• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Smoothing SAA Method for a Stochastic Linear Complementarity Problem

    2013-08-27 01:38:46ZHANGJIEZHANGHONGWEIANDZHANGLIWEI

    ZHANG JIE,ZHANG HONG-WEIAND ZHANG LI-WEI

    (1.School of Mathematics,Liaoning Normal University,Dalian,Liaoning,116029) (2.School of Mathematical Sciences,Dalian University of Technology,Dalian,Liaoning,116024)

    Communicated by Yin Jing-xue

    A Smoothing SAA Method for a Stochastic Linear Complementarity Problem

    ZHANG JIE1,ZHANG HONG-WEI2AND ZHANG LI-WEI2

    (1.School of Mathematics,Liaoning Normal University,Dalian,Liaoning,116029) (2.School of Mathematical Sciences,Dalian University of Technology,Dalian,Liaoning,116024)

    Communicated by Yin Jing-xue

    Utilizing the well-known aggregation technique,we propose a smoothing sample average approximation(SAA)method for a stochastic linear complementarity problem,where the underlying functions are represented by expectations of stochastic functions.The method is proved to be convergent and the preliminary numerical results are reported.

    aggregation technique,smoothing SAA method,stochastic linear complementarity problem

    1 Introduction

    In this paper,we consider the following stochastic linear complementarity problem(SLCP): fi ndsuch that

    To ease the notation,we write ξ(ω)as ξ and this should be distinguished from ξ being a deterministic vector of Ξ in a context.

    SLCP(1.1)is a natural extension of the deterministic complementarity problem and can be seen as a special case of the stochastic variational inequality problem which was f i rstproposed by G¨urkan et al.[1]Over the past several decades,the complementarity problem has been intensively studied for its extensively application in engineering,economics,game theory and networks(see[2]).While in practical,there are some important instances that the problem data contains some uncertain factors,and consequently,the stochastic complementarity models are proposed to ref l ect the uncertainties.Some examples of the stochastic complementarity problem,arising from the areas of economics,engineering and operations management can be found in[3].

    In this paper,we focus on numerical methods for solving(1.1).Evidently,if the integral involved in the mathematical expectation problems exists or is computable,then the problem (1.1)is reduced to the usual LCP problem and the existing methods in[2]can be applied directly to it.However,in many cases,an exact evaluation of the expected value in(1.1)for x is either impossible or prohibitively expensive.The sample average approximation(SAA) method is suggested to handle this difficulty(see[4–6]).The basic idea of SAA is to generate an independent identically distributed(iid)sampleof ξ,and then approximate the expected value with a sample average.In this context,SLCP(1.1)is approximated by

    where

    is a sample-average mapping of Ψ(x).We refer to(1.1)as a true problem and(1.2)as an SAA problem to(1.1).

    Recently,Chen and Fukushima[7]consider another type of stochastic linear complementarity problem:

    They formulate(1.4)as a problem of minimizing an expected residual def i ned by an NCP function,which is referred to as the ERM method.Then,they employ a qusi-Monte Carlo method and give some convergence results under suitable assumptions on the associated matrices.

    In this paper,inspired by ERM method,incorporating SAA method with the well known aggregation function,we propose a smoothing SAA method for solving(1.1).We study the almost sure existence of solutions of SAA problem when the sample size is sufficiently large and show that under moderate conditions,a sequence of SAA solutions converges to the solution of counterpart true problem with probability one at exponential rate as the sample size tends to inf i nity.Finally,some numerical results are also reported.

    Throughout this paper we use the following notations.Let‖·‖denote the Euclidean norm of a vector or the Frobenius norm of a matrix and

    denote the distance from a point x to a set D.Let B be the closed unite ball and B(x,δ) be the closed ball around x of radius δ>0.For two sets,we denote bythe deviation of set A from the set C.Note that D(·,·)satisf i es the triangle inequality, i.e.,for sets,the following inequality holds:

    2 Smoothing SAA Method Formulating

    Aggregation function is a well known smoothing function for max-type functions.Let

    where wi(i=1,···,m)are continuously dif f erentiable functions.It is clear that w(·)is continuous in Rnbut not dif f erentiable everywhere.For any t>0,the aggregation function of w(x),noted as w(t,x):,is def i ned by

    The function,viewed as an exponential penalty function for constrained minimization,is proposed by Kort and Bertsekas[8].Independently,Li[9-10]studied(2.1)and named it as the aggregation function.An interesting feature of w(t,x)(see Example 1.30 of[11])is

    which implies

    and the convergence is uniform with respect to x.We know from the def i nition that w(t,x) is a smoothing function with respect to x for t>0,and hence utilizing this property,over the past decade,some authors have used the aggregation function to propose smoothing methods for generalized linear complementarity problems and nonlinear complementarity problems(see[12–13]and the references therein).

