• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EDTA輔助水熱法制備性能優(yōu)異的棒狀LiFePO4/C材料

    2013-10-17 03:03:12鐘本和鐘艷君郭孝東
    關(guān)鍵詞:水熱法四川大學(xué)工程學(xué)院

    董 靜 鐘本和 鐘艷君 唐 艷 劉 恒 郭孝東*,

    (1四川大學(xué)化學(xué)工程學(xué)院,成都 610065)

    (2四川大學(xué)材料科學(xué)與工程學(xué)院,成都 610065)

    Since the pioneering work of Padhi et al.[1],the olivine-type phosphates LiFePO4has received extensive attention with respect to its application as a cathode material in rechargeable Li-ion batteries,owing to its high theoretical capacity (170 mAh·g-1),low cost,environmental benign and high safety.In addition,LiFePO4has good cycle stability and a flat discharge potential of 3.45 V versus Li+/Li.Despite the above mentioned advantages,the main obstacles for LiFePO4are its intrinsic low electronic conductivity(~10-9cm2·s-1)[2]and low lithium ion diffusivity(~10-18cm2·s-1)[3].Great progress has been made to improve the performances and synthesis techniques of LiFePO4up to now.To eliminate the impediments of LiFePO4materials,numerous approaches have been reported,such as coating different conductive materials(conductive carbon or polymers)[4-5],minimizing the particle size[6-8]and doping with supervalence cation[9].Furthermore,numerous synthetic strategies have been developed to synthesize LiFePO4,such as co-precipitation,solid-state reactions,sol-gel,solvothermal and hydrothermal method.Among them,the hydrothermal synthesis of LiFePO4is a promising method due to its narrow particle size distribution,fast reaction rate and facile size control.

    Owing to the importance of particle shape on the performance of LiFePO4,lots of studies have been devoted to the preparation of olivine LiFePO4with various morphologies and reduced particle size in hydrothermal method.For instance,Fei Teng et al.synthesized LiFePO4nanodendrites in the ethylene glycol/water (EG/W)system using dodecyl benzene sulphonic acid sodium(SDBS)as the surfactant[10]and developed to fabricate LiFePO4nanorod arrays using anodic aluminum oxide(AAO)as the template[11].Lu et al.[12].reported that LiFePO4with a variety of unusual morphologies was prepared in the presence of ammonium ions and citric acid.Dinesh Rangappa et al.[13]synthesized hierarchical flower-like LiFePO4using ethylene glycol as the solvent with oleic acid and hexane as the surfactant and co-solvent.In general,the primary approaches to prepare welldefined morphology and smallerparticlesizein hydrothermal method are using organic solvent or template,which make the preparation process more complex and more expensive.We report here a simple,quick and low cost hydrothermal synthesis onlyusingEDTA asthecomplexingagentand dispersing agent to prepare the defined morphology with reduced particle size.The obtained rod-like LiFePO4exhibits narrow particle size distribution and better electrochemical properties.

    1 Experimental

    1.1 Synthesis of LiFePO4/C

    All the reactants were of analytical grade and used without further purification.In a typical synthesis,0.3 mol H3PO4,0.3 mol FeSO4·7H2O and 0.9 mol LiOH·H2O were dissolved in deionized water,respectively.First,the lithium source and phosphorus source were blended under magnetic stirring,and then FeSO4solution slowly added to the above solution to keep the molar ratio nLi∶nFe∶nP=3∶1∶1.Finally,0.03 mol EDTA was added to the obtained solution.After that,the resulting mixture was transferred into a 2L-capacity Teflon-lined stainless steel autoclave,and then heated at 180 ℃ for 10 h.After being cooled to room temperature,the productwas centrifuged,washed severaltimeswith absolute alcoholand distilled water and then dried in a vacuum oven at 90℃ for 12 h.For further carbon coating on LiFePO4nanostructures,the powders after drying mentioned above were mixed with glucose (20wt%)as a carbon source by planetary ball milling,and then the blend was calcined at 700℃ for 5 h in an inert atmosphere.In order to confirm the influence of EDTA on the products,a control experiment was also carried out.The LiFePO4/C materials prepared with EDTA and without EDTA were denoted as sample A and B.

    1.2 Materials characterization

    The phase structures ofthe samples were investigated by X-ray diffraction (XRD,D/max-rB,Rigaku,Cu Kα radiation)(λ=0.154 18 nm,40 kV,40 mA,scintillation counter,scanning range (2θ):10°~70°,step scanning:0.5°·min-1).The morphology and particle size ofthe prepared nanocrystals were observed by scanning electron microscopy(HITACHI S-4800).The microstructure and the surface texture of crystal were observed by transmission electron microscopy (JEM-2100) operated at 200 kV acceleration voltage.The particle size distribution was estimated by laser particle size distribution tester(JL-1155).The electronic conductivities of the samples were measured by a four-point probe method(KDY-1).The cyclic voltammetry tests and electrochemical impedance spectroscopy were performed on electrochemical workstation (CHI660B).The carbon content was measured by analytical instrument(CS-902).

