• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Some Characterizations of Strongly Semisimple Ordered Semigroups

    2013-08-27 01:41:51TANGJIANANDXIEXIANGYUN

    TANG JIANAND XIE XIANG-YUN

    (1.School of Mathematics and Computational Science,Fuyang Normal College,

    Fuyang,Anhui,236037) (2.School of Mathematics and Computational Science,Wuyi University, Jiangmen,Guangdong,529020)

    Communicated by Du Xian-kun

    Some Characterizations of Strongly Semisimple Ordered Semigroups

    TANG JIAN1AND XIE XIANG-YUN2

    (1.School of Mathematics and Computational Science,Fuyang Normal College,

    Fuyang,Anhui,236037) (2.School of Mathematics and Computational Science,Wuyi University, Jiangmen,Guangdong,529020)

    Communicated by Du Xian-kun

    In this paper,the concept of quasi-prime fuzzy left ideals of an ordered semigroup S is introduced.Some characterizations of strongly semisimple ordered semigroups are given by quasi-prime fuzzy left ideals of S.In particular,we prove that S is strongly semisimple if and only if each fuzzy left ideal of S is the intersection of all quasi-prime fuzzy left ideals of S containing it.

    ordered semigroup,ordered fuzzy point,quasi-prime fuzzy left ideal, strongly semisimple ordered semigroup

    1 Introduction

    The fundamental concept of a fuzzy set,introduced by Zadeh[1]in 1965,provides a natural framework for generalizing several basic notions of algebra.Following the terminology given by Zadeh[1],Kehayopulu and Tsingelis[2]f i rst considered fuzzy sets in ordered semigroups, and def i ned“fuzzy”analogues for several notations,which have proven to be useful in the theory of ordered semigroups.Moreover,they proved that each ordered groupoid can be embedded into an ordered groupoid having the greatest element(poe-groupoid)in terms of fuzzy sets(see[3]).A theory of fuzzy sets on ordered semigroups has been recently developed(see[4–9]).The concept of ordered fuzzy points of an ordered semigroup S was f i rst introduced by Xie and Tang[7],and prime fuzzy ideals of an ordered semigroupS were studied in[8].Authors also introduced the concepts of weakly prime fuzzy ideals, completely prime fuzzy ideals,completely semiprime fuzzy ideals and weakly completely prime fuzzy ideals of an ordered semigroup S,and established the relations among the f i ve types of ideals.Furthermore,Xie and Tang[7]has characterized weakly prime fuzzy ideals, completely semiprime fuzzy ideals and weakly completely prime fuzzy ideals of S by their level ideals.

    As we know,fuzzy ideals(left,right ideals)with special properties of ordered semigroups always play an important role in the study of ordered semigroups structure.The ordered fuzzy points of an ordered semigroup S are key tools to describe the algebraic subsystems of S.Motivated by the study of prime fuzzy ideals in rings,semigroups and ordered semigroups, and also motivated by Kehayopulu and Tsingelis[10]'s work in ordered semigroups in terms of fuzzy subsets,in this paper we attempt to introduce and give a detailed investigation of quasi-prime fuzzy left ideals of an ordered semigroup S.We characterize quasi-prime fuzzy left ideals of S by ordered fuzzy points of S.Furthermore,we introduce the concept of fuzzy m-systems of an ordered semigroup S,and prove that a fuzzy left ideal f of S is quasi-prime if and only if 1-f is a fuzzy m-system.Finally,we characterize the strongly semisimple ordered semigroups by quasi-prime fuzzy left ideals of S,and prove that S is strongly semisimple if and only if each fuzzy left ideal of S is the intersection of all quasiprime left ideals of S containing it.As an application of the results of this paper,the corresponding results for semigroups(without ordered)are also obtained.

    2 Preliminaries and Some Notations

    Throughout this paper unless stated otherwise S stands for an ordered semigroup,that is, a semigroup S with an order relation“≤”such that a≤b implies xa≤xb and ax≤bx for any x∈S(for example,see[11]).For convenience we use the notation S1:=S∪{1}, where 1·a=a·1:=a for all a∈S and 1·1=1.A nonempty subset I of S is called a left (resp.right)ideal of S if

    (1)SI?I(resp.IS?I);

    (2)If a∈I,b≤a with b∈S,then b∈I.