    Notice that SLCP(1.1)is equivalent to

    We def i ne

    where

    Then we know from the def i nition that Gt(x)is continuously dif f erentiable with respect to t for all t>0,and

    Therefore it is natural to def i ne

    and

    Let

    It is then obvious that the nonnegative function f is zero at a point x if and only if x is a solution of SLCP(1.1),so that solving SLCP(1.1)is equivalent to f i nding the unconstrained global solutions of the problem(2.4).By taking independently and identically distributed random samples ξi(i=1,···,N)and introducing the smoothing function Gt(·)in(2.3), we obtain the following approximation of the problem(2.4):

    where

    with

    We denote by SLthe solution set of(2.4),bythe solution set of(2.5),and by S0the solution set of SLCP(1.1).

    3 Existence and Almost Sure Convergence

    It is well known that the R0property relates closely to the boundedness of level sets in the literature of the complementarity problem.Recall that M∈Rn×nis called an R0matrix if for x∈Rn

    If we denote

    then we have

    Lemma 3.1Ifis an R0matrix,then there existssuch thatis almost surely an R0matrix for all N≥.

    Proof.Assume that this lemma were not true.Then for any>0,there would exist ansuch thatis not an R0matrix almost surely.So we can choose a sequence {Nk}?N such that Nk→+∞as k→+∞andis not an R0matrix almost surely for each k.That is,for each k,we can f i ndsatisfying

    Let

    Then we have

    Notice that

    Therefore,letting k→+∞,we obtain a vectorsatisfying

    This contradicts the assumption thatis an R0matrix and completes the proof.

    By the def i nition of gt(·,·)and Proposition 3.2 of[13],we have the following lemma.

    Lemma 3.2Let t≥0.Then for any real numbers a and b,we have

    (i)g0(a,b)-tln2≤gt(a,b)≤g0(a,b).

    (ii)There exist δ>0 and L>0 such that

    Lemma 3.3Assume thatis an R0matrix.Then there existsˉN>0 such that for any positive numbers γ and tN,the level set

    is bounded almost surely for each N≥

    Proof.By Lemma 3.1,there exists an>0 such thatis almost surely an R0matrix for all N≥.To prove this lemma,we only need to show that→+∞almost surely for all N≥whenever→+∞for any sequence.Suppose that→+∞as k→+∞.From the def i nition we know that if→-∞or→-∞almost surely for some i as k→+∞,then it follows that

    for tN>0.So it suffices to consider the case when both sequencesandare bounded below almost surely for all i.Then,by dividing each element of these sequences byand passing to the limit,we obtain that for all N≥

    which,in turn,by Lemma 3.2,means

    Theorem 3.1Assume thatis an R0matrix.Then there exists an>0 such thatis nonempty and bounded almost surely for each N≥.Letalmost surely andas.Then,every accumulation point of the sequenceis contained inalmost surely.

    Proof.By Lemma 2.2,there exists an>0 such that for>0 and γ>0,the level set(3.1)is bounded almost surely for each N≥which,by Theorem 1.9 in[11],implies thatis nonempty and bounded almost surely for each N≥

    where

    Since

    we have

    which implies that

    and by Lemma 3.2,there exists an L>0 such that for N sufficiently large,

    Then combining(3.2),(3.4)and(3.5),we obtain

    In a similar way,we can also show

    Therefore,we have

    The proof is completed.

    We know from the knowledge of the deterministic linear complementarity problem that the matrixin(1.1)being a P matrix(for matrices M,for all x/=0 there exists an i such that>0)is a necessary and sufficient condition for the existence and uniqueness of the solution of SLCP(1.1).Thus we have the following result.

    Corollary 3.1Assume thatis a P matrix.Then there exists an>0 such thatis nonempty and bounded almost surely for each N≥.Letalmost surely for each N and tN↘0 as N→+∞.Then,every accumulation point of the sequenceis contained inalmost surely.

    4 Exponential Convergence Rate

    In this section,under suitable conditions,we show that with the increase of sample size the optimal solutions of the approximation problem(2.5)converge exponentially to a solution of SLCP(1.1)with probability approaching one.For this purpose,we need to make the following assumption:

    Assumption AFor every i∈{1,···,n},we have the following properties:

    (A1)For all x∈X,the moment generating function

    of the random variable[M(ξ)x]i-[E(M(ξ)x)]iis f i nite valued for all t in a neighborhood of zero.

