• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ag+與Hg2+對G-四鏈體DNA結(jié)構(gòu)的破壞及其對構(gòu)筑DNA邏輯門的應(yīng)用

    2013-10-17 03:03:08朱莉娜王海仙孫潤豐孔德明李孝增
    無機(jī)化學(xué)學(xué)報 2013年10期
    關(guān)鍵詞:化學(xué)系外語系天津大學(xué)

    朱莉娜 王海仙 孫潤豐 李 平 孔德明 李孝增

    (1天津大學(xué)化學(xué)系,天津 300072)

    (2青海民族學(xué)院外語系,西寧 810007)

    (3南開大學(xué)教育部功能高分子材料重點(diǎn)實驗室,天津 300071)

    It is widely accepted that genomic DNA is mainly presented asclassic Watson-Crick double helix.However,as for some DNAs with specific sequences,they may adopt some particular structures[1].For example,some G-rich DNA sequences can form a wide variety of inter-or intramolecular four-stranded structures by Hoogsteen-type base pairing,termed G-quadruplexes[2-5].G-quadruplexes are unique highordered nucleic acid structures attracting more and more attention[6-8],since G-rich sequences with the potential to form quadruplexes have been found in several biologically important regions such as telomeric DNA and many gene promoter regions[9].It has been reported thatthe formation ofG-quadruplex in telomere regions can inhibit telomerase function and the reagents with the ability to promote G-quadruplex formation can be used as potential anti-cancer drugs[10].Most studies on G-quadruplexes are focused on the promotion of G-quadruplex formation.Whereas,there have been rare report on the agents that can inhibit the formation of the G-quadruplex or disrupt G-quadruplex structures.However,the study on these agents should also be helpful for the treatment of some sort of diseases[11].For example,the promotion of telomerase activity by disrupting the G-quadruplex formation by telomere sequence may play an important role in the treatment of liver cirrhosis,etc[12].

    Some cations,such as K+,Na+,NH4+,Mg2+,Pb2+,Sr2+and Tl+,can promote the G-quadruplex formation and impart G-quadruplex stabilization.The effects of these ions on G-quadruplex stability and polymorphism have been widely investigated[13-15].To the best of our knowledge,only two ions,Hg2+ion and Ag+ion,have beenreported to have the ability to disrupt G-quadruplex structures in the presence of high concentration of K+[16-19].Hg2+can destroy the G-quadruplex formed by the G-rich sequence containing T bases via forming THg2+-T base pair[16-17],and Ag+ion can chelate to N7 and C6O groups in G bases and can greatly interfere with the formation of G-quadruplexes(Fig.1)[18-19].Some G-quadruplex DNAzyme-based sensors for Hg2+and Ag+have been developed by utilizing the G-quadruplex-disrupting abilities of these two ions[16-19].It is necessary to investigate the abilities of the two ions to disrupt the G-quadruplex structures in detail.Such studies will provide valuable information for the investigation in the interactions between the metal ions and G-quadruplexes and the design of metal complex-based G-quadruplex disrupting reagents,and will also help to develop some important analytical applications of these interactions,for example,constructing DNA logic gates.

    Recently,molecular switches and molecular logic gates have attracted considerable attention owing to the importance of the development of miniaturized devices[20-21].As a new generation of molecular logic gates,DNA molecular logic gates have attracted increasing interest in recent years due to the wellregulated structures of DNAs and their abilities to store genetic information[22].

    Fig.1 (a)Proposed mechanism of the disruption of G-quadruplexes by Ag+and Hg2+ions,and the reformation of G-quadruplexes in the presence of Cysteine(Cys).(b)The design of a DNA IMPLICATION logic gate

    In the present study,the effects of Hg2+and Ag+ions on four representative G-quadruplexe structures were studied and compared by circular dichroism(CD) spectra and their G-quadruplex-disrupting mechanisms were also discussed.It is interesting that both of the two G-quadruplex-disrupting metal ions can tightly bind to the thiol group of cysteine(Cys).Thus,Cys may capture Ag+or Hg2+from DNA-Ag+or DNA-Hg2+complexes,promoting the reformation of G-quadruplexes.As a result,a DNA IMPLICATION logic gate was constructed by sequential addition of Ag+(or Hg2+)and Cys into G-quadruplex solutions.In this IMPLICATION logic gate,Ag+(or Hg2+)and Cys can be as the two inputs,and CD signal can be as the output.

    1 Experimental

    1.1 Materials and reagents

    The oligonucleotides listed in Table 1 were purchased from Sangon Biotech.Co.,Ltd.(Shanghai,China).The concentrations of the oligonucleotides were represented as single-stranded concentration.Singlestranded concentration was determined by measuring the absorbance at 260 nm.Molar extinction coefficient was determined using a nearest neighbour approximation (http://www.idtdna.com/analyzer/Applications/OligoAnalyzer).AgNO3,Hg(Ac)2and L-cysteine(Cys)were obtained from Sigma.All chemical reagents were of analytical grade and used without further purification.Deionized and sterilized water (resistance >18 MΩ·cm-1)was used throughout the experiments.

    Table 1 Sequences of the oligonucleotides used in this work

    1.2 Circular dichroism(CD)titration

    3 mL reaction mixture was prepared in 10 mmol·L-1Tris-HAc buffer(pH=7.4)containing 1.5 μmol·L-1individual DNA oligonculeotide and 50 mmol·L-1KAc.In orderto ensure the formation ofG-quadruplex structures,the mixture was heated at 95℃for 5 min,cooled slowly to 25℃and then incubated at 25 ℃ overnight.To this mixture concentrated Ag+or Hg2+solution was added continuously,and the mixture was thoroughly mixed by repeated aspiration and injection.CD spectra of the mixtures were recorded between 200 and 320 nm in 1 mm path length cuvettes on a Jasco J-715 spectropolarimeter.Spectra were averaged from 3 scans recorded at 100 nm·min-1with a response time of 1 s and a bandwith of 1.0 nm.The CD signals and the concentrations of DNA oligonucleotides and metal ions were corrected for the amount of volume change during titration.

    1.3 IMPLICATION logic operation

    3 mL reaction mixture was prepared in 10 mmol·L-1Tris-HAc buffer(pH=7.4)containing 1.5 μmol·L-1individual DNA oligonculeotide and 50 mmol·L-1KAc.In orderto ensure the formation ofG-quadruplex structures,the mixture was heated at 95℃for 5 min,cooled slowly to 25℃and then incubated at25 ℃ overnight.To thismixture concentrated Ag+(or Hg2+)solution was added to reach a specified concentration,and CD spectrum of the mixture was recorded.Then,concentrated Cys solution was added to reach the same concentration as the metal ion,and CD spectrum of the mixture was recorded again.CD spectra were all recorded between 200 and 320 nm in 1 mm path length cuvettes on a Jasco J-715 spectropolarimeter.The spectra average was performed using the same procedure as that in section 1.2.

