• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ag+與Hg2+對G-四鏈體DNA結(jié)構(gòu)的破壞及其對構(gòu)筑DNA邏輯門的應(yīng)用

    2013-10-17 03:03:08朱莉娜王海仙孫潤豐孔德明李孝增
    無機(jī)化學(xué)學(xué)報 2013年10期
    關(guān)鍵詞:化學(xué)系外語系天津大學(xué)

    朱莉娜 王海仙 孫潤豐 李 平 孔德明 李孝增

    (1天津大學(xué)化學(xué)系,天津 300072)

    (2青海民族學(xué)院外語系,西寧 810007)

    (3南開大學(xué)教育部功能高分子材料重點(diǎn)實驗室,天津 300071)

    It is widely accepted that genomic DNA is mainly presented asclassic Watson-Crick double helix.However,as for some DNAs with specific sequences,they may adopt some particular structures[1].For example,some G-rich DNA sequences can form a wide variety of inter-or intramolecular four-stranded structures by Hoogsteen-type base pairing,termed G-quadruplexes[2-5].G-quadruplexes are unique highordered nucleic acid structures attracting more and more attention[6-8],since G-rich sequences with the potential to form quadruplexes have been found in several biologically important regions such as telomeric DNA and many gene promoter regions[9].It has been reported thatthe formation ofG-quadruplex in telomere regions can inhibit telomerase function and the reagents with the ability to promote G-quadruplex formation can be used as potential anti-cancer drugs[10].Most studies on G-quadruplexes are focused on the promotion of G-quadruplex formation.Whereas,there have been rare report on the agents that can inhibit the formation of the G-quadruplex or disrupt G-quadruplex structures.However,the study on these agents should also be helpful for the treatment of some sort of diseases[11].For example,the promotion of telomerase activity by disrupting the G-quadruplex formation by telomere sequence may play an important role in the treatment of liver cirrhosis,etc[12].

    Some cations,such as K+,Na+,NH4+,Mg2+,Pb2+,Sr2+and Tl+,can promote the G-quadruplex formation and impart G-quadruplex stabilization.The effects of these ions on G-quadruplex stability and polymorphism have been widely investigated[13-15].To the best of our knowledge,only two ions,Hg2+ion and Ag+ion,have beenreported to have the ability to disrupt G-quadruplex structures in the presence of high concentration of K+[16-19].Hg2+can destroy the G-quadruplex formed by the G-rich sequence containing T bases via forming THg2+-T base pair[16-17],and Ag+ion can chelate to N7 and C6O groups in G bases and can greatly interfere with the formation of G-quadruplexes(Fig.1)[18-19].Some G-quadruplex DNAzyme-based sensors for Hg2+and Ag+have been developed by utilizing the G-quadruplex-disrupting abilities of these two ions[16-19].It is necessary to investigate the abilities of the two ions to disrupt the G-quadruplex structures in detail.Such studies will provide valuable information for the investigation in the interactions between the metal ions and G-quadruplexes and the design of metal complex-based G-quadruplex disrupting reagents,and will also help to develop some important analytical applications of these interactions,for example,constructing DNA logic gates.

    Recently,molecular switches and molecular logic gates have attracted considerable attention owing to the importance of the development of miniaturized devices[20-21].As a new generation of molecular logic gates,DNA molecular logic gates have attracted increasing interest in recent years due to the wellregulated structures of DNAs and their abilities to store genetic information[22].

    Fig.1 (a)Proposed mechanism of the disruption of G-quadruplexes by Ag+and Hg2+ions,and the reformation of G-quadruplexes in the presence of Cysteine(Cys).(b)The design of a DNA IMPLICATION logic gate

    In the present study,the effects of Hg2+and Ag+ions on four representative G-quadruplexe structures were studied and compared by circular dichroism(CD) spectra and their G-quadruplex-disrupting mechanisms were also discussed.It is interesting that both of the two G-quadruplex-disrupting metal ions can tightly bind to the thiol group of cysteine(Cys).Thus,Cys may capture Ag+or Hg2+from DNA-Ag+or DNA-Hg2+complexes,promoting the reformation of G-quadruplexes.As a result,a DNA IMPLICATION logic gate was constructed by sequential addition of Ag+(or Hg2+)and Cys into G-quadruplex solutions.In this IMPLICATION logic gate,Ag+(or Hg2+)and Cys can be as the two inputs,and CD signal can be as the output.

    1 Experimental

    1.1 Materials and reagents

    The oligonucleotides listed in Table 1 were purchased from Sangon Biotech.Co.,Ltd.(Shanghai,China).The concentrations of the oligonucleotides were represented as single-stranded concentration.Singlestranded concentration was determined by measuring the absorbance at 260 nm.Molar extinction coefficient was determined using a nearest neighbour approximation (http://www.idtdna.com/analyzer/Applications/OligoAnalyzer).AgNO3,Hg(Ac)2and L-cysteine(Cys)were obtained from Sigma.All chemical reagents were of analytical grade and used without further purification.Deionized and sterilized water (resistance >18 MΩ·cm-1)was used throughout the experiments.

    Table 1 Sequences of the oligonucleotides used in this work

    1.2 Circular dichroism(CD)titration

    3 mL reaction mixture was prepared in 10 mmol·L-1Tris-HAc buffer(pH=7.4)containing 1.5 μmol·L-1individual DNA oligonculeotide and 50 mmol·L-1KAc.In orderto ensure the formation ofG-quadruplex structures,the mixture was heated at 95℃for 5 min,cooled slowly to 25℃and then incubated at 25 ℃ overnight.To this mixture concentrated Ag+or Hg2+solution was added continuously,and the mixture was thoroughly mixed by repeated aspiration and injection.CD spectra of the mixtures were recorded between 200 and 320 nm in 1 mm path length cuvettes on a Jasco J-715 spectropolarimeter.Spectra were averaged from 3 scans recorded at 100 nm·min-1with a response time of 1 s and a bandwith of 1.0 nm.The CD signals and the concentrations of DNA oligonucleotides and metal ions were corrected for the amount of volume change during titration.

    1.3 IMPLICATION logic operation

    3 mL reaction mixture was prepared in 10 mmol·L-1Tris-HAc buffer(pH=7.4)containing 1.5 μmol·L-1individual DNA oligonculeotide and 50 mmol·L-1KAc.In orderto ensure the formation ofG-quadruplex structures,the mixture was heated at 95℃for 5 min,cooled slowly to 25℃and then incubated at25 ℃ overnight.To thismixture concentrated Ag+(or Hg2+)solution was added to reach a specified concentration,and CD spectrum of the mixture was recorded.Then,concentrated Cys solution was added to reach the same concentration as the metal ion,and CD spectrum of the mixture was recorded again.CD spectra were all recorded between 200 and 320 nm in 1 mm path length cuvettes on a Jasco J-715 spectropolarimeter.The spectra average was performed using the same procedure as that in section 1.2.

