• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    碳酸銨水解法制備耐高溫介孔CeO2材料

    2013-10-17 03:03:10陳山虎史忠華龔茂初陳耀強
    無機化學學報 2013年10期
    關鍵詞:耐高溫四川大學介孔

    陳山虎 曹 毅 蘭 麗 趙 明 史忠華 龔茂初 陳耀強

    (四川大學化學學院, 綠色化學與技術教育部重點實驗室,成都 610064)

    CeO2has attracted much attention in recent years for its applications in many commercial processes,such as catalytic wet oxidation[1],soot combustion[2],and fuel cell technology[3].Moreover,CeO2has also been widely utilized as oxygen storage material in three way catalysts (TWCs)for the purification of exhaust gases from automobile engines[4].CeO2can act as an oxygen buffer by releasing and storing oxygen under rich and lean conditions,respectively,involving the Ce4+/Ce3+couple.This ensures that the air to fuel ratio is kept around the stoichiometric point(14.6),which is crucial to maintain the efficiency of TWCs[5].In addition,multiple functions are also associated with CeO2:stabilization of noble metal dispersion and Al2O3support,promotion of water-gas shift reaction,and enhancement of CO oxidation[4,6-9].

    For application as an oxygen storage material in TWCs,high surface area is preferred.However,pure CeO2is thermally unstable.For instance,after calcination at 850℃,the surface area of CeO2sample is only 5 m2·g-1[10].The loss of surface area will cause the deterioration ofoxygen storage and release properties.Therefore,thermal stability is one of the most important properties.

    In attempt to get CeO2-based materials with high thermal resistance,numerous approaches,including precipitation method[11-12],hydrothermal route[13-15],solgel techniques[16-18],surfactant-assisted approach[19-21]and combustion synthesis[22-23],have been developed to produce CeO2material.Up to now,the most convenientmethod is precipitation,wherein the precursors of cerium mainly include Ceバ and Ceビ,while ammonia is conventionally used as the base.In this method,the H2O2-assisted route developed by Woodhead[24]has been investigated extensively.Under basic condition,Ceバ can be oxidized into Ceビ,in the form of Ce(OH)4or CeO2(OH)2,which will be converted into CeO2by the following hydrolysis and thermal decomposition processes[25-26].However,to the best of our knowledge,there have been no open reports on the investigation of this method employing ammonium carbonate as the precipitant.

    In this study,we have developed an ammonium carbonate hydrolysis route based on the H2O2-assisted method,aiming at producing CeO2material with higher thermal stability.In particular,the formation mechanism for the precipitate has also been examined.The textural and structural properties of CeO2oxide are influenced by the precursors.In the ammonium carbonate environment,the growth process as well as the agglomeration of CeO2particles is controlled,which enlarges the grain size of CeO2and facilitates the improvement of thermal stability and reduction property[27].

    1 Experimental

    1.1 Synthesis

    1.1.1 Preparation of undigested precipitates

    A solution was prepared by dissolving Ce(NO3)3·6H2O in distilled water,then a freshly standardized H2O2solution (30wt%)was added.The molar ratio of Ce(NO3)3∶H2O2was 1∶1.5.An ammonium carbonate solution (25wt%)was added into the salt solution,under stirring,until pH=8.5.The obtained precipitate was filtered,washed with distilled water until constant pH value,and air-dried at room temperature to obtain CeO2-H.For comparison,an ammonia solution(25wt%)was also used to prepare CeO2precursor following the same procedure,and the obtained sample was labeled as CeO2-C.

    1.1.2 Preparation of digested precipitates

    An ammonium carbonate solution (25wt%)was added into the mixed solution of Ce(NO3)3·6H2O and H2O2(the molar ratio of Ce(NO3)3∶H2O2was 1∶1.5),under stirring until the pH value of 8.5.The reaction vessel was placed in a water bath,and the solution was heated at 80 ℃ for 12 h,under vigorous stirring.The precipitate was filtered,washed with distilled water,and dried at 70℃for 5 h to obtain sample CeO2-H80.In addition,another sample(CeO2-C80)was also made under the same condition except that ammonia was employed as the precipitant.

    1.1.3 Calcination of precipitates

    TheCeO2-H80andCeO2-C80sampleswere further calcined at different temperatures in the range of 500~900 ℃ for 3 h.The obtained oxides were labeled as CeO2-Ht and CeO2-Ct,respectively,where t represents the calcination temperature.

    1.2 Characterizations

    The FTIR measurements were performed on a Nicolet 6700 FT spectrometer,working in the range of 400~4 000 cm-1at a resolution of 4 cm-1using KBr pellet.

    The precipitate was analyzed by Raman spectroscopy using a LabRAM HR800 with confocal microscope system.The specimen was illuminated through a 50×objective with 633 nm excitation from a diode laser source at a laser power of 150 mW and with a spot size of 3 μm.Raman spectra were collected in the range of 200~2 000 cm-1.

    X-ray photoelectron spectra were obtained on a XSAM 800 spectrometer(KRATOS Corp.),employing Mg Kα radiation (hν=1 253.6 eV)and working at 13 kV and 20 mA.The C1s peak(284.6 eV)was used to calibrate the binding energy.

    The weight loss and thermal behavior of the sample were examined by a HCT-2 analyzer(Beijing Science Apparatus Factory,Beijing,China)in flowing nitrogen atmosphere.The sample was heated to 600℃ at a heating rate of 10 ℃·min-1.