    I is called an ideal of S if I is both a left and a right ideal of S(see[11]).Let L be a left ideal of S.L is called quasi-prime if for any two left ideals L1,L2of S,L1L2?L implies L1?L or L2?L;L is called quasi-semiprime if for any left ideal P of S such that P2?L, we have P?L(see[11]).

    For H?S,we def i ne

    For H={a},we write(a]instead of({a}].We denote by L(a)the left ideal of S generated by a∈S.Then(see[12])

    Lemma 2.1[12]Let S be an ordered semigroup.Then the following statements hold:

    (1)A?(A]for all A?S;

    (2)If A?B?S,then(A]?(B];

    (3)(A](B]?(AB]for all A,B∈S;

    (4)((A]]=(A]for all A?S;

    (5)For every left(resp.right)ideal T of S,one has(T]=T;

    (6)If A,B are left ideals of S,then(AB],A∩B,A∪B are left ideals of S;

    (7)(SaS],(Sa]are an ideal and a left deal of S for all a∈S,respectively.

    Def i nition 2.1[12]Let M be a nonempty subset of an ordered semigroup S.M is called an m-system if for any a,b∈M,there exists an x∈S such that(axb]∩M/=?.

    A function f from S to the real closed interval[0,1]is a fuzzy subset of S.The ordered semigroup S itself is a fuzzy subset of S such that

    (the fuzzy subset S is also denoted by 1,see[13]).Let f and g be two fuzzy subsets of S. Then the inclusion relation f?g is def i ned by

    1-f is a fuzzy subset of S def i ned by

    f∩g and f∪g are fuzzy subsets of S def i ned by

    respectively.The set of all fuzzy subsets of S is denoted by F(S).One can easily show that (F(S),?,∩,∪)forms a complete lattice with the maximum element S and the minimum element 0,which is a mapping from S into[0,1]def i ned by

    Let(S,·,≤)be an ordered semigroup.For x∈S,we def i ne

    The product f?g of f and g is def i ned by

    It is well known(cf.[3])that this operation“?”is associative.

    Let A be a nonempty subset of S.We denote by fAthe characteristic mapping of A, that is,the mapping fAfrom S to[0,1]is def i ned by

    Let(S,·,≤)be an ordered semigroup.A fuzzy subset f of S is called a fuzzy left(resp. right)ideal of S if

    (1)f(xy)≥f(y)(resp.f(xy)≥f(x))for all x,y∈S;

    (2)x≤y implies f(x)≥f(y).Or equivalently:

    (1)S?f?f(resp.f?S?f);

    (2)x≤y implies f(x)≥f(y)

    (see[2],[9]).A fuzzy ideal of S is a fuzzy subset of S which is both a fuzzy left and a fuzzy right ideal of S.

    Lemma 2.2[2]Let S be an ordered semigroup and ?/=A?S.Then A is a left(resp. right)ideal of S if and only if the characteristic mapping fAof A is a fuzzy left(resp.right) ideal of S.

    We denote by aλan ordered fuzzy point of an ordered semigroup S,where

    {

    It is easy to see that an ordered fuzzy point of an ordered semigroup S is a fuzzy subset of S.For any fuzzy subset f of S,we also denoteby aλ∈f in the sequel(see[7]).

    Def i nition 2.2[8]Let f be a fuzzy subset of S.We def i ne(f]by the rule that

    A fuzzy subset of S is called strongly convex if f=(f].

    Lemma 2.3[7]Let aλbe an ordered fuzzy point of S.Then the fuzzy left ideal generated by a,denoted by L(a),is

    where L(a)is the left ideal of S generated by a.

    Let λfAbe a fuzzy subset of S def i ned as follows:

    Clearly,λfAis a generalization of the characteristic mapping fAof A.

    Lemma 2.4[7]Let A,B be any nonempty subsets of an ordered semigroup S.Then for any λ∈(0,1]the following statements are true:

    (1)λfA?λfB=λf(AB].In particular,fA?fB=f(AB];

    (2)If A is a left ideal of S,then λfAis a fuzzy left ideal of S.

