• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Inf l uence of Primitive Subgroups on the Structure of Finite Groups

    2013-08-27 01:41:22LIUYUFENG

    LIU YU-FENG

    (School of Mathematics and Informational Science,Shandong Institute of Business and Technology,Yantai,Shandong,264005)

    Communicated by Du Xian-kun

    The Inf l uence of Primitive Subgroups on the Structure of Finite Groups

    LIU YU-FENG

    (School of Mathematics and Informational Science,Shandong Institute of Business and Technology,Yantai,Shandong,264005)

    Communicated by Du Xian-kun

    A subgroup H of a group G is said to be primitive if it is a proper subgroup of the intersection of all subgroups of G containing H as its proper subgroup.The purpose of this note is to go further into the inf l uence of primitive subgroups on the structure of f i nite groups.Some new results are obtained.

    primitive subgroup,supersoluble group,structure of group

    1 Introduction

    All groups considered in this paper are f i nite and G denotes a f i nite group.The generalized concept of maximal subgroups of a group G,namely,the primitive subgroup,was introduced by Johnson[1]in 1971.He called a subgroup H of a group G primitive if it is a proper subgroup of the intersection of all subgroups of G containing H as its proper subgroup.We denote by H<primG that H is a primitive subgroup of G.It is interesting to note that every group G has a primitive subgroup and that every proper subgroup of G is the intersection of some primitive subgroups of G.Since the intersection of all primitive subgroups is the identity subgroup,we can easily see that the class of all primitive subgroups is obviously wider than the class of all maximal subgroups.Guo,Shum and Skiba[2]gave the structure of the f i nite group in which every primitive subgroup has a prime power index.They proved that every primitive subgroup of a f i nite group G has a prime-power index if and only if G=[D]M is a supersoluble group,where D and M are nilpotent Hall subgroups of G,D is the smallest term of the lower central series of G and G=DNG(D∩X)for every primitive subgroup X of G.

    The purpose of this note is to go further into the inf l uence of primitive subgroups on the structure of f i nite groups.Some new results are obtained.

    2 Preliminaries

    Recall that the quaternion group is a 2-group with a unique element of order 2,and the generalized quaternion group Q2nof order 2nis the group with the following presentation of the form:

    Note that a group G is said to be primary if the order of G is a prime power.

    Lemma 2.1([3],Theorem III.8.2)If a p-group has a unique subgroup of order p,then G is a cyclic group or a generalized quaternion group.

    Lemma 2.2[1]If every primitive subgroup of G has a prime power index,then G is supersoluble.

    3 Main Results

    Proposition 3.1If H<primG,then NG(H)/H is either a cyclic p-group for some prime p or a generalized quaternion group.

    Proof.Suppose that the factor group NG(H)/H had two dif f erent subgroups A/H and B/H of prime order.Then H were a proper subgroup of A and of B.H were a primitive subgroup of G,and

    This implies that

    The contradiction shows that NG(H)/H has a unique subgroup of prime order.By Sylow theorem,NG(H)/H is a primary group.Thus,by Lemma 2.1,we obtain that NG(H)/H is either a cyclic p-group for some prime p or a generalized quaternion group.

    Proposition 3.2If the identity subgroup is primitive in G,then G is either a cyclic p-group for some prime p or a generalized quaternion group.

    Proof.Obviously,G is a p-group for some prime p.If G had two subgroups P1and P2of order p,then 1<P1,1<P2and 1=P1∩P2,which contradicts the fact that 1 is a primitive subgroup.Hence G has only a subgroup of order p.By Lemma 2.1,we see that

    G is either a cyclic p-group or a generalized quaternion group.This completes the proof.

    As usual,a subgroup H of G is said to be non-trivial if H is neither an identity subgroup nor G.

    Theorem 3.1Suppose that all non-trivial subgroups of a group G are primitive.