    The textural properties were determined by N2adsorption-desorption method on a Quantachrome SI instrument.The specific surface area and pore size distribution of the sample were obtained according to Brunauer-Emmett-Teller (BET)method and Barret-Joyner-Halenda (BJH)equation,respectively.Prior to each measurement,the sample was degassed at 300℃for 3 h under vacuum.

    X-ray diffraction patterns were recorded using a D/max-rA diffractometer(RIGAKU Corp.)with Cu Kα radiation(40 kV,25 mA,λ=0.154 18 nm).The crystal size was calculated by Scherrer′s equation using the data of(111)peak.

    Temperature-programmed reduction (TPR)was determined in a conventional reactor equipped with a thermal conductivity detector.Prior to the analysis,the sample(100 mg)was cleaned by flowing N2at 450℃ for 45 min.The measurement was performed from room temperature to 900℃in a flow of 5%H2/N2(V/V)(20 mL·min-1)at a heating rate of 10 ℃·min-1.

    2 Results and discussion

    2.1 Formation processes of the precipitates

    Composition of the precipitate depends on the kind of cations and anions in the solution.In the present work,Ce3+is employed as cerium precursor,while OH-or CO32-is used as the precipitant,in the presence of hydrogen peroxide[28].

    When ammonia is utilized as the precipitant,the following equations are expected during the precipitation and digestion processes[25]:

    The proposed mechanism of ammonium carbonate hydrolysis route is as follows[25-26,29]:

    During the heating process of the solution at 80℃,CeO2is gradually formed via:

    The dehydration behavior may take place during the whole operation process because the O22-and OH-groups are not stable[25,30].

    Fig.1 shows the FTIR spectra of the precipitates before and after heat treatment at 80℃.The intense and broad bands in the 3 000~3 750 cm-1region are normally ascribed to the stretching of surface hydroxyl groups or molecularly chemisorbed H2O[28,31-32].Obviously,three distinguished signals are observed,indicating the coexistence of mono-coordinated, bicoordinated and tri-coordinated hydroxyl groups[28,31-32].The relative intensity of this region for CeO2-H becomes stronger after digestion,whereas CeO2-C shows a different trend.This reveals that the carbonate species is hydrolyzed into hydroxylgroups during the digestion process.The minor band at 2 300~2 400 cm-1corresponds to the coordinated CO2adsorbed at the surface,while the feature at~1 620 cm-1is assigned to the adsorption of H2O[28,33].Several adsorption bands around 1 620,1 380,1 136,1 030 and 913 cm-1are associated with the carbonate species[32,34-35].Among these bands,the one around 1380 cm-1is probably assigned to the carbonate species from the ammonium carbonate precipitator because it can only be observed in CeO2-H,whilst the others are likely caused by atmospheric dioxide[36].

    Fig.1 FTIR spectra of precipitates

    Raman spectra of the precipitates are presented in Fig.2.It has been reported that bulk CeO2shows a strong peak centered at 456 cm-1or 471 cm-1corresponding to the symmetric breathing mode of the O2-anions[26,37].However,both of the peaks can be found in this work.The broad peak around 608 cm-1is ascribed to the defect site of CeO2crystallite,which seems to be caused by the influence of H2O2[26].The formation of CeO2suggests that the following overall process has occurred[25]:

    Fig.2 Raman spectra of precipitates

    Three bands,locating at about 742,1 050 and 1 350 cm-1,respectively,are likely related to the CO32-species[26].Notably,these spectral features for CeO2-H are the strongest among the samples because of the usage of ammonium carbonate.The reduction of the bands for CeO2-H80 compared to CeO2-H implies that the CO32-species is hydrolyzed during digestion process,in accordance with TG-DTA and IR results.An additional weak band at about 840 cm-1can be observed in the spectra for CeO2-C and CeO2-H,which is indicative of the O-O stretching vibration of η2-peroxide(O22-)species[38],indicating the formation of CeO22+precursors.However,the band vanishes after digestion.This implies that the O22-species is more or less eliminated during the thermal treatment,because the O22--containing species is not stable[25-26].The Raman results confirm the occurrence of Eqs.(3)~(7).

    The oxidation states of cerium for the precipitates prepared by different routes are shown in Fig.3.The spectra are very similar,showing six peaks at around 883.0,888.9,898.5,901.1,907.4,and 916.8 eV,respectively.All the spectra are attributed to the diversified states of Ce4+and no signals related to Ce3+are found[39],from which we can conclude that Ceバis fully oxidized into Ceビby H2O2under basic condition.

    Fig.3 Ce3d XPS spectra for precipitates

    The O1s spectra are shown in Fig.4.The peak at about 529.7 eV is characteristic of the O2-anions in bulk CeO2[39],while the peaks at 531.5 and 532.7 eV correspond to OH-and CO32-species,respectively[40-41].It is obvious that the contents of OH-and CO32-species for the digested precipitates are lower than those of the undigested ones,due to the fact that the hydrolysis of CO32-species as well as the dehydration of OH-species takes place during digestion.The relative contents of Ce,O and C are calculated.The relative contents of atoms in CeO2-C are different from CeO2-H.The content of C of CeO2-H is much higher than that of CeO2-C due to the participation of CO32-species during the precipitation procedure.However,the amount of the elements for CeO2-C80 and CeO2-H80 is almost the same,providing another evidence for the occurrence of equation (6)for CeO2-H.It is important to remark that the C element is difficult to evaluate due to the interference of adventitious carbon and physically absorbed CO2[26].