    1.3 Electrochemical characterization

    The positive slurry was prepared with 80wt%active material,13wt%acetylene black(conducting additive), 7wt% polyvinylidene fluoride (PVDF,binder)and N-methylpyrro lidone(NMP,solvent).The slurry was spread uniformly onto a thin aluminum foil,dried in vacuum at 100℃for 16 h and then cut into pieces.The formed cathode was assembled into a CR2032 button battery in an argon-filled glove box,with Li anode,1 mol·L-1LiPF6in a mixed solvent of ethylene carbonate (EC)and dimethyl carbon(DMC)(VEC∶VDMC=1∶1)electrolyte and a Celgard-2400 separator.The electrochemical performance of the cells was tested by a high precision battery performance testing system.The cells were galvanostatically charged and discharged at room temperature between 2.5 and 4.3 V versus Li+/Li.

    2 Results and discussion

    2.1 Structure and morphology analysis

    Fig.1 XRD patterns of precursors prepared with EDTA and without EDTA

    Fig.1 shows the XRD patterns of precursors prepared with and without EDTA.The precursors were the precipitation prepared from the mixing of the raw materials.Itisfound thatthere isnoobvious difference between the two precursors.Allmain characteristic peaks ofthe two precursors are coincided with the diffraction peaks of Fe3(PO4)2·8H2O(PDF#30-0662)and Li3PO4(PDF#25-1030)without any obvious impurity phase.The results are consistent with previous reports[14-15]that Fe3(PO4)2·8H2O and Li3PO4must be the intermediate in the formation of LiFePO4.These observed results clearly indicate Fe-EDTA is not in the precursors,maybe it is dissolved and then not in the precursor or it could not be characterized by XRD.

    The XRD patterns of LiFePO4/C composites are displayed in Fig.2.All the diffraction peaks in the XRD patterns could be indexed to an orthorhombic space group,Puma(PDF#83-2092).The XRD pattern clearly shows the single-phase formation of LiFePO4without any observable impurity phases (such as Fe3(PO4)2,Li3PO4,FeP).It demonstrates that the introduction of complexing agent does not change the sample′s crystal structure.Additionally,the intensity of all the diffraction peaks of sample A is stronger than sample B.This suggests that using EDTA as complexing agent isfavorableforincreasingthe crystallinity of the LiFePO4.The obtained lattice parameters are(a)a=1.029 656 nm,b=0.598 161 nm,c=0.467 506 nm with a cell volume of 0.287 94 nm3;(b)a=1.029 92 nm,b=0.598 68 nm,c=0.467 26 nm with a cell volume of 0.288 11 nm3for the two LiFePO4/C samples with EDTA (a)and without EDTA (b),respectively.It is clear that sample A owns smaller cellvolume,which mayberelated toabetter crystallinity with EDTA as complexing agent.These values are comparable with those reported earlier in the literatures[16-17].

    Fig.2 XRD patterns of sample A and sample B

    There is no carbon observed in the XRD patterns,because the residual carbon decomposed from glucose and EDTA is amorphous in the LiFePO4/C composite[18].The carbon content of LiFePO4/C obtained with EDTA is 5.5%and another sample is 5.2%.Clearly,EDTA is not washed off completely during the filtering process.This can be ascribed to the remnant carbon after the pyrolysis of EDTA.Therefore,the carbon content of the sample A is a little more than that of sample B.

    Fig.3 shows the SEM images of LiFePO4/C.By adding EDTA,rod-like LiFePO4is obtained,otherwise only irregular particles are prepared and the size of sample B is much larger than that of sample A.It demonstrates that EDTA chelation-assisted hydrothermal method can effectively decrease the particle size and control the morphology.As reported in the literatures[18-20],EDTA has been widely used as chelating agent and structure-directing template.The chelating role of EDTA group in the synthesis process is to greatly control the concentration of Fe2+,thus to modulate the growth rate ofLiFePO4crystallite.Therefore,the use of EDTA can effectively decrease the crystal size and modulate the crystal growth to obtain the defined shape.

    The particle size distribution of sample A and sample B is shown in Fig.4.Sample A presents unimodal distribution,but bimodal distribution for sample B.The peak located between 10~100 μm is absence for sample A.As reported in the literature[21],EDTA has the function of dispersive action.Furthermore,the peak value of 0.1~1 μm for sample A is bigger than sample B,which coincides with the results of SEM.It indicates that adding EDTA in hydrothermalmethod can effectively reduce the particle agglomeration.

    Fig.3 SEM images of LiFePO4/C

    Fig.4 Particle size distribution of sample A and sample B

    Fig.5 TEM,HRTEM image and SAED of LiFePO4/C obtained with EDTA

    The morphology and microstructure of the rodlike LiFePO4obtained with EDTA were further characterized by TEM,high resolution TEM(HRTEM)and the selected area electron diffraction(SAED)images.Fig.5a presents the typical TEM image of LiFePO4/C.The morphology of the particles is nanosized rods,which is in good agreement with the above SEM observations.Fig.5b shows that an armorphous carbon coating layer with a thickness of ~3.5 nm is homogenously distributed on the LiFePO4particles,the uniform carbon layer is beneficial to improve the conductivity of the material.The HRTEM image displays clear crystal lattices with d-spacing of 0.30 nm,corresponds to the (020)plane of LiFePO4(Fig.5c).The SAED pattern in Fig.5d with clear lattice fringes suggests that the good crystalline LiFePO4nanostructures are formed under hydrothermal conditions by adding EDTA.