    (A2)‖M(ξ)‖is measurable for all ξ∈Ξ.

    (A3)The moment generating

    of‖M(ξ)‖is f i nite valued for all t in a neighborhood of zero.

    Then by Theorem 6.52 in[6],we obtain the following lemma.

    Lemma 4.1Suppose that Assumption A holds and the set X is compact.Then for any ε>0,there exist positive constants

    independent of N such that .

    We need the following lemma which can be obtained by using a local upper Lipschitz property of a polyhedral multifunction given by Robinson[14].

    Lemma 4.2There exist positive numbers δ and α such that

    and

    Theorem 4.1Letalmost surely,tN↘0 and

    Suppose that

    (i)S0is nonempty;

    (ii)Assumption A holds;

    (iii){xN}?X w.p.1 and X is compact.

    Then for any ε>0,there exist positive constants

    independent of N such that for N sufficiently large

    Proof.We know from S0being nonempty that

    almost surely,which,by Lemma 4.1,implies that there exists an α>0 such that for N sufficiently large

    By the proof of Theorem 3.1,we have for N sufficiently large

    which means

    for N sufficiently large.Together with(4.1),by Lemma 3.2,it means that there exists an L>0 such that for N sufficiently large,

    dist(xN,S0)

    Since tN↘0,,by the proof of Theorem 3.1,and

    we have that for any positive number ε,

    hold for all N sufficiently large.On the other hand,for the above ε,by Lemma 4.1,there exist positive constants

    independent of N such that

    which,together with(4.3)and(4.4),implies that for N sufficiently large,

    where

    We have completed the proof.

    Corollary 4.1Assume thatis a P matrix and Assumptions(i)–(iii)in Theorem 4.1 hold.Let

    Then for any ε>0,there exist positive constants

    independent of N such that for N sufficiently large

    5 Numerical Results

    In this section,we present some preliminary numerical results obtained by the smoothing SAA method.Our numerical experiments are carried out in Matlab 7.1 running on a PC with Intel Pentium M of 1.60 GHz CPU and our tests are focused on dif f erent values of the smoothing parameter t and the sample size N.

    In our experiments,we set the initial values of Nkand tkas N1=100 and t1=5, respectively.Then,we employ the random number generator“unifrnd”in Matlab 7.1 to generate independently and identically distributed random samples{ξ1,ξ2,···,ξNk}.We solve the problems(2.5)with N=Nkand t=tkby the solver“fminsearch”in Matlab 7.1 to obtain the approximated optimal solution xNk.The initial point is

    The obtained solution xNkis used as the starting point in the next iteration.In addition, the parameters are updated by“Obj”denotes the values of the objective function of the problem(2.5)at xNk.

    Example 5.1Consider the stochastic linear complementary problem(1.1)in which ξ is uniformly distributed on[0,1].M(ξ(ω))and q(ξ(ω))are given by

    respectively.This problem has a unique solution

    for each ω∈Ω.The optimal values of the approximation problem(2.5)with Nkand tkcorresponding to this example is zero,which is shown in Table 5.1.

    Table 5.1The computational results for Example 5.1

    Example 5.2Consider the stochastic complementary problem(1.1)in which ξ is uniformly distributed on[0,1].M(ξ(w))and q(ξ(w))is given by

    respectively.This problem has a solution

    for each ω∈Ω.The numerical results of the approximation problem(2.5)with Nkand tkcorresponding to this example are shown in Table 5.2.

    Table 5.2The computational results for Example 5.2

    Our preliminary numerical results shown in Tables 5.1 and 5.2 reveal that our proposed method yields a reasonable solution of the problems considered.

    6 Conclusion

    In this paper,utilizing the aggregation technique,we propose a smoothing SAA method for a stochastic linear complementarity problem.Under suitable conditions,we obtain the almost surely convergence and exponential rate of this method.The preliminary numerical results indicate that the proposed method is able to solve SLCP successfully.

    [1]G¨urkan G,¨Ozge A Y,Robinson S M.Sample-path solution of stochastic variational inequalities.Math.Programming,1999,84:313–333.

    [2]Facchinei F,Pang J S.Finite-dimensional Variational Inequalities and Complementarity Problems.vol.I/II.New York:Springer-Verlag,2003.

    [3]Jiang H,Xu H.Stochastic approximation approaches to the stochastic variational inequality problem.IEEE Trans.Automat.Control,2008,53:1462–1475.

    [4]Rusczyˊnski A,Shapiro A.Stochastic Programming.Handbooks in OR&MS 10.Amsterdam: North-Holland,2003.

    [5]Xu H.An implicit programming approach for a class of stochastic mathematical programs with equilibrium constraints.SIAM J.Optim.,2006,16:670–696.

