品在线观看| 肉色欧美久久久久久久蜜桃 | 18禁动态无遮挡网站| 纵有疾风起免费观看全集完整版| 丝袜美腿在线中文| 午夜精品一区二区三区免费看| 精品一区二区免费观看| 欧美丝袜亚洲另类| 中文天堂在线官网| 五月天丁香电影| 插逼视频在线观看| 好男人视频免费观看在线| 免费看光身美女| 99九九线精品视频在线观看视频| 免费人成在线观看视频色| 26uuu在线亚洲综合色| 亚洲aⅴ乱码一区二区在线播放| 看黄色毛片网站| 日韩三级伦理在线观看| av黄色大香蕉| 精品国产乱码久久久久久小说| 日韩一区二区三区影片| 久久热精品热| 亚洲最大成人手机在线| 亚洲色图av天堂| 久久精品久久精品一区二区三区| 亚洲在线观看片| 日本wwww免费看| 国产91av在线免费观看| 亚洲熟女精品中文字幕| 久久久久国产精品人妻一区二区| 亚洲欧美一区二区三区黑人 | 别揉我奶头 嗯啊视频| 日韩欧美精品v在线| 99热全是精品| 亚洲精品亚洲一区二区| 大香蕉97超碰在线| 国产一区二区三区综合在线观看 | 亚洲美女视频黄频| 亚洲欧美一区二区三区国产| 国产毛片a区久久久久| 精品久久国产蜜桃| 高清毛片免费看| 亚洲一区二区三区欧美精品 | 波野结衣二区三区在线| 欧美一区二区亚洲| 久久精品熟女亚洲av麻豆精品| 少妇人妻久久综合中文| 国产精品久久久久久精品古装| av网站免费在线观看视频| 久久久久九九精品影院| 女人久久www免费人成看片| 欧美少妇被猛烈插入视频| 国产亚洲av片在线观看秒播厂| 美女主播在线视频| 97精品久久久久久久久久精品| 精品国产一区二区三区久久久樱花 | 熟女电影av网| 一区二区三区四区激情视频| av在线亚洲专区| 少妇的逼好多水| 国产大屁股一区二区在线视频| 少妇被粗大猛烈的视频| 99热6这里只有精品| 国产成人精品久久久久久| 能在线免费看毛片的网站| 日韩国内少妇激情av| 大片电影免费在线观看免费| 久久久a久久爽久久v久久| 亚洲美女视频黄频| 在线亚洲精品国产二区图片欧美 | 亚洲色图综合在线观看| 日韩成人伦理影院| 中国国产av一级| 国产在线男女| 麻豆国产97在线/欧美| 国产精品久久久久久久久免| 成人综合一区亚洲| 搡女人真爽免费视频火全软件| 午夜亚洲福利在线播放| 亚洲在久久综合| 黄色怎么调成土黄色| 丰满乱子伦码专区| 久久精品久久久久久久性| 22中文网久久字幕| 下体分泌物呈黄色| 国产免费福利视频在线观看| 亚洲精品国产av成人精品| 大陆偷拍与自拍| 一二三四中文在线观看免费高清| 国产淫语在线视频| 99热这里只有是精品50| 久久99热这里只有精品18| 超碰97精品在线观看| 2021天堂中文幕一二区在线观| 久久精品国产亚洲网站| 男人舔奶头视频| 在线免费十八禁| 色综合色国产| 亚洲精品国产色婷婷电影| 九九爱精品视频在线观看| 国产一区二区三区av在线| 国产乱来视频区| 亚洲精品国产av成人精品| 内射极品少妇av片p| 色哟哟·www| 高清在线视频一区二区三区| 亚洲av成人精品一二三区| 免费看av在线观看网站| av福利片在线观看| 美女内射精品一级片tv| 久久女婷五月综合色啪小说 | 亚洲精品中文字幕在线视频 | 久久人人爽人人片av| 男女边摸边吃奶| 国产中年淑女户外野战色| av在线观看视频网站免费| 女人被狂操c到高潮| 亚洲熟女精品中文字幕| 极品教师在线视频| 男女下面进入的视频免费午夜| 久热久热在线精品观看| 国产精品无大码| 国产一级毛片在线| 97人妻精品一区二区三区麻豆| 亚洲av不卡在线观看| 