• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Stability and Oscillations of Runge-Kutta Methods for Dif f erential Equations with Piecewise Constant Arguments of Advanced Type

    2013-08-27 01:41:31WANGQI

    WANG QI

    (School of Applied Mathematics,Guangdong University of Technology,Guangzhou,510006)

    Communicated by Ma Fu-ming

    Numerical Stability and Oscillations of Runge-Kutta Methods for Dif f erential Equations with Piecewise Constant Arguments of Advanced Type

    WANG QI

    (School of Applied Mathematics,Guangdong University of Technology,Guangzhou,510006)

    Communicated by Ma Fu-ming

    For dif f erential equations with piecewise constant arguments of advanced type,numerical stability and oscillations of Runge-Kutta methods are investigated. The necessary and sufficient conditions under which the numerical stability region contains the analytic stability region are given.The conditions of oscillations for the Runge-Kutta methods are obtained also.We prove that the Runge-Kutta methods preserve the oscillations of the analytic solution.Moreover,the relationship between stability and oscillations is discussed.Several numerical examples which conf i rm the results of our analysis are presented.

    numerical solution,Runge-Kutta method,asymptotic stability,oscillation

    1 Introduction

    In this paper,we consider the dif f erential equations with piecewise constant arguments (EPCA)of advanced type,given bywhere a,b,u0are real constants and[·]denotes the greatest integer function.The general form of(1.1)is

    where the argument α(t)has intervals of constancy.

    The theory of EPCA was initiated in[1–3].In the literature,there are many papers dealing with the properties of EPCA,such as Wiener and Cooke[4],Xia et al.[5],Muroya[6]and Akhmet[7].Signif i cant parts of pioneer results for EPCA can be found in[8].For more details of EPCA,the reader can see[9–11]and the references therein.

    In recent years,much research focused on the numerical solutions of EPCA.The stability and the oscillations of numerical solutions of EPCA was investigated in[12–16].As far as we know,very few results were obtained on combining the stability with the oscillations of the numerical solutions in the paper except for[17].Dif f erent from[17],the novel idea of our paper is that we study both stability and oscillations of the numerical solutions by using the Runge-Kutta methods for the problem(1.1),and their relationships are analyzed quantitatively.

    2 Preliminaries

    In this section,we introduce some def i nitions and theorems which are useful for our paper.

    Def i nition 2.1[8]A solution of the problem(1.1)on[0,∞)is a function u(t)which satisf i es the conditions:

    (i)u(t)is continuous on[0,∞);

    (ii)The derivative u′(t)exists at each point t∈[0,∞)with the possible exception of the points[t]∈[0,∞),where one-sided derivatives exist;

    (iii)(1.1)is satisf i ed on each interval[n,n+1)?[0,∞)with integral end-points.

    Theorem 2.1[8]

    ,then the problem(1.1)has a unique solution on[0,∞)

    where{t}is the fractional part of t and

    Theorem 2.2[8]The solution of the problem(1.1)is asymptotically stable for all u0,if and only if()

    Def i nition 2.2A non-trivial solution of the problem(1.1)is said to be oscillatory if there exists a sequencesuch that tk→∞as k→∞and u(tk)u(tk-1)<0,otherwise,it is called non-oscillatory.We say that the problem(1.1)is oscillatory if all the non-trivial solutions of(1.1)are oscillatory.We say that the problem(1.1)is non-oscillatory if all the non-trivial solutions of(1.1)are non-oscillatory.

    Theorem 2.3[8]Every solution of the problem(1.1)is non-oscillatory if and only if

    3 Numerical Stability

    3.1The Runge-Kutta Methods

    For the ν-stage Runge-Kutta methods(A,B,C)with the matrixthe vectorsandwe always assume that B1+B2+ ···+Bν=1 and 0≤C1≤C2≤···≤Cν≤1.By use of similar process as in[13],letbe a given stepsize with integer m≥1 and the grid points tnbe def i ned by tn=nh (n=1,2,3,···).Applying the Runge-Kutta methods to the problem(1.2)leads to the following numerical process:

    where unanddenote the approximation to u(t)at the grid points tn(n=1,2,3,···) and the approximation to,respectively. Application of the process(3.1)to the problem(1.1)yields

    If we denote n=km+l(l=0,1,···,m-1),then can be def i ned as ukm.Let.Then(3.2)reduces to

    Assume that a/=0 and I-xA is invertible.By(3.3)we have

    It is not difficult to see that(3.4)is equivalent to

    Similarly to[13],we can easily prove that the Runge-Kutta methods for the problem (1.1)preserve their order of convergence.

    3.2Stability Analysis

    For given Runge-Kutta methods,we assume δ1<0<δ2such that

    which implies

    Def i nition 3.1The process(3.1)for the problem(1.1)is called asymptotically stable at (a,b)for all sufficiently small h if and only if there exists a constant h0,such that for any given u0,the relations(3.5)and(3.6)def i ne unthat satisf i es un→0 for n→∞whenever 0<h<h0.