    [6]Shapiro A,Dentcheva D,Ruszczynski A.Lectures on Stochastic Programming:Modeling and Theory.Philadelphia:SIAM,2009.

    [7]Chen X J,Fukushima M.Expected residual minimization method for stochastic linear complementarity problems.Math.Oper.Res.,2005,30:1022–1038.

    [8]Kort B W,Bertsekas D P.A New Penalty Function Algorithm for Constrained Minimization. Proceedings of the 1972 IEEE Conference on Decision and Control.Louisiana:New Orleans, 1972.

    [9]Li X S.An aggregate function method for nonlinear programming.Sci.China Ser.A,1991, 34:1467–1473.

    [10]Li X S.An entropy-based aggregate method for minimax optimization.J.Engrg.Optim.,1992, 18:277–185.

    [11]Rockafellar R T,Wets R J B.Variational Analysis.Berlin-Heidelberg-New York:Springer-Verlag,1998.

    [12]Peng J,Lin Z.A non-interior continuation method for generalized linear complementarity problems.Math.Programming,1999,86:533–563.

    [13]Qi H,Liao L.A smoothing Newton method for extended vertical linear complementarity problems.SIAM J.Matrix Anal.Appl.,1999,21:45–66.

    [14]Robinson S M.Some continuity properties of polyhedral multifunctions.Math.Program.Study, 1981,14:206–214.

    tion:90C30

    A

    1674-5647(2013)02-0097-11

    Received date:Aug.19,2010.

    The NSF(11071029 and 11171138)of China.

    E-mail address:zj04212001@yahoo.com.cn(Zhang J).