    2 Results and discussion

    2.1 Disrupting abilities of Ag+and Hg2+ions to the G-quadruplex formed by Hum24

    The CD spectra of G-quadruplex-forming G-rich oligonucleotides in the presence of different concentrations of each ion were used to investigate the disruption of G-quadruplexes by the metal ions.It has been reported that CD spectra of a typical parallel G-quadruplex structure have a positive peak near 260 nm and a negative peak around 240 nm,whereas CD spectra of a typical antiparallel G-quadruplex structure have a positive peak at 295 nm and a negative peak close to 265 nm[23-24].Hum24,KRAS,M3Q and Oxy28(Table 1)were used as the four G-quadruplex-forming oligonucleotides.Hum24 is a G-rich oligonucleotide with the repeated subunit of the telomere from vertebrates.In the presence of 50 mmol·L-1K+,the CD spectrum of Hum24 displayed a positive peak at around 290 nm and a negative peak at 240 nm (Fig.2a),indicating that neither a typical antiparallel G-quadruplex nor a typical parallel G-quadruplex can be formed.It is very possible that Hum24 adopts a hybrid structure containing both syn-and anti-bonds[25-28].As shown in Fig.2a,the addition of Ag+ion leads to a gradual decrease in the positive CD signal intensity at 290 nm,reaching a plateau when the concentration of Ag+exceeded 6 μmol·L-1.According to the plot of CD signal density versus Ag+concentration,the IC50value,which represents the metal ion concentration required for 50% decrease of the signal intensity,can be calculated.The obtained IC50value is 2.2 μmol·L-1(Table 2).

    Fig.2a Ag+ion-mediated disruption of the G-quadruplex formed by Hum24.Ag+concentration-dependent change in CD spectra.The corrected concentrations of Ag+are (arrow direction):0,0.2,0.4,0.6,0.8,1.0,1.2,1.5,2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.9,8.6,9.8 and 14.7 μmol·L-1.The inset represents the Ag+concentration-dependent change in CD signal at 290 nm.The solid line represents least square fit to the data

    Under the same conditions,the addition of Hg2+could also lead to a gradual decrease in the positive CD signal intensity at 290 nm (Fig.2b),and the obtained IC50value is 7.5 μmol·L-1.(Table 2),which is higher than that of Ag+,indicating that the G-quadruplex-disrupting ability of Ag+is higher than that of Hg2+,at least for the G-quadruplex formed by Hum24.This can be easily interpreted by the reported G-quadruplex-disrupting mechanisms(Fig.1)[16-19].That is,Hg2+and Ag+ions can disrupt G-quadruplexes by forming T-Hg2+-T base pair and by chelating to G bases,repectively.As for Ag+ion,its binding sites in the G bases are just involved in the formation of G-quartets that are the basic structural motifs of G-quadruplexes.Therefore,when a Ag+ion binds with a G base in Hum24,the G base cannot participate in the formation of the corresponding G-quartet any more,and thenumberofG-quartetin theG-quadruplex decreases from 3 to 2.As a result,the stability of the G-quadruplex decreases greatly or stable quadruplex cannotbe formed any more.However,Hg2+ion interactes with T bases,which are located in the loops of the G-quadruplex.Thus,it is very possible that the interaction between Hg2+ion and T bases has less effect on G-quadruplex stability.

    Table 2 Calculated IC50values in different G-quadruplex-metal ion systems

    Fig.2b Hg2+ion-mediated disruption of the G-quadruplex formed by Hum24.Hg2+concentration-dependent change in CD spectra.The corrected concentrations of Hg2+are (arrow direction):0,0.2,0.4,0.6,0.8,1.0,1.2,1.5,2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.0,7.9,8.9,9.8,14.7,19.6,24.8 and 29.7 μmol·L-1.The inset represents the Hg2+concentration-dependent change in CD signal at 290 nm.The solid line represents least square fit to the data

    2.2 Disrupting abilities of Ag+and Hg2+ions to the G-quadruplex formed by KRAS

    To further investigate the disrupting abilities of Hg2+and Ag+ions to G-quadruplexes,another oligonucleotide KRAS was used.KRAS is a 32-nucleotide G-rich sequence,which is located in the promoter of the human KRAS gene.The mammalian KRAS gene encodes for a guanine nucleotide binding protein of 21 kDa that is involved in an important cell-growth pathway[29-30].

    Fig.3a Ag+ion-mediated disruption of the G-quadruplex formed by KRAS.Ag+concentration-dependent change in CD spectra.The corrected concentrations of Ag+are (arrow direction):0,0.2,0.4,0.6,0.8,1.0,1.2,1.5,2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.0,7.9,8.9,9.8,14.7,19.6,24.8,29.7,39.5,49.2,58.8,78.0,97.1 and 116.0 μmol·L-1.The inset represents the Ag+concentrationdependent change in CD signal at 262 nm.The solid line represents least square fit to the data

    In the presence of 50 mmol·L-1K+,the CD spectrum of KRAS shows a positive peak at around 262 nm (Fig.3a),indicating that KRAS could form a parallel G-quadruplex[31-32].Increasing the concentration of the added Ag+ion causes a monotonic decrease of the positive CD signal,and the signal intensity nearly reaches zero when 116 μmol·L-1Ag+is added.The calculated IC50value is about 17.9 μmol·L-1(Table 2),which is much higher than that in Hum24-Ag+system.There are 12 G bases in Hum24,and all of them can participate in the formation of G-quartets.When any one of them interacts with Ag+ion,the conformation and stability of the G-quadruplex will be affected greatly.However,there are 21 G bases in KRAS sequence,and according to the previous reports,only 12 G bases in KRAS participate in the formation of G-quartets[31-32].That is to say,other 9 G bases are located in the loops of the G-quadruplex.When the G bases in the loops interact with Ag+ion,the G-quartets may not be destroyed,and the conformation and stability of the G-quadruplex may not be obviously affected.As a result,the KRAS-Ag+system has a higher IC50value than Hum24-Ag+system.