    (1)If G is a p-group for some prime p,then G is a cyclic group or an elementary Abelian group of order p2;

    (2)If G is a non-primary nilpotent group,then

    where p,q are dif f erent primes;

    (3)If G is a non-nilpotent group,then

    where P is the minimal normal subgroup of G of order p or p2,Q is a subgroup of order q. Proof.Obviously,the conditions of the theorem hold for all subgroups of G.

    (1)Since a p-group of order≤p2is either cyclic or an elementary Abelian group,we may assume that|G|≥p3.If G has only one subgroup of index p,then G has only one maximal subgroup.Hence G is cyclic(see Theorem III.3.16 in[3]).If G had two subgroups M1and M2with index p,then,obviously,their intersection were a non-trivial non-primitive subgroup of G.This is a contradiction.Hence(1)holds.

    (2)Assume that G were a non-primary nilpotent group and

    where P and Q are a Sylow p-subgroup and a Sylow q-subgroup of G,respectively.If X/=1, then

    which contradicts the primitivity of P.Hence

    If|P|is not a prime number,then there exists a subgroup P1such that

    and

    which contradicts the primitivity of P1.This shows that the subgroup P has prime order. Analogously,we can prove that|Q|is also a prime number.Thus

    (3)Suppose that G is a non-nilpotent group.Then there exists a self-normalized maximal subgroup M in G.If x∈GM,then M∩Mxis not primitive,and so

    This means that G=[N]M is a Frobenius group with a Frobenius complement M and the Frobenius kernel N(see(8.5.5)in[4]).By the maximality of M,we have that N is a minimal normal subgroup of G.By Thompsom theorem(see(10.5.6)in[4]),N is nilpotent. Hence N is an elementary Abelian p-group for some prime p.Let|N|=pn.By(1),we see that n≤2.If X is a subgroup of M of prime order,thenX is a primitive subgroup of G,and X=M.Thus,the order of M is a prime.This completes the proof.

    Recall that a subgroup H of G is said to be permutable with a subgroup K if

    Let p1,···,pkbe the distinct prime divisors of the order of G.A set of Sylow subgroups {P1,···,Pk}is said to be a Sylow system of G,if PiPj=PjPifor all i,j.

    Proposition 3.3If a primitive subgroup V of G is permutable with every subgroup in some Sylow system of G,then the index|G:V|is of prime power.In particular,if every primitive subgroup of G is permutable with all subgroups in some Sylow system of G,then G is supersoluble.

    Proof.Suppose that p,q were dif f erent prime divisors of the index|G:V|.By the hypothesis,there would exist a Sylow p-subgroup P and a Sylow q-subgroup Q of G such that

    and

    Obviously,V is a proper subgroup of V P and of V Q.Let U=V P∩V Q.Then

    and

    which simultaneously divides the order of P and the order of Q.This implies that

    which contradicts the primitivity of V.Therefore|G:V|is a prime power.

    If every primitive subgroup of G is permutable with all subgroup in some Sylow system of G,then every primitive subgroup has primary index in G.Hence,by Lemma 2.2,G is supersoluble.This completes the proof.

    Proposition 3.4Let P be a p-group.Then every maximal subgroup of P is complemented in P if and only if Ω1(P)=P,where Ω1(P)is the subgroup generalized by all elements of P of order p.

    Proof.Assume that Ω1(P)=P.If M is the maximal subgroup of P,then

    Therefore there exists an element a of order p such that a/∈M.Obviously,the subgroup〈a〉is a complement of M in P.Conversely,assume that every maximal subgroup of P were complemented in P.If Ω1(P)/=P,then,obviously,every maximal subgroup M containing Ω1(P)were not complemented in P.This is a contradiction.Thus,the proposition is proved.

    In the following,we denote by N the class of all nilpotent groups,and Nkdenotes the class of all soluble groups with nilpotent length k.It is well known that N and Nkare all saturated formations(see Theorem 3.1.20 in[5]).

    Recall that the product of two non-empty formations F and H are def i ned as follows:

    Lemma 3.1Let F be a formation of groups and G be a soluble group.If all primitive subgroups of G belong to F,then G∈NF.