    丝袜美腿诱惑在线| 高清黄色对白视频在线免费看| 亚洲色图 男人天堂 中文字幕| 国产片内射在线| 无限看片的www在线观看| 12—13女人毛片做爰片一| 免费少妇av软件| 亚洲精品国产精品久久久不卡| 超色免费av| 久久久国产一区二区| 91九色精品人成在线观看| 美女视频免费永久观看网站| 国产不卡av网站在线观看| 男女下面插进去视频免费观看| av片东京热男人的天堂| 看黄色毛片网站| 久久婷婷成人综合色麻豆| 国产欧美日韩一区二区三| 亚洲黑人精品在线| 国产精品久久电影中文字幕 | 18禁国产床啪视频网站| 一级,二级,三级黄色视频| 大码成人一级视频| 欧美激情久久久久久爽电影 | 国产精品一区二区免费欧美| 国产亚洲精品久久久久久毛片 | 我的亚洲天堂| 精品一区二区三区视频在线观看免费 | 亚洲欧美激情在线| 国产精品久久久人人做人人爽| 男女免费视频国产| 亚洲综合色网址| 一本综合久久免费| 国产日韩欧美亚洲二区| 男女之事视频高清在线观看| 精品欧美一区二区三区在线| 欧美国产精品va在线观看不卡| av天堂在线播放| 成人免费观看视频高清| 人人妻人人澡人人看| 中出人妻视频一区二区| 中文字幕精品免费在线观看视频| 国产在线观看jvid| 天天操日日干夜夜撸| 可以免费在线观看a视频的电影网站| 黑人操中国人逼视频| 精品电影一区二区在线| 亚洲熟妇熟女久久| 无人区码免费观看不卡| 99久久99久久久精品蜜桃| 久久久久久久国产电影| 久久精品人人爽人人爽视色| 日韩一卡2卡3卡4卡2021年| 亚洲午夜理论影院| 亚洲国产精品sss在线观看 | 国产精华一区二区三区| 久久久久精品国产欧美久久久| 老司机在亚洲福利影院| 人妻 亚洲 视频| 国产成人精品久久二区二区91| 老司机午夜福利在线观看视频| 成人永久免费在线观看视频| 日韩欧美一区视频在线观看| 亚洲国产精品一区二区三区在线| 欧洲精品卡2卡3卡4卡5卡区| 麻豆成人av在线观看| 黄色女人牲交| 免费观看a级毛片全部| 精品国产乱子伦一区二区三区| 精品国产亚洲在线| 亚洲中文av在线| 波多野结衣一区麻豆| 免费观看精品视频网站| 亚洲专区中文字幕在线| 亚洲九九香蕉| 一级片'在线观看视频| 热99国产精品久久久久久7| 免费少妇av软件| cao死你这个sao货| av天堂久久9| 亚洲熟女毛片儿| 人人妻人人爽人人添夜夜欢视频| 久久久国产成人免费| 免费一级毛片在线播放高清视频 | 91在线观看av| 男男h啪啪无遮挡| 亚洲一区二区三区欧美精品| 久久久国产成人免费| 美女扒开内裤让男人捅视频| 多毛熟女@视频| av超薄肉色丝袜交足视频| 久久久久久久久久久久大奶| 午夜精品久久久久久毛片777| 精品无人区乱码1区二区| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品永久免费网站| 午夜91福利影院| 黄网站色视频无遮挡免费观看| 精品久久久久久,| 一本一本久久a久久精品综合妖精| 久久中文字幕一级| 别揉我奶头~嗯~啊~动态视频| 国产激情久久老熟女| 91精品国产国语对白视频| 国产精品98久久久久久宅男小说| 精品亚洲成a人片在线观看| 在线免费观看的www视频| 丝袜美腿诱惑在线| 日本一区二区免费在线视频| 久久午夜综合久久蜜桃| 国产精品乱码一区二三区的特点 | 人妻丰满熟妇av一区二区三区 | 国产精品偷伦视频观看了| 看免费av毛片| 女人高潮潮喷娇喘18禁视频| 亚洲精华国产精华精| xxx96com| 国产日韩欧美亚洲二区| 亚洲黑人精品在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲伊人色综图| 亚洲av第一区精品v没综合| 国产成人啪精品午夜网站| 久久久久国产精品人妻aⅴ院 | 成年人免费黄色播放视频| 变态另类成人亚洲欧美熟女 | 亚洲aⅴ乱码一区二区在线播放 | 国产亚洲精品久久久久久毛片 | 亚洲黑人精品在线| 国产麻豆69| 亚洲一区高清亚洲精品| 黄色怎么调成土黄色| 久久国产精品影院| 亚洲国产看品久久| 99精国产麻豆久久婷婷| 欧美色视频一区免费| 国产亚洲一区二区精品| 国产亚洲av高清不卡| 国产精品久久久av美女十八| 成人亚洲精品一区在线观看| 在线观看免费日韩欧美大片| 欧美成人免费av一区二区三区 | 久久久精品区二区三区| 91成年电影在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲色图av天堂| 国产精品免费一区二区三区在线 | 一区二区三区激情视频| 