    Lemma 2.5[7]Let aλ,bμ(λ/=0,μ/=0)be ordered fuzzy points of S,and f,g be fuzzy subsets of S.Then the following statements are true:

    and S?aλis a fuzzy left ideal of S;

    (2)aλ?bμ=(ab)λ∧μ.In particular,aλ?aλ=(a2)λ;

    (3)L(ar)=ar∪S?ar;

    (4)L(aλ)2?S?aλ;

    (5)If f?g and h∈F(S),then f?h?g?h,h?f?h?g.

    Def i nition 2.3Let f be any fuzzy subset of an ordered semigroup S.The set

    is called a level subset of f.

    Lemma 2.6Let S be an ordered semigroup and f be a fuzzy subset of S.Then f is a fuzzy left ideal of S if and only if the level subset ft(t∈(0,1])of f is a left ideal of S for ft/=?.

    Proof.Since the proof is similar to the proof of Lemma 2.7 in[7],we omit it.

    The reader is referred to[7],[14]–[15]for notations and terminologies not def i ned in this paper.

    3 Fuzzy m-systems and Quasi-prime Fuzzy Left Ideals of Ordered Semigroups

    Def i nition 3.1Let S be an ordered semigroup.Then a fuzzy left ideal f of S is called quasi-prime if for any two fuzzy left ideals f1and f2of S,f1?f2?f implies that f1?f or f2?f;f is called quasi-semiprime if for any fuzzy left ideal g of S,g2?f implies that g?f.

    Theorem 3.1Let S be an ordered semigroup.Then a fuzzy left ideal f of S is quasiprime if and only if for any two ordered fuzzy points xr,yt∈S(rt>0),xr?S?yt?f implies that xr∈f or yt∈f.

    Proof.Let xrand ytbe ordered fuzzy points of S such that xr?S?yt?f.Then

    Since f is quasi-prime,S?xrand S?ytare fuzzy left ideals of S,so we have

    If S?xr?f,then,by Lemma 2.5(4),

    Conversely,let f1,f2be fuzzy left ideals of S such that f1?f2?f.If f1/?f and f2/?f, then there exist x,y∈S such that f1(x)>f(x)and f2(y)>f(y).Let r=f1(x),t=f2(y). Then

    and so

    By hypothesis,xr∈f or yt∈f.If xr∈f,then

    It is impossible.

    Theorem 3.2Let S be an ordered semigroup.Then a left ideal L of S is quasi-prime if and only if fLis a quasi-prime fuzzy left ideal of S.

    Proof.Let L be a quasi-prime left ideal of S.By Lemma 2.2,fLis a fuzzy left ideal of S.For any two fuzzy left ideals f1and f2of S,if f1?f2?fL,then f1?fL,or f2?fL.In fact,if f1/?fL,f2/?fL,then there exist x,y∈S such that f1(x)>fL(x),f2(y)>fL(y). Thus

    It implies that x,y/∈L.We now show that there exists an s∈S such that(xsy]/?L. Indeed,if(xSy]?L,then(Sx](Sy]?L.Since(Sx]and(Sy]are left ideals of S and L is a quasi-prime left ideal of S,we have

    Say(Sx]?L.Then L(x)2?(Sx]?L.Thus x∈L(x)?L,which is impossible.Now if a∈(xsy]such that a/∈L,then fL(a)=0,and

    which contradicts the fact that

    Therefore fLis a quasi-prime fuzzy left ideal of S.

    Conversely,let fLbe a quasi-prime fuzzy left ideal of S,and A,B be left ideals of S such that AB?L.Then,by Lemma 2.1,we have

    Thus,by Lemma 2.4,

    By hypothesis and Lemma 2.2,since fLis quasi-prime,we have fA?fLor fB?fL,that is,A?L or B?L.

    Lemma 3.1If f is a nonconstant quasi-prime fuzzy left ideal of an ordered semigroup S,then|Im(f)|=2.

    Proof.The proof is similar to the proof of Lemma 4.3 in[7]with a slight modif i cation.

    Theorem 3.3If f is a nonconstant quasi-prime fuzzy left ideal of an ordered semigroup S,then there exists an x0∈S such that f(x0)=1.

    Proof.By Lemma 3.1,|Im(f)|=2.If f(x)<1 for all x∈S,then

    Thus there exist x,y∈S and m∈(0,1]such that

    For t1,t2∈(0,1)with t<t1<s<t2<m,we have

    Since f is a quasi-prime fuzzy left ideal of S,we have

    that is,f(x)≥t1or f(y)≥t2,which is impossible.Thus there exists an x0∈S such that f(x0)=1.