    Def i nition 3.2The set,denote by S,of all points(a,b)at which the process(3.1)for the problem(1.1)is asymptotically stable,for all sufficiently small h,is called the asymptotic stability region.

    Corollary 3.1un→0 as n→∞if and only if ukm→0 as k→∞.

    Theorem 3.1The numerical solution of the problem(1.1)is asymptotically stable if and only if

    Proof.By Def i nition 3.1,Corollary 3.1 and(3.5),we have that un→0 as n→∞if and only if

    where

    So we have

    which is equivalent to

    This ends the proof of the theorem.

    By Theorem 2.2,we have the following corollary.

    Corollary 3.2The analytic solution of the problem(1.1)is asymptotically stable for all u0,if and only if

    Let us def i ne the following set of all points(a,b)∈R2which satisfy condition(3.8)by H: Similarly,by Theorem 3.1,we have

    { and then we study which conditions lead to H?S.The following corollary is useful to determine the stability and oscillatory conditions.

    Corollary 3.3[13]Suppose that Q(x)=φ(x)/ψ(x)(where φ(x),ψ(x)are polynomials)is the(r,s)-Padˊe approximation to ex.Then

    (i)Q(x)<exif and only if s is even for all x>0;

    (ii)Q(x)>exif and only if s is odd for 0<x<ξ;

    (iii)Q(x)>exif and only if r is even for all x<0;

    (iv)Q(x)<exif and only if r is odd for all η<x<0,

    where ξ is a real zero of ψs(x)and η is a real zero of φr(x).

    Then the main stability results of this paper are as follows.

    Theorem 3.2Suppose that the stability function Q(x)of the Runge-Kutta method is given by the(r,s)-Padˊe approximation to ex.Then H?S if and only if s is odd for a>0 and r is odd for a<0.

    Proof.In view of(3.9)and(3.10),we know that H?S if and only if

    which is equivalent to

    As a consequence of Corollary 2.1,the proof is completed.

    Theorem 3.3If a=0 for all Runge-Kutta methods,we have H=S.

    Remark 3.1For the A-stable higher order Runge-Kutta method,it is easy to obtain the corresponding results from Theorem 3.2(see Table 3.1).

    4 Numerical Oscillations and Non-oscillations

    In this section,we discuss the oscillations and non-oscillations of numerical solution.

    Theorem 4.1Let{un}and{ukm}be given by(3.6)and(3.5),respectively.Then{un} is non-oscillatory if and only if{ukm}is non-oscillatory.

    Proof.It is not difficult to know that the necessity is obvious.Next,we consider the sufficiency.If{ukm}is non-oscillatory,we assume that{ukm}is an eventually negative solution of(3.5).That is,there exists a K0∈R such that ukm<0 for k>K0.We prove ukm+l<0 for all k>K0+1 and l=0,1,···,m-1.Suppose that b<0.According to (3.6),if a>0,then 1<Q(x)<∞and Q(x)-m≤Q(x)-l.Therefore

    So ukm+l<0.The proof is completed.

    From Theorem 4.1 we get the following corollary.

    Corollary 4.1Let{un}and{ukm}be given by(3.6)and(3.5),respectively.Then{un} is oscillatory if and only if{ukm}is oscillatory.

    Theorem 4.2(3.5)is oscillatory if and only if

    Proof.(3.5)is oscillatory if and only if the roots of the characteristic equation satisfy

    which is equivalent to

    The proof is completed.

    Let

    We have the following lemma.

    Lemma 4.1

    (R1)Λ(m)→Λ as h→0;

    (R2)Λ≥Λ(m)if either of the following conditions is satisf i ed:

    (R3)Λ<Λ(m)if either of the following conditions is satisf i ed:

    Proof.(R2)If a>0,ex≤Q(x),then ea≤Q(x)m,which is equivalent to

    So we have Λ≥Λ(m).

    Similarly,we can prove the other cases.

    Def i nition 4.1[15]We say that the Runge-Kutta method preserves the oscillations of the problem(1.1)if the problem(1.1)oscillates implying that there is an h0>0 such that(3.6) oscillates for h<h0.Similarly,we say that the Runge-Kutta method preserves the nonoscillations of the problem(1.1)if the problem(1.1)non-oscillates implying that there is an h0>0 such that(3.6)non-oscillates for h<h0.

    By Theorems 2.3,4.1,4.2 and Corollary 4.1,we have

    Theorem 4.3(i)The Runge-Kutta method preserves the oscillations of the problem(1.1) if and only if Λ>Λ(m);

    (ii)The Runge-Kutta method preserves the non-oscillations of the problem(1.1)if and only if Λ≤Λ(m).

    From Theorem 4.3,Lemma 4.1 and Corollary 3.3,we can obtain the following main theorems about oscillations.