国产三级黄色录像| 在线av久久热| 婷婷成人精品国产| 久久国产精品大桥未久av| 中文欧美无线码| tocl精华| 精品视频人人做人人爽| 免费看a级黄色片| 亚洲片人在线观看| 十八禁网站免费在线| a级毛片在线看网站| 两人在一起打扑克的视频| 高潮久久久久久久久久久不卡| 777久久人妻少妇嫩草av网站| 国产野战对白在线观看| 19禁男女啪啪无遮挡网站| 欧美乱妇无乱码| 久久国产精品人妻蜜桃| 欧美激情久久久久久爽电影 | 午夜久久久在线观看| 在线十欧美十亚洲十日本专区| tube8黄色片| 亚洲人成77777在线视频| 后天国语完整版免费观看| 亚洲情色 制服丝袜| 黄色成人免费大全| 国产又爽黄色视频| 亚洲欧美一区二区三区黑人| 夜夜夜夜夜久久久久| 中文字幕av电影在线播放| 天天躁夜夜躁狠狠躁躁| 日韩三级视频一区二区三区| 亚洲人成伊人成综合网2020| 一本大道久久a久久精品| av线在线观看网站| 成在线人永久免费视频| 麻豆av在线久日| 黑人猛操日本美女一级片| 亚洲精品一卡2卡三卡4卡5卡| 精品视频人人做人人爽| 亚洲色图 男人天堂 中文字幕| 久久久久视频综合| 国产精品国产高清国产av | 三上悠亚av全集在线观看| 国产蜜桃级精品一区二区三区 | 国产亚洲一区二区精品| 亚洲久久久国产精品| 桃红色精品国产亚洲av| 免费不卡黄色视频| 久久 成人 亚洲| 亚洲av成人不卡在线观看播放网| 91精品三级在线观看| 操出白浆在线播放| 怎么达到女性高潮| 欧美 亚洲 国产 日韩一| 狂野欧美激情性xxxx| 99re在线观看精品视频| 捣出白浆h1v1| 久久精品成人免费网站| 欧美精品av麻豆av| netflix在线观看网站| 一级a爱视频在线免费观看| 免费在线观看视频国产中文字幕亚洲| 别揉我奶头~嗯~啊~动态视频| 色精品久久人妻99蜜桃| 久久久久久久精品吃奶| 国产成人影院久久av| 免费久久久久久久精品成人欧美视频| 免费在线观看视频国产中文字幕亚洲| 亚洲欧美色中文字幕在线| 少妇裸体淫交视频免费看高清 | 亚洲欧美色中文字幕在线| 亚洲精品中文字幕一二三四区| 精品久久蜜臀av无| 不卡av一区二区三区| 啦啦啦免费观看视频1| 高清黄色对白视频在线免费看| 高清av免费在线| 激情在线观看视频在线高清 | 免费久久久久久久精品成人欧美视频| 麻豆成人av在线观看| 高清视频免费观看一区二区| 高清毛片免费观看视频网站 | 黑人巨大精品欧美一区二区mp4| 成人亚洲精品一区在线观看| 脱女人内裤的视频| 在线观看免费视频网站a站| 久99久视频精品免费| 欧美日韩精品网址| 亚洲国产精品合色在线| www.999成人在线观看| 精品久久蜜臀av无| 国产日韩欧美亚洲二区| 人人妻人人澡人人看| 国产精品1区2区在线观看. | 人人妻人人添人人爽欧美一区卜| 久久久精品免费免费高清| 视频区图区小说| 亚洲成人免费电影在线观看| 亚洲av日韩在线播放| av国产精品久久久久影院| 两个人免费观看高清视频| 国产成人av教育| 亚洲专区国产一区二区| а√天堂www在线а√下载 | 国产成人精品久久二区二区91| 在线观看免费高清a一片| 国产精品国产av在线观看| 亚洲成a人片在线一区二区| 久久香蕉精品热| 中文字幕人妻丝袜一区二区| 操美女的视频在线观看| 成人国产一区最新在线观看| 香蕉丝袜av| 精品午夜福利视频在线观看一区| 久久久国产欧美日韩av| 国产成人av教育| 久久久精品区二区三区| 日韩大码丰满熟妇| 一级a爱视频在线免费观看| 国产精品av久久久久免费| 亚洲在线自拍视频| 18禁国产床啪视频网站| 国产片内射在线| 天天影视国产精品| 国产单亲对白刺激| 午夜免费成人在线视频| 国产精华一区二区三区| 9热在线视频观看99| 俄罗斯特黄特色一大片| 丝袜美足系列| 亚洲中文av在线| 黑人欧美特级aaaaaa片| 黄片小视频在线播放| av网站在线播放免费| 亚洲精品在线观看二区| 国产精品秋霞免费鲁丝片| 亚洲精品国产区一区二| 久久精品亚洲av国产电影网| 侵犯人妻中文字幕一二三四区| 在线天堂中文资源库| 老司机午夜十八禁免费视频| 99国产精品一区二区三区| 无遮挡黄片免费观看| videosex国产| 亚洲精品乱久久久久久| 麻豆成人av在线观看| 日本黄色日本黄色录像| 99热网站在线观看| 精品福利观看| 中文字幕人妻丝袜一区二区| 女人精品久久久久毛片| av国产精品久久久久影院| 最新在线观看一区二区三区| 又黄又粗又硬又大视频| 亚洲第一青青草原| 亚洲人成伊人成综合网2020| 