    Fig.4 O1s XPS spectra for precipitates

    Fig.5 TG/DTA curves of precipitates

    Fig.5 displays the TG/DTA curves ofthe precipitates.Both of the precipitates prepared by ammonia show a steady decomposition process,regardless of digestion.For CeO2-C,the total weight loss is about 20.3%,which is much higher than that of CeO2-C80 (13.4%),indicating that the dehydration process,i.e.,equation (2),has occurred during the heat treatment at 80 ℃[30].The DTA curve shows one endothermic peak below 100℃,which is probably ascribed to the elimination ofsurface physicaladsorbed water[30].Since the decomposition process of Ce(O2)(OH)2is a slow and successive process,no obvious exothermal phenomena can be observed.The weight loss procedure of CeO2-H shows complex stages,approximately locating at thetemperature ranges of 25~200 ℃,250~350 ℃ and 350~450 ℃,respectively.The first region appears as a result of the elimination of physically adsorbed water and the decomposition of O22-and hydroxyl groups[25,28,30].The second stageisrelated tothe crystallization of hydroxide particles[30],while the last one originates from the carbonate species[2,28].It seems that the presence of carbonate can affect the decomposition events of hydroxyl species,therefore,several exothermal peaks appear on the DTA curves.After digestion,the overall decomposition behavior of CeO2-H80 is similar to that of CeO2-C80,with a total weight loss of about 13%and an endothermic peak at around 60℃.This implies that the carbonate species has been hydrolyzed into hydroxyl species during the digestion.

    2.2 Textural properties of CeO2samples

    The surface area of the CeO2samples calcined at different temperatures is illustrated in Fig.6.As expected,the surface area decreases athigher temperatures,regardless of synthetic approaches[19].However,the values are still appreciable.The surface area of CeO2-Ht is superior to that of CeO2-Ct.After calcination at 900℃,the surface area of the CeO2-Ht sample can be 27 m2·g-1,which is rather uncommon for pure CeO2material under such a harsh thermal treatment.This implies that the usage of ammonium carbonate hydrolysis approach allows the formation of CeO2with improved thermal stability.

    Fig.7(a)and(b)display the nitrogen adsorption/desorption isotherms and the corresponding pore size distribution curves of the CeO2-C500 and CeO2-H500 samples.According to the IUPAC definition,all the samples feature the isotherm of typeⅣ,typical of a mesoporous material[42].The shape of hysteresis loops indicates the presence of “ink-bottle” and cylindrical pores,which arefavorableforgasand thermal diffusion[42].Actually,the sintering behavior of CeO2-based materials is strongly affected by the pore structure[43].The pore size of CeO2-H500 is larger than that of CeO2-C500,which should be responsible for its improved thermal stability[5,36,44].

    Fig.7 (a)N2adsorption-desorption isotherms of samples prepared by different methods;(b)Corresponding BJH pore size distribution curves

    XRD patterns of the precipitates are shown in Fig.8.All the patterns show the diffraction peaks of CeO2with fluorite structure,regardless of preparation routes.The as-prepared samples,i.e.,CeO2-H and CeO2-C,are also characterized by CeO2,indicating that the hydrolysis event of carbonate species as well as the dehydration of hydroxyl groups has occurred before the heat treatment.Crystallite size of the precipitates is calculated using the (111)plane.The grain sizes of CeO2-C(1.9 nm)and CeO2-C80(2.0 nm)are much smaller than those of CeO2-H (3.9 nm)and CeO2-H80 (4.0 nm).This suggests that the crystalline dimension depends on the synthetic routes.As for precipitation process,with progressively increasing concentration of the base solution,the mean magnitude of the individual crystal grain will decrease[45].In the ammonia environment,The OH-species in high concentration attacks Ceビdirectly,resulting in a rapid nucleation rate.Consequently,uniformly small particles are obtained.However,in the case of ammonium carbonate,polymer of carbonate-containing precipitate,i.e.,Ce(O2)(OH)x(CO3)1-x/2,can serve as a precursor of the CeO2oxide.The crystallization of CeO2proceeds through gradual hydrolysis of CO32-,which inhibits the rate of precipitation and enlarges the crystallite size.However,after calcination at 500oC,the crystallite size of CeO2-C500 (7.5 nm)becomes larger than that of CeO2-H500 (4.2 nm).According to the literature[27],the primary particle of CeO2-H is larger than that of CeO2-C,which facilitates the formation of packing “ring”with larger pore space.Generally,the movementofcoarsened particlesofCeO2-Htis expected to be inhibited[44].Moreover,the enlarged pores in CeO2-Ht sinter with more difficulty as longer migration distance is needed for the matter to fill the pores[36].Thus,the CeO2material prepared by ammonium carbonate-hydrolysis method is more thermally stable.

    Fig.8 XRD parttens collected from precipitates

    2.3 Reduction behavior of CeO2samples

    A crucial requirement of CeO2material,especially when used as oxygen storage components for the purification of exhaust gases,is the reduction ability.Thus,the samples were calcined at 500℃and 900℃,and then were employed to characterize the reduction behavior.From Fig.9,the reduction profiles of CeO2-C500 and CeO2-H500 consist of two peaks,which are ascribed to the reduction of surface and bulk oxygen species,respectively[46].Although the outsets of the reduction peaks of the samples are almost the same,the integrated peak area of CeO2-H500 is apparently larger than that of CeO2-C500.This indicates that CeO2-H500 is more reducible and active than CeO2-C500[47].The difference becomes more apparent after calcination at 900℃,especially in the low-temperature region.

