• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    碳酸銨水解法制備耐高溫介孔CeO2材料

    2013-10-17 03:03:10陳山虎史忠華龔茂初陳耀強
    無機化學學報 2013年10期
    關鍵詞:耐高溫四川大學介孔

    陳山虎 曹 毅 蘭 麗 趙 明 史忠華 龔茂初 陳耀強

    (四川大學化學學院, 綠色化學與技術教育部重點實驗室,成都 610064)

    CeO2has attracted much attention in recent years for its applications in many commercial processes,such as catalytic wet oxidation[1],soot combustion[2],and fuel cell technology[3].Moreover,CeO2has also been widely utilized as oxygen storage material in three way catalysts (TWCs)for the purification of exhaust gases from automobile engines[4].CeO2can act as an oxygen buffer by releasing and storing oxygen under rich and lean conditions,respectively,involving the Ce4+/Ce3+couple.This ensures that the air to fuel ratio is kept around the stoichiometric point(14.6),which is crucial to maintain the efficiency of TWCs[5].In addition,multiple functions are also associated with CeO2:stabilization of noble metal dispersion and Al2O3support,promotion of water-gas shift reaction,and enhancement of CO oxidation[4,6-9].

    For application as an oxygen storage material in TWCs,high surface area is preferred.However,pure CeO2is thermally unstable.For instance,after calcination at 850℃,the surface area of CeO2sample is only 5 m2·g-1[10].The loss of surface area will cause the deterioration ofoxygen storage and release properties.Therefore,thermal stability is one of the most important properties.

    In attempt to get CeO2-based materials with high thermal resistance,numerous approaches,including precipitation method[11-12],hydrothermal route[13-15],solgel techniques[16-18],surfactant-assisted approach[19-21]and combustion synthesis[22-23],have been developed to produce CeO2material.Up to now,the most convenientmethod is precipitation,wherein the precursors of cerium mainly include Ceバ and Ceビ,while ammonia is conventionally used as the base.In this method,the H2O2-assisted route developed by Woodhead[24]has been investigated extensively.Under basic condition,Ceバ can be oxidized into Ceビ,in the form of Ce(OH)4or CeO2(OH)2,which will be converted into CeO2by the following hydrolysis and thermal decomposition processes[25-26].However,to the best of our knowledge,there have been no open reports on the investigation of this method employing ammonium carbonate as the precipitant.

    In this study,we have developed an ammonium carbonate hydrolysis route based on the H2O2-assisted method,aiming at producing CeO2material with higher thermal stability.In particular,the formation mechanism for the precipitate has also been examined.The textural and structural properties of CeO2oxide are influenced by the precursors.In the ammonium carbonate environment,the growth process as well as the agglomeration of CeO2particles is controlled,which enlarges the grain size of CeO2and facilitates the improvement of thermal stability and reduction property[27].

    1 Experimental

    1.1 Synthesis

    1.1.1 Preparation of undigested precipitates

    A solution was prepared by dissolving Ce(NO3)3·6H2O in distilled water,then a freshly standardized H2O2solution (30wt%)was added.The molar ratio of Ce(NO3)3∶H2O2was 1∶1.5.An ammonium carbonate solution (25wt%)was added into the salt solution,under stirring,until pH=8.5.The obtained precipitate was filtered,washed with distilled water until constant pH value,and air-dried at room temperature to obtain CeO2-H.For comparison,an ammonia solution(25wt%)was also used to prepare CeO2precursor following the same procedure,and the obtained sample was labeled as CeO2-C.

    1.1.2 Preparation of digested precipitates

    An ammonium carbonate solution (25wt%)was added into the mixed solution of Ce(NO3)3·6H2O and H2O2(the molar ratio of Ce(NO3)3∶H2O2was 1∶1.5),under stirring until the pH value of 8.5.The reaction vessel was placed in a water bath,and the solution was heated at 80 ℃ for 12 h,under vigorous stirring.The precipitate was filtered,washed with distilled water,and dried at 70℃for 5 h to obtain sample CeO2-H80.In addition,another sample(CeO2-C80)was also made under the same condition except that ammonia was employed as the precipitant.

    1.1.3 Calcination of precipitates

    TheCeO2-H80andCeO2-C80sampleswere further calcined at different temperatures in the range of 500~900 ℃ for 3 h.The obtained oxides were labeled as CeO2-Ht and CeO2-Ct,respectively,where t represents the calcination temperature.

    1.2 Characterizations

    The FTIR measurements were performed on a Nicolet 6700 FT spectrometer,working in the range of 400~4 000 cm-1at a resolution of 4 cm-1using KBr pellet.

    The precipitate was analyzed by Raman spectroscopy using a LabRAM HR800 with confocal microscope system.The specimen was illuminated through a 50×objective with 633 nm excitation from a diode laser source at a laser power of 150 mW and with a spot size of 3 μm.Raman spectra were collected in the range of 200~2 000 cm-1.

    X-ray photoelectron spectra were obtained on a XSAM 800 spectrometer(KRATOS Corp.),employing Mg Kα radiation (hν=1 253.6 eV)and working at 13 kV and 20 mA.The C1s peak(284.6 eV)was used to calibrate the binding energy.

    The weight loss and thermal behavior of the sample were examined by a HCT-2 analyzer(Beijing Science Apparatus Factory,Beijing,China)in flowing nitrogen atmosphere.The sample was heated to 600℃ at a heating rate of 10 ℃·min-1.