精品久久久精品久久久| 国产一区二区三区视频了| 高清视频免费观看一区二区| 99久久综合精品五月天人人| 在线观看免费视频日本深夜| 精品国产乱码久久久久久男人| 亚洲第一欧美日韩一区二区三区| 国产一区二区三区视频了| 满18在线观看网站| 9色porny在线观看| 亚洲中文字幕日韩| 在线观看免费视频网站a站| 亚洲国产精品一区二区三区在线| 亚洲精品国产色婷婷电影| 亚洲专区中文字幕在线| 国内毛片毛片毛片毛片毛片| 男女高潮啪啪啪动态图| 老司机靠b影院| 一个人免费在线观看的高清视频| 欧美日韩亚洲国产一区二区在线观看 | 丰满迷人的少妇在线观看| 日韩欧美国产一区二区入口| 天天操日日干夜夜撸| 免费观看精品视频网站| 免费看a级黄色片| 免费观看a级毛片全部| 天堂俺去俺来也www色官网| 一级片免费观看大全| 欧美人与性动交α欧美软件| 亚洲精品中文字幕一二三四区| 香蕉久久夜色| 国产av精品麻豆| 成人精品一区二区免费| 老司机影院毛片| 热re99久久国产66热| 女性生殖器流出的白浆| 午夜日韩欧美国产| 亚洲九九香蕉| 免费在线观看视频国产中文字幕亚洲| 国产亚洲欧美在线一区二区| 色婷婷av一区二区三区视频| 在线十欧美十亚洲十日本专区| 亚洲男人天堂网一区| 免费在线观看黄色视频的| 色综合婷婷激情| 国产高清激情床上av| 成人黄色视频免费在线看| 亚洲自偷自拍图片 自拍| 大香蕉久久网| 男女高潮啪啪啪动态图| 新久久久久国产一级毛片| 1024视频免费在线观看| 99久久99久久久精品蜜桃| 他把我摸到了高潮在线观看| 色婷婷av一区二区三区视频| 免费在线观看影片大全网站| 欧美日韩亚洲综合一区二区三区_| 91大片在线观看| 亚洲精品中文字幕在线视频| 国产有黄有色有爽视频| 精品少妇久久久久久888优播| 久久精品aⅴ一区二区三区四区| 美女 人体艺术 gogo| 变态另类成人亚洲欧美熟女 | 精品国产亚洲在线| 亚洲av第一区精品v没综合| 欧美最黄视频在线播放免费 | 国产精品影院久久| 亚洲av熟女| av国产精品久久久久影院| 午夜福利欧美成人| 国产精品美女特级片免费视频播放器 | 日韩免费av在线播放| 老鸭窝网址在线观看| 少妇猛男粗大的猛烈进出视频| av视频免费观看在线观看| av片东京热男人的天堂| 成人特级黄色片久久久久久久| 久久人妻熟女aⅴ| 亚洲精品久久午夜乱码| 精品一区二区三卡| 无人区码免费观看不卡| 久久精品亚洲熟妇少妇任你| 国产一区二区三区综合在线观看| 国产高清videossex| 国产蜜桃级精品一区二区三区 | 女人久久www免费人成看片| 久久 成人 亚洲| 91成年电影在线观看| netflix在线观看网站| 丝袜美腿诱惑在线| 美女国产高潮福利片在线看| 国产精品久久视频播放| 天堂俺去俺来也www色官网| 后天国语完整版免费观看| 午夜视频精品福利| 国产成人免费观看mmmm| 日韩精品免费视频一区二区三区| av天堂久久9| 高清视频免费观看一区二区| 99国产精品99久久久久| 国产有黄有色有爽视频| 欧美不卡视频在线免费观看 | 国产高清国产精品国产三级| 亚洲精品一二三| 欧美黄色淫秽网站| 好男人电影高清在线观看| 日本撒尿小便嘘嘘汇集6| 久久久久久人人人人人| 高清毛片免费观看视频网站 | 亚洲全国av大片| 精品国产一区二区久久| 天天影视国产精品| 欧美精品av麻豆av| 黄色视频不卡| 欧美乱色亚洲激情| 色精品久久人妻99蜜桃| 国产成人欧美| 免费在线观看亚洲国产| 巨乳人妻的诱惑在线观看| 高清av免费在线| 久久天堂一区二区三区四区| 国精品久久久久久国模美| av有码第一页| 免费在线观看视频国产中文字幕亚洲| 亚洲五月天丁香| 亚洲三区欧美一区| 人人妻人人澡人人看| 无遮挡黄片免费观看| 熟女少妇亚洲综合色aaa.| 另类亚洲欧美激情| 伦理电影免费视频| 亚洲精品粉嫩美女一区| 中文字幕精品免费在线观看视频| 最近最新免费中文字幕在线| 免费在线观看影片大全网站| 国产亚洲欧美98| 久久狼人影院| 久久热在线av| 成人亚洲精品一区在线观看| 久久久久国产精品人妻aⅴ院 | 伊人久久大香线蕉亚洲五| aaaaa片日本免费| 啦啦啦免费观看视频1| 高清在线国产一区| 成年人免费黄色播放视频| 欧美日韩国产mv在线观看视频| 亚洲七黄色美女视频| 变态另类成人亚洲欧美熟女 | 国产黄色免费在线视频| 老熟妇仑乱视频hdxx| 操美女的视频在线观看| 日韩欧美一区视频在线观看| 免费在线观看日本一区| 免费观看人在逋| 老熟妇乱子伦视频在线观看| 香蕉国产在线看| 亚洲伊人色综图| 