    2.2 Electrochemical measurements

    Fig.6a presents the galvanostatic charge/discharge curves of sample A and sample B measured at 0.1C in the potential range of 2.5 to 4.3 V.Both the samples possess a flat plateau around 3.4 V,which corresponds to the redox couple of Fe3+/Fe2+.Sample A delivers a higher discharge capacity of 167 mAh·g-1,but sample B presents a discharge capacity of 150 mAh·g-1.Meanwhile,sample B display a wider space of the charge-discharge voltage profiles than sample A,which indicates that sample A may possess lower electrode polarization and higher reversible capacity at a higher rate.Fig.6b shows the rate capability ofsample A and B.The discharge capacities of sample A are 167,157,147,134,120,101,79 mAh·g-1at 0.1C,0.2C,0.5C,1C,3C,5C and 10C,respectively,and sample B is 150,139,121,90,65,45,23 mAh·g-1at 0.1C,0.2C,0.5C,1C,3C,5C and 10C,respectively.It is obvious that sample A shows a higher capacity at every testing rate than sample B.The electronic conductivity of LiFePO4/C materials obtained with EDTA is 1.18 ×10-2S·cm-1and the LiFePO4/C materials obtained without EDTA is 8.13×10-3S·cm-1as measured by a four-point probe method.The better electrochemical properties of the sample A could be attributed to its smaller particle size and the less particle agglomeration.This is because the smaller particle size shortens the distance of the transport passage, and increases the conductivity of the sample.Therefore,electrochemical performance of LiFePO4/C material can be effectively improved by adding EDTA.

    Fig.6 (a)Charge/discharge curves of A and sample B;(b)Rate performance of sample A and sample B

    Fig.7 CV curves of sample A and sample B at a scan rate of 0.1 mV·s-1

    The first five cyclic voltammogram curves of LiFePO4/C composite in the voltage range of 2.5~4.3 V at a constant scanning rate of 0.1 mV·s-1are shown in Fig.7.The voltage charge/discharge profiles of all five cycles are almost reduplicative,suggesting the good reversibility of lithium extraction/insertion reactions in the LiFePO4/C composites prepared through hydrothermal method.In the CV plots of LiFePO4cathode material,the higher and sharper current peaks and the smaller charge and discharge voltage plateaus difference imply better electrode reaction kinetics and better rate performance[23].The CV curves of sample A show more symmetrical and sharper shape of the anodic/cathodic peaks,which indicates an improvement in the kinetics of the lithium insertion/extraction at the electrode/electrolyte interface[22-23].In contrast,sample B electrode has lower peaks in CV curves.Furthermore,the higher peak voltage separation of sample B indicates that electrochemical kinetics could be strongly inhibited and that high polarization overpotential is present.Thus,sample A shows better electrochemical property.The result is in coincidence with the electrochemical measurements.

    Fig.8 presents the Nyquist curves of the two samples and an equivalent circuit fitted by Zview2.0 program.An interceptatthe Zrealaxis in high frequency corresponds to the Ohmic resistance(RΩ),which represents the resistance of the electrolyte.The diameter ofthe semicircle on the Zrealaxis is approximately equal to the charge transfer resistance(Rct).The inclined line in the lowerfrequency represents the Warburg impedance, which is associated with lithium-ion diffusion in the LiFePO4particles[24].The lithium-ion diffusion coefficient(DLi)could be calculated using the formula 1[25].Formula 1:

    where R is the gas constant,T is the absolute temperature,A is the surface area of the cathode,n is the number of electrons per molecule during oxidization,F is the Faraday constant,C is the concentration of lithium ion (7.69 mol·L-1),and σ is the Warburg coefficient.The Warburg coefficient σ is calculated by the linear fitting result of Z′and ω-1/2from the EIS data.All the parameters obtained and calculated from EIS are shown in Table 1.It is obvious that the Rctdrastically decreases and lithium-ion diffusion coefficient increases for sample A.The reasons can be explained in terms of particle size,as reported previously[26],because smallparticle can shorten the distance of the transport distance.

    Fig.8 (a)Electrochemical impedance spectra of sample A and sample B;(b)Relationship plot between Z′and ω-1/2at low-frequency region

    Table 1 Impedance parameters of LiFePO4/C cells(A with EDTA B without EDTA)

    3 Conclusions

    In summary,we propose a simple,quick and low costhydrothermalsynthesisroute to controlthe morphology of LiFePO4/C only by adding EDTA,rather than by changing the temperature,pH value,concentration or solvent.The prepared LiFePO4/C with EDTA presents a well-crystallized nanorod structure and coated with carbon layer of ~3.5 nm.The chelating role of EDTA group in the synthesis process is to greatly control the concentration of Fe2+,and to modulate the growth rate ofLiFePO4crystallite.Therefore,rod-like LiFePO4with reduced size is obtained, otherwise only irregular particles are prepared.Moreover,EDTA hasthe function of dispersive action and then restraints the sample′s aggregation.TheLiFePO4/C obtained with EDTA exhibits excellent reversible capacities at galvanostatic charge-discharge test.The specific discharge capacities have been reached 167,157,147,134,120,101,79 mAh·g-1at 0.1C,0.2C,0.5C,1C,3C,5C and 10C,respectively.The significantly improved electrochemical performances of the material could be attributed to the largerproportion ofnano-sized particles which is originated from EDTA as chelating agent and dispersing agent.