    Fig.9 TPR profiles of CeO2samples

    3 Conclusions

    In this work,CeO2oxide was prepared by a hydrothermal hydrolysis route using ammonium carbonate as the precipitant and hydrogen peroxide as the oxidizer.The title method was compared with the conventionalmethod employing ammonia asthe reactant.The formation mechanism of the precipitate wasalso studied.Afterdigestion,the chemical compositions of the precipitates prepared by the two methods were almostthe same.However,the crystallite size of the precipitates differs from each other greatly.The pore size of the as-prepared CeO2by the hydrolysis procedure is much larger,which facilitates the formation of CeO2oxide with improved texturaland reduction properties.In particular,after calcination at 900℃for3h,theCeO2powder from HA route still remains a surface area of 27 m2·g-1.

    [1]Matatov-Meytal Y I,Sheintuch M.Ind.Eng.Chem.Res.,1998,37(2):309-326

    [2]Tikhomirov K,Krocher O,Elsener M,et al.A.Appl.Catal.B,2006,64(1/2):72-78

    [3]Sahibzada M,Steele B C H,Zheng K,et al.Catal.Today,1997,38(4):459-466

    [4]Ka?par J,Fornasiero P,Graziani M.Catal.Today,1999,50(2):285-298

    [5]Di Monte R,Ka?par J,Catal.Today,2005,100:27-35

    [6]Di Monte R,Fornasiero P,Ka?par J,et al.Appl.Catal.B:Environ.,2000,24:157-167

    [7]Kenevey K,Valdivieso F,Soustelle M,et al.Appl.Catal.B:Environ.,2001,29:93-101

    [8]Bueno-Lopez A,Such-Basanez I,de Lecea C S M.J.Catal.,2006,244(1):102-112

    [9]Nagai Y,Hirabayashi T,Dohmae K,et al.J.Catal.,2006,242(1):103-109

    [10]Perrichon V,Laachir A,Abouarnadasse S,et al.Appl.Catal.A,1995,129:69-82

    [11]Hernández W Y,Laguna O H,Centeno M A,et al.J.Solid State Chem.,2011,184:3014-3020

    [12]Karakoti A S,Kuchibhatla S V N T,Babu K S,et al.J.Phys.Chem.C,2007,111(46):17232-17240

    [13]Ahniyaz A,Watanabe T,Yoshimura M.J.Phys.Chem.B,2005,109(13):6136-6139

    [14]Si R,Zhang Y W,Wang L M,et al.J.Phys.Chem.C,2007,111(2):787-794

    [15]Xian C N,Li H,Chen L Q,et al.Micropor.Mesopor.Mat.,2011,142:202-207

    [16]Thammachart M,Meeyoo V,Risksomboon T,et al.Catal.Today,2001,68(1-3):53-61

    [17]Fan J,Wu X D,Yang L,et al.Catal.Today,2007,126(3/4):303-312

    [18]Ni C Y,Li X Z,Chen Z G,et al.Micropor.Mesopor.Mater.,2008,115:247-252

    [19]Terribile D,Trovarelli A,de Leitenburg C,et al.Chem.Mater.,1997,9(12):2676-2678