国产亚洲欧美精品永久| 在线免费观看的www视频| 最近最新中文字幕大全电影3 | 黄色丝袜av网址大全| 亚洲精品在线观看二区| 欧美日韩一级在线毛片| 精品一区二区三区视频在线观看免费 | 国产男女内射视频| 午夜影院日韩av| av福利片在线| 成人特级黄色片久久久久久久| 亚洲五月天丁香| 激情在线观看视频在线高清 | 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲五月色婷婷综合| 亚洲国产精品一区二区三区在线| 国产精品久久久久成人av| 99热只有精品国产| 搡老乐熟女国产| 久热这里只有精品99| √禁漫天堂资源中文www| 国产xxxxx性猛交| 亚洲成国产人片在线观看| 亚洲美女黄片视频| 夜夜夜夜夜久久久久| 涩涩av久久男人的天堂| 久久久久久亚洲精品国产蜜桃av| 国产深夜福利视频在线观看| 无人区码免费观看不卡| 18禁观看日本| 日本一区二区免费在线视频| www.自偷自拍.com| 老司机午夜十八禁免费视频| 欧美+亚洲+日韩+国产| 香蕉国产在线看| 精品国产超薄肉色丝袜足j| 精品一区二区三区四区五区乱码| 亚洲成人免费av在线播放| 99久久综合精品五月天人人| 国产精品免费一区二区三区在线 | 国产欧美日韩精品亚洲av| 美国免费a级毛片| 久久天躁狠狠躁夜夜2o2o| 成人av一区二区三区在线看| 亚洲综合色网址| 99re6热这里在线精品视频| 99国产精品99久久久久| 老鸭窝网址在线观看| 国产精品综合久久久久久久免费 | 久久99一区二区三区| 国产亚洲一区二区精品| 在线av久久热| 日本精品一区二区三区蜜桃| 中文字幕精品免费在线观看视频| 久久性视频一级片| 天天躁狠狠躁夜夜躁狠狠躁| 久久人妻av系列| 亚洲九九香蕉| 丰满饥渴人妻一区二区三| 18禁黄网站禁片午夜丰满| av欧美777| 黄色毛片三级朝国网站| 电影成人av| 久久人人97超碰香蕉20202| 午夜久久久在线观看| 久久香蕉国产精品| 色老头精品视频在线观看| 久久香蕉激情| 十八禁网站免费在线| 超碰成人久久| 免费观看a级毛片全部| 啦啦啦免费观看视频1| 免费观看精品视频网站| 亚洲一码二码三码区别大吗| 纯流量卡能插随身wifi吗| 大片电影免费在线观看免费| 大香蕉久久网| 精品电影一区二区在线| 老司机福利观看| 19禁男女啪啪无遮挡网站| 手机成人av网站| 中文字幕人妻熟女乱码| 国产高清激情床上av| 老熟妇仑乱视频hdxx| 中文字幕色久视频| 精品视频人人做人人爽| 少妇猛男粗大的猛烈进出视频| a级毛片在线看网站| 久久精品国产a三级三级三级| 亚洲一区中文字幕在线| 国产av又大| 日韩 欧美 亚洲 中文字幕| 18禁观看日本| svipshipincom国产片| 亚洲人成77777在线视频| 亚洲欧美激情在线| 亚洲中文日韩欧美视频| 18禁裸乳无遮挡免费网站照片 | 免费一级毛片在线播放高清视频 | а√天堂www在线а√下载 | 亚洲综合色网址| av有码第一页| 在线观看66精品国产| 夜夜夜夜夜久久久久| 欧美黑人欧美精品刺激| 欧美 亚洲 国产 日韩一| 99香蕉大伊视频| av视频免费观看在线观看| 天天躁日日躁夜夜躁夜夜| 欧美乱妇无乱码| 国产不卡一卡二| 热re99久久国产66热| 欧美亚洲 丝袜 人妻 在线| 亚洲 国产 在线| 搡老乐熟女国产| 男女之事视频高清在线观看| 欧美 日韩 精品 国产| 国产精品 欧美亚洲| 精品久久久久久久毛片微露脸| 亚洲欧美日韩另类电影网站| 亚洲人成伊人成综合网2020| 人妻一区二区av| 久久精品亚洲熟妇少妇任你| 国产极品粉嫩免费观看在线| 国产免费av片在线观看野外av| 美国免费a级毛片| 69精品国产乱码久久久| 国产免费av片在线观看野外av| 国产在视频线精品| 后天国语完整版免费观看| 国产主播在线观看一区二区| 好看av亚洲va欧美ⅴa在| 欧美日韩视频精品一区| 国产精品香港三级国产av潘金莲| 男男h啪啪无遮挡| 在线观看免费日韩欧美大片| av在线播放免费不卡| 精品国产国语对白av| 制服诱惑二区| 久久精品aⅴ一区二区三区四区| 欧美乱码精品一区二区三区| 国产熟女午夜一区二区三区| 国产精品久久久人人做人人爽| 欧美人与性动交α欧美软件| 国产精品美女特级片免费视频播放器 | 午夜两性在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 90打野战视频偷拍视频| 999久久久精品免费观看国产| www.精华液| 少妇裸体淫交视频免费看高清 | 欧美黑人精品巨大|