    Theorem 3.4If f is a quasi-prime fuzzy left ideal of an ordered semigroup S,then each level subset ft(t∈(0,1])is a quasi-prime left ideal of S for ft/=?.

    Proof.Since the proof is similar to the proof of Theorem 4.5 in[7],we omit it.

    By Theorems 3.3 and 3.4,we have

    Corollary 3.1If f is a quasi-prime fuzzy left ideal of an ordered semigroup S,then f1is a quasi-prime left ideal of S.

    Remark 3.1The inverse of Theorem 3.4 is not true.For example,let L be a quasi-prime left ideal of S,and

    where 0<t<1.Then f is a fuzzy left ideal of S.For any t∈(0,1],if ft/=?,then ft=L, which is a quasi-prime left ideal of S.But f is not a quasi-prime fuzzy left ideal of S since f1=?.

    Now quasi-prime fuzzy left ideals of S can be characterized.

    Theorem 3.5Let f be a fuzzy subset of an ordered semigroup S.Then f is a quasiprime fuzzy left ideal of S if and only if f satisf i es the following conditions:

    (1)|Im(f)|≤2;

    (2)f1/=?,and f1is a quasi-prime left ideal of S.

    Proof.The proof is similar to the proof of Theorem 4.8 in[7]with suitable modif i cation.

    In order to characterize the quasi-prime fuzzy left ideals of ordered semigroups,we need the following concept.

    Def i nition 3.2Let S be an ordered semigroup.Then a fuzzy subset f of S is called a fuzzy m-system if for any s,t∈[0,1)and a,b∈S,f(a)>s,f(b)>t imply that there exists an x∈S such that f(y)>s∨t for some y∈(axb].

    Theorem 3.6Let M be a nonempty subset of an ordered semigroup S.Then M is an m-system of S if and only if fMis a fuzzy m-system.Proof.For any s,t∈[0,1)and a,b∈S,if

    then a,b∈M.Since M is an m-system of S,there exists an x∈S such that(axb]∩M/=?. Let y∈(axb]∩M.Then fM(y)=1.Thus fM(y)>s∨t for some y∈(axb].

    Conversely,let a,b∈M.Then

    Thus for any s,t∈[0,1),

    which imply that there exists an element x∈S such that fM(y)>s∨t for some y∈(axb] and that fM(y)=1,that is,y∈M.It thus follows that

    Theorem 3.7Let f be a proper fuzzy left ideal of an ordered semigroup S.Then f is quasi-prime if and only if 1-f is a fuzzy m-system.

    Proof.For any s,t∈[0,1),a,b∈S,if

    then

    which imply that

    Since f is a quasi-prime fuzzy left ideal of S,by Theorem 3.1,there exists an xr∈S such that

    Thus,there exists a y∈(axb]such that

    Therefore,

    Conversely,let as,bt∈S(ts>0)such that as?S?bt?f.If as/∈f and bt/∈f,then there exist a1∈(a],b1∈(b]such that

    Thus

    By hypothesis,there exists an x∈S such that

    for some y∈(a1xb1],that is,f(y)<s∧t.Since S is an ordered semigroup,one gets y∈(axb].It thus follows,by Lemma 2.5(2),that

    which is impossible.

    4 Strongly Semisimple Ordered Semigroups

    A fuzzy left ideal f of an ordered semigroup S is called idempotent if f=f?f,that is, f=f2.Clearly,a fuzzy left ideal f of an ordered semigroup S is idempotent if and only if f?f?f.

    Def i nition 4.1An ordered semigroup S is called strongly semisimple if L=(L2]for every left ideal L of S.

    Lemma 4.1For an ordered semigroup S the following statements are equivalent:

    (1)S is strongly semisimple;

    (2)For any a∈S,a∈(SaSa].

    The following theorems characterize the strongly semisimple ordered semigroups by means of quasi-prime fuzzy left ideals of S.