    Theorem 4.4Suppose that Q(x)is the(r,s)-Padˊe approximation to ex.Then the Runge-Kutta method preserves oscillations of the problem(1.1)if either of the following conditions is satisf i ed:

    (i)a>0,h<h1and s is odd;

    (ii)a<0,h<h2and r is odd,

    where h1=-δ1/a,h2=-δ2/a.

    Theorem 4.5Suppose that Q(x)is the(r,s)-Padˊe approximation to ex.Then the Runge-Kutta method preserves non-oscillations of the problem(1.1)if either of the following conditions is satisf i ed:

    (i)a>0,h<h1and s is even;

    (ii)a<0,h<h2and r is even,

    where h1=-δ1/a,h2=-δ2/a.

    We give the conditions that some higher order Runge-Kutta method preserves oscillations and non-oscillations of the problem(1.1)(see Tables 4.1 and 4.2).

    Table 4.1Preservation of oscillations for higher order Runge-Kutta method

    Table 4.2Preservation of non-oscillations for higher order Runge-Kutta method

    5 Relationships Between Stability and Oscillations

    Set

    By Theorems 2.3,3.1,4.2 and Corollary 3.2,we can get the other main theorems as follows.

    Theorem 5.1The analytic solution of the problem(1.1)is

    (i)non-oscillatory and asymptotically stable if b∈(-∞,-a);

    (ii)non-oscillatory and unstable if b∈(-a,Λ);

    (iii)oscillatory and unstable if b∈(Λ,?Λ);

    (iv)oscillatory and asymptotically stable if b∈(?Λ,+∞).

    Theorem 5.2The numerical solution of the problem(1.1)is

    (i)non-oscillatory and asymptotically stable if b∈(-∞,-a);

    (ii)non-oscillatory and unstable if b∈(-a,Λ(m));

    (iii)oscillatory and unstable if b∈(Λ(m),?Λ(m));

    (iv)oscillatory and asymptotically stable if b∈(?Λ(m),+∞).

    6 Numerical Experiments

    In this section,we use the following six equations to demonstrate the main theorems:

    By straightforward computing to(6.1)and(6.2),it is not difficult to see that(3,4), (-4,-3)∈H.

    We use 1-Gauss-Legendre method,2-Radau IA method and 2-Lobatto IIIC method with stepsize h=1/m to get the numerical solution at t=15,where the true solutions are u(15)≈-0.0525 and u(15)≈2.2289×10-30for(6.1)and(6.2),respectively.

    In Tables 6.1 and 6.2 we have listed the absolute errors(AE)and the relative errors(RE) at t=15 and the Ratio of the errors of the case m=50 over that of m=100.We can see from these tables that the methods preserve their order of convergence.

    Table 6.1

    Table 6.2

    Furthermore,in Figs.6.1 and 6.2,we draw the numerical solutions by 1-Gauss-Legendre method and 2-Radau IA method with m=20 for(6.1)and(6.2),respectively.It is easy to see that the numerical solutions are asymptotically stable.

    The analytic solutions of(6.3)and(6.4)are oscillatory;the analytic solutions of(6.5) and(6.6)are non-oscillatory according to Theorem 2.3.From Figs.6.3–6.6,we can see that the numerical solutions of(6.3)and(6.4)are oscillatory;the numerical solutions of(6.5) and(6.6)are non-oscillatory,which are in accordance with Theorems 4.4 and 4.5.

    Fig.6.1The numerical solution of(6.1)by 1-Gauss-Legendre method with m=20.

    Fig.6.2The numerical solution of(6.2)by 2-Radau IA method with m=20.

    Fig.6.3The analytic and numerical solution of(6.3)by 1-Gauss-Legendre method with m=50.

    Fig.6.4The analytic and numerical solution of(6.4)by 2-Radau IA method with m=50.

    Fig.6.5The analytic and numerical solution of(6.5)by 2-Radau IA method with m=50.

    Fig.6.6The analytic and numerical solution of(6.6)by 2-Lobatto IIIC method with m=50.

    From Fig.6.3,we can also see that the analytic solutions and the numerical solutions of (6.3)are both oscillatory and asymptotically stable,which are in agreement with Theorems 5.1 and 5.2.For(6.1)–(6.2)and(6.4)–(6.6),we can verify them in the same way(see Figs. 6.1–6.2,6.4–6.6).

    AcknowledgementThe author would like to thank Professor Liu Ming-zhu for his helpful comments and constructive suggestions to improve the quality of the paper.

    [1]Shah S M,Wiener J.Advanced dif f erential equations with piecewise constant argument deviations.Internat.J.Math.Math.Sci.,1983,6:671–703.

    [2]Cooke K L,Wiener J.Retarded dif f erential equations with piecewise constant delays.J.Math. Anal.Appl.,1984,99:265–297.