    The textural properties were determined by N2adsorption-desorption method on a Quantachrome SI instrument.The specific surface area and pore size distribution of the sample were obtained according to Brunauer-Emmett-Teller (BET)method and Barret-Joyner-Halenda (BJH)equation,respectively.Prior to each measurement,the sample was degassed at 300℃for 3 h under vacuum.

    X-ray diffraction patterns were recorded using a D/max-rA diffractometer(RIGAKU Corp.)with Cu Kα radiation(40 kV,25 mA,λ=0.154 18 nm).The crystal size was calculated by Scherrer′s equation using the data of(111)peak.

    Temperature-programmed reduction (TPR)was determined in a conventional reactor equipped with a thermal conductivity detector.Prior to the analysis,the sample(100 mg)was cleaned by flowing N2at 450℃ for 45 min.The measurement was performed from room temperature to 900℃in a flow of 5%H2/N2(V/V)(20 mL·min-1)at a heating rate of 10 ℃·min-1.

    2 Results and discussion

    2.1 Formation processes of the precipitates

    Composition of the precipitate depends on the kind of cations and anions in the solution.In the present work,Ce3+is employed as cerium precursor,while OH-or CO32-is used as the precipitant,in the presence of hydrogen peroxide[28].

    When ammonia is utilized as the precipitant,the following equations are expected during the precipitation and digestion processes[25]:

    The proposed mechanism of ammonium carbonate hydrolysis route is as follows[25-26,29]:

    During the heating process of the solution at 80℃,CeO2is gradually formed via:

    The dehydration behavior may take place during the whole operation process because the O22-and OH-groups are not stable[25,30].

    Fig.1 shows the FTIR spectra of the precipitates before and after heat treatment at 80℃.The intense and broad bands in the 3 000~3 750 cm-1region are normally ascribed to the stretching of surface hydroxyl groups or molecularly chemisorbed H2O[28,31-32].Obviously,three distinguished signals are observed,indicating the coexistence of mono-coordinated, bicoordinated and tri-coordinated hydroxyl groups[28,31-32].The relative intensity of this region for CeO2-H becomes stronger after digestion,whereas CeO2-C shows a different trend.This reveals that the carbonate species is hydrolyzed into hydroxylgroups during the digestion process.The minor band at 2 300~2 400 cm-1corresponds to the coordinated CO2adsorbed at the surface,while the feature at~1 620 cm-1is assigned to the adsorption of H2O[28,33].Several adsorption bands around 1 620,1 380,1 136,1 030 and 913 cm-1are associated with the carbonate species[32,34-35].Among these bands,the one around 1380 cm-1is probably assigned to the carbonate species from the ammonium carbonate precipitator because it can only be observed in CeO2-H,whilst the others are likely caused by atmospheric dioxide[36].

    Fig.1 FTIR spectra of precipitates

    Raman spectra of the precipitates are presented in Fig.2.It has been reported that bulk CeO2shows a strong peak centered at 456 cm-1or 471 cm-1corresponding to the symmetric breathing mode of the O2-anions[26,37].However,both of the peaks can be found in this work.The broad peak around 608 cm-1is ascribed to the defect site of CeO2crystallite,which seems to be caused by the influence of H2O2[26].The formation of CeO2suggests that the following overall process has occurred[25]:

    Fig.2 Raman spectra of precipitates

    Three bands,locating at about 742,1 050 and 1 350 cm-1,respectively,are likely related to the CO32-species[26].Notably,these spectral features for CeO2-H are the strongest among the samples because of the usage of ammonium carbonate.The reduction of the bands for CeO2-H80 compared to CeO2-H implies that the CO32-species is hydrolyzed during digestion process,in accordance with TG-DTA and IR results.An additional weak band at about 840 cm-1can be observed in the spectra for CeO2-C and CeO2-H,which is indicative of the O-O stretching vibration of η2-peroxide(O22-)species[38],indicating the formation of CeO22+precursors.However,the band vanishes after digestion.This implies that the O22-species is more or less eliminated during the thermal treatment,because the O22--containing species is not stable[25-26].The Raman results confirm the occurrence of Eqs.(3)~(7).

    The oxidation states of cerium for the precipitates prepared by different routes are shown in Fig.3.The spectra are very similar,showing six peaks at around 883.0,888.9,898.5,901.1,907.4,and 916.8 eV,respectively.All the spectra are attributed to the diversified states of Ce4+and no signals related to Ce3+are found[39],from which we can conclude that Ceバis fully oxidized into Ceビby H2O2under basic condition.

    Fig.3 Ce3d XPS spectra for precipitates

    The O1s spectra are shown in Fig.4.The peak at about 529.7 eV is characteristic of the O2-anions in bulk CeO2[39],while the peaks at 531.5 and 532.7 eV correspond to OH-and CO32-species,respectively[40-41].It is obvious that the contents of OH-and CO32-species for the digested precipitates are lower than those of the undigested ones,due to the fact that the hydrolysis of CO32-species as well as the dehydration of OH-species takes place during digestion.The relative contents of Ce,O and C are calculated.The relative contents of atoms in CeO2-C are different from CeO2-H.The content of C of CeO2-H is much higher than that of CeO2-C due to the participation of CO32-species during the precipitation procedure.However,the amount of the elements for CeO2-C80 and CeO2-H80 is almost the same,providing another evidence for the occurrence of equation (6)for CeO2-H.It is important to remark that the C element is difficult to evaluate due to the interference of adventitious carbon and physically absorbed CO2[26].