    [20]Terribile D,Trovarelli A,Llorca J,et al.J.Catal.,1998,178(1):299-308

    [21]Chen H R,Ye Z Q,Cui X Z,et al.Micropor.Mesopor.Mater.,2011,143:368-374

    [22]Mokkelbost T,Kaus I,Grande T,et al.Chem.Mater.,2004,16(25):5489-5494

    [23]Heo I,Choung J W,Kim P S,et al.Appl.Catal.B,2009,92(1/2):114-125

    [24]Woodhead J L,US Patent,4231893.1980-11-04

    [25]Scholes F H,Soste C,Hughes A E,et al.Appl.Surf.Sci.,2006,253(4):1770-1780

    [26]Scholes F H,Hughes A E,Hardin S G,et al.Chem.Mater.,2007,19(9):2321-2328

    [27]Chen P L,Chen I W.J.Am.Ceram.Soc.,1997,80(3):637-645

    [28]Rebellato J,Natile M M,Glisenti A.Appl.Catal.A,2008,339(2):108-120

    [29]Li J G,Ikegami T,Mori T,et al.Chem.Mater.,2001,13(9):2913-2920

    [30]Djuricˇic' B,Pickering S.J.Eur.Ceram.Soc.,1999,19(11):1925-1934

    [31]Binet C,Daturi M,Lavalley J C.Catal.Today,1999,50(2):207-225

    [32]Natile M M,Boccaletti G,Glisenti A.Chem.Mater.,2005,17(25):6272-6286

    [33]Lin W Y,Frei H.J.Am.Chem.Soc.,2002,124(31):9292-9298

    [34]Klissurski D G,Uzunova E L.Chem.Mater.,1991,3(6):1060-1063

    [35]Jobbagy M,Marino F,Schobrod B,et al.Chem.Mater.,2006,18(7):1945-1950

    [36]Ka?par J,Fornasiero P.J.Solid State Chem.,2003,171(1/2):19-29

    [37]Weng X L,Perston B,Wang X Z,et al.Appl.Catal.B:Environ.,2009,90:405-415

    [38]Pushkarev V V,Kovalchuk V I,d′Itri J L.J.Phys.Chem.B,2004,108:5341-5348

    [39]Zhang G J,Shen Z R,Liu M,et al.J.Phys.Chem.B,2006,110(51):25782-25790

    [40]Alifanti M,Baps B,Blangenois N,et al.Chem.Mater.,2003,15(2):395-403

    [41]Darnyanova S,Pawelec B,Arishtirova K,et al.Appl.Catal.A,2008,337(1):86-96

    [42]Wang J,Wen J,Shen M Q.J.Phys.Chem.C,2008,112(13):5113-5122

    [43]Rohart E,Larcher O,Deutsch S,et al.Top Catal,2004,30-31:417-423

    [44]Ka?par J,Fornasiero P,Hickey N.Catal.Today,2003,77:419-449

    [45]Von Weimarn P P.Chem.Rev.,1925,2(2):217-242

    [46]Bruce L A,Hoang M,Hughes A E,et al.Appl.Catal.A,1996,134(2):351-362

    [47]Masui T,Peng Y M,Machida K,et al.Chem.Mater.,1998,10(12):4005-4009

    猜你喜歡
    耐高溫四川大學介孔
    功能介孔碳納米球的合成與應用研究進展
    四川大學西航港實驗小學
    中小學校長(2021年9期)2021-10-14 14:36:16
    新型介孔碳對DMF吸脫附性能的研究
    百年精誠 譽從信來——走進四川大學華西眼視光之一
    耐高溫線椒新品種辛香16號的選育
    長江蔬菜(2016年10期)2016-12-01 03:05:30
    新型耐高溫超氧化物歧化酶SOD的產業(yè)化
    有序介孔材料HMS的合成改性及應用新發(fā)展
    四川大學華西醫(yī)院
    一種新型的耐高溫碳化硅超結晶體管
    電子器件(2015年5期)2015-12-29 08:42:07
    介孔二氧化硅制備自修復的疏水棉織物