    2 Results and discussion

    2.1 Disrupting abilities of Ag+and Hg2+ions to the G-quadruplex formed by Hum24

    The CD spectra of G-quadruplex-forming G-rich oligonucleotides in the presence of different concentrations of each ion were used to investigate the disruption of G-quadruplexes by the metal ions.It has been reported that CD spectra of a typical parallel G-quadruplex structure have a positive peak near 260 nm and a negative peak around 240 nm,whereas CD spectra of a typical antiparallel G-quadruplex structure have a positive peak at 295 nm and a negative peak close to 265 nm[23-24].Hum24,KRAS,M3Q and Oxy28(Table 1)were used as the four G-quadruplex-forming oligonucleotides.Hum24 is a G-rich oligonucleotide with the repeated subunit of the telomere from vertebrates.In the presence of 50 mmol·L-1K+,the CD spectrum of Hum24 displayed a positive peak at around 290 nm and a negative peak at 240 nm (Fig.2a),indicating that neither a typical antiparallel G-quadruplex nor a typical parallel G-quadruplex can be formed.It is very possible that Hum24 adopts a hybrid structure containing both syn-and anti-bonds[25-28].As shown in Fig.2a,the addition of Ag+ion leads to a gradual decrease in the positive CD signal intensity at 290 nm,reaching a plateau when the concentration of Ag+exceeded 6 μmol·L-1.According to the plot of CD signal density versus Ag+concentration,the IC50value,which represents the metal ion concentration required for 50% decrease of the signal intensity,can be calculated.The obtained IC50value is 2.2 μmol·L-1(Table 2).

    Fig.2a Ag+ion-mediated disruption of the G-quadruplex formed by Hum24.Ag+concentration-dependent change in CD spectra.The corrected concentrations of Ag+are (arrow direction):0,0.2,0.4,0.6,0.8,1.0,1.2,1.5,2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.9,8.6,9.8 and 14.7 μmol·L-1.The inset represents the Ag+concentration-dependent change in CD signal at 290 nm.The solid line represents least square fit to the data

    Under the same conditions,the addition of Hg2+could also lead to a gradual decrease in the positive CD signal intensity at 290 nm (Fig.2b),and the obtained IC50value is 7.5 μmol·L-1.(Table 2),which is higher than that of Ag+,indicating that the G-quadruplex-disrupting ability of Ag+is higher than that of Hg2+,at least for the G-quadruplex formed by Hum24.This can be easily interpreted by the reported G-quadruplex-disrupting mechanisms(Fig.1)[16-19].That is,Hg2+and Ag+ions can disrupt G-quadruplexes by forming T-Hg2+-T base pair and by chelating to G bases,repectively.As for Ag+ion,its binding sites in the G bases are just involved in the formation of G-quartets that are the basic structural motifs of G-quadruplexes.Therefore,when a Ag+ion binds with a G base in Hum24,the G base cannot participate in the formation of the corresponding G-quartet any more,and thenumberofG-quartetin theG-quadruplex decreases from 3 to 2.As a result,the stability of the G-quadruplex decreases greatly or stable quadruplex cannotbe formed any more.However,Hg2+ion interactes with T bases,which are located in the loops of the G-quadruplex.Thus,it is very possible that the interaction between Hg2+ion and T bases has less effect on G-quadruplex stability.

    Table 2 Calculated IC50values in different G-quadruplex-metal ion systems

    Fig.2b Hg2+ion-mediated disruption of the G-quadruplex formed by Hum24.Hg2+concentration-dependent change in CD spectra.The corrected concentrations of Hg2+are (arrow direction):0,0.2,0.4,0.6,0.8,1.0,1.2,1.5,2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.0,7.9,8.9,9.8,14.7,19.6,24.8 and 29.7 μmol·L-1.The inset represents the Hg2+concentration-dependent change in CD signal at 290 nm.The solid line represents least square fit to the data

    2.2 Disrupting abilities of Ag+and Hg2+ions to the G-quadruplex formed by KRAS

    To further investigate the disrupting abilities of Hg2+and Ag+ions to G-quadruplexes,another oligonucleotide KRAS was used.KRAS is a 32-nucleotide G-rich sequence,which is located in the promoter of the human KRAS gene.The mammalian KRAS gene encodes for a guanine nucleotide binding protein of 21 kDa that is involved in an important cell-growth pathway[29-30].

    Fig.3a Ag+ion-mediated disruption of the G-quadruplex formed by KRAS.Ag+concentration-dependent change in CD spectra.The corrected concentrations of Ag+are (arrow direction):0,0.2,0.4,0.6,0.8,1.0,1.2,1.5,2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.0,7.9,8.9,9.8,14.7,19.6,24.8,29.7,39.5,49.2,58.8,78.0,97.1 and 116.0 μmol·L-1.The inset represents the Ag+concentrationdependent change in CD signal at 262 nm.The solid line represents least square fit to the data

    In the presence of 50 mmol·L-1K+,the CD spectrum of KRAS shows a positive peak at around 262 nm (Fig.3a),indicating that KRAS could form a parallel G-quadruplex[31-32].Increasing the concentration of the added Ag+ion causes a monotonic decrease of the positive CD signal,and the signal intensity nearly reaches zero when 116 μmol·L-1Ag+is added.The calculated IC50value is about 17.9 μmol·L-1(Table 2),which is much higher than that in Hum24-Ag+system.There are 12 G bases in Hum24,and all of them can participate in the formation of G-quartets.When any one of them interacts with Ag+ion,the conformation and stability of the G-quadruplex will be affected greatly.However,there are 21 G bases in KRAS sequence,and according to the previous reports,only 12 G bases in KRAS participate in the formation of G-quartets[31-32].That is to say,other 9 G bases are located in the loops of the G-quadruplex.When the G bases in the loops interact with Ag+ion,the G-quartets may not be destroyed,and the conformation and stability of the G-quadruplex may not be obviously affected.As a result,the KRAS-Ag+system has a higher IC50value than Hum24-Ag+system.