    Proof.If MG/=1 for every maximal subgroup M of G,then,obviously,G/MGsatisf i es the hypothesis.Hence G/MG∈NF by induction.It follows that G/Φ(G)∈NF.However NF is a saturated formation(see Theorem 3.1.21 in[5]),we obtain that G∈NF.We may, therefore,assume that there exists a maximal subgroup M such that MG=1.Then,since G is soluble,1/=F(G)is the unique minimal normal subgroup of G(see Theorem 15.2 in[6] or Lemma 2.3.3 in[5]).This implies that G=[F(G)]M,where M is a maximal subgroup of G.Since every maximal subgroup of G is a primitive subgroup of G,by the hypothesis, M∈F.This implies that G∈NF.

    Theorem 3.2Let G be a soluble group.

    (1)If the nilpotent length of every primitive subgroup of G is no more than a natural number n,then the nilpotent length of G is not more than 1+n;

    (2)If the derived length of every primitive subgroup of G is no more than a natural number n,then the derived length of G/Φ(G)is not more than 1+n.

    Proof.(1)It is clear that the nilpotent length of a soluble group X is equal to k if and only if X∈NkNk-1.By Lemma 3.1,we obtain that

    This means that the nilpotent length of G is not more than 1+n.

    (2)It is clear also that the derived length of a soluble group X is equal to k if and only if X∈AkAk-1,where A is the class of all Abelian groups.By Lemma 3.1,we see that G∈NAn.However,since G is soluble,F(X)/Φ(X)is an Abelian group.Hence the derived length of G/Φ(G)is not more than 1+n.

    [1]Johnson D L.A note on supersoluble groups.Canad.J.Math.,1971,23:562–564.

    [2]Guo W,Shum K P,Skiba A.On primitive subgroups of f i nite groups.Indian J.Pure Appl. Math.,2006,37(6):369–376.

    [3]Huppert B.Endliche Gruppen I.Berlin-Heidelberg-New York:Springer-Verlag,1967.

    [4]Robinson D J S.A Course in the Theory of Groups.New York-Heidelberg-Berlin:Springer-Verlag,1982.

    [5]Guo W.The Theory of Class of Groups.Beijing-New York-Dordrecht-Boston:Science Press-Kluwer Academic Publishers,2000.

    [6]Doerk K,Hawkes T.Finite Soluble Groups.Berlin-New York:Walter de Gruyter,1992.

    tion:20D10,20D25

    A

    1674-5647(2013)02-0179-05

    Received date:Jan.15,2011.

    The NSF(11071147)of China.

    E-mail address:yf l iu@sdibt.edu.cn(Liu Y F).