    [3]Wiener J.Dif f erential Equations with Piecewise Constant Delays.In:Lakshmikantham V. Trends in the Theory and Practice of Nonlinear Dif f erential Equations.New York:Marcel Dekker,1983.

    [4]Wiener J,Cooke K L.Oscillations in systems of dif f erential equations with piecewise constant argument.J.Math.Anal.Appl.,1989,137:221–239.

    [5]Xia Y H,Huang Z K,Han M A.Existence of almost periodic solutions for forced perturbed systems with piecewise constant argument.J.Math.Anal.Appl.,2007,333:798–816.

    [6]Muroya Y.New contractivity condition in a population model with piecewise constant arguments.J.Math.Anal.Appl.,2008,346:65–81.

    [7]Akhmet M U.On the reduction principle for dif f erential equations with piecewise constant argument of generalized type.J.Math.Anal.Appl.,2007,336:646–663.

    [8]Wiener J.Generalized Solutions of Functional Dif f erential Equations.Singapore:World Scientif i c,1993.

    [9]Luo Z G,Shen J H.New results on oscillation for delay dif f erential equations with piecewise constant argument.Comput.Math.Appl.,2003,45:1841–1848.

    [10]Fu X L,Li X D.Oscillation of higher order impulsive dif f erential equations of mixed type with constant argument at f i xed time.Math.Comput.Modelling.,2008,48:776–786.

    [11]Zhang C Y,Jiang L N.Remotely almost periodic solutions to systems of dif f erential equations with piecewise constant argument.Appl.Math.Lett.,2008,21:761–768.

    [12]Liu M Z,Ma S F,Yang Z W.Stability analysis of Runge-Kutta methods for unbounded retarded dif f erential equations with piecewise continuous arguments.Appl.Math.Comput., 2007,191:57–66.

    [13]Liu M Z,Song M H,Yang Z W.Stability of Runge-Kutta methods in the numerical solution of equation u′(t)=au(t)+a0u([t]).J.Comput.Appl.Math.,2004,166:361–370.

    [14]Song M H,Yang Z W,Liu M Z.Stability of θ-methods for advanced dif f erential equations with piecewise continuous arguments.Comput.Math.Appl.,2005,49:1295–1301.

    [15]Liu M Z,Gao J F,Yang Z W.Oscillation analysis of numerical solution in the θ-methods for equation x′(t)+ax(t)+a1x([t-1])=0.Appl.Math.Comput.,2007,186:566–578.

    [16]Liu M Z,Gao J F,Yang Z W.Preservation of oscillations of the Runge-Kutta method for equation x′(t)+ax(t)+a1x([t-1])=0.Comput.Math.Appl.,2009,58:1113–1125.

    [17]Wang Q,Zhu Q Y,Liu M Z.Stability and oscillations of numerical solutions for dif f erential equations with piecewise continuous arguments of alternately advanced and retarded type.J. Comput.Appl.Math.,2011,235:1542–1552.

    tion:65L07,65L20

    A

    1674-5647(2013)02-0131-12

    Received date:April 26,2011.

    The NSF(11201084,51008084)of China.

    E-mail address:bmwzwq@126.com(Wang Q).