    Fig.4 O1s XPS spectra for precipitates

    Fig.5 TG/DTA curves of precipitates

    Fig.5 displays the TG/DTA curves ofthe precipitates.Both of the precipitates prepared by ammonia show a steady decomposition process,regardless of digestion.For CeO2-C,the total weight loss is about 20.3%,which is much higher than that of CeO2-C80 (13.4%),indicating that the dehydration process,i.e.,equation (2),has occurred during the heat treatment at 80 ℃[30].The DTA curve shows one endothermic peak below 100℃,which is probably ascribed to the elimination ofsurface physicaladsorbed water[30].Since the decomposition process of Ce(O2)(OH)2is a slow and successive process,no obvious exothermal phenomena can be observed.The weight loss procedure of CeO2-H shows complex stages,approximately locating at thetemperature ranges of 25~200 ℃,250~350 ℃ and 350~450 ℃,respectively.The first region appears as a result of the elimination of physically adsorbed water and the decomposition of O22-and hydroxyl groups[25,28,30].The second stageisrelated tothe crystallization of hydroxide particles[30],while the last one originates from the carbonate species[2,28].It seems that the presence of carbonate can affect the decomposition events of hydroxyl species,therefore,several exothermal peaks appear on the DTA curves.After digestion,the overall decomposition behavior of CeO2-H80 is similar to that of CeO2-C80,with a total weight loss of about 13%and an endothermic peak at around 60℃.This implies that the carbonate species has been hydrolyzed into hydroxyl species during the digestion.

    2.2 Textural properties of CeO2samples

    The surface area of the CeO2samples calcined at different temperatures is illustrated in Fig.6.As expected,the surface area decreases athigher temperatures,regardless of synthetic approaches[19].However,the values are still appreciable.The surface area of CeO2-Ht is superior to that of CeO2-Ct.After calcination at 900℃,the surface area of the CeO2-Ht sample can be 27 m2·g-1,which is rather uncommon for pure CeO2material under such a harsh thermal treatment.This implies that the usage of ammonium carbonate hydrolysis approach allows the formation of CeO2with improved thermal stability.

    Fig.7(a)and(b)display the nitrogen adsorption/desorption isotherms and the corresponding pore size distribution curves of the CeO2-C500 and CeO2-H500 samples.According to the IUPAC definition,all the samples feature the isotherm of typeⅣ,typical of a mesoporous material[42].The shape of hysteresis loops indicates the presence of “ink-bottle” and cylindrical pores,which arefavorableforgasand thermal diffusion[42].Actually,the sintering behavior of CeO2-based materials is strongly affected by the pore structure[43].The pore size of CeO2-H500 is larger than that of CeO2-C500,which should be responsible for its improved thermal stability[5,36,44].

    Fig.7 (a)N2adsorption-desorption isotherms of samples prepared by different methods;(b)Corresponding BJH pore size distribution curves

    XRD patterns of the precipitates are shown in Fig.8.All the patterns show the diffraction peaks of CeO2with fluorite structure,regardless of preparation routes.The as-prepared samples,i.e.,CeO2-H and CeO2-C,are also characterized by CeO2,indicating that the hydrolysis event of carbonate species as well as the dehydration of hydroxyl groups has occurred before the heat treatment.Crystallite size of the precipitates is calculated using the (111)plane.The grain sizes of CeO2-C(1.9 nm)and CeO2-C80(2.0 nm)are much smaller than those of CeO2-H (3.9 nm)and CeO2-H80 (4.0 nm).This suggests that the crystalline dimension depends on the synthetic routes.As for precipitation process,with progressively increasing concentration of the base solution,the mean magnitude of the individual crystal grain will decrease[45].In the ammonia environment,The OH-species in high concentration attacks Ceビdirectly,resulting in a rapid nucleation rate.Consequently,uniformly small particles are obtained.However,in the case of ammonium carbonate,polymer of carbonate-containing precipitate,i.e.,Ce(O2)(OH)x(CO3)1-x/2,can serve as a precursor of the CeO2oxide.The crystallization of CeO2proceeds through gradual hydrolysis of CO32-,which inhibits the rate of precipitation and enlarges the crystallite size.However,after calcination at 500oC,the crystallite size of CeO2-C500 (7.5 nm)becomes larger than that of CeO2-H500 (4.2 nm).According to the literature[27],the primary particle of CeO2-H is larger than that of CeO2-C,which facilitates the formation of packing “ring”with larger pore space.Generally,the movementofcoarsened particlesofCeO2-Htis expected to be inhibited[44].Moreover,the enlarged pores in CeO2-Ht sinter with more difficulty as longer migration distance is needed for the matter to fill the pores[36].Thus,the CeO2material prepared by ammonium carbonate-hydrolysis method is more thermally stable.

    Fig.8 XRD parttens collected from precipitates

    2.3 Reduction behavior of CeO2samples

    A crucial requirement of CeO2material,especially when used as oxygen storage components for the purification of exhaust gases,is the reduction ability.Thus,the samples were calcined at 500℃and 900℃,and then were employed to characterize the reduction behavior.From Fig.9,the reduction profiles of CeO2-C500 and CeO2-H500 consist of two peaks,which are ascribed to the reduction of surface and bulk oxygen species,respectively[46].Although the outsets of the reduction peaks of the samples are almost the same,the integrated peak area of CeO2-H500 is apparently larger than that of CeO2-C500.This indicates that CeO2-H500 is more reducible and active than CeO2-C500[47].The difference becomes more apparent after calcination at 900℃,especially in the low-temperature region.