    Theorem 4.1Let S be an ordered semigroup.Then the following statements are equivalent:

    (1)Every fuzzy left ideal of S is idempotent;

    (2)For any two fuzzy left ideals f1and f2of S,f1∩f2?f1?f2; (3)For any ordered fuzzy point ar∈S,L(ar)=L(ar)2;

    (4)For any ordered fuzzy point ar∈S,ar∈S?ar?S?ar;

    (5)Every fuzzy left ideal of S is a quasi-semiprime fuzzy left ideal of S;

    (6)Every fuzzy left ideal of S is the intersection of all quasi-prime fuzzy left ideals of S containing it.

    Proof.(1)?(2).Let f1and f2be any two fuzzy left ideals of S.Then

    Moreover,for any x,y∈S with x≤y,we have

    Thus f1∩f2is a fuzzy left ideal of S.By(1)and Lemma 2.5(5)one has

    (2)?(3).For any ordered fuzzy point ar∈S,if f1=f2=L(ar),then by(2)we have

    On the other hand,By Lemma 2.5(5)we have

    Therefore,L(ar)=L(ar)2.

    (3)?(4).For any ordered fuzzy point ar∈S,by(3)and Lemma 2.5,we have

    Thus

    and

    Therefore,

    which implies that

    (4)?(5).Let g be a fuzzy left ideal of S with g2?f.Then,for any ar∈g,by(4),we have

    (5)?(1).Let f be any fuzzy left ideal of S.Then f2is also a fuzzy left ideal of S.By (5),since f2?f2,we have f?f2.Clearly,f2?f.It follows that f2=f. (2)?(6).Let f be a fuzzy left ideal of S,and

    N={gα|gαis a quasi-prime fuzzy left ideal of S such that f?gα}.

    Then,clearly,

    Let

    B={hβ|hβis a fuzzy left ideal of S such thatClearly,B/=? since f∈B.Thus(B,?)is an ordered set.Let C be a chain in B.Then the setis a fuzzy left ideal of S and Since for any hβ∈C,f(a)=hβ(a), we have

    is an upper bound of C in B.By Zorn's Lemma,B has a maximal element.Denote it by hmax.Then ar/∈hmax.We now prove that hmaxis a quasiprime fuzzy left ideal of S.Let f1and f2be two fuzzy left ideals of S with f1?f2?hmax. Then,by(2),

    Thus

    We claim that

    that is,f1?hmaxor f2?hmax.In fact,by hmax=(hmax∪f1)∩(hmax∪f2),we have

    This implies

    Since hmaxis maximal with respect to the properties f?hmaxand hmax(a)=f(a),we have

    (6)?(1).Let f be any fuzzy left ideal of S.Then f2is also a fuzzy left ideal of S.By (6)we have

    where M is the set of all quasi-prime fuzzy left ideals of S containing f2.

    For any g∈M,clearly,f?f?g.Since g is quasi-prime,f?g holds.Thus

    Therefore,

    Theorem 4.2An ordered semigroup S is strongly semisimple if and only if every fuzzy left ideal of S is idempotent.

    Proof.Similarly to the proof of Proposition 3.7(1)in[7],we can show that

    if and only if

    Thus the proof is completed by Theorem 4.1 and Lemma 4.1.

    Theorem 4.3Let S be a commutative ordered semigroup.Then the fuzzy left ideals of S are quasi-prime if and only if they form a chain and S is strongly semisimple.

    Proof.Let g and h be fuzzy left ideals of S.Since g?h is a fuzzy left ideal of S,by

    we have

    Thus the fuzzy left ideals of S form a chain.Moreover,for any fuzzy left ideal f of S, obviously,f2?f.Since

    we have

    so that

    By Theorem 4.2,S is strongly semisimple.

    Conversely,let f,g be two fuzzy left ideals of S,and f?g?h.Since the fuzzy left ideals of S form a chain,i.e.,f?g or g?f,we have

    By hypothesis,f?h or g?h holds.

    [1]Zadeh L A.Fuzzy sets,Inform.and Control.1965,8:338–353.

    [2]Kehayopulu N,Tsingelis M.Fuzzy sets in ordered groupoids,Semigroup Forum.2002,65: 128–132.

    [3]Kehayopulu N,Tsingelis M.The embedding of an ordered groupoid into a poe-groupoid in terms of fuzzy sets.Inform.Sci.,2003,152:231–236.

    [4]Kehayopulu N,Tsingelis M.Fuzzy interior ideals in ordered semigroups.Lobachevskii J.Math., 2006,21:65–71.