    Under the same conditions,the addition of Hg2+could also lead to a gradual decrease of the positive CD signal intensity,but the decreasing rate was much lower than that in KRAS-Ag+system (Fig.3b).Even when 116 μmol·L-1Hg2+ion is added,the positive peak still remained a high signal intensity,indicating thatHg2+ion can notentirely destroy the G-quadruplex structure.The calculated IC50value was >116 μmol·L-1(Table 2),suggesting the weak ability of Hg2+ion to disrupt the G-quadruplex structure formed by KRAS.This can be easily interpreted.The weak disruption of Hg2+ion should be attributed to the only 2 T bases in KRAS sequence.

    Fig.3b Hg2+ion-mediated disruption of the G-quadruplex formed by KRAS.Hg2+concentration-dependent change in CD spectra.The corrected concentrations of Hg2+are (arrow direction):0,0.2,0.4,0.6,0.8,1.0,1.2,1.5,2.0,3.0,4.0,5.0,6.0,7.0,7.9,8.9,9.8,14.7,19.6,24.8,29.7,39.5,49.2,58.8,78.0,97.1 and 116.0 μmol·L-1.The inset represents the Hg2+concentration-dependent change in CD signal at 262 nm.The solid line represents least square fit to the data

    2.3 Disrupting abilities of Ag+and Hg2+ions to the G-quadruplex formed by M3Q

    M3Q is a 20-nucleotide G-rich sequence located on the upstream of the initiation codon of MT3-MMP mRNA.Matrix metalloproteinases (MMPs)are zincdependent endopeptidases and coded by MT3-MMP mRNA.The upregulation of MMP protein expression level is associated with the invasiveness of many cancers[33-34].

    In the presence of 50 mmol·L-1K+,M3Q also folded into a parallel G-quadruplex with a positive peak at around 262 nm in the CD spectrum (Fig.4a).With an increased concentration of Ag+ion,the CD signal intensity was decreased significantly,reaching zero at about 58 μmol·L-1Ag+.The calculated IC50value is 15.4 μmol·L-1(Table 2),which is much higher than that of the Hum24-Ag+system and a little lower than that of the KRAS-Ag+system.There are 14 G bases in M3Q,and 12 of them participate in the formation of G-quartets.The other two are located in the loops of the G-quadruplex.The number of the G bases in loops is just between those in the G-quadruplexes formed by KRAS and Hum24.This result further demonstrates the proposed G-quadruplex-disrupting mechanism of Ag+ion.

    Fig.4a Ag+ion-mediated disruption of the G-quadruplex formed by M3Q.Ag+concentration-dependent change in CD spectra.The corrected concentrations of Ag+are (arrow direction):0,0.2,0.4,0.6,0.8,1.0,1.2,1.5,2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.0,7.9,8.9,9.8,14.7,19.6,24.8,29.7,39.5,49.2,58.8,78.0,97.1 and 116.0 μmol·L-1.The inset represents the Ag+concentrationdependent change in CD signal at 262 nm.Thesolid line represents least square fit to the data

    According to the reported G-quadruplexdisrupting mechanism of Hg2+ion[16-17],Hg2+ion should notdestroy the G-quadruplex formed by M3Q,because there is no T base in M3Q at all.To our surprise,however,the CD signal intensity increases with increasing the concentration of Hg2+ion in the low Hg2+concentration range (Fig.4b),suggesting that low concentrations of Hg2+can promote the folding of M3Q into G-quadruplex structure or increase the stability of the G-quadruplex.Further addition of Hg2+could also decrease the CD signal intensity though the signal intensity still remains at a very high level even when 116 μmol·L-1Hg2+is added.That is to say,besides the formation of T-Hg2+-T base pairs,Hg2+ion can also disrupt G-quadruplex structures through other way(s).

    Fig.4b Hg2+ion-mediated disruption of the G-quadruplex formed by M3Q.(A)Hg2+concentration-dependent change in CD spectra.The corrected concentrations of Hg2+are (arrow direction):0,1.0,1.2,1.5,2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.0,7.9,8.9,9.8,14.7,19.6,24.8,29.7,39.5,49.2,58.8,78.0,97.1 and 116.0 μmol·L-1.The inset represents the CD spectrum change in the Hg2+concentration range of 0~1.0 μmol·L-1.The corrected concentrations of Hg2+are(arrow direction):0,0.2,0.4,0.6,0.8 and 1.0 μmol·L-1. (B)Hg2+concentration-dependent change in CD signal at 262 nm.The solid line represents least square fit to the data.The inset represents the CD signal change in the Hg2+concentration range of 0~1.0 μmol·L-1

    2.4 Disrupting abilities of Ag+and Hg2+ions to the G-quadruplex formed by Oxy28

    Asforthe threeoligonucleotidesmentioned above,KRAS and M3Q adopt parallel G-quadruplex structure,Hum24 adoptsa hybrid G-quadruplex structure.To investigate the disrupting abilities of Hg2+and Ag+ions to G-quaduplexes with antiparallel structure,Oxy28 was used.Oxy28 is a 28-nucleotide G-rich sequence with the repeated subunit of the telomere from Oxytricha.In the presence of 50 mmol·L-1K+,the CD spectrum of Oxy28 displays a positive peak at around 293 nm and negative peak at around 260 nm,which is typical of antiparallel G-quadruplexes.As shown in Fig.5a,the CD signal intensity of Oxy28 also monotonically decreases with the increment of Ag+.The calculated IC50value is 20.5 μmol·L-1(Table 2),which is the highest one in the four G-quadruplexes studied in this work.This is not surprised.Because the G-quadruplex formed by Oxy28 contained four G-quartets,the stability of the G-quadruplex formed by Oxy28 is certainly higher than the G-quadruplexes containing three G-quartets.The higher stability might increase the difficulty of Ag+-mediated disruption of G-quadruplex structures.When one G-quartet is destroyed by Ag+and the number of G-quartet decreases from four to three,the stable G-quadruplex still exists.

    Fig.5a Ag+ion-mediated disruption of the G-quadruplex formed by Oxy28.Ag+concentration-dependent change in CD spectra.The corrected concentrations of Ag+are (arrow direction):0,0.2,0.4,0.6,0.8,1.0,1.2,1.5,2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.0,7.9,8.9,9.8,14.7,19.6,24.5,29.3,39.0,48.5,58.1,77.0,95.8 and 114.5 μmol·L-1.The inset represents the Ag+concentrationdependent change in CD signal at 293 nm.The solid line represents least square fit to the data

    Oxy28 is a T-rich oligonucleotide.The addition of Hg2+should has significant effect on the G-quadruplex formed by Oxy28 through T-Hg2+-T base pair formation.As shown in Fig.5b,the addition of Hg2+indeed leads to the decrease of the CD signal intensity,but the decreasing rate is not so great as we expect.The calculated IC50value is 77 μmol·L-1,which is lower than those of KRAS and M3Q,but much higher than that of Hum24.The lower IC50value in comparison to KRAS and M3Q can be interpreted by the higher T-base number in Oxy28.The higher IC50value in comparison to Hum24 may be attributed to the higher stability of the G-quadruplex formed by Oxy28.