    Acknowledgements:This work was supported by the Sichuan University Funds for Young Scientists(2011SCU11081),and the Research Fund for the Doctoral Program ofHigherEducation,the MinistryofEducation(20120181120103).

    [1]Padhi A K,Nanjundaswamy K S,Goodenough J B.J.Electrochem.Soc.,1997,144(4):1188-1194

    [2]Chung S Y,Chiang Y M.Electrochem.Solid-State Lett.,2003,6:A278-A281

    [3]Srinivasan V,Newman J.J.Electrochem.Soc.,2004,151:A1517-A1529

    [4]Chen Z H,Dahn J R.J.Electrochem.Soc.,2002,149:A1184-A1189

    [5]Wilcox J D,Doeff M M,Marcinek M,et al.J.Electrochem.Soc.,2007,154:A389-A395

    [6]WANG Xiao-Juan(王小娟),LI Xin-Hai(李新海),WANG Zhi-Xing(王志興),et al.J.Funct.Mater.(Gongneng Cailiao),2009,40(12):1996-2003

    [7]YU Hong-Ming(于紅明),ZHENG Wei(鄭威),CAO Gao-Shao(曹高劭),et al.Acta Phys.-Chim.Sin.(Wuli Huaxue Xuebao),2009,25(11):2186-2190

    [8]XU Rui(徐瑞),ZHONG Ben-He(鐘本和),GUO Xiao-Dong(郭孝東)et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2012,28(7):1506-1512

    [9]TANG Hong(唐紅),GUO Xiao-Dong(郭孝東),TANG Yan(唐艷),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2012,28(4):809-814

    [10]Teng F,Santhanagopalan S,Lemmens R,et al.Solid State Sci.,2010,12:952-955

    [11]Lu Z G,Chen H L,Robert R,et al.Chem.Mater.,2011,23:2848-2859

    [12]Rangappa D,Sone K,Kudo T,et al.J.Power Sources,2010,195:6167-6171

    [13]Lee M H,Kim J Y,Song H K.Chem.Commun.,2010,46:6795-6797

    [14]He L H,Zhao Z W,Liu X H,et al.Trans.Nonferrous Met.Soc.China,2012,22:1766-1770

    [15]Saravanan K,Balaya P,Reddy M V,et al.Energy Environ.Sci.,2010,3:457-464

    [16]Wang Z L,Su S R,Yu C Y,et al.J.Power Sources,2008,184:633-636

    [17]Li C F,Hua N,Wang C Y,et al.J.Solid State Electrochem.,2011,15:1971-1976

    [18]Zhu Z F,Du J,Li J Q,et al.Ceram.Int.,2012,38:4827-4834

    [19]Ha J H,Muralidharan P,Kim D K.J.Alloys Compd.,2009,475:446-451

    [20]Adldinger H K,Calnek B W.Archiv Für Die Gesamte Virusforschung,1971,34:391-395