    Under the same conditions,the addition of Hg2+could also lead to a gradual decrease of the positive CD signal intensity,but the decreasing rate was much lower than that in KRAS-Ag+system (Fig.3b).Even when 116 μmol·L-1Hg2+ion is added,the positive peak still remained a high signal intensity,indicating thatHg2+ion can notentirely destroy the G-quadruplex structure.The calculated IC50value was >116 μmol·L-1(Table 2),suggesting the weak ability of Hg2+ion to disrupt the G-quadruplex structure formed by KRAS.This can be easily interpreted.The weak disruption of Hg2+ion should be attributed to the only 2 T bases in KRAS sequence.

    Fig.3b Hg2+ion-mediated disruption of the G-quadruplex formed by KRAS.Hg2+concentration-dependent change in CD spectra.The corrected concentrations of Hg2+are (arrow direction):0,0.2,0.4,0.6,0.8,1.0,1.2,1.5,2.0,3.0,4.0,5.0,6.0,7.0,7.9,8.9,9.8,14.7,19.6,24.8,29.7,39.5,49.2,58.8,78.0,97.1 and 116.0 μmol·L-1.The inset represents the Hg2+concentration-dependent change in CD signal at 262 nm.The solid line represents least square fit to the data

    2.3 Disrupting abilities of Ag+and Hg2+ions to the G-quadruplex formed by M3Q

    M3Q is a 20-nucleotide G-rich sequence located on the upstream of the initiation codon of MT3-MMP mRNA.Matrix metalloproteinases (MMPs)are zincdependent endopeptidases and coded by MT3-MMP mRNA.The upregulation of MMP protein expression level is associated with the invasiveness of many cancers[33-34].

    In the presence of 50 mmol·L-1K+,M3Q also folded into a parallel G-quadruplex with a positive peak at around 262 nm in the CD spectrum (Fig.4a).With an increased concentration of Ag+ion,the CD signal intensity was decreased significantly,reaching zero at about 58 μmol·L-1Ag+.The calculated IC50value is 15.4 μmol·L-1(Table 2),which is much higher than that of the Hum24-Ag+system and a little lower than that of the KRAS-Ag+system.There are 14 G bases in M3Q,and 12 of them participate in the formation of G-quartets.The other two are located in the loops of the G-quadruplex.The number of the G bases in loops is just between those in the G-quadruplexes formed by KRAS and Hum24.This result further demonstrates the proposed G-quadruplex-disrupting mechanism of Ag+ion.

    Fig.4a Ag+ion-mediated disruption of the G-quadruplex formed by M3Q.Ag+concentration-dependent change in CD spectra.The corrected concentrations of Ag+are (arrow direction):0,0.2,0.4,0.6,0.8,1.0,1.2,1.5,2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.0,7.9,8.9,9.8,14.7,19.6,24.8,29.7,39.5,49.2,58.8,78.0,97.1 and 116.0 μmol·L-1.The inset represents the Ag+concentrationdependent change in CD signal at 262 nm.Thesolid line represents least square fit to the data

    According to the reported G-quadruplexdisrupting mechanism of Hg2+ion[16-17],Hg2+ion should notdestroy the G-quadruplex formed by M3Q,because there is no T base in M3Q at all.To our surprise,however,the CD signal intensity increases with increasing the concentration of Hg2+ion in the low Hg2+concentration range (Fig.4b),suggesting that low concentrations of Hg2+can promote the folding of M3Q into G-quadruplex structure or increase the stability of the G-quadruplex.Further addition of Hg2+could also decrease the CD signal intensity though the signal intensity still remains at a very high level even when 116 μmol·L-1Hg2+is added.That is to say,besides the formation of T-Hg2+-T base pairs,Hg2+ion can also disrupt G-quadruplex structures through other way(s).

    Fig.4b Hg2+ion-mediated disruption of the G-quadruplex formed by M3Q.(A)Hg2+concentration-dependent change in CD spectra.The corrected concentrations of Hg2+are (arrow direction):0,1.0,1.2,1.5,2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.0,7.9,8.9,9.8,14.7,19.6,24.8,29.7,39.5,49.2,58.8,78.0,97.1 and 116.0 μmol·L-1.The inset represents the CD spectrum change in the Hg2+concentration range of 0~1.0 μmol·L-1.The corrected concentrations of Hg2+are(arrow direction):0,0.2,0.4,0.6,0.8 and 1.0 μmol·L-1. (B)Hg2+concentration-dependent change in CD signal at 262 nm.The solid line represents least square fit to the data.The inset represents the CD signal change in the Hg2+concentration range of 0~1.0 μmol·L-1

    2.4 Disrupting abilities of Ag+and Hg2+ions to the G-quadruplex formed by Oxy28

    Asforthe threeoligonucleotidesmentioned above,KRAS and M3Q adopt parallel G-quadruplex structure,Hum24 adoptsa hybrid G-quadruplex structure.To investigate the disrupting abilities of Hg2+and Ag+ions to G-quaduplexes with antiparallel structure,Oxy28 was used.Oxy28 is a 28-nucleotide G-rich sequence with the repeated subunit of the telomere from Oxytricha.In the presence of 50 mmol·L-1K+,the CD spectrum of Oxy28 displays a positive peak at around 293 nm and negative peak at around 260 nm,which is typical of antiparallel G-quadruplexes.As shown in Fig.5a,the CD signal intensity of Oxy28 also monotonically decreases with the increment of Ag+.The calculated IC50value is 20.5 μmol·L-1(Table 2),which is the highest one in the four G-quadruplexes studied in this work.This is not surprised.Because the G-quadruplex formed by Oxy28 contained four G-quartets,the stability of the G-quadruplex formed by Oxy28 is certainly higher than the G-quadruplexes containing three G-quartets.The higher stability might increase the difficulty of Ag+-mediated disruption of G-quadruplex structures.When one G-quartet is destroyed by Ag+and the number of G-quartet decreases from four to three,the stable G-quadruplex still exists.

    Fig.5a Ag+ion-mediated disruption of the G-quadruplex formed by Oxy28.Ag+concentration-dependent change in CD spectra.The corrected concentrations of Ag+are (arrow direction):0,0.2,0.4,0.6,0.8,1.0,1.2,1.5,2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.0,7.9,8.9,9.8,14.7,19.6,24.5,29.3,39.0,48.5,58.1,77.0,95.8 and 114.5 μmol·L-1.The inset represents the Ag+concentrationdependent change in CD signal at 293 nm.The solid line represents least square fit to the data

    Oxy28 is a T-rich oligonucleotide.The addition of Hg2+should has significant effect on the G-quadruplex formed by Oxy28 through T-Hg2+-T base pair formation.As shown in Fig.5b,the addition of Hg2+indeed leads to the decrease of the CD signal intensity,but the decreasing rate is not so great as we expect.The calculated IC50value is 77 μmol·L-1,which is lower than those of KRAS and M3Q,but much higher than that of Hum24.The lower IC50value in comparison to KRAS and M3Q can be interpreted by the higher T-base number in Oxy28.The higher IC50value in comparison to Hum24 may be attributed to the higher stability of the G-quadruplex formed by Oxy28.