    Fig.5b Hg2+ion-mediated disruption of the G-quadruplex formed by Oxy28.Hg2+concentration-dependent change in CD spectra.The corrected concentrations of Hg2+are (arrow direction):0,0.2,0.4,0.6,0.8,1.0,1.2,1.5,2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.0,7.9,8.9,9.8,14.7,19.6,24.5,29.3,39.0,48.5,58.1,77.0,95.8 and 114.5 μmol·L-1.The inset represents the Hg2+concentrationdependent change in CD signal at 293 nm.The solid line represents least square fit to the data

    Comparing with K+,Na+,NH4+,Mg2+,Pb2+,Sr2+and Tl+,Hg2+and Ag+show effective disruption abilities to G-quadruplex structures as described by above experiments.The ionic radius is a parameter that aptly describes how well guanine tetrads are stabilized by various cations,and K+and Sr2+with similar ionic radii of approximately 0.13 nm imparting G-quadruplex prominent stabilization are believed to fit exceptionally well in the cavities between guanine tetrads[13].The ionic radii of Hg2+and Ag+are similar with that of Na+(0.1 nm).According to the above fit model,they should show the similar effect on the stabilization of G-quadruplex structures with Na+.So we believe that the disruption abilities of Hg2+and Ag+to G-quadruplex structures may be due to the formation of the coordinate bonds between Hg2+or Ag+with the nitrogen and/or oxygen atoms in the bases of the strands,instead of the interaction with guanine tetrads.

    2.5 Construction of DNA IMPLICATION logic gates

    The experiments mentioned above show that both Ag+and Hg2+can disrupt G-quadruplex structures,though the disrupting abilities of them are highly dependent on the stability and base component of G-quadruplexes.It is reported that Cys,a thiol-containing amino acid,can tightly bind to Ag+or Hg2+[35-36].Thus the interactions between the two metal ions and DNA bases could be influenced by Cys.Based on this,many highly sensitive and specific Cys detection methods have been reported[37-40].Herein,using Ag+and Cys as the two inputs and the CD signal as output,a DNA IMPLICATION logic gate is designed.Fig.6 shows the operation of the IMPLICATION logic gate utilizing the influence of Ag+or/and Cys on the CD spectrum of Hum24.Similar spectrum variation can be observed in the operation to KRAS,M3Q and Oxy28.As shown in Fig.6,with no input or with Cys input alone,CD signal maintains at high levels with an output of 1.With Ag+input alone,the CD signal decreases sharply,giving an output of 0.With both Ag+and Cys inputs,the CD signal is recovered to almost its initial level with an output of 1,suggesting the disruption of the Ag+-DNA complex and the reformation of G-quadruplex structure.A bar graph of the output signals of the system is in Fig.6(B),and the truth table is in Fig.6(C).Using Hg2+and Cys as the two inputs,similar IMPLICATION logic gate can also be designed.

    Fig.6 Operation of the IMPLICATION logic gate utilizing the influence of Ag+and/or Cys on the CD spectrum of Hum24.(A)CD spectra of Hum24 in the presence of different inputs.1:CAg+=0 μmol·L-1,CCys=0 μmol·L-1;2:CAg+=8 μmol·L-1,CCys=0 μmol·L-1;3:CAg+=0 μmol·L-1,CCys=8 μmol·L-1;4:CAg+=8 μmol·L-1,CCys=8 μmol·L-1.(B)The CD signal intensities at 290 nm in the presence of different inputs.The dashed line represents the defined threshold value.(C)Truth table for the DNA IMPLICATION logic gate

    3 Conclusions

    In conclusion, the G-quadruplex-disrupting abilities of Hg2+and Ag+ions were studied using four representative G-quadruplex-forming sequences.According to the experimental results,some primary conclusions can be drawn:(1)Hg2+and Ag+ions both exhibit the disrupting abilities to the representative G-quadruplex-forming sequences.Compared to Hg2+ion,Ag+ion can display higher G-quadruplex-disrupting ability. (2)Ag+ion can be used as a general G-quadruplex-disrupting reagent.Itcan disruptG-quadruplexes by interacting with G bases.Because G bases are necessary for G-quadruplex formation,the G-quadruplex-disrupting ability of Ag+ion can be applicable to any G-quadruplexes.(3)The G bases located in the loops of G-quadruplexes can also interact with Ag+ion.As a result,the presence of G bases in G-quadruplex loops can decrease the G-quadruplex-disrupting ability of Ag+ion.(4)The G-quadruplex-disrupting ability of Hg2+to T-rich G-quadruplexesishigherthan thatto T-poorG-quadruplexes,demonstrating that the formation of THg2+-T base pairs is one important way for Hg2+ion to disrupt T-rich G-quadruplexes.But because Hg2+ion can also disrupt G-quadruplexes without T bases(M3Q),Hg2+ion may also disrupt G-quadruplexes by other way(s).(5)The stability of the G-quadruplex has a great effect on the G-quadruplex-disrupting abilities of Ag+and Hg2+ions.These results may provide some important information for the development of highly efficient G-quadruplex-disrupting reagents, for example metal complexes-based G-quadruplexdisrupting reagents.

    The G-quadruplex-disrupting abilities of Ag+and Hg2+,together with their strong interactions with Cys,provide the possibility to carry out an IMPLICATION logic opertation.Thus,using Ag+(or Hg2+)and Cys as the two inputs,CD signal as the output,a DNA IMPLICATION logic gate has been constructed.To the best of our knowledge,this logic gate is the third example of a molecular logic gate using CD signal as output[41-42],and the first example of a DNA IMPLICATION logic gate using CD signal as output.