    久久久久久久久久久丰满| 交换朋友夫妻互换小说| 成人手机av| 国产精品成人在线| 久久99蜜桃精品久久| 国产成人精品久久久久久| 久久久精品免费免费高清| 午夜福利视频在线观看免费| 在线观看人妻少妇| 美女中出高潮动态图| 久久久精品免费免费高清| av视频免费观看在线观看| 亚洲精华国产精华液的使用体验| 国产精品.久久久| 大香蕉久久网| 肉色欧美久久久久久久蜜桃| 欧美xxⅹ黑人| av网站免费在线观看视频| 视频在线观看一区二区三区| 欧美日韩在线观看h| 草草在线视频免费看| 大码成人一级视频| 18禁在线无遮挡免费观看视频| 飞空精品影院首页| 女人久久www免费人成看片| 制服诱惑二区| 99九九线精品视频在线观看视频| 亚洲成人一二三区av| 亚洲国产精品999| 亚洲一区二区三区欧美精品| 久久人人爽av亚洲精品天堂| 九色亚洲精品在线播放| av专区在线播放| 国产成人精品在线电影| 国产成人免费观看mmmm| 亚洲欧美清纯卡通| 黄色欧美视频在线观看| 久久久亚洲精品成人影院| 一边亲一边摸免费视频| 免费黄色在线免费观看| 亚洲精华国产精华液的使用体验| 国产一区二区三区av在线| 中国国产av一级| 国产精品国产三级国产专区5o| 两个人免费观看高清视频| 高清黄色对白视频在线免费看| 日韩大片免费观看网站| 老司机影院成人| 欧美精品高潮呻吟av久久| 在线天堂最新版资源| www.色视频.com| 午夜福利视频精品| 久久久a久久爽久久v久久| 美女脱内裤让男人舔精品视频| 国产伦精品一区二区三区视频9| 毛片一级片免费看久久久久| 精品亚洲成国产av| 边亲边吃奶的免费视频| a级毛片免费高清观看在线播放| 精品人妻熟女av久视频| 人妻一区二区av| 日本与韩国留学比较| 中国国产av一级| 国产精品一二三区在线看| 涩涩av久久男人的天堂| av黄色大香蕉| 午夜日本视频在线| a级毛片在线看网站| 永久免费av网站大全| 18在线观看网站| 女人精品久久久久毛片| 美女xxoo啪啪120秒动态图| 国精品久久久久久国模美| 人妻人人澡人人爽人人| 亚洲欧美中文字幕日韩二区| 热re99久久精品国产66热6| 亚洲精品乱码久久久v下载方式| 国产成人精品一,二区| 少妇高潮的动态图| 亚洲精品自拍成人| 一级,二级,三级黄色视频| 有码 亚洲区| 大片电影免费在线观看免费| 97在线视频观看| 精品一区二区三区视频在线| 久久久久网色| 水蜜桃什么品种好| 高清在线视频一区二区三区| 午夜免费观看性视频| 免费人成在线观看视频色| kizo精华| 午夜免费男女啪啪视频观看| 永久网站在线| 国产成人免费观看mmmm| 亚洲精品av麻豆狂野| 亚洲精品456在线播放app| 日韩电影二区| 成人亚洲精品一区在线观看| 国产黄频视频在线观看| 日本猛色少妇xxxxx猛交久久| 免费观看的影片在线观看| 一级黄片播放器| 日韩视频在线欧美| 日本免费在线观看一区| 国产一区二区在线观看av| 久久久久久久精品精品| 精品一区二区三区视频在线| av不卡在线播放| 亚洲av国产av综合av卡| 免费人成在线观看视频色| 日韩精品免费视频一区二区三区 | 欧美97在线视频| 国产深夜福利视频在线观看| 国产色婷婷99| 国产在线免费精品| 欧美日韩成人在线一区二区| 免费av中文字幕在线| 美女国产高潮福利片在线看| 久久久国产欧美日韩av| 午夜免费鲁丝| 黑人猛操日本美女一级片| 亚洲情色 制服丝袜| 伦理电影免费视频| 亚洲精品日本国产第一区| 51国产日韩欧美| 三级国产精品片| 精品一品国产午夜福利视频| 国产精品99久久久久久久久| 成人亚洲欧美一区二区av| 国产极品粉嫩免费观看在线 | av一本久久久久| 久久人人爽av亚洲精品天堂| 欧美精品亚洲一区二区| 亚洲av成人精品一区久久| 看免费成人av毛片| 蜜桃在线观看..| av免费在线看不卡| 日本爱情动作片www.在线观看| 亚洲人与动物交配视频| 老女人水多毛片| 久久久国产精品麻豆| 精品国产乱码久久久久久小说| 一级毛片电影观看| 国产老妇伦熟女老妇高清| 高清欧美精品videossex| 涩涩av久久男人的天堂| 国产熟女欧美一区二区| 日本免费在线观看一区| 国产精品偷伦视频观看了| 久久人人爽人人爽人人片va| 中文乱码字字幕精品一区二区三区| 国产亚洲精品第一综合不卡 | 国产一级毛片在线| 99久久精品一区二区三区| 99精国产麻豆久久婷婷| 久久99蜜桃精品久久| 狂野欧美激情性xxxx在线观看| 国产精品久久久久成人av| 国内精品宾馆在线| 老司机影院毛片| 久久人妻熟女aⅴ| 久久精品人人爽人人爽视色| 999精品在线视频| 2021少妇久久久久久久久久久| 亚洲国产精品成人久久小说| 亚洲四区av| 18禁动态无遮挡网站| 成人午夜精彩视频在线观看| 亚洲经典国产精华液单| 91aial.com中文字幕在线观看| 日本猛色少妇xxxxx猛交久久| 免费观看无遮挡的男女| 在线免费观看不下载黄p国产| 国产成人精品一,二区| 国产有黄有色有爽视频| 色婷婷av一区二区三区视频| 久久综合国产亚洲精品| 亚洲欧美一区二区三区国产| 久久婷婷青草| 久久久国产精品麻豆| 2022亚洲国产成人精品| 日韩三级伦理在线观看| 日韩成人av中文字幕在线观看| 精品一区二区三区视频在线| 国产深夜福利视频在线观看| 一个人看视频在线观看www免费| 永久免费av网站大全| 桃花免费在线播放| xxx大片免费视频| xxxhd国产人妻xxx| 下体分泌物呈黄色| 精品亚洲成国产av| 看十八女毛片水多多多| 国产一区二区在线观看日韩| av一本久久久久| 中文字幕精品免费在线观看视频 | 日本av手机在线免费观看| 免费观看的影片在线观看| 九九爱精品视频在线观看| 国产在线视频一区二区| 欧美精品一区二区免费开放| 欧美日韩视频高清一区二区三区二| 日韩 亚洲 欧美在线| 国产色婷婷99| 免费观看在线日韩| 国产欧美另类精品又又久久亚洲欧美| 国产黄片视频在线免费观看| 日本黄色片子视频| 