亚洲精品成人久久久久久| 中文字幕制服av| 亚洲av成人精品一二三区| 亚洲图色成人| 日韩制服骚丝袜av| 真实男女啪啪啪动态图| 免费不卡的大黄色大毛片视频在线观看| 亚洲av在线观看美女高潮| 精品一区二区免费观看| 免费黄频网站在线观看国产| 少妇人妻久久综合中文| 涩涩av久久男人的天堂| 色吧在线观看| 真实男女啪啪啪动态图| 国产av不卡久久| 免费看不卡的av| 国产精品爽爽va在线观看网站| 亚洲欧美成人精品一区二区| 舔av片在线| 欧美人与善性xxx| 亚洲欧美日韩卡通动漫| 人人妻人人澡人人爽人人夜夜| 欧美日韩国产mv在线观看视频 | 2021天堂中文幕一二区在线观| 免费看av在线观看网站| 久久精品国产自在天天线| 亚洲国产精品国产精品| 免费电影在线观看免费观看| 国产精品蜜桃在线观看| 欧美bdsm另类| av黄色大香蕉| 国产欧美另类精品又又久久亚洲欧美| 中文字幕久久专区| 国产成人福利小说| 赤兔流量卡办理| 亚洲av电影在线观看一区二区三区 | 嘟嘟电影网在线观看| 男女边摸边吃奶| 男男h啪啪无遮挡| .国产精品久久| 国内精品宾馆在线| 欧美精品一区二区大全| 最后的刺客免费高清国语| 国产成人精品福利久久| 成人无遮挡网站| 伊人久久精品亚洲午夜| 在线观看免费高清a一片| 99久久九九国产精品国产免费| 日韩欧美精品免费久久| 永久免费av网站大全| 建设人人有责人人尽责人人享有的 | 日日摸夜夜添夜夜添av毛片| 超碰av人人做人人爽久久| 人妻一区二区av| 男女边吃奶边做爰视频| 国产色爽女视频免费观看| 亚洲精品亚洲一区二区| 美女内射精品一级片tv| 在线天堂最新版资源| 日韩欧美精品免费久久| av.在线天堂| 性插视频无遮挡在线免费观看| 免费av不卡在线播放| 国产免费视频播放在线视频| 欧美日韩一区二区视频在线观看视频在线 | 99久久精品国产国产毛片| 午夜福利网站1000一区二区三区| 人妻少妇偷人精品九色| 日韩人妻高清精品专区| 日本黄色片子视频| 精华霜和精华液先用哪个| 直男gayav资源| 国产男人的电影天堂91| 日韩在线高清观看一区二区三区| 亚洲欧美日韩卡通动漫| 看免费成人av毛片| 国精品久久久久久国模美| 精品国产露脸久久av麻豆| 人妻少妇偷人精品九色| 亚洲欧美日韩无卡精品| 亚洲欧美日韩另类电影网站 | 成年版毛片免费区| 能在线免费看毛片的网站| 欧美日韩综合久久久久久| 插阴视频在线观看视频| 大陆偷拍与自拍| 国产av国产精品国产| 亚洲经典国产精华液单| 免费观看无遮挡的男女| 黄色日韩在线| 国产老妇伦熟女老妇高清| 久久久午夜欧美精品| 99热这里只有精品一区| 国产一区二区三区av在线| 热re99久久精品国产66热6| 久久精品国产自在天天线| 在线观看一区二区三区激情| 国产一区二区三区av在线| 亚洲av在线观看美女高潮| 国产成人精品婷婷| 中文资源天堂在线| 久久6这里有精品| 国产熟女欧美一区二区| 亚洲人与动物交配视频| 少妇人妻一区二区三区视频| 又爽又黄a免费视频| 免费播放大片免费观看视频在线观看| 在线观看人妻少妇| av一本久久久久| 大香蕉久久网| 亚洲最大成人手机在线| 亚洲精品乱码久久久久久按摩| 极品教师在线视频| 免费不卡的大黄色大毛片视频在线观看| 国产精品国产av在线观看| 欧美zozozo另类| 免费观看av网站的网址| 99热6这里只有精品| 搡女人真爽免费视频火全软件| 国产色婷婷99| 久久久精品欧美日韩精品| 国产毛片a区久久久久| 国产亚洲精品久久久com| 2022亚洲国产成人精品|