    [21]Lan Y C,Wang X D,Zhang J W,et al.Powder Technol.,2011,212:327-331

    [22]Dimesso L,Spanheimer C,Jacke S,et al.J.Power Sources,2011,196:6729-6734

    [23]Shin H C,Cho W I,Jang H.Electrochim.Acta,2006,52:1472-1476

    [24]Yang K R,Deng Z H,Suo J S,J.Power Sources,2012,201:274-279

    [25]Kwon S J,Kim C W,Jeong W T,et al.J.Power Sources,2004,137:93-99

    猜你喜歡
    水熱法四川大學(xué)工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    水熱法原位合成β-AgVO3/BiVO4復(fù)合光催化劑及其催化性能
    四川大學(xué)西航港實(shí)驗(yàn)小學(xué)
    福建工程學(xué)院
    福建工程學(xué)院
    百年精誠(chéng) 譽(yù)從信來(lái)——走進(jìn)四川大學(xué)華西眼視光之一
    四川大學(xué)華西醫(yī)院
    水熱法制備N(xiāo)aSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
    水熱法制備BiVO4及其光催化性能研究
    日韩制服丝袜自拍偷拍| 久久人人爽av亚洲精品天堂| 黄色a级毛片大全视频| 成年人午夜在线观看视频| 亚洲精品在线观看二区| 久久久国产精品麻豆| 如日韩欧美国产精品一区二区三区| 亚洲第一欧美日韩一区二区三区 | 另类精品久久| 人人妻人人爽人人添夜夜欢视频| 亚洲五月婷婷丁香| 人人妻人人添人人爽欧美一区卜| 欧美成人午夜精品| 久久久精品免费免费高清| 久久中文字幕一级| 久久久久久亚洲精品国产蜜桃av| 天天躁日日躁夜夜躁夜夜| 18禁观看日本| 一二三四社区在线视频社区8| 99riav亚洲国产免费| 国产成人啪精品午夜网站| 国产精品熟女久久久久浪| 999久久久国产精品视频| 男女床上黄色一级片免费看| 99热国产这里只有精品6| 一级毛片女人18水好多| 婷婷成人精品国产| 视频区欧美日本亚洲| 久久久国产成人免费| 人人澡人人妻人| 中文亚洲av片在线观看爽 | 最近最新免费中文字幕在线| 国产精品一区二区在线不卡| 国产精品1区2区在线观看. | 99在线人妻在线中文字幕 | 99精品在免费线老司机午夜| 久久精品国产a三级三级三级| 国产一区二区激情短视频| 一区二区三区精品91| 亚洲精品国产色婷婷电影| 九色亚洲精品在线播放| 亚洲第一青青草原| 国产av又大| 亚洲情色 制服丝袜| 黑人巨大精品欧美一区二区mp4| 国产不卡一卡二| 满18在线观看网站| 亚洲精品国产一区二区精华液| 欧美精品啪啪一区二区三区| av欧美777| 亚洲av欧美aⅴ国产| 精品午夜福利视频在线观看一区 | 久久久久精品人妻al黑| 成人黄色视频免费在线看| 精品一区二区三区av网在线观看 | 满18在线观看网站| 亚洲精品国产一区二区精华液| 757午夜福利合集在线观看| 丁香欧美五月| 俄罗斯特黄特色一大片| 精品午夜福利视频在线观看一区 | 18禁国产床啪视频网站| 香蕉国产在线看| 正在播放国产对白刺激| 超碰成人久久| 女人爽到高潮嗷嗷叫在线视频| 99久久99久久久精品蜜桃| 欧美性长视频在线观看| 国产精品1区2区在线观看. | 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产av影院在线观看| 日韩大片免费观看网站| 久久国产精品人妻蜜桃| 婷婷成人精品国产| 亚洲熟妇熟女久久| 日本vs欧美在线观看视频| 9191精品国产免费久久| 国产精品久久久av美女十八| 亚洲一区二区三区欧美精品| 亚洲情色 制服丝袜| 欧美日韩黄片免| 99国产精品免费福利视频| 亚洲色图 男人天堂 中文字幕| 看免费av毛片| 午夜福利视频在线观看免费| av超薄肉色丝袜交足视频| 在线播放国产精品三级| 老熟妇仑乱视频hdxx| 国产精品九九99| 亚洲天堂av无毛| 久久青草综合色| 亚洲精品在线美女| 波多野结衣av一区二区av| 国产精品久久久av美女十八| 19禁男女啪啪无遮挡网站| 久久久国产精品麻豆| 中文欧美无线码| 正在播放国产对白刺激| 国产精品熟女久久久久浪| 亚洲专区中文字幕在线| 国产精品九九99| 亚洲熟女精品中文字幕| 一级毛片电影观看| 色播在线永久视频| 不卡一级毛片| 80岁老熟妇乱子伦牲交| 叶爱在线成人免费视频播放| 99香蕉大伊视频| 大码成人一级视频| 黑人操中国人逼视频| 丝瓜视频免费看黄片| 日韩 欧美 亚洲 中文字幕| 亚洲欧美色中文字幕在线| 少妇精品久久久久久久| 极品少妇高潮喷水抽搐| 在线观看人妻少妇| 丁香欧美五月| 亚洲精品久久成人aⅴ小说| 蜜桃在线观看..