    Fig.9 TPR profiles of CeO2samples

    3 Conclusions

    In this work,CeO2oxide was prepared by a hydrothermal hydrolysis route using ammonium carbonate as the precipitant and hydrogen peroxide as the oxidizer.The title method was compared with the conventionalmethod employing ammonia asthe reactant.The formation mechanism of the precipitate wasalso studied.Afterdigestion,the chemical compositions of the precipitates prepared by the two methods were almostthe same.However,the crystallite size of the precipitates differs from each other greatly.The pore size of the as-prepared CeO2by the hydrolysis procedure is much larger,which facilitates the formation of CeO2oxide with improved texturaland reduction properties.In particular,after calcination at 900℃for3h,theCeO2powder from HA route still remains a surface area of 27 m2·g-1.

    [1]Matatov-Meytal Y I,Sheintuch M.Ind.Eng.Chem.Res.,1998,37(2):309-326

    [2]Tikhomirov K,Krocher O,Elsener M,et al.A.Appl.Catal.B,2006,64(1/2):72-78

    [3]Sahibzada M,Steele B C H,Zheng K,et al.Catal.Today,1997,38(4):459-466

    [4]Ka?par J,Fornasiero P,Graziani M.Catal.Today,1999,50(2):285-298

    [5]Di Monte R,Ka?par J,Catal.Today,2005,100:27-35

    [6]Di Monte R,Fornasiero P,Ka?par J,et al.Appl.Catal.B:Environ.,2000,24:157-167

    [7]Kenevey K,Valdivieso F,Soustelle M,et al.Appl.Catal.B:Environ.,2001,29:93-101

    [8]Bueno-Lopez A,Such-Basanez I,de Lecea C S M.J.Catal.,2006,244(1):102-112

    [9]Nagai Y,Hirabayashi T,Dohmae K,et al.J.Catal.,2006,242(1):103-109

    [10]Perrichon V,Laachir A,Abouarnadasse S,et al.Appl.Catal.A,1995,129:69-82

    [11]Hernández W Y,Laguna O H,Centeno M A,et al.J.Solid State Chem.,2011,184:3014-3020

    [12]Karakoti A S,Kuchibhatla S V N T,Babu K S,et al.J.Phys.Chem.C,2007,111(46):17232-17240

    [13]Ahniyaz A,Watanabe T,Yoshimura M.J.Phys.Chem.B,2005,109(13):6136-6139

    [14]Si R,Zhang Y W,Wang L M,et al.J.Phys.Chem.C,2007,111(2):787-794

    [15]Xian C N,Li H,Chen L Q,et al.Micropor.Mesopor.Mat.,2011,142:202-207

    [16]Thammachart M,Meeyoo V,Risksomboon T,et al.Catal.Today,2001,68(1-3):53-61

    [17]Fan J,Wu X D,Yang L,et al.Catal.Today,2007,126(3/4):303-312

    [18]Ni C Y,Li X Z,Chen Z G,et al.Micropor.Mesopor.Mater.,2008,115:247-252

    [19]Terribile D,Trovarelli A,de Leitenburg C,et al.Chem.Mater.,1997,9(12):2676-2678