亚洲国产精品999| 午夜日本视频在线| 成人漫画全彩无遮挡| 建设人人有责人人尽责人人享有的| 精品人妻一区二区三区麻豆| 秋霞伦理黄片| 久久亚洲国产成人精品v| 久久99一区二区三区| 精品久久国产蜜桃| 最近的中文字幕免费完整| 欧美变态另类bdsm刘玥| 亚洲精品自拍成人| 日韩成人av中文字幕在线观看| 美女视频免费永久观看网站| 免费看不卡的av| 亚洲天堂av无毛| 午夜免费鲁丝| 简卡轻食公司| 九色成人免费人妻av| 日日撸夜夜添| 久久精品国产亚洲网站| 欧美老熟妇乱子伦牲交| 2022亚洲国产成人精品| 视频中文字幕在线观看| 国产精品嫩草影院av在线观看| 久久久精品区二区三区| 80岁老熟妇乱子伦牲交| 蜜臀久久99精品久久宅男| 国产高清国产精品国产三级| 日韩 亚洲 欧美在线| 亚洲av在线观看美女高潮| 99re6热这里在线精品视频| 日本黄大片高清| 亚洲内射少妇av| 丝袜脚勾引网站| 精品视频人人做人人爽| 男女免费视频国产| 色吧在线观看| 麻豆精品久久久久久蜜桃| 人人妻人人澡人人爽人人夜夜| 久久人人爽人人爽人人片va| 色婷婷久久久亚洲欧美| 夜夜爽夜夜爽视频| 亚洲欧美精品自产自拍| 日韩大片免费观看网站| 精品久久久精品久久久| 国产精品麻豆人妻色哟哟久久| 一个人看视频在线观看www免费| 国产精品偷伦视频观看了| 久久久久久久精品精品| 欧美丝袜亚洲另类| 亚洲精华国产精华液的使用体验| 婷婷色麻豆天堂久久| 中文字幕制服av| 在线播放无遮挡| 亚洲人与动物交配视频| 免费人成在线观看视频色| 韩国av在线不卡| 满18在线观看网站| 国产免费福利视频在线观看| 亚洲综合色惰| 最后的刺客免费高清国语| 亚洲欧美色中文字幕在线| 免费观看av网站的网址| 又粗又硬又长又爽又黄的视频| 国产精品嫩草影院av在线观看| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩一区二区视频在线观看视频在线| 成人免费观看视频高清| 最新的欧美精品一区二区| 国产亚洲最大av| 欧美日韩国产mv在线观看视频| 自线自在国产av| 大话2 男鬼变身卡| av卡一久久| 久久亚洲国产成人精品v| 中文精品一卡2卡3卡4更新| 天堂俺去俺来也www色官网| 永久免费av网站大全| av国产久精品久网站免费入址| 亚洲在久久综合| 日本猛色少妇xxxxx猛交久久| 极品少妇高潮喷水抽搐| 亚洲欧洲国产日韩| 国产爽快片一区二区三区| 欧美日韩成人在线一区二区| 欧美xxxx性猛交bbbb| 最近中文字幕2019免费版| 免费观看性生交大片5| 97超碰精品成人国产| 久久久国产一区二区| 亚洲少妇的诱惑av| 少妇人妻久久综合中文| 国产在线一区二区三区精| 精品久久久久久久久亚洲| 亚洲欧美日韩另类电影网站| 亚洲精品自拍成人| 久久精品夜色国产| 男女边摸边吃奶| 在现免费观看毛片| 久久人妻熟女aⅴ| videossex国产| 欧美激情极品国产一区二区三区 | av一本久久久久| 国产免费又黄又爽又色| 亚洲国产欧美在线一区| 国产高清三级在线| 国产成人免费观看mmmm| 91成人精品电影| 亚洲欧美成人综合另类久久久| 性色av一级| 午夜日本视频在线| 一边摸一边做爽爽视频免费| 国产极品天堂在线| 亚洲五月色婷婷综合| 欧美精品一区二区大全| 午夜激情av网站| 满18在线观看网站| 曰老女人黄片| 美女大奶头黄色视频| 大香蕉97超碰在线| 久久99一区二区三区| 最近手机中文字幕大全| 在线天堂最新版资源| 国产精品久久久久久av不卡| 精品人妻熟女毛片av久久网站| av一本久久久久| 99久久精品一区二区三区| 亚洲综合色网址| 亚洲av成人精品一区久久| www.色视频.com| 黑人巨大精品欧美一区二区蜜桃 | 亚洲,一卡二卡三卡| 熟女av电影| 成人影院久久| 在线播放无遮挡| a级毛片免费高清观看在线播放| 亚洲三级黄色毛片| 亚洲国产欧美在线一区| 久久狼人影院| 一级毛片电影观看| 欧美老熟妇乱子伦牲交| 黄片播放在线免费| 一个人看视频在线观看www免费| 国产精品女同一区二区软件| 亚洲在久久综合| 日韩成人av中文字幕在线观看| 亚洲性久久影院| 搡老乐熟女国产| kizo精华| 人人妻人人添人人爽欧美一区卜| 成年人免费黄色播放视频| 日本爱情动作片www.在线观看| 亚洲久久久国产精品| 免费大片18禁| 久久久久国产网址| 国产成人a∨麻豆精品| 国产精品一区二区三区四区免费观看| 久久韩国三级中文字幕| 99精国产麻豆久久婷婷| 免费观看的影片在线观看| 中文字幕人妻丝袜制服| 国产老妇伦熟女老妇高清| 男女免费视频国产| 国产黄色视频一区二区在线观看| 亚洲激情五月婷婷啪啪| 久久精品久久久久久久性| 免费人妻精品一区二区三区视频| 啦啦啦啦在线视频资源| 国产一区二区在线观看日韩| av线在线观看网站| 日韩大片免费观看网站| 久久久久久久亚洲中文字幕| 2018国产大陆天天弄谢| 人妻 亚洲 视频| 色哟哟·www| 少妇的逼水好多| 搡老乐熟女国产| 尾随美女入室| 免费观看无遮挡的男女| 欧美日韩综合久久久久久| 好男人视频免费观看在线| 欧美最新免费一区二区三区| 亚洲综合精品二区| 成人毛片60女人毛片免费| 下体分泌物呈黄色| 超色免费av| 久久精品久久久久久久性| 国产精品一国产av| 久久久久久久国产电影| 女人精品久久久久毛片| 欧美97在线视频| 多毛熟女@视频| 久久久欧美国产精品| 久久ye,这里只有精品| 18+在线观看网站| 成人18禁高潮啪啪吃奶动态图 | 国产精品三级大全| 亚洲国产精品999| 日本av手机在线免费观看| 热99久久久久精品小说推荐| 国产男人的电影天堂91| 黄色欧美视频在线观看| 一级a做视频免费观看| 美女中出高潮动态图| 