    老司机午夜十八禁免费视频| 亚洲欧美一区二区三区黑人| 亚洲av日韩精品久久久久久密| 黄片大片在线免费观看| 麻豆成人午夜福利视频| 桃色一区二区三区在线观看| 欧美极品一区二区三区四区| 国产色爽女视频免费观看| 亚洲av五月六月丁香网| 国产高清视频在线播放一区| 丁香欧美五月| 国产国拍精品亚洲av在线观看 | 亚洲av中文字字幕乱码综合| 12—13女人毛片做爰片一| av在线蜜桃| 91麻豆精品激情在线观看国产| 性色av乱码一区二区三区2| 在线看三级毛片| 一级毛片女人18水好多| 日韩欧美 国产精品| 午夜a级毛片| 国产私拍福利视频在线观看| 少妇的逼水好多| 久久精品国产亚洲av涩爱 | 亚洲激情在线av| 日本免费a在线| 精品熟女少妇八av免费久了| 日日摸夜夜添夜夜添小说| 国产成+人综合+亚洲专区| 又粗又爽又猛毛片免费看| 久久精品影院6| 国产精华一区二区三区| 人妻丰满熟妇av一区二区三区| 久久香蕉精品热| 欧美bdsm另类| 最近最新中文字幕大全免费视频| 狂野欧美激情性xxxx| 亚洲成av人片在线播放无| 亚洲久久久久久中文字幕| 国产精品亚洲美女久久久| 午夜福利在线在线| 久久久精品欧美日韩精品| 国产亚洲精品久久久com| 在线播放国产精品三级| 欧美区成人在线视频| 黄色女人牲交| 成年人黄色毛片网站| 真实男女啪啪啪动态图| 日本黄色视频三级网站网址| 哪里可以看免费的av片| 国产中年淑女户外野战色| a级一级毛片免费在线观看| 色哟哟哟哟哟哟| 久久久久久久久久黄片| 欧美日韩福利视频一区二区| 成人欧美大片| 波多野结衣高清无吗| 亚洲无线在线观看| 免费在线观看成人毛片| 天天一区二区日本电影三级| www.色视频.com| 最近最新免费中文字幕在线| 天堂网av新在线| 成人特级黄色片久久久久久久| 男人舔女人下体高潮全视频| 俺也久久电影网| 国产又黄又爽又无遮挡在线| 亚洲一区二区三区色噜噜| 五月玫瑰六月丁香| 国产欧美日韩一区二区精品| 脱女人内裤的视频| 国产精品综合久久久久久久免费| 99久久无色码亚洲精品果冻| 观看免费一级毛片| 亚洲电影在线观看av| 国产成年人精品一区二区| 男人的好看免费观看在线视频| 最新美女视频免费是黄的| 欧美区成人在线视频| 日韩欧美三级三区| tocl精华| 久久精品国产综合久久久| 亚洲精品一区av在线观看| 欧美性感艳星| 法律面前人人平等表现在哪些方面| 国产精品一区二区三区四区免费观看 | 久久婷婷人人爽人人干人人爱| 中亚洲国语对白在线视频| 黄色丝袜av网址大全| 熟女电影av网| 久久香蕉国产精品| 国产单亲对白刺激| 国产亚洲精品久久久久久毛片| 久久中文看片网| 亚洲成av人片免费观看| 在线播放无遮挡| 久久国产乱子伦精品免费另类| 精品免费久久久久久久清纯| 午夜久久久久精精品| 成人特级黄色片久久久久久久| 国产精品一区二区三区四区久久| 在线看三级毛片| 伊人久久精品亚洲午夜| 欧美黄色片欧美黄色片| 黄色片一级片一级黄色片| 在线国产一区二区在线| 国产主播在线观看一区二区| 国产精品嫩草影院av在线观看 | 狂野欧美白嫩少妇大欣赏| 亚洲国产欧美网| 男女午夜视频在线观看| 午夜亚洲福利在线播放| 制服人妻中文乱码| 1000部很黄的大片| 日韩欧美免费精品| 99热这里只有精品一区| 两个人的视频大全免费| 观看美女的网站| 蜜桃久久精品国产亚洲av| 在线a可以看的网站| 97超视频在线观看视频| 18禁黄网站禁片午夜丰满| 人人妻人人看人人澡| 国产野战对白在线观看| 