| 国产主播在线观看一区二区| 久久亚洲精品不卡| 巨乳人妻的诱惑在线观看| 欧美精品高潮呻吟av久久| 色在线成人网| 另类亚洲欧美激情| 久久精品国产亚洲av高清一级| 精品国产一区二区久久| 亚洲欧美日韩高清在线视频 | 啪啪无遮挡十八禁网站| 久久久久国产一级毛片高清牌| 怎么达到女性高潮| 久久久久网色| 男人舔女人的私密视频| 久久天堂一区二区三区四区| 久久中文字幕一级| 在线观看免费日韩欧美大片| 亚洲国产av影院在线观看| 桃花免费在线播放| 欧美精品av麻豆av| 国精品久久久久久国模美| 亚洲中文字幕日韩| 99精国产麻豆久久婷婷| 亚洲精品国产色婷婷电影| 亚洲国产欧美日韩在线播放| 久久久久久久精品吃奶| 窝窝影院91人妻| 新久久久久国产一级毛片| 天天操日日干夜夜撸| 久久人人爽av亚洲精品天堂| 国产一区有黄有色的免费视频| 欧美精品一区二区大全| 黄色怎么调成土黄色| 老熟女久久久| 国产成人精品无人区| 最近最新中文字幕大全电影3 | 国产一区有黄有色的免费视频| 最近最新免费中文字幕在线| 亚洲av片天天在线观看| 少妇被粗大的猛进出69影院| 在线观看免费午夜福利视频| 黄色视频在线播放观看不卡| 99精品欧美一区二区三区四区| 国产精品美女特级片免费视频播放器 | 999精品在线视频| 天天添夜夜摸| 国产精品久久电影中文字幕 | 一个人免费看片子| 亚洲色图 男人天堂 中文字幕| 99久久99久久久精品蜜桃| 久久精品熟女亚洲av麻豆精品| 中文欧美无线码| 午夜91福利影院| 一区福利在线观看| 欧美日韩福利视频一区二区| 欧美精品亚洲一区二区| 国产一区二区三区在线臀色熟女 | 成人国语在线视频| 日本黄色视频三级网站网址 | 成人国产av品久久久| 亚洲欧美一区二区三区久久| kizo精华| 老司机午夜福利在线观看视频 | 男女下面插进去视频免费观看| 青青草视频在线视频观看| 女人高潮潮喷娇喘18禁视频| 亚洲精品自拍成人| 一区二区三区乱码不卡18| 久久毛片免费看一区二区三区| 69精品国产乱码久久久| 777久久人妻少妇嫩草av网站| 高清视频免费观看一区二区| 欧美一级毛片孕妇| 国产深夜福利视频在线观看| 亚洲人成电影观看| 免费在线观看视频国产中文字幕亚洲| 黄色视频不卡| 国产高清videossex| 亚洲全国av大片| 精品福利永久在线观看| 中文字幕av电影在线播放| 91成人精品电影| 高清毛片免费观看视频网站 | 国产精品亚洲av一区麻豆| 亚洲欧美精品综合一区二区三区| 国产精品自产拍在线观看55亚洲 | 一级毛片精品| 精品人妻1区二区| 国产免费福利视频在线观看| 午夜久久久在线观看| 国产一区二区三区视频了| 中文字幕人妻丝袜制服| 美女福利国产在线| 免费在线观看完整版高清| 国产精品亚洲av一区麻豆| 久久久精品区二区三区| 一级片免费观看大全| 午夜福利视频精品| 亚洲第一青青草原| 久久精品国产99精品国产亚洲性色 | 精品乱码久久久久久99久播| 熟女少妇亚洲综合色aaa.| 少妇粗大呻吟视频| 汤姆久久久久久久影院中文字幕| 在线十欧美十亚洲十日本专区| 日本黄色日本黄色录像| 亚洲综合色网址| 国产高清视频在线播放一区| 一区二区三区精品91| 无限看片的www在线观看| 亚洲久久久国产精品| 色综合欧美亚洲国产小说| 亚洲国产成人一精品久久久| 十八禁人妻一区二区| netflix在线观看网站| 亚洲视频免费观看视频| 2018国产大陆天天弄谢| 涩涩av久久男人的天堂| 国产极品粉嫩免费观看在线| 999久久久精品免费观看国产| 国产亚洲精品久久久久5区| 亚洲欧美日韩高清在线视频 | 精品国内亚洲2022精品成人 | 亚洲精品粉嫩美女一区| 91大片在线观看| 亚洲国产毛片av蜜桃av| 日本一区二区免费在线视频| 欧美日韩黄片免| 天天操日日干夜夜撸| 亚洲中文日韩欧美视频| www.999成人在线观看| 国产精品久久电影中文字幕 | 国产精品国产av在线观看| 老司机午夜十八禁免费视频| 悠悠久久av| cao死你这个sao货| 夜夜骑夜夜射夜夜干| 精品乱码久久久久久99久播| 男女高潮啪啪啪动态图| 国产日韩欧美在线精品| 国产成人免费观看mmmm| www.