    Fig.5b Hg2+ion-mediated disruption of the G-quadruplex formed by Oxy28.Hg2+concentration-dependent change in CD spectra.The corrected concentrations of Hg2+are (arrow direction):0,0.2,0.4,0.6,0.8,1.0,1.2,1.5,2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.0,7.9,8.9,9.8,14.7,19.6,24.5,29.3,39.0,48.5,58.1,77.0,95.8 and 114.5 μmol·L-1.The inset represents the Hg2+concentrationdependent change in CD signal at 293 nm.The solid line represents least square fit to the data

    Comparing with K+,Na+,NH4+,Mg2+,Pb2+,Sr2+and Tl+,Hg2+and Ag+show effective disruption abilities to G-quadruplex structures as described by above experiments.The ionic radius is a parameter that aptly describes how well guanine tetrads are stabilized by various cations,and K+and Sr2+with similar ionic radii of approximately 0.13 nm imparting G-quadruplex prominent stabilization are believed to fit exceptionally well in the cavities between guanine tetrads[13].The ionic radii of Hg2+and Ag+are similar with that of Na+(0.1 nm).According to the above fit model,they should show the similar effect on the stabilization of G-quadruplex structures with Na+.So we believe that the disruption abilities of Hg2+and Ag+to G-quadruplex structures may be due to the formation of the coordinate bonds between Hg2+or Ag+with the nitrogen and/or oxygen atoms in the bases of the strands,instead of the interaction with guanine tetrads.

    2.5 Construction of DNA IMPLICATION logic gates

    The experiments mentioned above show that both Ag+and Hg2+can disrupt G-quadruplex structures,though the disrupting abilities of them are highly dependent on the stability and base component of G-quadruplexes.It is reported that Cys,a thiol-containing amino acid,can tightly bind to Ag+or Hg2+[35-36].Thus the interactions between the two metal ions and DNA bases could be influenced by Cys.Based on this,many highly sensitive and specific Cys detection methods have been reported[37-40].Herein,using Ag+and Cys as the two inputs and the CD signal as output,a DNA IMPLICATION logic gate is designed.Fig.6 shows the operation of the IMPLICATION logic gate utilizing the influence of Ag+or/and Cys on the CD spectrum of Hum24.Similar spectrum variation can be observed in the operation to KRAS,M3Q and Oxy28.As shown in Fig.6,with no input or with Cys input alone,CD signal maintains at high levels with an output of 1.With Ag+input alone,the CD signal decreases sharply,giving an output of 0.With both Ag+and Cys inputs,the CD signal is recovered to almost its initial level with an output of 1,suggesting the disruption of the Ag+-DNA complex and the reformation of G-quadruplex structure.A bar graph of the output signals of the system is in Fig.6(B),and the truth table is in Fig.6(C).Using Hg2+and Cys as the two inputs,similar IMPLICATION logic gate can also be designed.

    Fig.6 Operation of the IMPLICATION logic gate utilizing the influence of Ag+and/or Cys on the CD spectrum of Hum24.(A)CD spectra of Hum24 in the presence of different inputs.1:CAg+=0 μmol·L-1,CCys=0 μmol·L-1;2:CAg+=8 μmol·L-1,CCys=0 μmol·L-1;3:CAg+=0 μmol·L-1,CCys=8 μmol·L-1;4:CAg+=8 μmol·L-1,CCys=8 μmol·L-1.(B)The CD signal intensities at 290 nm in the presence of different inputs.The dashed line represents the defined threshold value.(C)Truth table for the DNA IMPLICATION logic gate

    3 Conclusions

    In conclusion, the G-quadruplex-disrupting abilities of Hg2+and Ag+ions were studied using four representative G-quadruplex-forming sequences.According to the experimental results,some primary conclusions can be drawn:(1)Hg2+and Ag+ions both exhibit the disrupting abilities to the representative G-quadruplex-forming sequences.Compared to Hg2+ion,Ag+ion can display higher G-quadruplex-disrupting ability. (2)Ag+ion can be used as a general G-quadruplex-disrupting reagent.Itcan disruptG-quadruplexes by interacting with G bases.Because G bases are necessary for G-quadruplex formation,the G-quadruplex-disrupting ability of Ag+ion can be applicable to any G-quadruplexes.(3)The G bases located in the loops of G-quadruplexes can also interact with Ag+ion.As a result,the presence of G bases in G-quadruplex loops can decrease the G-quadruplex-disrupting ability of Ag+ion.(4)The G-quadruplex-disrupting ability of Hg2+to T-rich G-quadruplexesishigherthan thatto T-poorG-quadruplexes,demonstrating that the formation of THg2+-T base pairs is one important way for Hg2+ion to disrupt T-rich G-quadruplexes.But because Hg2+ion can also disrupt G-quadruplexes without T bases(M3Q),Hg2+ion may also disrupt G-quadruplexes by other way(s).(5)The stability of the G-quadruplex has a great effect on the G-quadruplex-disrupting abilities of Ag+and Hg2+ions.These results may provide some important information for the development of highly efficient G-quadruplex-disrupting reagents, for example metal complexes-based G-quadruplexdisrupting reagents.

    The G-quadruplex-disrupting abilities of Ag+and Hg2+,together with their strong interactions with Cys,provide the possibility to carry out an IMPLICATION logic opertation.Thus,using Ag+(or Hg2+)and Cys as the two inputs,CD signal as the output,a DNA IMPLICATION logic gate has been constructed.To the best of our knowledge,this logic gate is the third example of a molecular logic gate using CD signal as output[41-42],and the first example of a DNA IMPLICATION logic gate using CD signal as output.