多毛熟女@视频| 久久久欧美国产精品| 一本色道久久久久久精品综合| 美女视频免费永久观看网站| 日韩精品有码人妻一区| 免费黄频网站在线观看国产| 成人国产麻豆网| 韩国高清视频一区二区三区| 哪个播放器可以免费观看大片| 亚洲精品国产av蜜桃| 日韩不卡一区二区三区视频在线| 少妇精品久久久久久久| 一级a做视频免费观看| 日韩在线高清观看一区二区三区| 亚洲色图综合在线观看| 久久久久久久久久人人人人人人| 五月天丁香电影| 91午夜精品亚洲一区二区三区| 久久精品国产亚洲网站| 亚洲美女黄色视频免费看| 欧美成人精品欧美一级黄| 久久久久精品久久久久真实原创| av在线老鸭窝| 欧美少妇被猛烈插入视频| 日韩在线高清观看一区二区三区| 一区二区三区四区激情视频| 美女脱内裤让男人舔精品视频| 色婷婷久久久亚洲欧美| av在线观看视频网站免费| 亚洲成人一二三区av| 日韩不卡一区二区三区视频在线| 国产精品麻豆人妻色哟哟久久| 有码 亚洲区| 亚洲精华国产精华液的使用体验| 亚洲欧美日韩卡通动漫| 中文字幕人妻丝袜制服| 午夜激情福利司机影院| 成人黄色视频免费在线看| 成年av动漫网址| 色吧在线观看| 少妇被粗大的猛进出69影院 | 天堂中文最新版在线下载| 亚洲综合精品二区| 成人毛片60女人毛片免费| 欧美精品亚洲一区二区| 最新的欧美精品一区二区| 香蕉精品网在线| 成人国产麻豆网| 亚洲国产毛片av蜜桃av| 狂野欧美激情性xxxx在线观看| 不卡视频在线观看欧美| 插阴视频在线观看视频| 99国产综合亚洲精品| 亚洲国产最新在线播放| 看十八女毛片水多多多| 免费久久久久久久精品成人欧美视频 | 欧美日韩视频高清一区二区三区二| 久久狼人影院| 九九久久精品国产亚洲av麻豆| 51国产日韩欧美| 日本-黄色视频高清免费观看| 日日摸夜夜添夜夜爱| kizo精华| av一本久久久久| 成人二区视频| 国产av精品麻豆| 亚洲内射少妇av| a级毛色黄片| 国产精品 国内视频| 国产日韩一区二区三区精品不卡 | 精品久久久噜噜| 91国产中文字幕| av国产久精品久网站免费入址| 日韩精品免费视频一区二区三区 | 十八禁高潮呻吟视频| 日本-黄色视频高清免费观看| 在线观看国产h片| 精品亚洲乱码少妇综合久久| 成人毛片a级毛片在线播放| 一级毛片我不卡| 成人免费观看视频高清| 91精品国产国语对白视频| 不卡视频在线观看欧美| 久久久久久久精品精品| 国产在线视频一区二区| 久久青草综合色| 欧美人与善性xxx| 91久久精品国产一区二区三区| h视频一区二区三区| 国产成人精品婷婷| 男女无遮挡免费网站观看| 日日撸夜夜添| 久久久国产欧美日韩av| 一本色道久久久久久精品综合| 高清在线视频一区二区三区| 久久久久久伊人网av| 免费看av在线观看网站| 成人亚洲欧美一区二区av| 精品久久久久久久久av| 国产一级毛片在线| 欧美xxⅹ黑人| 91精品国产国语对白视频| 亚洲国产日韩一区二区| 久久精品久久精品一区二区三区| 亚洲,欧美,日韩| √禁漫天堂资源中文www| 精品亚洲成a人片在线观看| 一区二区av电影网| 欧美丝袜亚洲另类| 国产永久视频网站| 精品人妻熟女av久视频| 人成视频在线观看免费观看| av不卡在线播放| 制服丝袜香蕉在线| 一本大道久久a久久精品| 一级毛片黄色毛片免费观看视频| 日韩免费高清中文字幕av| 全区人妻精品视频| 性色avwww在线观看| 夜夜看夜夜爽夜夜摸| 高清欧美精品videossex| 亚洲欧美一区二区三区黑人 | 只有这里有精品99| 国产亚洲一区二区精品| 国产精品偷伦视频观看了| 欧美丝袜亚洲另类| 欧美日韩视频精品一区| 国产精品久久久久久久久免| 91国产中文字幕| 内地一区二区视频在线| 97在线视频观看| videosex国产| 少妇 在线观看| 国产极品粉嫩免费观看在线 | 亚洲综合色惰| kizo精华| 国语对白做爰xxxⅹ性视频网站| 亚洲一区二区三区欧美精品| 丝瓜视频免费看黄片| √禁漫天堂资源中文www| 五月开心婷婷网| 国产 精品1| 视频区图区小说| 成人午夜精彩视频在线观看| 丝袜美足系列| 汤姆久久久久久久影院中文字幕| 久久久久久久久久久丰满| 日韩强制内射视频| 波野结衣二区三区在线| 秋霞在线观看毛片| 99久久中文字幕三级久久日本| 亚洲精华国产精华液的使用体验| 丰满少妇做爰视频| 免费高清在线观看视频在线观看| 国产亚洲av片在线观看秒播厂| 18禁在线播放成人免费| 免费观看av网站的网址| 999精品在线视频| 又粗又硬又长又爽又黄的视频| 免费大片黄手机在线观看| 男人爽女人下面视频在线观看| 美女主播在线视频| 99久久精品一区二区三区| 嫩草影院入口| 亚洲精品自拍成人| 乱码一卡2卡4卡精品| 在线观看美女被高潮喷水网站| 亚洲欧美精品自产自拍| 久久久久久久大尺度免费视频| 国产成人精品婷婷| 成人免费观看视频高清| 免费黄色在线免费观看| 我的女老师完整版在线观看| 欧美激情国产日韩精品一区| 国内精品宾馆在线| 精品久久久久久久久亚洲| 久久这里有精品视频免费| 国产免费一区二区三区四区乱码| av在线观看视频网站免费| 亚洲欧美色中文字幕在线| 国产高清有码在线观看视频| 中文天堂在线官网| 久久精品国产鲁丝片午夜精品| 18禁在线播放成人免费| 在线看a的网站| 久久久久久人妻| 久久久久人妻精品一区果冻| 免费观看在线日韩| 中文字幕亚洲精品专区| 黑人猛操日本美女一级片| 成人亚洲欧美一区二区av| 妹子高潮喷水视频| 国产精品免费大片| 久久久久久久久久人人人人人人| 啦啦啦啦在线视频资源| 2018国产大陆天天弄谢| 亚洲人成77777在线视频| 在线观看www视频免费| 久久久国产一区二区| 夫妻性生交免费视频一级片| 人妻系列 视频| 最近最新中文字幕免费大全7|