    国产精品一区二区免费欧美| 搡老熟女国产l中国老女人| 在线a可以看的网站| 国产爱豆传媒在线观看| 五月玫瑰六月丁香| 97热精品久久久久久| 久久久国产成人精品二区| 在线国产一区二区在线| 欧美+亚洲+日韩+国产| 黑人高潮一二区| 亚洲av一区综合| 国产中年淑女户外野战色| 免费观看精品视频网站| 一进一出抽搐gif免费好疼| 色吧在线观看| 免费观看的影片在线观看| 欧美极品一区二区三区四区| 免费av观看视频| 婷婷精品国产亚洲av| 欧美激情国产日韩精品一区| 性色avwww在线观看| 中国美女看黄片| 国产精品av视频在线免费观看| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩无卡精品| 亚洲成人精品中文字幕电影| 成人国产麻豆网| 十八禁网站免费在线| 亚洲无线在线观看| 亚洲七黄色美女视频| 久久久久国内视频| 国产成人影院久久av| 亚洲欧美中文字幕日韩二区| 麻豆乱淫一区二区| 成人亚洲精品av一区二区| 日本在线视频免费播放| 波多野结衣巨乳人妻| 身体一侧抽搐| 黑人高潮一二区| 国产亚洲av嫩草精品影院| 国产在视频线在精品| 亚洲av二区三区四区| 一a级毛片在线观看| 日日干狠狠操夜夜爽| 一级av片app| 人人妻人人看人人澡| 男女啪啪激烈高潮av片| 免费大片18禁| 免费黄网站久久成人精品| 婷婷亚洲欧美| 国产精品,欧美在线| 日韩高清综合在线| 啦啦啦韩国在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲一级一片aⅴ在线观看| 性色avwww在线观看| 亚洲天堂国产精品一区在线| 一级黄色大片毛片| 深夜精品福利| 最近2019中文字幕mv第一页| 亚洲性久久影院| 亚洲精品一区av在线观看| 淫秽高清视频在线观看| 一级av片app| 国产精品乱码一区二三区的特点| 国产成人91sexporn| 国模一区二区三区四区视频| 免费人成在线观看视频色| 日韩欧美 国产精品| 波多野结衣高清作品| 日本欧美国产在线视频| 在线国产一区二区在线| 精品久久久久久久久亚洲| 99九九线精品视频在线观看视频| 亚洲欧美日韩卡通动漫| 三级男女做爰猛烈吃奶摸视频| 欧美最新免费一区二区三区| 特级一级黄色大片| 国产黄片美女视频| 婷婷六月久久综合丁香| 国产黄a三级三级三级人| 91久久精品国产一区二区成人| 人妻久久中文字幕网| av在线亚洲专区| 日韩欧美精品v在线| 一区二区三区四区激情视频 | 日本一本二区三区精品| 久久精品国产鲁丝片午夜精品| 欧美国产日韩亚洲一区| 亚洲av中文字字幕乱码综合| 欧美日韩综合久久久久久| 久久久久久久久大av| 午夜福利视频1000在线观看| 国产欧美日韩精品一区二区| 国产男靠女视频免费网站| 一级毛片久久久久久久久女| 国内久久婷婷六月综合欲色啪| 免费无遮挡裸体视频| 丰满的人妻完整版| 久99久视频精品免费| 国产亚洲精品综合一区在线观看| 久久精品夜夜夜夜夜久久蜜豆| 性插视频无遮挡在线免费观看| 久久久久久久久久久丰满| 亚洲电影在线观看av| 十八禁网站免费在线| 最近2019中文字幕mv第一页| 大香蕉久久网| 国产欧美日韩精品亚洲av| 午夜激情福利司机影院| 亚洲经典国产精华液单| 亚洲av成人av| 久久久国产成人精品二区| 大香蕉久久网| 国产精品国产三级国产av玫瑰| 麻豆国产av国片精品| 小蜜桃在线观看免费完整版高清| 少妇被粗大猛烈的视频| 精品欧美国产一区二区三| 日韩一区二区视频免费看| av在线观看视频网站免费| 国产一区二区三区在线臀色熟女| 国产精品久久电影中文字幕| 日韩欧美 国产精品| 乱人视频在线观看| 在线播放国产精品三级| 又粗又爽又猛毛片免费看| 久久综合国产亚洲精品| 乱码一卡2卡4卡精品| 国内精品美女久久久久久| 淫秽高清视频在线观看| 久久久久久久久久久丰满| 日本黄大片高清| 国产精品爽爽va在线观看网站| 色视频www国产| 国产毛片a区久久久久| 久久精品国产清高在天天线| 国产黄色视频一区二区在线观看 | 国产又黄又爽又无遮挡在线| 亚洲精品日韩在线中文字幕 | 成人亚洲精品av一区二区| 亚洲人成网站在线播放欧美日韩| 91久久精品国产一区二区三区| 男人狂女人下面高潮的视频| 亚洲第一区二区三区不卡| 久久久久久久午夜电影| 欧美3d第一页| 国产极品精品免费视频能看的| 