    [5]Kehayopulu N,Tsingelis M.Regular ordered semigroups in terms of fuzzy subsets.Inform. Sci.,2006,176:3675–3693.

    [6]Tang J,Xie X Y.Some characterizations of left weakly regular ordered semigroups.Comm. Math.Res.,2011,27:253–267.

    [7]Xie X Y,Tang J.Fuzzy radicals and prime fuzzy ideals of ordered semigroups.Inform.Sci., 2008,178:4357–4374.

    [8]Xie X Y,Tang J,Yan F.A characterization of prime fuzzy ideals of ordered semigroups.Fuzzy Systems Math.,2008,22:39–44.

    [9]Xie X Y,Tang J.Regular ordered semigroups and intra-regular ordered semigroups in terms of fuzzy subsets.Iran.J.Fuzzy Syst.,2010,7:121–140.

    [10]Kehayopulu N,Tsingelis M.On weakly prime ideals of ordered semigroups.Math.Japon., 1990,35:1051–1056.

    [11]Kehayopulu N.On prime,weakly prime ideals in ordered semigroups.Semigroup Forum,1992, 44:341–346.

    [12]Xie X Y,Wu M F.On quasi-prime,weakly quasi-prime left ideals in ordered semigroups.Pure Math.Appl.,1995,6:105–120.

    [13]Kuroki N.On fuzzy semigroups.Inform.Sci.,1991,53:203–236.

    [14]Xie X Y.An Introduction to Ordered Semigroup Theory.Beijing:Kexue Press,2001.

    [15]Xie X Y,Wu M F.The Theory of Fuzzy Semigroups.Beijing:Kexue Press,2005.

    tion:20M10,06F05

    A

    1674-5647(2013)02-0155-12

    Received date:Sept.15,2011.

    The NSF(10961014)of China,the NSF(S2011010003681)of Guangdong Province,the Science and Technology Projects(2010B010600039)of Guangdong Province,the Excellent Youth Talent Foundation (2012SQRL115ZD)of Anhui Province,the University Natural Science Project(KJ2012B133)of Anhui Province and the NSF(2007LZ01)of Fuyang Normal College.

    E-mail address:tangjian0901@126.com(Tang J).