自偷自拍.com| 在线观看免费日韩欧美大片| 在线观看免费视频日本深夜| 天天操日日干夜夜撸| 精品卡一卡二卡四卡免费| 欧美激情 高清一区二区三区| 精品午夜福利视频在线观看一区 | 男人操女人黄网站| 黄色视频在线播放观看不卡| 男女免费视频国产| 国产成+人综合+亚洲专区| 国产欧美日韩精品亚洲av| 美女扒开内裤让男人捅视频| 久久精品国产a三级三级三级| 国产精品成人在线| 黄网站色视频无遮挡免费观看| 日本a在线网址| 99国产精品99久久久久| 岛国毛片在线播放| 日本av手机在线免费观看| 亚洲精品久久成人aⅴ小说| 最新在线观看一区二区三区| 亚洲国产欧美日韩在线播放| 成年人黄色毛片网站| 国产精品99久久99久久久不卡| 欧美日韩亚洲综合一区二区三区_| 国产成人av激情在线播放| 国产高清激情床上av| 色婷婷av一区二区三区视频| 自线自在国产av| 两性夫妻黄色片| 欧美精品亚洲一区二区| 啪啪无遮挡十八禁网站| 曰老女人黄片| 亚洲国产精品一区二区三区在线| 精品国产国语对白av| 纵有疾风起免费观看全集完整版| 欧美乱码精品一区二区三区| 国产一区二区三区在线臀色熟女 | 正在播放国产对白刺激| 80岁老熟妇乱子伦牲交| 夫妻午夜视频| 国产淫语在线视频| 大片电影免费在线观看免费| 亚洲国产毛片av蜜桃av| 嫁个100分男人电影在线观看| 国产成人精品久久二区二区免费| 亚洲国产毛片av蜜桃av| 18禁美女被吸乳视频| 丰满人妻熟妇乱又伦精品不卡| 老熟妇仑乱视频hdxx| 国产有黄有色有爽视频| 国产高清国产精品国产三级| 韩国精品一区二区三区| a级毛片在线看网站| 国产免费视频播放在线视频| 99re在线观看精品视频| 黄片大片在线免费观看| 9191精品国产免费久久| 精品亚洲乱码少妇综合久久| 女人久久www免费人成看片| 午夜精品久久久久久毛片777| 美女福利国产在线| 日本五十路高清| 久久久水蜜桃国产精品网| 午夜精品久久久久久毛片777| 91精品国产国语对白视频| 国产一区二区三区视频了| 亚洲成av片中文字幕在线观看| 亚洲欧洲精品一区二区精品久久久| 精品一区二区三区视频在线观看免费 | 人妻 亚洲 视频| 1024视频免费在线观看| 黄色丝袜av网址大全| 久久国产精品影院| 久久狼人影院| 亚洲五月天丁香| 观看免费一级毛片| 国产99白浆流出| 女生性感内裤真人,穿戴方法视频| 黄色片一级片一级黄色片| 免费观看精品视频网站| 两个人的视频大全免费| 国产一区二区激情短视频| 国产美女午夜福利| 欧美高清成人免费视频www| 男女午夜视频在线观看| 一夜夜www| 老司机福利观看| 欧美日韩瑟瑟在线播放| 在线免费观看的www视频| 色视频www国产| 欧美日韩瑟瑟在线播放| 欧美性猛交黑人性爽| 级片在线观看| 神马国产精品三级电影在线观看| av视频在线观看入口| xxx96com| 女人高潮潮喷娇喘18禁视频| 亚洲黑人精品在线| 啦啦啦观看免费观看视频高清| 日本与韩国留学比较| 一个人观看的视频www高清免费观看 | 国产综合懂色| 日本与韩国留学比较| 黄片大片在线免费观看| 国产成+人综合+亚洲专区| 精品乱码久久久久久99久播| 最新在线观看一区二区三区| 精品国产亚洲在线| 午夜亚洲福利在线播放| 亚洲欧美日韩高清在线视频| 国产一区在线观看成人免费| 精品熟女少妇八av免费久了| 国产黄片美女视频| 黄色视频,在线免费观看| 9191精品国产免费久久| 免费观看人在逋| 无限看片的www在线观看| 一个人免费在线观看电影 | 久久性视频一级片| 麻豆久久精品国产亚洲av| 麻豆国产av国片精品| 两个人的视频大全免费| x7x7x7水蜜桃| 97人妻精品一区二区三区麻豆| 亚洲精品456在线播放app | 淫妇啪啪啪对白视频| 国产精品一区二区三区四区久久| 脱女人内裤的视频| or卡值多少钱| 亚洲va日本ⅴa欧美va伊人久久| 日本免费a在线| 国产精品99久久久久久久久| 啪啪无遮挡十八禁网站| 全区人妻精品视频| 国产真实乱freesex| 国产精品久久久久久久电影 | 免费看美女性在线毛片视频| 99热这里只有是精品50| 亚洲片人在线观看| 毛片女人毛片| 老司机在亚洲福利影院| 制服丝袜大香蕉在线| 天堂av国产一区二区熟女人妻| 在线永久观看黄色视频| 国产真实乱freesex| 亚洲熟女毛片儿| 麻豆国产97在线/欧美| 99久国产av精品| 999精品在线视频| 母亲3免费完整高清在线观看| 午夜日韩欧美国产| 国产免费av片在线观看野外av| 精品一区二区三区四区五区乱码| 国产视频一区二区在线看| 国产精品女同一区二区软件 | av在线蜜桃| 色播亚洲综合网| 亚洲国产欧美网| 88av欧美| 特大巨黑吊av在线直播| 亚洲专区中文字幕在线| 国产成人影院久久av| 国产成+人综合+亚洲专区| 亚洲精品美女久久久久99蜜臀| 校园春色视频在线观看| 欧美+亚洲+日韩+国产| 日韩高清综合在线| 超碰成人久久| 视频区欧美日本亚洲| xxx96com| 日本 av在线| 国产视频内射| 久久久久久九九精品二区国产| 嫩草影院入口| 亚洲成av人片免费观看| 久久久精品大字幕| 日韩欧美精品v在线| 免费观看的影片在线观看| 韩国av一区二区三区四区| 免费av毛片视频| 国产日本99.