    [1]Gilbert D E,Feigon J.Curr.Opin.Struct.Biol.,1999,9:305-314

    [2]Huppert J L.Chem.Soc.Rev.,2008,37:1375-1384

    [3]Williamson J R.Annu.Rev.Biophys.Biomol.Struct.,1994,23:703-730

    [4]Rhodes D,Giraldo R.Curr.Opin.Struct.Biol.,1995,5:311-322

    [5]Zahler A M,Williamson J R,Cech T R,et al.Nature,1991,350:718-720

    [6]Howell L A,Searcey M.ChemBioChem.,2009,10:2139-2143

    [7]Shi S,Yao T M,Ji L N,et al.Dalton Trans.,2012,41:5789-5793

    [8]Shi S,Yao T M,Ji L N,et al.J.Inorg.Biochem.,2013,121:19-27

    [9]Lipps H J,Rhodes D.Trends Cell.Biol.,2009,19:414-422

    [10]Neidle S.FEBS J.,2009,277:1118-1125

    [11]Shalaby T,Hiyama E,Grotzer M A.Anticancer Agents Med.Chem.,2010,10:196-212

    [12]Lechel A,Manns M P,Rudolph K L.J.Hepatol.,2004,41:491-497

    [13]Simonsson T.Biol.Chem.,2001,382:621-628

    [14]Gill M L,Strobel S L,Loria J P.Nucleic Acids Res.,2006,34:4506-4514

    [15]Liu W,Liang H J,Fu Y.J.Phys.Chem.B,2011,115:13051-13056

    [16]Li T,Dong S J,Wang E K.Anal.Chem.,2009,81:2144-2149

    [17]Li T,Li B,Wang E K,et al.Chem.Commun.,2009,45:3551-3553

    [18]Zhou X H,Kong D M,Shen H X.Anal.Chem.,2010,82:789-793

    [19]Kong D M,Xu J,Shen H X.Anal.Chem.,2010,82:6148-6153

    [20]Topal S Z,Gürek A G,Ertekin K,et al.Mater.Chem.Phys.,2010,121:425-531

    [21]Chen X,Wang Y,Liu Q,et al.Angew.Chem.Int.Ed.Engl.,2006,45:1759-1762

    [22]Xie W Y,Huang W T,Li N B,et al.Chem.Commun.,2012,48:82-84

    [23]Paramasivan S,Rujan I,Bolton P H.Methods,2007,43:324-331

    [24]Kong D M,Cai L L,Guo J H,et al.Biopolymers,2009,91:331-339

    [25]Monchaud D,Yang P,Lacroix L,et al.Angew.Chem.Int.Ed.Engl.,2008,47:4858-4861

    [26]Ambrus A,Chen D,Dai J,et al.Nucleic Acids Res.,2006,34:2723-2735

    [27]Kong D M,Ma Y E,Guo J H,et al.Anal.Chem.,2009,81:2678-2684

    [28]Luu K N,Phan A T,Kuryavyi V,et al.J.Am.Chem.Soc.,2006,128:9963-9970

    [29]Malumbres M,Barbacid M.Nat.Rev.Cancer,2003,3:459-465

    [30]Xodo L,Paramasivam M,Membrino A,et al.Nucleic Acids Symp.Ser.,2008,52:159-160