    [20]Terribile D,Trovarelli A,Llorca J,et al.J.Catal.,1998,178(1):299-308

    [21]Chen H R,Ye Z Q,Cui X Z,et al.Micropor.Mesopor.Mater.,2011,143:368-374

    [22]Mokkelbost T,Kaus I,Grande T,et al.Chem.Mater.,2004,16(25):5489-5494

    [23]Heo I,Choung J W,Kim P S,et al.Appl.Catal.B,2009,92(1/2):114-125

    [24]Woodhead J L,US Patent,4231893.1980-11-04

    [25]Scholes F H,Soste C,Hughes A E,et al.Appl.Surf.Sci.,2006,253(4):1770-1780

    [26]Scholes F H,Hughes A E,Hardin S G,et al.Chem.Mater.,2007,19(9):2321-2328

    [27]Chen P L,Chen I W.J.Am.Ceram.Soc.,1997,80(3):637-645

    [28]Rebellato J,Natile M M,Glisenti A.Appl.Catal.A,2008,339(2):108-120

    [29]Li J G,Ikegami T,Mori T,et al.Chem.Mater.,2001,13(9):2913-2920

    [30]Djuricˇic' B,Pickering S.J.Eur.Ceram.Soc.,1999,19(11):1925-1934

    [31]Binet C,Daturi M,Lavalley J C.Catal.Today,1999,50(2):207-225

    [32]Natile M M,Boccaletti G,Glisenti A.Chem.Mater.,2005,17(25):6272-6286

    [33]Lin W Y,Frei H.J.Am.Chem.Soc.,2002,124(31):9292-9298

    [34]Klissurski D G,Uzunova E L.Chem.Mater.,1991,3(6):1060-1063

    [35]Jobbagy M,Marino F,Schobrod B,et al.Chem.Mater.,2006,18(7):1945-1950

    [36]Ka?par J,Fornasiero P.J.Solid State Chem.,2003,171(1/2):19-29

    [37]Weng X L,Perston B,Wang X Z,et al.Appl.Catal.B:Environ.,2009,90:405-415

    [38]Pushkarev V V,Kovalchuk V I,d′Itri J L.J.Phys.Chem.B,2004,108:5341-5348

    [39]Zhang G J,Shen Z R,Liu M,et al.J.Phys.Chem.B,2006,110(51):25782-25790

    [40]Alifanti M,Baps B,Blangenois N,et al.Chem.Mater.,2003,15(2):395-403

    [41]Darnyanova S,Pawelec B,Arishtirova K,et al.Appl.Catal.A,2008,337(1):86-96

    [42]Wang J,Wen J,Shen M Q.J.Phys.Chem.C,2008,112(13):5113-5122

    [43]Rohart E,Larcher O,Deutsch S,et al.Top Catal,2004,30-31:417-423

    [44]Ka?par J,Fornasiero P,Hickey N.Catal.Today,2003,77:419-449

    [45]Von Weimarn P P.Chem.Rev.,1925,2(2):217-242

    [46]Bruce L A,Hoang M,Hughes A E,et al.Appl.Catal.A,1996,134(2):351-362

    [47]Masui T,Peng Y M,Machida K,et al.Chem.Mater.,1998,10(12):4005-4009

    猜你喜歡
    耐高溫四川大學介孔
    功能介孔碳納米球的合成與應用研究進展
    四川大學西航港實驗小學
    中小學校長(2021年9期)2021-10-14 14:36:16
    新型介孔碳對DMF吸脫附性能的研究
    百年精誠 譽從信來——走進四川大學華西眼視光之一
    耐高溫線椒新品種辛香16號的選育
    長江蔬菜(2016年10期)2016-12-01 03:05:30
    新型耐高溫超氧化物歧化酶SOD的產業(yè)化
    有序介孔材料HMS的合成改性及應用新發(fā)展
    四川大學華西醫(yī)院
    一種新型的耐高溫碳化硅超結晶體管
    電子器件(2015年5期)2015-12-29 08:42:07
    介孔二氧化硅制備自修復的疏水棉織物