免费观看| 麻豆成人av在线观看| 嫩草影院精品99| 一本精品99久久精品77| 伊人久久大香线蕉亚洲五| 欧美激情在线99| 窝窝影院91人妻| 午夜a级毛片| 午夜激情欧美在线| av福利片在线观看| 国产精品九九99| 日本三级黄在线观看| 成人国产一区最新在线观看| 欧美黑人巨大hd| 看黄色毛片网站| 亚洲激情在线av| 欧美中文日本在线观看视频| 免费看a级黄色片| 非洲黑人性xxxx精品又粗又长| 12—13女人毛片做爰片一| 男人和女人高潮做爰伦理| 亚洲色图av天堂| 欧美zozozo另类| 韩国av一区二区三区四区| 国产精品日韩av在线免费观看| 高潮久久久久久久久久久不卡| 欧美日韩精品网址| 琪琪午夜伦伦电影理论片6080| 天堂网av新在线| 丰满人妻一区二区三区视频av | 久久午夜亚洲精品久久| 国产精品99久久99久久久不卡| 日日干狠狠操夜夜爽| 久久久久免费精品人妻一区二区| 欧美日韩中文字幕国产精品一区二区三区| 久久人妻av系列| 婷婷六月久久综合丁香| 亚洲成a人片在线一区二区| 亚洲中文字幕一区二区三区有码在线看 | 18禁裸乳无遮挡免费网站照片| 国产精品99久久久久久久久| 亚洲精品美女久久av网站| 一卡2卡三卡四卡精品乱码亚洲| 国产高潮美女av| 免费看十八禁软件| 搞女人的毛片| 成人特级av手机在线观看| 丰满人妻熟妇乱又伦精品不卡| 中文字幕人成人乱码亚洲影| 亚洲一区高清亚洲精品| 三级国产精品欧美在线观看 | 一本综合久久免费| 亚洲av成人av| 国产又黄又爽又无遮挡在线| 巨乳人妻的诱惑在线观看| 99久久国产精品久久久| 日韩中文字幕欧美一区二区| 最近最新中文字幕大全免费视频| 人人妻人人看人人澡| 男女床上黄色一级片免费看| 蜜桃久久精品国产亚洲av| 2021天堂中文幕一二区在线观| 好男人在线观看高清免费视频| 国产精品99久久99久久久不卡| 日韩欧美免费精品| 波多野结衣巨乳人妻| 国产精品久久久人人做人人爽| 嫁个100分男人电影在线观看| 看免费av毛片| 免费看a级黄色片| 狠狠狠狠99中文字幕| 国产精品永久免费网站| 欧美日韩黄片免| or卡值多少钱| 老司机福利观看| 九九在线视频观看精品| 国产一区二区三区在线臀色熟女| 亚洲第一电影网av| 久久欧美精品欧美久久欧美| 69av精品久久久久久| 亚洲在线观看片| 亚洲国产精品999在线| 男人的好看免费观看在线视频| 亚洲一区二区三区不卡视频| 婷婷六月久久综合丁香| 后天国语完整版免费观看| 老司机深夜福利视频在线观看| 亚洲精品色激情综合| 首页视频小说图片口味搜索| 亚洲 欧美 日韩 在线 免费| 免费观看人在逋| 啦啦啦观看免费观看视频高清| www日本黄色视频网| 熟女人妻精品中文字幕| 在线观看66精品国产| 叶爱在线成人免费视频播放| 99热这里只有是精品50| 日本黄大片高清| 色老头精品视频在线观看| 午夜福利在线观看免费完整高清在 | 黄片大片在线免费观看| 成年版毛片免费区| 中亚洲国语对白在线视频| 变态另类成人亚洲欧美熟女| 麻豆av在线久日| 国产精品久久久久久久电影 | 美女 人体艺术 gogo| 久久久久亚洲av毛片大全| 日本黄色片子视频| 搡老岳熟女国产| 蜜桃久久精品国产亚洲av| 欧美午夜高清在线| 天堂网av新在线| 国产一区二区激情短视频| 亚洲av成人一区二区三| 一个人免费在线观看电影 | 免费人成视频x8x8入口观看| 一级黄色大片毛片| 成年人黄色毛片网站| 国产高潮美女av| 在线看三级毛片| 欧美在线黄色| 欧洲精品卡2卡3卡4卡5卡区| 国产精品,欧美在线| 国产成人av激情在线播放| 久久久国产精品麻豆| 国产精品99久久久久久久久| 一个人观看的视频www高清免费观看 | 大型黄色视频在线免费观看| 日韩欧美在线二视频| or卡值多少钱| 久久精品91蜜桃| 色综合欧美亚洲国产小说| 女生性感内裤真人,穿戴方法视频| h日本视频在线播放| 国内精品久久久久久久电影| 97超视频在线观看视频| www日本在线高清视频| 亚洲成人久久爱视频| 国产精品久久久久久精品电影| 搡老熟女国产l中国老女人| 午夜精品在线福利| 午夜a级毛片| 亚洲成av人片在线播放无| 国产亚洲av嫩草精品影院| 午夜福利欧美成人| 日韩欧美在线乱码| 两性夫妻黄色片| 国产真人三级小视频在线观看| 精品久久久久久久人妻蜜臀av| 丝袜人妻中文字幕| 亚洲欧美日韩无卡精品| 一级毛片女人18水好多| a级毛片在线看网站| 人人妻人人澡欧美一区二区| 国内精品久久久久精免费| 老鸭窝网址在线观看| 国产精品影院久久| 亚洲欧美日韩高清在线视频| 男女视频在线观看网站免费| 亚洲精品在线观看二区| 淫妇啪啪啪对白视频| 母亲3免费完整高清在线观看| 亚洲真实伦在线观看| 免费在线观看日本一区| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美日韩无卡精品| 国产精品野战在线观看| 十八禁人妻一区二区| 18禁黄网站禁片免费观看直播| 小蜜桃在线观看免费完整版高清| 禁无遮挡网站| 国产高清激情床上av|