久久久久久久午夜电影| 极品教师在线视频| 国产免费一级a男人的天堂| 噜噜噜噜噜久久久久久91| 91精品国产九色| 亚洲人成网站在线播放欧美日韩| 一级毛片久久久久久久久女| 精品久久久噜噜| 亚洲精品日韩在线中文字幕 | 国产久久久一区二区三区| 麻豆久久精品国产亚洲av| 中文字幕熟女人妻在线| 真实男女啪啪啪动态图| 婷婷精品国产亚洲av在线| 色播亚洲综合网| 国产aⅴ精品一区二区三区波| 日韩人妻高清精品专区| 午夜亚洲福利在线播放| 青春草视频在线免费观看| 色在线成人网| 日韩亚洲欧美综合| 亚洲国产日韩欧美精品在线观看| 97超视频在线观看视频| 久久久久性生活片| 人人妻人人澡人人爽人人夜夜 | 尤物成人国产欧美一区二区三区| 少妇高潮的动态图| 在线观看免费视频日本深夜| 尤物成人国产欧美一区二区三区| 日韩成人伦理影院| 欧美三级亚洲精品| 亚洲内射少妇av| 亚洲欧美中文字幕日韩二区| 亚洲成a人片在线一区二区| 精品久久久久久成人av| 91在线观看av| 无遮挡黄片免费观看| 搡老妇女老女人老熟妇| 美女 人体艺术 gogo| 欧美一级a爱片免费观看看| 寂寞人妻少妇视频99o| 日韩中字成人| 俺也久久电影网| 亚洲丝袜综合中文字幕| 日本免费一区二区三区高清不卡| 91久久精品电影网| 精品一区二区三区人妻视频| 中文字幕av成人在线电影| 久久精品国产亚洲av香蕉五月| 国产精品爽爽va在线观看网站| 99在线人妻在线中文字幕| 亚洲精品国产av成人精品 | 一a级毛片在线观看| 亚洲婷婷狠狠爱综合网| 精品久久久久久成人av| 可以在线观看毛片的网站| 在线a可以看的网站| 久久久久久久久久黄片| 国模一区二区三区四区视频| 国产精华一区二区三区| 亚洲高清免费不卡视频| 亚洲无线观看免费| 国产极品精品免费视频能看的| 日韩制服骚丝袜av| 中国国产av一级| 久久久久久国产a免费观看| 99久国产av精品国产电影| 韩国av在线不卡| 久久久久久久亚洲中文字幕| 精品久久久久久久久久免费视频| 身体一侧抽搐| 国产av在哪里看| 国产蜜桃级精品一区二区三区| 成人午夜高清在线视频| 春色校园在线视频观看| 亚洲人成网站在线播| 波多野结衣巨乳人妻| 99久久九九国产精品国产免费| 黄色配什么色好看| 欧美日韩国产亚洲二区| 国产一区二区三区av在线 | 我要搜黄色片| 麻豆国产av国片精品| 联通29元200g的流量卡| 精品不卡国产一区二区三区| 日本黄色视频三级网站网址| 欧美bdsm另类| 十八禁网站免费在线| 中国国产av一级| 久久久久国内视频| 亚洲在线自拍视频| av.在线天堂| 日韩欧美 国产精品| 精华霜和精华液先用哪个| 免费观看人在逋| 在线观看午夜福利视频| 国产精品久久电影中文字幕| 黄色欧美视频在线观看| 可以在线观看毛片的网站| 成年女人看的毛片在线观看| 一进一出抽搐gif免费好疼| 色吧在线观看| 91在线精品国自产拍蜜月| 亚洲四区av| 天堂影院成人在线观看| 国语自产精品视频在线第100页| 人妻夜夜爽99麻豆av| 在线免费观看的www视频| 一本久久中文字幕| 最新在线观看一区二区三区| 久久久欧美国产精品| 国内精品美女久久久久久| 日韩精品有码人妻一区| 日本精品一区二区三区蜜桃| 欧美色视频一区免费| 在线免费十八禁| 免费一级毛片在线播放高清视频| 久久久久久久久中文| 亚洲精品日韩在线中文字幕 | 美女xxoo啪啪120秒动态图| 亚洲欧美中文字幕日韩二区| 日本在线视频免费播放| 尾随美女入室| 搡老岳熟女国产| 少妇被粗大猛烈的视频| 亚洲五月天丁香| 国产伦精品一区二区三区四那| 人妻夜夜爽99麻豆av| 亚洲精品色激情综合| 热99re8久久精品国产| 18+在线观看网站| 此物有八面人人有两片| 久久亚洲精品不卡| 欧美成人一区二区免费高清观看| 久久久久性生活片| 国内精品久久久久精免费| 自拍偷自拍亚洲精品老妇| 国产成年人精品一区二区| 99国产精品一区二区蜜桃av| 麻豆av噜噜一区二区三区| 免费无遮挡裸体视频| 国产一区二区在线观看日韩| av在线天堂中文字幕| 日日摸夜夜添夜夜爱| 精品日产1卡2卡| 熟妇人妻久久中文字幕3abv| 成人毛片a级毛片在线播放| 搡女人真爽免费视频火全软件 | 国产 一区 欧美 日韩| 欧美日本视频| 在线天堂最新版资源| 国产国拍精品亚洲av在线观看| 久久久国产成人精品二区| 1000部很黄的大片| 中文字幕熟女人妻在线| 