    [31]Chen Z,Zheng K W,Hao Y H,et al.J.Am.Chem.Soc.,2009,131:10430-10438

    [32]Paramasivam M,Membrino A,Cogoi S,et al.Nucleic Acids Res.,2009,37:2841-2853

    [33]Hotary K,Li X Y,Allen E,et al.Genes Dev.,2006,20:2673-2686

    [34]Morris M J,Basu S.Biochem.,2009,48:5313-5319

    [35]Gruen L C.Biochim.Biophys.Acta,1975,386:270-274

    [36]Burstein Y,Sperling R.Biochim.Biophys.Acta,1970,211:410-412

    [37]Guo J H,Kong D M,Shen H X.Biosens.Bioelectron.,2010,26:327-332

    [38]Li T,Shi L L,Wang E K,et al.Chem.Eur.J.,2009,15:3347-3350

    [39]Ruan Y B,Li A F,Zhao J S,et al.Chem.Commun.,2010,46:4938-4940

    [40]Jia S M,Liu X F,Li P,et al.Biosens.Bioelectron.,2011,27:148-152

    [41]D′Urso A,Mammana A,Balaz M,et al.J.Am.Chem.Soc.,2009,131:2046-2047

    [42]Zhou Y C,Zhang D Q,Zhang Y Z,et al.J.Org.Chem.,2005,70:6164-6170

    猜你喜歡
    化學(xué)系外語系天津大學(xué)
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    《天津大學(xué)學(xué)報(社會科學(xué)版)》簡介
    Research on Real Meaning of American Dream in Great Gatsby
    速讀·中旬(2021年2期)2021-07-23 22:33:04
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    Research on Uranium Mining
    長治學(xué)院外語系
    一個二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    學(xué)生寫話
    CriticalRealisminGreatExpectations
    山東青年(2014年10期)2014-11-24 11:20:27
    天津大學(xué)學(xué)報(社會科學(xué)版)2014年總目次
    一区二区三区国产精品乱码| 在线观看免费高清a一片| 国产精品99久久99久久久不卡| 国产深夜福利视频在线观看| 亚洲精品美女久久av网站| 交换朋友夫妻互换小说| 91麻豆av在线| 高潮久久久久久久久久久不卡| 亚洲欧美精品综合一区二区三区| 极品少妇高潮喷水抽搐| 免费观看人在逋| 久久久久国内视频| 搡老乐熟女国产| 国产精品国产高清国产av | 性少妇av在线| 丰满人妻熟妇乱又伦精品不卡| 老司机福利观看| 成人永久免费在线观看视频| 99久久人妻综合| 国产三级黄色录像| 日本一区二区免费在线视频| 99久久99久久久精品蜜桃| 日韩免费av在线播放| 亚洲av美国av| 两性夫妻黄色片| 国产高清国产精品国产三级| 黄色成人免费大全| 精品亚洲成国产av| 亚洲av熟女| 亚洲成国产人片在线观看| 色播在线永久视频| 久久久久久人人人人人| 精品久久久久久久毛片微露脸| 精品熟女少妇八av免费久了| 王馨瑶露胸无遮挡在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品中文字幕一二三四区| 日本wwww免费看| 真人做人爱边吃奶动态| 精品亚洲成国产av| а√天堂www在线а√下载 | 91精品三级在线观看| 桃红色精品国产亚洲av| xxxhd国产人妻xxx| 国产成人欧美| 亚洲av电影在线进入| 18禁黄网站禁片午夜丰满| av国产精品久久久久影院| 色婷婷久久久亚洲欧美| 欧美黑人精品巨大| 亚洲av熟女| 熟女少妇亚洲综合色aaa.| www日本在线高清视频| 久久久国产欧美日韩av| 亚洲av欧美aⅴ国产| 国产精品免费大片| 日韩中文字幕欧美一区二区| 天堂√8在线中文| 后天国语完整版免费观看| 伦理电影免费视频| 亚洲熟女毛片儿| 91麻豆精品激情在线观看国产 | 搡老乐熟女国产| 国产亚洲精品久久久久久毛片 | 91精品国产国语对白视频| 国产欧美日韩一区二区三区在线| 久久久水蜜桃国产精品网| 欧美日韩视频精品一区| 中文字幕av电影在线播放| 老熟妇仑乱视频hdxx| 捣出白浆h1v1| 性少妇av在线| 老司机在亚洲福利影院| 一本一本久久a久久精品综合妖精| 亚洲五月婷婷丁香| 一级毛片精品| 欧美精品高潮呻吟av久久| 亚洲人成77777在线视频| 波多野结衣一区麻豆| 久久午夜综合久久蜜桃| 欧美亚洲日本最大视频资源| 露出奶头的视频| 免费不卡黄色视频| 咕卡用的链子| 丁香欧美五月| 午夜福利在线观看吧| 亚洲欧洲精品一区二区精品久久久| 欧美激情久久久久久爽电影 | 午夜视频精品福利| 久久国产精品大桥未久av| aaaaa片日本免费| 欧美大码av| 成人精品一区二区免费| 国产成人免费无遮挡视频| 欧美日韩国产mv在线观看视频| 亚洲专区国产一区二区| 丝瓜视频免费看黄片| 在线观看免费视频网站a站| av有码第一页| 日韩人妻精品一区2区三区| x7x7x7水蜜桃| av天堂久久9| 一本大道久久a久久精品| 国产精品久久久久久精品古装| 午夜福利欧美成人| 老司机影院毛片| 免费观看a级毛片全部| 色尼玛亚洲综合影院| 欧美性长视频在线观看| 80岁老熟妇乱子伦牲交| 欧美日韩视频精品一区| 精品卡一卡二卡四卡免费| 女人高潮潮喷娇喘18禁视频| 国产精品久久视频播放| 丁香六月欧美| 日本五十路高清| 男女之事视频高清在线观看| 久久久久精品国产欧美久久久| 黄网站色视频无遮挡免费观看| 亚洲精品美女久久av网站| 老司机午夜十八禁免费视频| 老熟妇乱子伦视频在线观看| 捣出白浆h1v1| 欧美成人免费av一区二区三区 | 极品教师在线免费播放| 国产精品 欧美亚洲| 国产亚洲av高清不卡| 中文字幕人妻丝袜一区二区| 在线av久久热| 亚洲成人免费电影在线观看| 午夜福利在线免费观看网站| 国内久久婷婷六月综合欲色啪| 成人特级黄色片久久久久久久| 99在线人妻在线中文字幕 | 一区福利在线观看| 