    桃花免费在线播放| 国产乱人偷精品视频| av.在线天堂| a级片在线免费高清观看视频| 久久久国产欧美日韩av| 亚洲不卡免费看| 黑人巨大精品欧美一区二区蜜桃 | 国产成人精品福利久久| h日本视频在线播放| 五月开心婷婷网| 国产精品.久久久| 伦精品一区二区三区| 国产男女超爽视频在线观看| av免费观看日本| 亚洲欧洲精品一区二区精品久久久 | 波野结衣二区三区在线| 最新的欧美精品一区二区| 啦啦啦在线观看免费高清www| 王馨瑶露胸无遮挡在线观看| 又爽又黄a免费视频| 五月开心婷婷网| 哪个播放器可以免费观看大片| 国产亚洲最大av| 下体分泌物呈黄色| 国产免费又黄又爽又色| 纵有疾风起免费观看全集完整版| 亚洲欧洲日产国产| 午夜激情福利司机影院| 久久亚洲国产成人精品v| 久久久久久久久久久久大奶| 有码 亚洲区| 99久久精品国产国产毛片| 亚洲精品一区蜜桃| 99精国产麻豆久久婷婷| 成人国产麻豆网| 久久精品久久精品一区二区三区| 国产亚洲一区二区精品| 熟妇人妻不卡中文字幕| 国产免费一级a男人的天堂| 在线播放无遮挡| 内射极品少妇av片p| 波野结衣二区三区在线| 久久免费观看电影| 免费播放大片免费观看视频在线观看| 日日啪夜夜撸| 亚洲av国产av综合av卡| 亚洲精品日韩在线中文字幕| 99视频精品全部免费 在线| a级片在线免费高清观看视频| 国产免费又黄又爽又色| 久久久欧美国产精品| 久久这里有精品视频免费| 青春草视频在线免费观看| 久久婷婷青草| 欧美人与善性xxx| 夜夜看夜夜爽夜夜摸| 九九爱精品视频在线观看| 高清不卡的av网站| 一区二区三区四区激情视频| 天美传媒精品一区二区| 伦理电影免费视频| 美女xxoo啪啪120秒动态图| 亚洲av福利一区| 成人影院久久| 精品少妇久久久久久888优播| 精品一区二区三区视频在线| 亚洲人与动物交配视频| 免费看日本二区| 18禁动态无遮挡网站| 自线自在国产av| 久久久久久久亚洲中文字幕| 国产精品国产av在线观看| 不卡视频在线观看欧美| 成人免费观看视频高清| 久久久久久久久久久久大奶| 少妇被粗大猛烈的视频| 欧美精品国产亚洲| 亚洲欧美日韩卡通动漫| 日本91视频免费播放| 亚洲成人av在线免费| 精品一区二区免费观看| 久久久久网色| 久久这里有精品视频免费| 久久久亚洲精品成人影院| 一级毛片电影观看| 免费看日本二区| 黄色配什么色好看| 一本—道久久a久久精品蜜桃钙片| 国语对白做爰xxxⅹ性视频网站| 涩涩av久久男人的天堂| 高清午夜精品一区二区三区| 国产熟女午夜一区二区三区 | 国产一区二区在线观看av| 爱豆传媒免费全集在线观看| 国产亚洲欧美精品永久| 丰满迷人的少妇在线观看| 精品少妇久久久久久888优播| 国产片特级美女逼逼视频| 久久久久久久国产电影| 亚洲国产精品国产精品| 国产精品三级大全| 在线观看国产h片| 久久97久久精品| 99久久综合免费| 国产精品伦人一区二区| 尾随美女入室| 九九在线视频观看精品| 天天操日日干夜夜撸| 天天操日日干夜夜撸| 老熟女久久久| 国产伦在线观看视频一区| 国产在线视频一区二区| 成年人午夜在线观看视频| 亚洲精品久久午夜乱码| 亚洲情色 制服丝袜| 日韩强制内射视频| 中国三级夫妇交换| 夜夜爽夜夜爽视频| 亚洲丝袜综合中文字幕| 午夜视频国产福利| 99国产精品免费福利视频| 亚洲av二区三区四区| 制服丝袜香蕉在线| 在线观看av片永久免费下载| 国产精品成人在线| 啦啦啦在线观看免费高清www| 综合色丁香网| 亚洲四区av| 超碰97精品在线观看| 国产一区有黄有色的免费视频| 人妻 亚洲 视频| 国产在线免费精品| 日韩人妻高清精品专区| 一本—道久久a久久精品蜜桃钙片| 美女福利国产在线| 国产无遮挡羞羞视频在线观看| 赤兔流量卡办理| 亚洲第一区二区三区不卡| h日本视频在线播放| 建设人人有责人人尽责人人享有的| 日韩精品免费视频一区二区三区 | 亚洲怡红院男人天堂| 99九九线精品视频在线观看视频| 免费观看的影片在线观看| 观看免费一级毛片| av福利片在线观看| 久久热精品热| 久久久国产一区二区| 色哟哟·www| 亚洲欧美日韩卡通动漫| 亚洲精品国产av成人精品| 国产黄片视频在线免费观看| 2021少妇久久久久久久久久久| 久久6这里有精品| 少妇 在线观看| 极品少妇高潮喷水抽搐| 五月开心婷婷网| 69精品国产乱码久久久| 欧美少妇被猛烈插入视频| 久久 成人 亚洲| 黑人巨大精品欧美一区二区蜜桃 | 精品人妻熟女毛片av久久网站| 人人妻人人澡人人看| 亚洲四区av| 亚洲精华国产精华液的使用体验| 国产伦精品一区二区三区视频9| 日本欧美国产在线视频| 免费看光身美女| 少妇人妻久久综合中文| 久久精品国产亚洲网站| 欧美三级亚洲精品| 国产男女内射视频| 高清毛片免费看| 国产有黄有色有爽视频| 精品久久久久久久久av| 国产91av在线免费观看| 亚洲一区二区三区欧美精品| 人人澡人人妻人| 十八禁高潮呻吟视频 | 亚洲国产欧美日韩在线播放 | 少妇人妻精品综合一区二区| 国产高清不卡午夜福利| 丰满迷人的少妇在线观看| 欧美成人午夜免费资源| 日产精品乱码卡一卡2卡三| 91久久精品国产一区二区成人| 高清在线视频一区二区三区| 日韩欧美 国产精品| 国产精品一区二区在线不卡| 91成人精品电影| 亚洲av中文av极速乱| 国产综合精华液| 国产日韩欧美视频二区| 欧美 日韩 精品 国产| 日本猛色少妇xxxxx猛交久久| 欧美日韩视频高清一区二区三区二| 亚洲av免费高清在线观看| 如何舔出高潮| 赤兔流量卡办理| 九九在线视频观看精品| 久久精品久久久久久噜噜老黄| 99九九线精品视频在线观看视频| 亚洲四区av| 日日啪夜夜爽| 国产伦理片在线播放av一区| 制服丝袜香蕉在线| 人人妻人人澡人人看| 观看美女的网站| 亚洲av免费高清在线观看| 亚洲国产毛片av蜜桃av| 亚洲久久久国产精品| 中文天堂在线官网| 日本vs欧美在线观看视频 | 黄色欧美视频在线观看| 国产极品粉嫩免费观看在线 | 亚洲av综合色区一区| 99精国产麻豆久久婷婷| av国产精品久久久久影院| 