一区二区三区免费毛片| 国产探花在线观看一区二区| 97人妻精品一区二区三区麻豆| 欧美在线一区亚洲| 久久久久精品国产欧美久久久| 欧美三级亚洲精品| 欧美一区二区亚洲| 欧洲精品卡2卡3卡4卡5卡区| 大型黄色视频在线免费观看| 国内毛片毛片毛片毛片毛片| 欧美大码av| ponron亚洲| 偷拍熟女少妇极品色| 欧美成人免费av一区二区三区| 国语自产精品视频在线第100页| 美女黄网站色视频| e午夜精品久久久久久久| 亚洲最大成人中文| 19禁男女啪啪无遮挡网站| 日本黄色片子视频| 欧美日韩综合久久久久久 | 99久久久亚洲精品蜜臀av| 淫秽高清视频在线观看| 老司机福利观看| 小说图片视频综合网站| 国产一区二区亚洲精品在线观看| 国产精品久久电影中文字幕| 麻豆久久精品国产亚洲av| 国产精品爽爽va在线观看网站| 久久精品国产99精品国产亚洲性色| 精品福利观看| 亚洲狠狠婷婷综合久久图片| 国产aⅴ精品一区二区三区波| 国内少妇人妻偷人精品xxx网站| 少妇裸体淫交视频免费看高清| 一卡2卡三卡四卡精品乱码亚洲| 熟女电影av网| 日本免费a在线| 国产高清videossex| 老汉色∧v一级毛片| 最近视频中文字幕2019在线8| 非洲黑人性xxxx精品又粗又长| 尤物成人国产欧美一区二区三区| 波多野结衣高清无吗| АⅤ资源中文在线天堂| 国产精品美女特级片免费视频播放器| 国产免费男女视频| 国产欧美日韩精品亚洲av| aaaaa片日本免费| 成人国产综合亚洲| 久久久久久大精品| 99热这里只有精品一区| 一进一出抽搐gif免费好疼| 叶爱在线成人免费视频播放| 日本一本二区三区精品| 一a级毛片在线观看| 久久午夜亚洲精品久久| 少妇高潮的动态图| 亚洲av电影在线进入| 成人亚洲精品av一区二区| 国产极品精品免费视频能看的| 最近视频中文字幕2019在线8| 国产久久久一区二区三区| 悠悠久久av| 日韩欧美免费精品| 亚洲人成网站高清观看| av国产免费在线观看| 一本一本综合久久| 色老头精品视频在线观看| 国产精品一区二区三区四区久久| 内地一区二区视频在线| 日本与韩国留学比较| 99riav亚洲国产免费| 午夜免费男女啪啪视频观看 | 99精品在免费线老司机午夜| eeuss影院久久| 久久九九热精品免费| 久久精品国产综合久久久| 他把我摸到了高潮在线观看| 亚洲精品456在线播放app | 国产成人aa在线观看| 亚洲国产精品合色在线| 亚洲av电影在线进入| 亚洲第一电影网av| 日本与韩国留学比较| 少妇的丰满在线观看| 日本成人三级电影网站| 欧美日韩乱码在线| 成人精品一区二区免费| 岛国视频午夜一区免费看| 性欧美人与动物交配| 一区二区三区激情视频| 久久亚洲真实| 一本综合久久免费| 色综合站精品国产| 亚洲av成人精品一区久久| 少妇人妻一区二区三区视频| 一本一本综合久久| 老熟妇乱子伦视频在线观看| 叶爱在线成人免费视频播放| 久久久久久久亚洲中文字幕 | 亚洲av第一区精品v没综合| 国产在线精品亚洲第一网站| 午夜影院日韩av| 桃红色精品国产亚洲av| 精品福利观看| 搡老妇女老女人老熟妇| 看黄色毛片网站| 国产精品久久久人人做人人爽| 国产成人av教育| 国产精品1区2区在线观看.