后天国语完整版免费观看| 亚洲成人手机| 精品国产美女av久久久久小说| 成年人黄色毛片网站| 丝袜美足系列| 80岁老熟妇乱子伦牲交| 久久这里只有精品19| 国产精品自产拍在线观看55亚洲 | 国产麻豆69| 最新在线观看一区二区三区| av网站在线播放免费| netflix在线观看网站| 丁香欧美五月| 一级作爱视频免费观看| 欧美日韩瑟瑟在线播放| 欧美日本中文国产一区发布| 亚洲综合色网址| 麻豆乱淫一区二区| 亚洲性夜色夜夜综合| 欧美日韩亚洲国产一区二区在线观看 | netflix在线观看网站| 亚洲国产看品久久| 亚洲一卡2卡3卡4卡5卡精品中文| 免费日韩欧美在线观看| 欧美激情极品国产一区二区三区| 午夜成年电影在线免费观看| 老熟女久久久| 夜夜爽天天搞| 精品久久久精品久久久| 99热只有精品国产| 免费不卡黄色视频| 黑人巨大精品欧美一区二区mp4| 久久久久精品人妻al黑| 国产男女内射视频| 国产在线一区二区三区精| 高清黄色对白视频在线免费看| 精品第一国产精品| 国产成人系列免费观看| 这个男人来自地球电影免费观看| 国产1区2区3区精品| 日韩 欧美 亚洲 中文字幕| 久久性视频一级片| 又黄又爽又免费观看的视频| 女人久久www免费人成看片| 婷婷丁香在线五月| ponron亚洲| 精品免费久久久久久久清纯 | 亚洲人成77777在线视频| 午夜久久久在线观看| 国产成人欧美| 满18在线观看网站| 精品高清国产在线一区| 久热这里只有精品99| 欧美日韩福利视频一区二区| 国产亚洲av高清不卡| 久久国产精品大桥未久av| 成人18禁在线播放| 波多野结衣av一区二区av| 亚洲精品自拍成人| 欧美性长视频在线观看| 日韩三级视频一区二区三区| svipshipincom国产片| 国产精品综合久久久久久久免费 | 欧美黑人精品巨大| 最新在线观看一区二区三区| ponron亚洲| 啪啪无遮挡十八禁网站| 国产在视频线精品| 国产在线观看jvid| 国产在线观看jvid| 色94色欧美一区二区| 黄色 视频免费看| 99re6热这里在线精品视频| 香蕉国产在线看| 精品国产乱子伦一区二区三区| 久热爱精品视频在线9| avwww免费| 麻豆av在线久日| 777米奇影视久久| 99久久99久久久精品蜜桃| 午夜视频精品福利| 久久香蕉国产精品| 视频区图区小说| 美女福利国产在线| av线在线观看网站| 国产一区二区三区在线臀色熟女 | 亚洲色图 男人天堂 中文字幕| 国内久久婷婷六月综合欲色啪| 精品一区二区三区视频在线观看免费 | 欧美最黄视频在线播放免费 | 成人永久免费在线观看视频| 精品亚洲成a人片在线观看| av有码第一页| 久久午夜综合久久蜜桃| 久久精品熟女亚洲av麻豆精品| 久99久视频精品免费| 欧美不卡视频在线免费观看 | 女警被强在线播放| 变态另类成人亚洲欧美熟女 | 女性生殖器流出的白浆| 久久人人爽av亚洲精品天堂| 在线观看免费视频网站a站| 99久久国产精品久久久| 身体一侧抽搐| 久久久久国内视频| 高清欧美精品videossex| 亚洲,欧美精品.| 老司机午夜福利在线观看视频| 女人被躁到高潮嗷嗷叫费观| 久久精品亚洲av国产电影网| 在线观看66精品国产| 丝袜美腿诱惑在线| 国产成人免费无遮挡视频| 丰满的人妻完整版| 欧美成人免费av一区二区三区 | 青草久久国产| 黑人巨大精品欧美一区二区mp4| 午夜福利在线免费观看网站| 久久久国产一区二区| 午夜久久久在线观看| 国产成人欧美在线观看 | 一级a爱片免费观看的视频| 久久精品国产亚洲av高清一级| 校园春色视频在线观看| 激情在线观看视频在线高清 | 国产高清国产精品国产三级| 精品一区二区三区视频在线观看免费 | 亚洲专区字幕在线| 亚洲成人免费av在线播放| 久久精品国产亚洲av高清一级| √禁漫天堂资源中文www| 国产精品99久久99久久久不卡| 人妻一区二区av| 首页视频小说图片口味搜索| 丝袜在线中文字幕| 午夜精品在线福利| 日韩中文字幕欧美一区二区| 中亚洲国语对白在线视频| 欧美乱码精品一区二区三区| 90打野战视频偷拍视频| 真人做人爱边吃奶动态| 欧美日本中文国产一区发布| 我的亚洲天堂| 亚洲,欧美精品.| 国产精品免费大片| 一a级毛片在线观看| 久久这里只有精品19| 老汉色∧v一级毛片| 日韩人妻精品一区2区三区| 国产成+人综合+亚洲专区| 女性生殖器流出的白浆| 丁香六月欧美| 亚洲精品国产精品久久久不卡| 国产人伦9x9x在线观看| 热99久久久久精品小说推荐| 色尼玛亚洲综合影院| 搡老岳熟女国产| 国产成人一区二区三区免费视频网站| 久久久久久免费高清国产稀缺| 大陆偷拍与自拍| 大码成人一级视频| 十八禁高潮呻吟视频| 69精品国产乱码久久久| 热re99久久精品国产66热6| 久久亚洲真实| 老熟妇乱子伦视频在线观看| 天天操日日干夜夜撸| 成人永久免费在线观看视频| 久久人妻福利社区极品人妻图片| 精品久久久精品久久久| 极品教师在线免费播放| 成人精品一区二区免费| 久久精品人人爽人人爽视色| 中文字幕高清在线视频| 一二三四社区在线视频社区8| 中文字幕最新亚洲高清| 18禁国产床啪视频网站| 久久ye,这里只有精品| 一a级毛片在线观看| 国产成人欧美在线观看 | 黑人猛操日本美女一级片| 欧美av亚洲av综合av国产av| 国产欧美日韩综合在线一区二区| 国产精品综合久久久久久久免费 | 岛国毛片在线播放| 国精品久久久久久国模美| 1024香蕉在线观看| 制服人妻中文乱码| 国产精品国产av在线观看| 美女扒开内裤让男人捅视频| 午夜福利乱码中文字幕| 国内久久婷婷六月综合欲色啪| 精品视频人人做人人爽| 日韩欧美在线二视频 | 久久久久久久久免费视频了| 亚洲成av片中文字幕在线观看| 搡老乐熟女国产| 两个人免费观看高清视频| 精品久久久久久电影网| 少妇 在线观看| 中文字幕另类日韩欧美亚洲嫩草| 少妇裸体淫交视频免费看高清 | 久久精品aⅴ一区二区三区四区| 国产国语露脸激情在线看| 成人特级黄色片久久久久久久| 男女下面插进去视频免费观看| 久久热在线av| 搡老岳熟女国产| 后天国语完整版免费观看| 一本综合久久免费| 欧美黑人欧美精品刺激| 91麻豆av在线| 咕卡用的链子| 精品亚洲成国产av| 99热国产这里只有精品6| 搡老熟女国产l中国老女人| 国产精品香港三级国产av潘金莲| 操美女的视频在线观看| 国产一区二区三区视频了| 亚洲七黄色美女视频| 丰满迷人的少妇在线观看| 国产xxxxx性猛交| 国产精品偷伦视频观看了| 亚洲国产欧美网| a级片在线免费高清观看视频| 国产麻豆69| 女同久久另类99精品国产91| 亚洲九九香蕉| 国产av精品麻豆| 在线观看免费午夜福利视频| 超碰成人久久| 亚洲中文av在线| √禁漫天堂资源中文www| 久久精品国产a三级三级三级| 90打野战视频偷拍视频| 成人影院久久| 国产成人系列免费观看| 亚洲五月婷婷丁香| 亚洲av成人一区二区三| 亚洲精品一二三| 色婷婷av一区二区三区视频| 日本黄色视频三级网站网址 | 天天躁日日躁夜夜躁夜夜| 