国产综合懂色| 两个人的视频大全免费| 男女边吃奶边做爰视频| 久久久久性生活片| 婷婷亚洲欧美| 在线免费观看的www视频| 国产成人aa在线观看| 亚洲性久久影院| 亚洲欧美成人综合另类久久久 | 国产 一区精品| 午夜福利在线观看吧| 免费人成在线观看视频色| 神马国产精品三级电影在线观看| 69人妻影院| 国产综合懂色| 亚洲激情五月婷婷啪啪| 69人妻影院| 国产在视频线在精品| 国产不卡一卡二| 啦啦啦啦在线视频资源| 亚洲精品日韩在线中文字幕 | 看片在线看免费视频| 亚洲av免费在线观看| 99久久成人亚洲精品观看| 最新中文字幕久久久久| 亚洲久久久久久中文字幕| 国产真实伦视频高清在线观看| aaaaa片日本免费| 一个人看的www免费观看视频| 中文字幕熟女人妻在线| 欧美日本视频| 亚洲av一区综合| 中国美白少妇内射xxxbb| 狂野欧美激情性xxxx在线观看| 免费观看精品视频网站| 亚洲精品粉嫩美女一区| 国内精品久久久久精免费| 亚州av有码| 国产综合懂色| 精品午夜福利在线看| 真实男女啪啪啪动态图| 亚洲一级一片aⅴ在线观看| 精品久久久久久久久久久久久| 最新中文字幕久久久久| 色尼玛亚洲综合影院| 成人国产麻豆网| 欧美另类亚洲清纯唯美| 午夜a级毛片| 特大巨黑吊av在线直播| 热99在线观看视频| 99热全是精品| 三级男女做爰猛烈吃奶摸视频| 国产三级在线视频| 成年女人看的毛片在线观看| 成人特级av手机在线观看| 午夜精品国产一区二区电影 | 天堂√8在线中文| 午夜爱爱视频在线播放| 婷婷亚洲欧美| 综合色av麻豆| 免费黄网站久久成人精品| 国产免费男女视频| 欧美日韩精品成人综合77777| 亚洲高清免费不卡视频| 精品日产1卡2卡| 不卡一级毛片| 男女之事视频高清在线观看| 亚洲在线自拍视频| 欧美日韩在线观看h| 午夜精品在线福利| 女同久久另类99精品国产91| 午夜免费激情av| 国产视频一区二区在线看| 成人无遮挡网站| 亚洲专区国产一区二区| 最后的刺客免费高清国语| 亚洲人成网站在线播放欧美日韩| 日本欧美国产在线视频| 22中文网久久字幕| 97超级碰碰碰精品色视频在线观看| 国产av在哪里看| 夜夜夜夜夜久久久久| 亚洲乱码一区二区免费版| a级毛色黄片| 日韩一本色道免费dvd| 欧美xxxx性猛交bbbb| 男女啪啪激烈高潮av片| 欧美丝袜亚洲另类| 97人妻精品一区二区三区麻豆| 极品教师在线视频| 九九久久精品国产亚洲av麻豆| 欧美国产日韩亚洲一区| 日韩三级伦理在线观看| 欧美最黄视频在线播放免费| 九九热线精品视视频播放| 午夜免费男女啪啪视频观看 | 国产黄片美女视频| 精品久久久久久久末码| 欧美三级亚洲精品| 国产精品美女特级片免费视频播放器| av在线观看视频网站免费| 久久久国产成人精品二区| 美女免费视频网站| 久久精品国产亚洲av天美| 国产蜜桃级精品一区二区三区| 级片在线观看| 天堂√8在线中文| 看片在线看免费视频| 激情 狠狠 欧美| 日韩成人伦理影院| а√天堂www在线а√下载| 成人永久免费在线观看视频| 免费高清视频大片| 成人性生交大片免费视频hd| 简卡轻食公司| 成人高潮视频无遮挡免费网站| 91麻豆精品激情在线观看国产| 午夜激情福利司机影院| 插逼视频在线观看| 久久精品综合一区二区三区| 欧美高清性xxxxhd video| 亚洲激情五月婷婷啪啪| 99riav亚洲国产免费| 国产成人一区二区在线| 有码 亚洲区| 久久精品国产99精品国产亚洲性色| 亚洲成人久久性| 午夜福利在线观看吧| 两性午夜刺激爽爽歪歪视频在线观看| 男女边吃奶边做爰视频| 乱码一卡2卡4卡精品| eeuss影院久久| 三级毛片av免费| 久久精品91蜜桃| 天天躁日日操中文字幕| 尾随美女入室| 久久久久久国产a免费观看| 男女那种视频在线观看| 国产欧美日韩精品亚洲av| 午夜日韩欧美国产| 亚洲七黄色美女视频| 亚洲专区国产一区二区| 别揉我奶头~嗯~啊~动态视频| 久久欧美精品欧美久久欧美| 午夜福利成人在线免费观看| 精品乱码久久久久久99久播| 波多野结衣巨乳人妻| 在线观看美女被高潮喷水网站| 大香蕉久久网| 一本一本综合久久| 最好的美女福利视频网| 深夜精品福利| 天堂av国产一区二区熟女人妻| 中文字幕熟女人妻在线| 亚洲色图av天堂| 男插女下体视频免费在线播放| 日本免费一区二区三区高清不卡| 亚洲精品456在线播放app| 