    [1]Gilbert D E,Feigon J.Curr.Opin.Struct.Biol.,1999,9:305-314

    [2]Huppert J L.Chem.Soc.Rev.,2008,37:1375-1384

    [3]Williamson J R.Annu.Rev.Biophys.Biomol.Struct.,1994,23:703-730

    [4]Rhodes D,Giraldo R.Curr.Opin.Struct.Biol.,1995,5:311-322

    [5]Zahler A M,Williamson J R,Cech T R,et al.Nature,1991,350:718-720

    [6]Howell L A,Searcey M.ChemBioChem.,2009,10:2139-2143

    [7]Shi S,Yao T M,Ji L N,et al.Dalton Trans.,2012,41:5789-5793

    [8]Shi S,Yao T M,Ji L N,et al.J.Inorg.Biochem.,2013,121:19-27

    [9]Lipps H J,Rhodes D.Trends Cell.Biol.,2009,19:414-422

    [10]Neidle S.FEBS J.,2009,277:1118-1125

    [11]Shalaby T,Hiyama E,Grotzer M A.Anticancer Agents Med.Chem.,2010,10:196-212

    [12]Lechel A,Manns M P,Rudolph K L.J.Hepatol.,2004,41:491-497

    [13]Simonsson T.Biol.Chem.,2001,382:621-628

    [14]Gill M L,Strobel S L,Loria J P.Nucleic Acids Res.,2006,34:4506-4514

    [15]Liu W,Liang H J,Fu Y.J.Phys.Chem.B,2011,115:13051-13056

    [16]Li T,Dong S J,Wang E K.Anal.Chem.,2009,81:2144-2149

    [17]Li T,Li B,Wang E K,et al.Chem.Commun.,2009,45:3551-3553

    [18]Zhou X H,Kong D M,Shen H X.Anal.Chem.,2010,82:789-793

    [19]Kong D M,Xu J,Shen H X.Anal.Chem.,2010,82:6148-6153

    [20]Topal S Z,Gürek A G,Ertekin K,et al.Mater.Chem.Phys.,2010,121:425-531

    [21]Chen X,Wang Y,Liu Q,et al.Angew.Chem.Int.Ed.Engl.,2006,45:1759-1762

    [22]Xie W Y,Huang W T,Li N B,et al.Chem.Commun.,2012,48:82-84

    [23]Paramasivan S,Rujan I,Bolton P H.Methods,2007,43:324-331

    [24]Kong D M,Cai L L,Guo J H,et al.Biopolymers,2009,91:331-339

    [25]Monchaud D,Yang P,Lacroix L,et al.Angew.Chem.Int.Ed.Engl.,2008,47:4858-4861

    [26]Ambrus A,Chen D,Dai J,et al.Nucleic Acids Res.,2006,34:2723-2735

    [27]Kong D M,Ma Y E,Guo J H,et al.Anal.Chem.,2009,81:2678-2684

    [28]Luu K N,Phan A T,Kuryavyi V,et al.J.Am.Chem.Soc.,2006,128:9963-9970

    [29]Malumbres M,Barbacid M.Nat.Rev.Cancer,2003,3:459-465

    [30]Xodo L,Paramasivam M,Membrino A,et al.Nucleic Acids Symp.Ser.,2008,52:159-160