欧美午夜高清在线| 日韩一卡2卡3卡4卡2021年| 色老头精品视频在线观看| 宅男免费午夜| 性少妇av在线| 麻豆成人av在线观看| 国产av精品麻豆| 久久热在线av| 亚洲片人在线观看| 制服诱惑二区| www日本在线高清视频| 久久人人97超碰香蕉20202| 精品视频人人做人人爽| 国产av又大| 色婷婷久久久亚洲欧美| 高清视频免费观看一区二区| 人妻久久中文字幕网| 精品电影一区二区在线| 亚洲中文av在线| 正在播放国产对白刺激| 国产高清视频在线播放一区| 中文字幕人妻丝袜制服| 国产激情欧美一区二区| 精品人妻在线不人妻| 精品一区二区三区四区五区乱码| 日本黄色视频三级网站网址 | 人人澡人人妻人| 免费黄频网站在线观看国产| 男人操女人黄网站| 高清毛片免费观看视频网站 | 母亲3免费完整高清在线观看| 人妻丰满熟妇av一区二区三区 | 啪啪无遮挡十八禁网站| 男男h啪啪无遮挡| 久久精品国产亚洲av香蕉五月 | av天堂在线播放| 国产色视频综合| 9热在线视频观看99| 五月开心婷婷网| 两个人看的免费小视频| 国产又色又爽无遮挡免费看| 国产精品秋霞免费鲁丝片| 黄网站色视频无遮挡免费观看| 免费女性裸体啪啪无遮挡网站| 人人澡人人妻人| 久久精品熟女亚洲av麻豆精品| 精品无人区乱码1区二区| 久久久久久免费高清国产稀缺| 别揉我奶头~嗯~啊~动态视频| 国产欧美日韩一区二区三区在线| 99热网站在线观看| 美女午夜性视频免费| 国产精品免费大片| 久久中文看片网| 国产精品电影一区二区三区 | 两性午夜刺激爽爽歪歪视频在线观看 | 色94色欧美一区二区| 91在线观看av| 亚洲一码二码三码区别大吗| 黄色成人免费大全| 国产熟女午夜一区二区三区| 男人舔女人的私密视频| e午夜精品久久久久久久| 日韩 欧美 亚洲 中文字幕| 国产亚洲欧美精品永久| 国产主播在线观看一区二区| 人人妻人人添人人爽欧美一区卜| 99在线人妻在线中文字幕 | 免费人成视频x8x8入口观看| 一级a爱视频在线免费观看| 午夜精品在线福利| 国产精品一区二区在线观看99| 亚洲情色 制服丝袜| 99在线人妻在线中文字幕 | 免费人成视频x8x8入口观看| 黄网站色视频无遮挡免费观看| 免费观看a级毛片全部| 精品人妻1区二区| 亚洲成国产人片在线观看| 日韩精品免费视频一区二区三区| www.熟女人妻精品国产| 国产一区二区三区综合在线观看| 欧美日韩国产mv在线观看视频| 69av精品久久久久久| 亚洲精品一卡2卡三卡4卡5卡| tocl精华| 丝瓜视频免费看黄片| 久久精品国产99精品国产亚洲性色 | 91老司机精品| 人人妻人人澡人人爽人人夜夜| 国产成+人综合+亚洲专区| a级毛片在线看网站| 亚洲三区欧美一区| 日韩一卡2卡3卡4卡2021年| 日本欧美视频一区| xxx96com| 日韩视频一区二区在线观看| 99国产精品一区二区三区| 色精品久久人妻99蜜桃| 国产欧美日韩一区二区三区在线| 久久久国产成人精品二区 | 在线观看午夜福利视频| 少妇粗大呻吟视频| 欧美丝袜亚洲另类 | 国产精品98久久久久久宅男小说| 后天国语完整版免费观看| 极品少妇高潮喷水抽搐| 国产男女内射视频| 黄色视频不卡| 久久精品亚洲熟妇少妇任你| 视频在线观看一区二区三区| 国产欧美日韩一区二区三区在线| 夜夜夜夜夜久久久久| 国产高清激情床上av| 9色porny在线观看| 午夜福利免费观看在线| 九色亚洲精品在线播放| 欧美乱妇无乱码| 男女午夜视频在线观看| 黑人猛操日本美女一级片| 久久久久精品人妻al黑| 欧美国产精品va在线观看不卡| 欧美精品人与动牲交sv欧美| 午夜精品国产一区二区电影| 久久精品国产99精品国产亚洲性色 | 国产高清国产精品国产三级| 国产精品.久久久| 午夜福利影视在线免费观看| 日韩大码丰满熟妇| 国产高清视频在线播放一区| 99久久综合精品五月天人人| 欧美激情 高清一区二区三区| 黄色毛片三级朝国网站| av网站免费在线观看视频| 亚洲色图av天堂| 99国产精品一区二区蜜桃av | 少妇裸体淫交视频免费看高清 | 成人国产一区最新在线观看| 大香蕉久久成人网| 国产亚洲精品久久久久久毛片 | av免费在线观看网站| 久久久久久久久久久久大奶| 午夜激情av网站| 亚洲国产精品一区二区三区在线| www日本在线高清视频| 亚洲av日韩在线播放| 女性被躁到高潮视频| 国产精品久久久久久人妻精品电影| 老熟妇乱子伦视频在线观看| 亚洲国产精品一区二区三区在线| 久久精品亚洲熟妇少妇任你| 大型av网站在线播放| 欧美激情久久久久久爽电影 | 人人妻,人人澡人人爽秒播| 免费在线观看亚洲国产| 国产精品1区2区在线观看. | 精品少妇久久久久久888优播| 黄色视频,在线免费观看| 亚洲午夜精品一区,二区,三区| 欧美色视频一区免费| 男女午夜视频在线观看| av一本久久久久| 久久国产精品大桥未久av| 一二三四在线观看免费中文在| 国产欧美日韩一区二区精品| 天天影视国产精品| 久久久久久久久免费视频了| 亚洲av第一区精品v没综合| 亚洲午夜精品一区,二区,三区| 欧美日韩视频精品一区| 久久国产精品男人的天堂亚洲| 两个人看的免费小视频| 天堂中文最新版在线下载| 国产视频一区二区在线看| 国产精品秋霞免费鲁丝片| 精品国产美女av久久久久小说| 免费在线观看日本一区| 亚洲av欧美aⅴ国产| 中文字幕制服av| 夫妻午夜视频| 91成年电影在线观看| 欧美成人午夜精品| 99热国产这里只有精品6| 黄色女人牲交| 丝袜美足系列| 黄片大片在线免费观看| 国产无遮挡羞羞视频在线观看| 欧美日韩视频精品一区| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕人妻丝袜一区二区| 日本一区二区免费在线视频| 丁香六月欧美| 亚洲av日韩精品久久久久久密| 亚洲成人手机| 久久中文字幕一级| 欧美精品啪啪一区二区三区| 叶爱在线成人免费视频播放| 亚洲午夜理论影院| 黄色视频,在线免费观看| 亚洲成人手机| 99国产综合亚洲精品| 丝袜美足系列| 91av网站免费观看| 在线十欧美十亚洲十日本专区| 亚洲性夜色夜夜综合| 黄色a级毛片大全视频| 亚洲欧美一区二区三区久久| 捣出白浆h1v1| 国产1区2区3区精品| 国产一区二区三区在线臀色熟女 | 亚洲情色 制服丝袜| 十八禁网站免费在线| 欧美最黄视频在线播放免费 | 在线观看免费视频网站a站| 国产在线精品亚洲第一网站| 亚洲av成人不卡在线观看播放网| 十八禁网站免费在线| 久久国产精品大桥未久av| 人人妻,人人澡人人爽秒播| 满18在线观看网站| 老司机福利观看| 亚洲中文字幕日韩| 在线免费观看的www视频| 国产成人欧美在线观看 | 成人手机av| 丁香六月欧美| avwww免费| 一级作爱视频免费观看| 欧美最黄视频在线播放免费 | 在线天堂中文资源库| 老司机福利观看| 少妇粗大呻吟视频| 亚洲av日韩在线播放| 亚洲色图综合在线观看| 日韩精品免费视频一区二区三区| 亚洲熟女精品中文字幕| 不卡av一区二区三区|