热99在线观看视频| 大又大粗又爽又黄少妇毛片口| 噜噜噜噜噜久久久久久91| 人妻制服诱惑在线中文字幕| 久久久久九九精品影院| 又粗又爽又猛毛片免费看| 免费看日本二区| 亚洲综合色惰| 国产激情偷乱视频一区二区| 两个人视频免费观看高清| 亚洲人成网站在线播放欧美日韩| 三级毛片av免费| 婷婷色综合大香蕉| 精品一区二区三区av网在线观看| 久久久精品欧美日韩精品| 欧美不卡视频在线免费观看| 亚洲欧美日韩高清专用| 国产精品福利在线免费观看| 尤物成人国产欧美一区二区三区| 97在线视频观看| 日韩国内少妇激情av| 性色avwww在线观看| 中文字幕av成人在线电影| 成年女人毛片免费观看观看9| 国产伦精品一区二区三区视频9| 国产色婷婷99| 亚洲av一区综合| 精品不卡国产一区二区三区| 少妇人妻精品综合一区二区 | 日韩一本色道免费dvd| 极品教师在线视频| 五月玫瑰六月丁香| 伦精品一区二区三区| 亚洲五月天丁香| 成人毛片a级毛片在线播放| 亚洲精品456在线播放app| 丰满人妻一区二区三区视频av| 久久久久久久久中文| 久久韩国三级中文字幕| 两个人的视频大全免费| 亚洲欧美精品综合久久99| 日韩三级伦理在线观看| 国产成人一区二区在线| 插阴视频在线观看视频| 日日啪夜夜撸| 又爽又黄a免费视频| 国产一区二区激情短视频| 国产精品乱码一区二三区的特点| 日本欧美国产在线视频| 国产真实伦视频高清在线观看| 男女那种视频在线观看| or卡值多少钱| 日本成人三级电影网站| 1024手机看黄色片| 久久国产乱子免费精品| 精品久久久噜噜| 欧美日韩乱码在线| 国产午夜福利久久久久久| aaaaa片日本免费| www.色视频.com| 久久久久久久久中文| 天天躁日日操中文字幕| 亚洲精品亚洲一区二区| 久久久久久久久久久丰满| 欧美一区二区国产精品久久精品| 精品福利观看| 午夜激情欧美在线| 国产精品久久久久久精品电影| 小蜜桃在线观看免费完整版高清| 亚洲五月天丁香| 嫩草影视91久久| 国产久久久一区二区三区| 国产精品日韩av在线免费观看| 老熟妇乱子伦视频在线观看| 精品人妻熟女av久视频| 国产一区二区在线观看日韩| 九九爱精品视频在线观看| 久久久成人免费电影| 美女 人体艺术 gogo| 国产乱人偷精品视频| 国内揄拍国产精品人妻在线| 91精品国产九色| 久久国产乱子免费精品| 干丝袜人妻中文字幕| 国产真实伦视频高清在线观看| 99热这里只有精品一区| 色综合站精品国产| 欧美激情国产日韩精品一区| 久久午夜亚洲精品久久| 亚洲精品成人久久久久久| 中文字幕人妻熟人妻熟丝袜美| 美女黄网站色视频| 精品久久久久久久久久免费视频| 国产精品一区二区三区四区久久| 精品国内亚洲2022精品成人| 观看美女的网站| 色哟哟哟哟哟哟| 午夜福利成人在线免费观看| 国产精品日韩av在线免费观看| 一个人看的www免费观看视频| 美女 人体艺术 gogo| 久久久久久久久大av| 国产午夜精品论理片| 日本欧美国产在线视频| 日韩中字成人| 波多野结衣巨乳人妻| 亚洲精品久久国产高清桃花| 亚洲自拍偷在线| 人妻丰满熟妇av一区二区三区| 女人十人毛片免费观看3o分钟| 精品人妻偷拍中文字幕| 99久久成人亚洲精品观看| 偷拍熟女少妇极品色| 国产精品一区二区性色av| 精品99又大又爽又粗少妇毛片| 色综合站精品国产| 高清午夜精品一区二区三区 | 亚洲人成网站高清观看| 狠狠狠狠99中文字幕| 欧美一区二区精品小视频在线| 欧美高清性xxxxhd video| 亚洲最大成人av| 欧美三级亚洲精品| 色av中文字幕| 九九热线精品视视频播放| 高清午夜精品一区二区三区 | 色综合色国产| 少妇熟女欧美另类| 国产精品人妻久久久影院| 婷婷亚洲欧美| 在线看三级毛片| 欧美精品国产亚洲| 白带黄色成豆腐渣| 99热这里只有是精品在线观看| 精品午夜福利在线看| 亚洲av五月六月丁香网| 欧美色欧美亚洲另类二区| 日本精品一区二区三区蜜桃| 成年版毛片免费区| 99热这里只有是精品在线观看| 欧美精品国产亚洲| 欧美最新免费一区二区三区| 免费看av在线观看网站| 国产成人福利小说| 亚洲av五月六月丁香网| 久久99热6这里只有精品| 亚洲熟妇熟女久久| 欧美日韩综合久久久久久| 亚洲精品456在线播放app| 97在线视频观看| 日本黄色视频三级网站网址| 校园春色视频在线观看| 中国国产av一级| 亚洲成人久久性|