    [31]Chen Z,Zheng K W,Hao Y H,et al.J.Am.Chem.Soc.,2009,131:10430-10438

    [32]Paramasivam M,Membrino A,Cogoi S,et al.Nucleic Acids Res.,2009,37:2841-2853

    [33]Hotary K,Li X Y,Allen E,et al.Genes Dev.,2006,20:2673-2686

    [34]Morris M J,Basu S.Biochem.,2009,48:5313-5319

    [35]Gruen L C.Biochim.Biophys.Acta,1975,386:270-274

    [36]Burstein Y,Sperling R.Biochim.Biophys.Acta,1970,211:410-412

    [37]Guo J H,Kong D M,Shen H X.Biosens.Bioelectron.,2010,26:327-332

    [38]Li T,Shi L L,Wang E K,et al.Chem.Eur.J.,2009,15:3347-3350

    [39]Ruan Y B,Li A F,Zhao J S,et al.Chem.Commun.,2010,46:4938-4940

    [40]Jia S M,Liu X F,Li P,et al.Biosens.Bioelectron.,2011,27:148-152

    [41]D′Urso A,Mammana A,Balaz M,et al.J.Am.Chem.Soc.,2009,131:2046-2047

    [42]Zhou Y C,Zhang D Q,Zhang Y Z,et al.J.Org.Chem.,2005,70:6164-6170

    猜你喜歡
    化學(xué)系外語系天津大學(xué)
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    《天津大學(xué)學(xué)報(社會科學(xué)版)》簡介
    Research on Real Meaning of American Dream in Great Gatsby
    速讀·中旬(2021年2期)2021-07-23 22:33:04
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    Research on Uranium Mining
    長治學(xué)院外語系
    一個二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    學(xué)生寫話
    CriticalRealisminGreatExpectations
    山東青年(2014年10期)2014-11-24 11:20:27
    天津大學(xué)學(xué)報(社會科學(xué)版)2014年總目次
    a在线观看视频网站| 精品久久久久久,| 久久午夜综合久久蜜桃| 可以免费在线观看a视频的电影网站| 非洲黑人性xxxx精品又粗又长| 午夜福利在线观看吧| 免费女性裸体啪啪无遮挡网站| 精品乱码久久久久久99久播| 国产精品久久久久久精品电影 | 亚洲av美国av| 国产又色又爽无遮挡免费看| 日韩成人在线观看一区二区三区| 久久久久亚洲av毛片大全| 欧美+亚洲+日韩+国产| av免费在线观看网站| 亚洲 欧美一区二区三区| 日韩大尺度精品在线看网址| 在线观看日韩欧美| 精品国产乱码久久久久久男人| 嫩草影视91久久| 午夜福利高清视频| 亚洲 国产 在线| 亚洲国产高清在线一区二区三 | 精品久久久久久成人av| 午夜老司机福利片| 18禁黄网站禁片午夜丰满| 一本一本综合久久| 一本一本综合久久| 麻豆成人午夜福利视频| 免费在线观看黄色视频的| 丝袜人妻中文字幕| 18禁裸乳无遮挡免费网站照片 | 女警被强在线播放| x7x7x7水蜜桃| 亚洲一区高清亚洲精品| 国产视频内射| 欧美日韩福利视频一区二区| 国产欧美日韩一区二区精品| 久久精品91无色码中文字幕| 两个人视频免费观看高清| 亚洲av电影在线进入| 亚洲九九香蕉| 少妇裸体淫交视频免费看高清 | 巨乳人妻的诱惑在线观看| 午夜免费成人在线视频| 97碰自拍视频| 自线自在国产av| 亚洲专区中文字幕在线| 精品国产超薄肉色丝袜足j| 黄色成人免费大全| 国产精品1区2区在线观看.| 色老头精品视频在线观看| 国产精品一区二区精品视频观看| av免费在线观看网站| 欧美 亚洲 国产 日韩一| 少妇熟女aⅴ在线视频| 岛国在线观看网站| 欧美乱色亚洲激情| 熟妇人妻久久中文字幕3abv| 久久精品国产综合久久久| 亚洲中文日韩欧美视频| 老司机深夜福利视频在线观看| 中文资源天堂在线| 欧美绝顶高潮抽搐喷水| 国产精品99久久99久久久不卡| 成人特级黄色片久久久久久久| 国产午夜福利久久久久久| 久久婷婷成人综合色麻豆| 亚洲 国产 在线| 国产又爽黄色视频| 国产蜜桃级精品一区二区三区| 久久中文看片网| 亚洲av美国av| 国产av不卡久久| 19禁男女啪啪无遮挡网站| av在线天堂中文字幕| 亚洲一码二码三码区别大吗| 亚洲五月天丁香| 午夜免费激情av| 亚洲一卡2卡3卡4卡5卡精品中文| 国产熟女午夜一区二区三区| 人人妻人人澡人人看| av片东京热男人的天堂| 在线看三级毛片| 女人被狂操c到高潮| 欧美成人免费av一区二区三区| 高清在线国产一区| 亚洲欧洲精品一区二区精品久久久| 级片在线观看| 欧美色欧美亚洲另类二区| 久久这里只有精品19| 国产v大片淫在线免费观看| 久久久久国产一级毛片高清牌| 首页视频小说图片口味搜索| 这个男人来自地球电影免费观看| 麻豆av在线久日| 一进一出抽搐动态| 精品午夜福利视频在线观看一区| 亚洲男人的天堂狠狠| 国产aⅴ精品一区二区三区波| 在线国产一区二区在线| 成人国产综合亚洲| 一进一出抽搐gif免费好疼| 99re在线观看精品视频| 亚洲久久久国产精品| 免费电影在线观看免费观看| 日韩视频一区二区在线观看| 亚洲精华国产精华精| 麻豆国产av国片精品| 精品一区二区三区四区五区乱码| 色综合欧美亚洲国产小说| 中文字幕最新亚洲高清| 成人一区二区视频在线观看| 香蕉久久夜色| 欧美成人午夜精品| 国产精品综合久久久久久久免费| 91成人精品电影| 99精品欧美一区二区三区四区| 免费高清在线观看日韩| 两个人视频免费观看高清| 国产色视频综合| 在线观看日韩欧美| 精品久久久久久久久久久久久 | 伦理电影免费视频| 人人澡人人妻人| 国产伦在线观看视频一区| 亚洲色图av天堂| 日韩免费av在线播放| 精品久久久久久,| АⅤ资源中文在线天堂| 叶爱在线成人免费视频播放| 十八禁人妻一区二区| 亚洲一区高清亚洲精品| 亚洲欧美日韩高清在线视频| 