| 国产精品日韩av在线免费观看| 欧美中文综合在线视频| 美女大奶头视频| 亚洲欧美日韩高清专用| 精品不卡国产一区二区三区| 哪里可以看免费的av片| 非洲黑人性xxxx精品又粗又长| 久久久精品大字幕| 色视频www国产| 好看av亚洲va欧美ⅴa在| 色综合亚洲欧美另类图片| 性色avwww在线观看| 国产伦精品一区二区三区四那| 亚洲成av人片在线播放无| 亚洲国产精品999在线| 我要搜黄色片| 一本精品99久久精品77| 久久精品人妻少妇| 久久久久久久久大av| 无人区码免费观看不卡| 日韩欧美在线乱码| 国产不卡一卡二| 日本一二三区视频观看| 免费av观看视频| 日本 av在线| 国产黄色小视频在线观看| 欧美3d第一页| netflix在线观看网站| 国产精品影院久久| 国产精品爽爽va在线观看网站| 日本撒尿小便嘘嘘汇集6| 亚洲国产日韩欧美精品在线观看 | 日韩欧美精品免费久久 | 免费在线观看日本一区| 国产乱人视频| or卡值多少钱| 欧美黑人巨大hd| 蜜桃亚洲精品一区二区三区| 国产精品国产高清国产av| 免费av毛片视频| 精品欧美国产一区二区三| 日韩大尺度精品在线看网址| 午夜影院日韩av| 18美女黄网站色大片免费观看| 两个人看的免费小视频| 草草在线视频免费看| xxxwww97欧美| 神马国产精品三级电影在线观看| 可以在线观看的亚洲视频| 日韩中文字幕欧美一区二区| 日韩高清综合在线| 一级黄色大片毛片| 免费搜索国产男女视频| 岛国在线观看网站| 91在线精品国自产拍蜜月 | 免费搜索国产男女视频| 内射极品少妇av片p| 成年女人永久免费观看视频| 高潮久久久久久久久久久不卡| 国产免费av片在线观看野外av| 性欧美人与动物交配| 97碰自拍视频| 午夜激情欧美在线| 久久久久久九九精品二区国产| 十八禁人妻一区二区| 白带黄色成豆腐渣| 久久6这里有精品| netflix在线观看网站| 九色成人免费人妻av| 国产 一区 欧美 日韩| 搡女人真爽免费视频火全软件 | 又粗又爽又猛毛片免费看| 欧美乱妇无乱码| 一个人看的www免费观看视频| 国产伦人伦偷精品视频| 欧美乱色亚洲激情| 国产精品女同一区二区软件 | 国产高清videossex| 亚洲精品日韩av片在线观看 | 国产午夜福利久久久久久| 91久久精品国产一区二区成人 | 久久久久久大精品| 久久久久久久久中文| 88av欧美| 久久久久精品国产欧美久久久| 一级a爱片免费观看的视频| 桃色一区二区三区在线观看| 国产精品影院久久| 99久久精品国产亚洲精品| 亚洲专区中文字幕在线| 真人一进一出gif抽搐免费| 欧美最新免费一区二区三区 | 欧美成狂野欧美在线观看| 欧美日韩综合久久久久久 | 美女黄网站色视频| 国产精品一区二区免费欧美| 久久久成人免费电影| 一本一本综合久久| 真实男女啪啪啪动态图| 首页视频小说图片口味搜索| 午夜免费男女啪啪视频观看 | 国产男靠女视频免费网站| 日韩av在线大香蕉| 国产成人av激情在线播放| 日本五十路高清| 亚洲精品影视一区二区三区av| 日韩大尺度精品在线看网址| 日本五十路高清| 色精品久久人妻99蜜桃| 精品国内亚洲2022精品成人| 欧美av亚洲av综合av国产av| 欧美成人a在线观看| 欧美最黄视频在线播放免费| 欧美日本亚洲视频在线播放| 免费看十八禁软件| 国产亚洲精品综合一区在线观看| 国产精品香港三级国产av潘金莲| 在线观看免费午夜福利视频| 大型黄色视频在线免费观看| 老司机午夜十八禁免费视频| 国产三级在线视频| xxxwww97欧美| 国产野战对白在线观看| 女人被狂操c到高潮| 中文字幕av成人在线电影| 日韩有码中文字幕| 午夜福利在线在线| 欧美中文日本在线观看视频| 亚洲国产精品sss在线观看| 欧美黄色淫秽网站| 中文字幕人成人乱码亚洲影| 亚洲男人的天堂狠狠| 