久久久久久久亚洲中文字幕| 日韩不卡一区二区三区视频在线| a级毛色黄片| 国产熟女欧美一区二区| 最近中文字幕高清免费大全6| 在线观看一区二区三区激情| 亚洲怡红院男人天堂| 久久精品夜色国产| 永久网站在线| 99久久综合免费| 国产精品国产av在线观看| 亚洲伊人久久精品综合| 一级av片app| 我的老师免费观看完整版| 久久精品久久精品一区二区三区| 日韩在线高清观看一区二区三区| 18禁裸乳无遮挡动漫免费视频| a级毛色黄片| 免费av不卡在线播放| 草草在线视频免费看| 国产免费福利视频在线观看| 欧美+日韩+精品| 欧美日韩综合久久久久久| 婷婷色麻豆天堂久久| 少妇人妻 视频| 日本猛色少妇xxxxx猛交久久| 大片免费播放器 马上看| 国产91av在线免费观看| 丁香六月天网| 成年人免费黄色播放视频 | 在线观看免费日韩欧美大片 | 又粗又硬又长又爽又黄的视频| 午夜91福利影院| 韩国av在线不卡| 秋霞伦理黄片| 亚洲电影在线观看av| 七月丁香在线播放| av卡一久久| 又爽又黄a免费视频| 国产男女超爽视频在线观看| av免费观看日本| 欧美性感艳星| 三级国产精品片| 成年人免费黄色播放视频 | 五月玫瑰六月丁香| 亚洲国产精品一区二区三区在线| 视频区图区小说| 黄色怎么调成土黄色| 日韩一区二区三区影片| 赤兔流量卡办理| 男女免费视频国产| 亚洲欧洲国产日韩| 王馨瑶露胸无遮挡在线观看| 夫妻午夜视频| 亚洲国产色片| 成人美女网站在线观看视频| 久久人妻熟女aⅴ| 亚洲av福利一区| 亚洲欧美一区二区三区国产| 18+在线观看网站| 国产成人免费观看mmmm| 中文字幕制服av| 亚洲精品乱码久久久久久按摩| 六月丁香七月| 免费看光身美女| 97在线视频观看| videos熟女内射| 69精品国产乱码久久久| 性色av一级| 免费观看av网站的网址| 国语对白做爰xxxⅹ性视频网站| 99re6热这里在线精品视频| 久久久久视频综合| 91成人精品电影| 日韩中字成人| 久久人人爽人人片av| 欧美日韩一区二区视频在线观看视频在线| 精品少妇内射三级| 黄色配什么色好看| av国产精品久久久久影院| 18+在线观看网站| 2018国产大陆天天弄谢| 久久国产精品男人的天堂亚洲 | 少妇高潮的动态图| 美女xxoo啪啪120秒动态图| 国产色婷婷99| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产av蜜桃| 2022亚洲国产成人精品| 国产黄色视频一区二区在线观看| 天天操日日干夜夜撸| 婷婷色综合www| 亚洲av二区三区四区| 精品少妇久久久久久888优播| 午夜免费男女啪啪视频观看| 国国产精品蜜臀av免费| 精品视频人人做人人爽| 大片电影免费在线观看免费| 欧美97在线视频| 久久久久久伊人网av| 亚洲精品国产av蜜桃| 自拍偷自拍亚洲精品老妇| 简卡轻食公司| 久久久久久久久久久久大奶| 国产 精品1| 日本免费在线观看一区| 99久久精品国产国产毛片| 夫妻性生交免费视频一级片| 亚洲成人手机| 夫妻性生交免费视频一级片| 成人无遮挡网站| 亚洲精品一二三| 日韩不卡一区二区三区视频在线| 国产一区二区在线观看日韩| 成人国产麻豆网| 日日摸夜夜添夜夜爱| 久久久国产欧美日韩av| h日本视频在线播放| 极品人妻少妇av视频| 插阴视频在线观看视频| 国产色婷婷99| 欧美精品人与动牲交sv欧美| 亚洲欧洲精品一区二区精品久久久 | 性色av一级| 夫妻性生交免费视频一级片| xxx大片免费视频| 日韩一区二区三区影片| 亚洲性久久影院| 99热网站在线观看| 黄色视频在线播放观看不卡| 国产毛片在线视频| 草草在线视频免费看| av女优亚洲男人天堂| 免费看光身美女| 多毛熟女@视频| 亚洲美女搞黄在线观看| 91久久精品电影网| 久久97久久精品| 丝瓜视频免费看黄片| 一级av片app| 久久女婷五月综合色啪小说| 国产精品欧美亚洲77777| 国产色爽女视频免费观看| 日韩在线高清观看一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品成人av观看孕妇| 成年美女黄网站色视频大全免费 | www.色视频.com| 26uuu在线亚洲综合色| 久久国内精品自在自线图片| 国产淫语在线视频| av免费在线看不卡| 久热久热在线精品观看| 91午夜精品亚洲一区二区三区| 男人和女人高潮做爰伦理| 国产欧美亚洲国产| 桃花免费在线播放| 久久久久久久国产电影| 欧美区成人在线视频| 黄色毛片三级朝国网站 | 日本vs欧美在线观看视频 | 久久99蜜桃精品久久| 中文字幕精品免费在线观看视频 | 久久精品夜色国产| 精品国产一区二区三区久久久樱花| 成人18禁高潮啪啪吃奶动态图 | 嘟嘟电影网在线观看| 国产女主播在线喷水免费视频网站| 日日摸夜夜添夜夜爱| 人人妻人人看人人澡| 最新中文字幕久久久久| 国产成人aa在线观看| 国产白丝娇喘喷水9色精品| 99热这里只有是精品50| 99精国产麻豆久久婷婷| 亚洲美女视频黄频| 最近手机中文字幕大全| 欧美高清成人免费视频www| 亚洲性久久影院| 国产精品不卡视频一区二区| 少妇被粗大猛烈的视频| av女优亚洲男人天堂| 国产欧美日韩一区二区三区在线 | 国产亚洲欧美精品永久| 国产精品一区www在线观看| 中文字幕久久专区| 日韩欧美 国产精品| 久久影院123| 男人和女人高潮做爰伦理| 国精品久久久久久国模美| 国产伦精品一区二区三区四那| 欧美日韩视频高清一区二区三区二| 国产综合精华液| 我的女老师完整版在线观看| 一本久久精品| 精品少妇黑人巨大在线播放| 免费不卡的大黄色大毛片视频在线观看| 18禁动态无遮挡网站| 纵有疾风起免费观看全集完整版| 成人黄色视频免费在线看| 简卡轻食公司| 大话2 