国产熟女xx| 一区二区三区激情视频| 欧美日本亚洲视频在线播放| 久久中文看片网| 欧美激情高清一区二区三区| 一边摸一边抽搐一进一小说| 黄色片一级片一级黄色片| 午夜成年电影在线免费观看| 一级毛片精品| 黄色成人免费大全| 丁香欧美五月| 亚洲国产欧洲综合997久久, | 亚洲中文日韩欧美视频| 精品不卡国产一区二区三区| 日本五十路高清| 日韩欧美三级三区| 久久中文字幕人妻熟女| 日韩大码丰满熟妇| xxxwww97欧美| 中文在线观看免费www的网站 | 真人做人爱边吃奶动态| 成人永久免费在线观看视频| 亚洲 欧美 日韩 在线 免费| 亚洲美女黄片视频| 亚洲精品美女久久久久99蜜臀| 欧美在线一区亚洲| 午夜免费激情av| 国产国语露脸激情在线看| 观看免费一级毛片| 欧美乱色亚洲激情| 悠悠久久av| 男女做爰动态图高潮gif福利片| 90打野战视频偷拍视频| 一本久久中文字幕| 免费看日本二区| 精品高清国产在线一区| 777久久人妻少妇嫩草av网站| 日韩免费av在线播放| 草草在线视频免费看| 亚洲狠狠婷婷综合久久图片| 国产精华一区二区三区| 婷婷丁香在线五月| 丁香六月欧美| 国产乱人伦免费视频| 国产男靠女视频免费网站| 91老司机精品| 国产精品一区二区免费欧美| 熟妇人妻久久中文字幕3abv| 久久精品人妻少妇| 国产蜜桃级精品一区二区三区| 香蕉丝袜av| 女警被强在线播放| 级片在线观看| 欧美不卡视频在线免费观看 | 丝袜在线中文字幕| 国产私拍福利视频在线观看| 久久精品国产亚洲av高清一级| av福利片在线| 久久热在线av| 亚洲全国av大片| 黑人巨大精品欧美一区二区mp4| 男女午夜视频在线观看| 黄色视频不卡| 午夜福利在线观看吧| 成人国语在线视频| 黄色a级毛片大全视频| 久久精品国产综合久久久| 亚洲精品在线美女| 丁香欧美五月| 久久久久久久午夜电影| 麻豆av在线久日| 人妻久久中文字幕网| 亚洲av成人一区二区三| 亚洲国产欧美日韩在线播放| 国产一卡二卡三卡精品| 国产伦人伦偷精品视频| bbb黄色大片| 看免费av毛片| 亚洲精品在线美女| 国产主播在线观看一区二区| 一夜夜www| 可以免费在线观看a视频的电影网站| 黄色毛片三级朝国网站| 精品国产超薄肉色丝袜足j| 少妇被粗大的猛进出69影院| 性色av乱码一区二区三区2| 亚洲成人久久爱视频| 黄色a级毛片大全视频| 老司机在亚洲福利影院| 国产三级在线视频| 亚洲第一青青草原| 国产高清有码在线观看视频 | 亚洲精品一区av在线观看| 欧美激情 高清一区二区三区| 两个人视频免费观看高清| 视频在线观看一区二区三区| 欧美黄色淫秽网站| 日日摸夜夜添夜夜添小说| 亚洲中文字幕一区二区三区有码在线看 | 亚洲熟妇中文字幕五十中出| 嫁个100分男人电影在线观看| www.精华液| 在线十欧美十亚洲十日本专区| 午夜免费成人在线视频| 午夜福利免费观看在线| 亚洲人成电影免费在线| 最近最新中文字幕大全电影3 | 日韩 欧美 亚洲 中文字幕| 极品教师在线免费播放| 给我免费播放毛片高清在线观看| 法律面前人人平等表现在哪些方面| 亚洲专区字幕在线| 男人舔女人的私密视频| 欧美黄色片欧美黄色片| 久久天躁狠狠躁夜夜2o2o| 国产激情久久老熟女| 老司机深夜福利视频在线观看| 日本五十路高清| 国产精品爽爽va在线观看网站 | 可以在线观看毛片的网站| 一区二区三区激情视频| 两个人免费观看高清视频| 叶爱在线成人免费视频播放| 人人妻人人澡人人看| 免费一级毛片在线播放高清视频| 身体一侧抽搐| 中文字幕人妻丝袜一区二区| 日本 欧美在线| 精品日产1卡2卡| netflix在线观看网站| 日韩精品青青久久久久久| 黄色视频不卡| 久久久久国内视频| 国产人伦9x9x在线观看| 国产伦在线观看视频一区| 亚洲精品在线观看二区| 亚洲av日韩精品久久久久久密| 欧美日韩一级在线毛片| 黄色毛片三级朝国网站| 男人舔女人的私密视频| 成人亚洲精品一区在线观看| 99riav亚洲国产免费| 欧美国产日韩亚洲一区| 国产乱人伦免费视频| 午夜a级毛片| 色播亚洲综合网| 两人在一起打扑克的视频| 日日夜夜操网爽| 伊人久久大香线蕉亚洲五| 成在线人永久免费视频| 亚洲人成电影免费在线| 丁香六月欧美| 久久久久久人人人人人| 国产精品九九99| 18禁黄网站禁片午夜丰满| 国产成人精品久久二区二区免费| 老汉色∧v一级毛片| 哪里可以看免费的av片| 男人操女人黄网站| 丁香六月欧美| 午夜影院日韩av| 两个人视频免费观看高清| 免费在线观看成人毛片| 亚洲av中文字字幕乱码综合 | 亚洲精品久久国产高清桃花| 精品第一国产精品| 精品一区二区三区视频在线观看免费| 亚洲,欧美精品.| 男人操女人黄网站| 亚洲中文日韩欧美视频| 人人妻,人人澡人人爽秒播| 国产精品九九99| 欧美丝袜亚洲另类 | 91字幕亚洲| 国产精品精品国产色婷婷| 国产一区在线观看成人免费| 久久久久久国产a免费观看| 国产精品亚洲av一区麻豆| 777久久人妻少妇嫩草av网站| 欧美黄色片欧美黄色片| 亚洲人成电影免费在线| 好看av亚洲va欧美ⅴa在| av天堂在线播放| 视频区欧美日本亚洲| 欧美黄色淫秽网站| 婷婷精品国产亚洲av| 中文字幕人妻丝袜一区二区| 精品熟女少妇八av免费久了| 成人永久免费在线观看视频| 国产精品香港三级国产av潘金莲| 桃红色精品国产亚洲av| 人妻丰满熟妇av一区二区三区| 好男人电影高清在线观看| or卡值多少钱| 国产精品美女特级片免费视频播放器 | 国产高清视频在线播放一区| 免费高清在线观看日韩| 久久草成人影院| 少妇 在线观看| 88av欧美| 中文字幕精品亚洲无线码一区 | 国产在线观看jvid| 又大又爽又粗| 亚洲 欧美一区二区三区| 久久欧美精品欧美久久欧美| 天天添夜夜摸| www.精华液| 亚洲中文字幕日韩| 国产精品爽爽va在线观看网站 | 亚洲色图av天堂| 天堂动漫精品| 在线av久久热| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久国产a免费观看| 一进一出抽搐动态| 亚洲最大成人中文| 亚洲国产看品久久| 成年人黄色毛片网站| 看片在线看免费视频| 国产精品久久久av美女十八| 在线观看午夜福利视频| 成人一区二区视频在线观看| 国产av在哪里看| 中国美女看黄片| 黑人欧美特级aaaaaa片| 精品电影一区二区在线| 国产精品av久久久久免费| 99热这里只有精品一区 | 国产三级黄色录像| www国产在线视频色| 亚洲三区欧美一区| 啦啦啦 在线观看视频| 亚洲一区高清亚洲精品| 亚洲欧美日韩高清在线视频| 最新在线观看一区二区三区| 人人妻,人人澡人人爽秒播| 日本 欧美在线| 午夜精品在线福利| 2021天堂中文幕一二区在线观 | 十分钟在线观看高清视频www| 手机成人av网站| 哪里可以看免费的av片| 亚洲成国产人片在线观看| 精品少妇一区二区三区视频日本电影| 