男人舔女人下体高潮全视频| 在线播放国产精品三级| 欧美黄色片欧美黄色片| 亚洲人成网站高清观看| 麻豆国产97在线/欧美| 美女被艹到高潮喷水动态| 久久中文看片网| 国产 一区 欧美 日韩| 久久中文看片网| 真实男女啪啪啪动态图| 九色成人免费人妻av| 美女被艹到高潮喷水动态| 国产三级黄色录像| 午夜日韩欧美国产| 欧美日韩乱码在线| 国产精品乱码一区二三区的特点| 亚洲黑人精品在线| 熟女电影av网| 久久久国产成人免费| 成人av一区二区三区在线看| 18禁黄网站禁片午夜丰满| 成人国产一区最新在线观看| 亚洲一区高清亚洲精品| avwww免费| 国产69精品久久久久777片| 国产精品久久久久久久电影 | 99在线人妻在线中文字幕| 校园春色视频在线观看| 网址你懂的国产日韩在线| 亚洲av日韩精品久久久久久密| 国产在视频线在精品| 国内揄拍国产精品人妻在线| 欧美日韩福利视频一区二区| 少妇熟女aⅴ在线视频| 深夜精品福利| 国产视频内射| 一级黄色大片毛片| 国产一区二区三区在线臀色熟女| 国产亚洲欧美98| 一个人看的www免费观看视频| 九九热线精品视视频播放| 制服人妻中文乱码| 18禁黄网站禁片免费观看直播| 偷拍熟女少妇极品色| 色播亚洲综合网| 国产伦一二天堂av在线观看| 哪里可以看免费的av片| 国产高清videossex| 丁香欧美五月| 欧美乱妇无乱码| 国内精品一区二区在线观看| 最近视频中文字幕2019在线8| 夜夜躁狠狠躁天天躁| 国产不卡一卡二| aaaaa片日本免费| 国产一区二区三区视频了| 免费人成视频x8x8入口观看| 免费在线观看日本一区| 色综合亚洲欧美另类图片| 狂野欧美白嫩少妇大欣赏| 精品国产亚洲在线| 乱人视频在线观看| 午夜精品一区二区三区免费看| 国产av在哪里看| 别揉我奶头~嗯~啊~动态视频| 欧美日韩乱码在线| 免费观看精品视频网站| 舔av片在线| 日韩欧美在线乱码| 亚洲欧美日韩卡通动漫| 成人特级黄色片久久久久久久| 亚洲国产色片| 神马国产精品三级电影在线观看| 亚洲av不卡在线观看| 99久久精品热视频| 一级毛片女人18水好多| 国产精品女同一区二区软件 | 99久国产av精品| 最新中文字幕久久久久| 九色国产91popny在线| 麻豆国产97在线/欧美| 欧美乱码精品一区二区三区| 91久久精品国产一区二区成人 | 免费人成视频x8x8入口观看| 精品国产超薄肉色丝袜足j| 亚洲人与动物交配视频| 欧美av亚洲av综合av国产av| 天堂影院成人在线观看| 色综合站精品国产| 又黄又爽又免费观看的视频| 俺也久久电影网| 久久久久久人人人人人| 成年女人毛片免费观看观看9| 国内揄拍国产精品人妻在线| 国产色婷婷99| 叶爱在线成人免费视频播放| 变态另类成人亚洲欧美熟女| 欧美日韩福利视频一区二区| 18禁黄网站禁片免费观看直播| 级片在线观看| 午夜福利免费观看在线| 岛国在线观看网站| tocl精华| 日韩成人在线观看一区二区三区| 国产在视频线在精品| 九色成人免费人妻av| 久久精品亚洲精品国产色婷小说| 在线观看午夜福利视频| 91字幕亚洲| 特大巨黑吊av在线直播| 男女床上黄色一级片免费看| netflix在线观看网站| 啪啪无遮挡十八禁网站| 1000部很黄的大片| 成年女人毛片免费观看观看9| 欧美午夜高清在线| 人人妻人人看人人澡| 69av精品久久久久久| 亚洲国产高清在线一区二区三| 在线免费观看不下载黄p国产 | 日本黄大片高清| 免费在线观看亚洲国产| 身体一侧抽搐| 美女cb高潮喷水在线观看| 