男鬼变身卡| av天堂久久9| 国产毛片在线视频| 亚洲不卡免费看| 国产成人aa在线观看| 日韩av免费高清视频| 美女福利国产在线| 日韩一区二区三区影片| 中文乱码字字幕精品一区二区三区| 免费黄色在线免费观看| 蜜桃久久精品国产亚洲av| 99国产精品免费福利视频| 日日啪夜夜撸| 中国三级夫妇交换| 久久国产亚洲av麻豆专区| 婷婷色av中文字幕| 欧美一级a爱片免费观看看| 国产高清不卡午夜福利| 少妇被粗大猛烈的视频| 嫩草影院入口| 国产精品久久久久久久久免| 国产在线男女| av在线观看视频网站免费| 国产综合精华液| 99热这里只有是精品在线观看| 尾随美女入室| 亚洲真实伦在线观看| 亚洲精品国产色婷婷电影| 久久久久网色| 欧美一级a爱片免费观看看| 永久免费av网站大全| 十分钟在线观看高清视频www | 2021少妇久久久久久久久久久| 新久久久久国产一级毛片| 美女脱内裤让男人舔精品视频| 久久久久久伊人网av| 国语对白做爰xxxⅹ性视频网站| 亚洲精品一区蜜桃| 欧美日韩综合久久久久久| 一级毛片 在线播放| 国产精品久久久久成人av| 国产一区有黄有色的免费视频| 插逼视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 午夜视频国产福利| freevideosex欧美| 亚洲av电影在线观看一区二区三区| 天堂俺去俺来也www色官网| 在线精品无人区一区二区三| 国产黄色免费在线视频| 色哟哟·www| 亚洲精品成人av观看孕妇| 草草在线视频免费看| 久久人人爽av亚洲精品天堂| 免费看日本二区| 性高湖久久久久久久久免费观看| 国产国拍精品亚洲av在线观看| 亚洲欧美一区二区三区国产| 国产又色又爽无遮挡免| 一区二区三区精品91| 卡戴珊不雅视频在线播放| 97在线人人人人妻| 国内少妇人妻偷人精品xxx网站| 一级毛片电影观看| 韩国高清视频一区二区三区| 波野结衣二区三区在线| 国产视频首页在线观看| 少妇熟女欧美另类| 成年人免费黄色播放视频 | 久久久久视频综合| 简卡轻食公司| 久久亚洲国产成人精品v| 日本wwww免费看| 亚洲精品国产av成人精品| 赤兔流量卡办理| 一本色道久久久久久精品综合| 国产精品久久久久久精品古装| 肉色欧美久久久久久久蜜桃| 国产精品国产三级国产av玫瑰| 在线免费观看不下载黄p国产| 99精国产麻豆久久婷婷| 国产高清国产精品国产三级| 高清毛片免费看| 天天躁夜夜躁狠狠久久av| 国产成人a∨麻豆精品| 18+在线观看网站| 少妇人妻久久综合中文| 国产亚洲一区二区精品| 人人妻人人澡人人爽人人夜夜| 欧美另类一区| 新久久久久国产一级毛片| 日韩一本色道免费dvd| 男男h啪啪无遮挡| 十八禁高潮呻吟视频 | 亚洲四区av| 国产欧美亚洲国产| 亚洲精品色激情综合| 亚洲精品成人av观看孕妇| 国产精品一区二区在线观看99| 久久人人爽人人爽人人片va| 久热久热在线精品观看| 国产成人精品无人区| 午夜福利视频精品| 亚洲精华国产精华液的使用体验| 亚洲av成人精品一二三区| 免费黄色在线免费观看| 肉色欧美久久久久久久蜜桃| 亚洲,一卡二卡三卡| 久久婷婷青草| 美女主播在线视频| 精品一区二区三区视频在线| 日本黄色日本黄色录像| 2018国产大陆天天弄谢| 亚洲av不卡在线观看| 三级国产精品欧美在线观看| 在线观看免费高清a一片| 欧美老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 国产精品国产三级国产专区5o| 精品国产一区二区三区久久久樱花| av一本久久久久| 中文字幕免费在线视频6| 天堂中文最新版在线下载| 91精品国产国语对白视频| 日韩欧美一区视频在线观看 | 久久99热6这里只有精品| 我的老师免费观看完整版| 大片免费播放器 马上看| 国产一区二区三区综合在线观看 | 涩涩av久久男人的天堂| 3wmmmm亚洲av在线观看| 99热全是精品| 国产免费福利视频在线观看| 国产高清有码在线观看视频| h视频一区二区三区| 免费播放大片免费观看视频在线观看| 狂野欧美白嫩少妇大欣赏| 国产av精品麻豆| 久久久久久久精品精品| 国产伦精品一区二区三区四那| 精品一区二区免费观看| 日韩一区二区三区影片| 高清黄色对白视频在线免费看 | 99久久精品一区二区三区| 极品人妻少妇av视频| 国产无遮挡羞羞视频在线观看| 亚洲欧美一区二区三区黑人 | 国产精品国产三级国产av玫瑰| 亚洲精品国产av蜜桃| 2022亚洲国产成人精品| 久久国内精品自在自线图片| 精品酒店卫生间| 搡老乐熟女国产| 日韩电影二区| 一本色道久久久久久精品综合| 精品99又大又爽又粗少妇毛片| 久久99精品国语久久久| 简卡轻食公司| 你懂的网址亚洲精品在线观看| 久久99热这里只频精品6学生| 人妻 亚洲 视频| 国产精品人妻久久久影院| 中文字幕免费在线视频6| 黄片无遮挡物在线观看| 欧美xxxx性猛交bbbb| 大话2 男鬼变身卡| 一本久久精品| 久久久国产精品麻豆| 一级二级三级毛片免费看| 精品久久久噜噜| 色婷婷av一区二区三区视频| 丝袜在线中文字幕| 婷婷色麻豆天堂久久| 色婷婷久久久亚洲欧美| 插逼视频在线观看| 亚洲高清免费不卡视频| 欧美日本中文国产一区发布| av视频免费观看在线观看| 国产亚洲午夜精品一区二区久久| 国产日韩欧美在线精品| 十分钟在线观看高清视频www | 国产精品99久久久久久久久| 在线观看国产h片| 少妇被粗大的猛进出69影院 | 日韩免费高清中文字幕av| 亚洲av二区三区四区| 一二三四中文在线观看免费高清| 亚洲欧美日韩东京热| 校园人妻丝袜中文字幕| 日韩成人伦理影院| av天堂久久9| 国产又色又爽无遮挡免| 亚洲精品国产色婷婷电影| 91精品一卡2卡3卡4卡| 美女xxoo啪啪120秒动态图| 伦精品一区二区三区|