黄色视频不卡| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人免费电影在线观看| 91成年电影在线观看| 国产亚洲欧美精品永久| 免费在线观看影片大全网站| 狠狠狠狠99中文字幕| 久久午夜综合久久蜜桃| 久久欧美精品欧美久久欧美| 日本 欧美在线| 成人精品一区二区免费| av在线播放免费不卡| tocl精华| 欧美国产精品va在线观看不卡| 亚洲片人在线观看| 在线观看日韩欧美| 色老头精品视频在线观看| 天堂动漫精品| 精品午夜福利视频在线观看一区| 亚洲三区欧美一区| 国产精品自产拍在线观看55亚洲| 欧美成人免费av一区二区三区| 色哟哟哟哟哟哟| 免费高清在线观看日韩| √禁漫天堂资源中文www| 久久久久久九九精品二区国产 | 国产精品久久久久久人妻精品电影| 亚洲天堂国产精品一区在线| 久久人人精品亚洲av| 日韩高清综合在线| 国产亚洲精品一区二区www| 国产私拍福利视频在线观看| 成年免费大片在线观看| 欧美三级亚洲精品| 91av网站免费观看| 丰满人妻熟妇乱又伦精品不卡| 91字幕亚洲| 一本久久中文字幕| 久久精品亚洲精品国产色婷小说| 国产成年人精品一区二区| 国产成人一区二区三区免费视频网站| 欧美激情久久久久久爽电影| 长腿黑丝高跟| 91麻豆av在线| 久久久久久人人人人人| 人成视频在线观看免费观看| 可以在线观看毛片的网站| 午夜福利欧美成人| 日韩有码中文字幕| 老司机深夜福利视频在线观看| 免费av毛片视频| 国产精品亚洲av一区麻豆| 悠悠久久av| 免费人成视频x8x8入口观看| 国产在线精品亚洲第一网站| 午夜影院日韩av| 久9热在线精品视频| 亚洲色图av天堂| 女生性感内裤真人,穿戴方法视频| 国产人伦9x9x在线观看| 国产男靠女视频免费网站| 1024手机看黄色片| 黄色成人免费大全| 国产精品av久久久久免费| 亚洲精品一区av在线观看| 黄片小视频在线播放| netflix在线观看网站| 两个人免费观看高清视频| 午夜老司机福利片| 麻豆成人av在线观看| 香蕉丝袜av| 怎么达到女性高潮| 国产蜜桃级精品一区二区三区| 国产单亲对白刺激| 大型黄色视频在线免费观看| 一边摸一边抽搐一进一小说| 亚洲最大成人中文| a级毛片a级免费在线| 人妻丰满熟妇av一区二区三区| 久久精品aⅴ一区二区三区四区| 狂野欧美激情性xxxx| 人人妻,人人澡人人爽秒播| 亚洲一卡2卡3卡4卡5卡精品中文| 国产视频一区二区在线看| 午夜福利视频1000在线观看| 久久久久亚洲av毛片大全| 色综合欧美亚洲国产小说| 国产私拍福利视频在线观看| 成人精品一区二区免费| 亚洲aⅴ乱码一区二区在线播放 | 99精品欧美一区二区三区四区| 看黄色毛片网站| 男女之事视频高清在线观看| 中文亚洲av片在线观看爽| 午夜精品久久久久久毛片777| 男女午夜视频在线观看| 高清在线国产一区| 成人免费观看视频高清| 又黄又爽又免费观看的视频| 91国产中文字幕| 午夜福利在线在线| 日本三级黄在线观看| 国产精品二区激情视频| 国产精品亚洲美女久久久| 中亚洲国语对白在线视频| 亚洲精品在线美女| 亚洲免费av在线视频| 国产精品久久久人人做人人爽| 亚洲 欧美一区二区三区| 国产亚洲精品久久久久5区| 黑人巨大精品欧美一区二区mp4| 日韩有码中文字幕| 在线观看一区二区三区| 亚洲 欧美一区二区三区| 变态另类丝袜制服| 熟妇人妻久久中文字幕3abv| 男人的好看免费观看在线视频 | 国产精品av久久久久免费| 亚洲精品一卡2卡三卡4卡5卡| 一级作爱视频免费观看| 99re在线观看精品视频| 一级毛片女人18水好多| 免费女性裸体啪啪无遮挡网站| 欧美成人午夜精品| 欧美色欧美亚洲另类二区| 黄色女人牲交| 日日摸夜夜添夜夜添小说| 亚洲av第一区精品v没综合| 亚洲 欧美 日韩 在线 免费| aaaaa片日本免费| 亚洲片人在线观看| 日日摸夜夜添夜夜添小说| 国产成人精品久久二区二区91| 欧美日韩黄片免| 最新在线观看一区二区三区| 亚洲,欧美精品.| 国产亚洲精品av在线| 男女视频在线观看网站免费 | 久久久国产精品麻豆| 久久久久国产精品人妻aⅴ院| 在线观看免费日韩欧美大片| 久久久国产欧美日韩av| 黄片播放在线免费| 叶爱在线成人免费视频播放| 亚洲国产高清在线一区二区三 | 国内少妇人妻偷人精品xxx网站 | av片东京热男人的天堂| 18禁国产床啪视频网站| 香蕉久久夜色| 久久九九热精品免费| 在线视频色国产色| 怎么达到女性高潮| 久久久久久久精品吃奶| 日韩免费av在线播放| 国产精品久久电影中文字幕| 成人免费观看视频高清| 一级a爱视频在线免费观看| 操出白浆在线播放| 婷婷六月久久综合丁香| 亚洲国产欧美网| 午夜福利在线观看吧| 波多野结衣高清无吗| 伦理电影免费视频| 俄罗斯特黄特色一大片| 亚洲精品在线美女| 亚洲欧美精品综合久久99| 亚洲精品美女久久av网站| 色老头精品视频在线观看| 一本一本综合久久| 亚洲国产毛片av蜜桃av| 国产成人av激情在线播放| 性色av乱码一区二区三区2| 精品国产亚洲在线| 99久久综合精品五月天人人| 亚洲熟妇中文字幕五十中出| 色老头精品视频在线观看| 日本一区二区免费在线视频| 丰满的人妻完整版| 久久久久免费精品人妻一区二区 | 亚洲一区中文字幕在线| 在线观看免费午夜福利视频| 国产av一区二区精品久久| 99国产精品99久久久久| 中亚洲国语对白在线视频| 午夜免费成人在线视频| 久久久久久久久免费视频了| 国产亚洲精品久久久久5区| 麻豆久久精品国产亚洲av| 免费看日本二区| 国产黄a三级三级三级人| av免费在线观看网站| 日本撒尿小便嘘嘘汇集6| 欧美黄色片欧美黄色片| 久久久久国产精品人妻aⅴ院| 可以在线观看的亚洲视频| 两个人免费观看高清视频| 中文资源天堂在线| 给我免费播放毛片高清在线观看| 久久国产精品男人的天堂亚洲| 日日摸夜夜添夜夜添小说| 中国美女看黄片| 亚洲自拍偷在线| 国产99久久九九免费精品| a级毛片在线看网站| 久久久久亚洲av毛片大全| 黑人欧美特级aaaaaa片| 国产成人精品无人区| 亚洲专区中文字幕在线| 一本精品99久久精品77| 亚洲av第一区精品v没综合| 日韩免费av在线播放| 亚洲天堂国产精品一区在线| 亚洲av第一区精品v没综合| 国内少妇人妻偷人精品xxx网站 | 成熟少妇高潮喷水视频| 久久久久久大精品| 精品国产超薄肉色丝袜足j| 亚洲av电影不卡..在线观看| 国产精品日韩av在线免费观看| 国产精品亚洲一级av第二区| 精品欧美一区二区三区在线| 久久久国产精品麻豆| 欧美三级亚洲精品| 精品久久久久久成人av| 国产精品精品国产色婷婷| 黄色 视频免费看| 国产av一区在线观看免费| 欧美日韩乱码在线| 国产爱豆传媒在线观看 | 精品国产亚洲在线| 99热这里只有精品一区 | 久久国产精品男人的天堂亚洲| 波多野结衣巨乳人妻| 久久久久九九精品影院| 国产又色又爽无遮挡免费看| 9191精品国产免费久久| 99在线视频只有这里精品首页|