高清毛片免费观看视频网站| 亚洲国产欧美网| 少妇的逼好多水| 日韩欧美国产在线观看| 欧美在线黄色| 欧美一级毛片孕妇| 97碰自拍视频| 欧美乱妇无乱码| 丁香六月欧美| 精品乱码久久久久久99久播| 国内久久婷婷六月综合欲色啪| 亚洲自拍偷在线| 国产麻豆成人av免费视频| 一区二区三区高清视频在线| 俺也久久电影网| 99视频精品全部免费 在线| 国产伦人伦偷精品视频| 搞女人的毛片| 亚洲七黄色美女视频| 欧美激情久久久久久爽电影| 女人十人毛片免费观看3o分钟| 天天一区二区日本电影三级| 亚洲欧美一区二区三区黑人| 国内精品一区二区在线观看| 免费人成视频x8x8入口观看| 老司机在亚洲福利影院| 欧美成人一区二区免费高清观看| 老司机在亚洲福利影院| 成人无遮挡网站| 亚洲av五月六月丁香网| 久久亚洲真实| 免费在线观看影片大全网站| 免费在线观看成人毛片| 最新中文字幕久久久久| 丁香六月欧美| 亚洲精华国产精华精| 亚洲专区中文字幕在线| 色综合欧美亚洲国产小说| 老汉色av国产亚洲站长工具| 天天一区二区日本电影三级| 99在线视频只有这里精品首页| 丁香欧美五月| 国产探花在线观看一区二区| 99国产精品一区二区蜜桃av| 在线观看av片永久免费下载| 成熟少妇高潮喷水视频| 国产成人福利小说| 国产黄片美女视频| 热99re8久久精品国产| 亚洲片人在线观看| 看黄色毛片网站| 18美女黄网站色大片免费观看| 国产精品久久久久久亚洲av鲁大| 高清在线国产一区| 中文字幕熟女人妻在线| 日韩中文字幕欧美一区二区| 国产成人欧美在线观看| 天堂√8在线中文| 又黄又爽又免费观看的视频| 国产成人aa在线观看| 国产伦精品一区二区三区视频9 | 亚洲精品一区av在线观看| 国产aⅴ精品一区二区三区波| 国内毛片毛片毛片毛片毛片| 三级男女做爰猛烈吃奶摸视频| 免费在线观看成人毛片| 国产91精品成人一区二区三区| 好看av亚洲va欧美ⅴa在| 免费观看的影片在线观看| 国产成人系列免费观看| 窝窝影院91人妻| 日韩av在线大香蕉| 波多野结衣高清无吗| 级片在线观看| 一个人免费在线观看电影| 色哟哟哟哟哟哟| 欧美另类亚洲清纯唯美| 综合色av麻豆| 亚洲成人免费电影在线观看| 亚洲第一欧美日韩一区二区三区| 国产黄a三级三级三级人| 国产精品98久久久久久宅男小说| 欧美色欧美亚洲另类二区| 88av欧美| 婷婷亚洲欧美| 99热6这里只有精品| 美女黄网站色视频| 757午夜福利合集在线观看| 18禁黄网站禁片午夜丰满| 精品国产美女av久久久久小说| 成人永久免费在线观看视频| 麻豆成人午夜福利视频| 草草在线视频免费看| 亚洲无线观看免费| 精品欧美国产一区二区三| 精品国产三级普通话版| 在线观看舔阴道视频| 亚洲欧美日韩高清专用| 久久这里只有精品中国| 欧美高清成人免费视频www| 午夜福利视频1000在线观看| 最好的美女福利视频网| svipshipincom国产片| 天堂动漫精品| 色综合婷婷激情| 色在线成人网| 男女之事视频高清在线观看| 一个人看视频在线观看www免费 | 国产精品野战在线观看| 深爱激情五月婷婷| 亚洲av二区三区四区| 精品欧美国产一区二区三| 精品人妻1区二区| 日本三级黄在线观看| 亚洲精品美女久久久久99蜜臀| 国产亚洲精品av在线| 欧美成人a在线观看| 免费在线观看影片大全网站| 国产单亲对白刺激| 国产精品免费一区二区三区在线| 亚洲av中文字字幕乱码综合| 久久6这里有精品| 国产99白浆流出| 桃色一区二区三区在线观看|