    av国产精品久久久久影院| 超色免费av| 不卡视频在线观看欧美| 精品久久久噜噜| 少妇精品久久久久久久| 久久99热6这里只有精品| 亚洲国产精品成人久久小说| xxxhd国产人妻xxx| 精品一区在线观看国产| 男女边吃奶边做爰视频| 夫妻午夜视频| 午夜久久久在线观看| 国产精品人妻久久久影院| 一级a做视频免费观看| 天堂中文最新版在线下载| 国产熟女欧美一区二区| 日韩熟女老妇一区二区性免费视频| 免费大片黄手机在线观看| 97超碰精品成人国产| 少妇的逼水好多| 午夜免费男女啪啪视频观看| 少妇被粗大的猛进出69影院 | av免费在线看不卡| 一区二区日韩欧美中文字幕 | 在线观看三级黄色| 18禁裸乳无遮挡动漫免费视频| 亚洲美女视频黄频| 97超视频在线观看视频| 精品午夜福利在线看| 高清av免费在线| 国产男人的电影天堂91| av免费观看日本| 最黄视频免费看| 亚洲人成网站在线观看播放| 夫妻性生交免费视频一级片| 久久久久久久久久人人人人人人| 亚洲国产精品国产精品| 大码成人一级视频| 亚洲美女黄色视频免费看| 一级毛片黄色毛片免费观看视频| 精品国产露脸久久av麻豆| 九九在线视频观看精品| 人人妻人人澡人人爽人人夜夜| 亚洲中文av在线| 久久久久国产网址| 久久精品国产亚洲av涩爱| 国产欧美亚洲国产| 亚洲人成77777在线视频| 99热这里只有精品一区| 国产精品一二三区在线看| 99热这里只有是精品在线观看| 日韩强制内射视频| 久久精品久久久久久噜噜老黄| 夜夜看夜夜爽夜夜摸| 我的老师免费观看完整版| 亚洲激情五月婷婷啪啪| 亚洲国产精品一区二区三区在线| 寂寞人妻少妇视频99o| 成人毛片60女人毛片免费| 亚洲精品aⅴ在线观看| 亚洲精品自拍成人| 日韩人妻高清精品专区| 国产一区二区三区av在线| 美女主播在线视频| 九九久久精品国产亚洲av麻豆| av免费在线看不卡| 亚洲综合色网址| 国国产精品蜜臀av免费| 国产视频首页在线观看| 人人澡人人妻人| 一二三四中文在线观看免费高清| 啦啦啦视频在线资源免费观看| 久久午夜福利片| 亚洲精品日本国产第一区| 一边摸一边做爽爽视频免费| 三级国产精品片| 最后的刺客免费高清国语| 精品少妇内射三级| 99九九在线精品视频| 最近手机中文字幕大全| 国产精品久久久久久精品电影小说| 国产免费一区二区三区四区乱码| 老司机影院成人| 99久国产av精品国产电影| 99久国产av精品国产电影| 在线 av 中文字幕| 日本欧美国产在线视频| 亚洲国产色片| 日本黄色片子视频| 妹子高潮喷水视频| 高清毛片免费看| 精品亚洲成国产av| 久久久a久久爽久久v久久| 国产色婷婷99| 91精品三级在线观看| 性高湖久久久久久久久免费观看| 美女脱内裤让男人舔精品视频| 交换朋友夫妻互换小说| 久久99精品国语久久久| 一区在线观看完整版| 女人精品久久久久毛片| 亚洲内射少妇av| 久久综合国产亚洲精品| 亚洲欧美日韩卡通动漫| 欧美丝袜亚洲另类| 97精品久久久久久久久久精品| 久久人人爽人人片av| 久热久热在线精品观看| 日日啪夜夜爽| 一级爰片在线观看| 国产成人午夜福利电影在线观看| 久久久久久久久久久免费av| 天天操日日干夜夜撸| 亚洲熟女精品中文字幕| 亚洲国产欧美在线一区| av天堂久久9| 丰满少妇做爰视频| 欧美日韩av久久| 香蕉精品网在线| 国产色爽女视频免费观看| 国产成人精品一,二区| 久久狼人影院| 国产伦理片在线播放av一区| 国产成人精品无人区| 久久免费观看电影| 蜜臀久久99精品久久宅男| 久久久久精品久久久久真实原创| 五月玫瑰六月丁香| 美女xxoo啪啪120秒动态图| 美女内射精品一级片tv| 人妻少妇偷人精品九色| 丝袜在线中文字幕| 中文字幕人妻熟人妻熟丝袜美| 久久久精品免费免费高清| 一个人看视频在线观看www免费| 美女脱内裤让男人舔精品视频| 国产极品天堂在线| 搡女人真爽免费视频火全软件| 色婷婷av一区二区三区视频| 免费人妻精品一区二区三区视频| www.色视频.com| 欧美另类一区| av卡一久久| 亚洲欧美一区二区三区国产| 中文字幕免费在线视频6| 亚洲精华国产精华液的使用体验| 老司机影院毛片| 免费人妻精品一区二区三区视频| 亚洲国产av新网站| av一本久久久久| 日韩免费高清中文字幕av| 欧美丝袜亚洲另类| 夜夜爽夜夜爽视频| 日韩熟女老妇一区二区性免费视频| 精品人妻偷拍中文字幕| 制服诱惑二区| 97超视频在线观看视频| 亚洲,一卡二卡三卡| 国产精品久久久久久精品电影小说| 18禁动态无遮挡网站| 亚洲精品久久成人aⅴ小说 | 99视频精品全部免费 在线| 蜜臀久久99精品久久宅男| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品一区三区| 精品久久久精品久久久| 亚洲精品456在线播放app| 美女中出高潮动态图| 日韩熟女老妇一区二区性免费视频| 三级国产精品欧美在线观看| 黄片无遮挡物在线观看| 国产精品人妻久久久影院| 久久韩国三级中文字幕| 久久99热6这里只有精品| 中文字幕久久专区| 老司机影院毛片| 美女主播在线视频| 狂野欧美激情性xxxx在线观看| 一区二区三区乱码不卡18| 国产精品久久久久久久久免| 成年女人在线观看亚洲视频| 免费大片黄手机在线观看| 边亲边吃奶的免费视频| 欧美bdsm另类| 亚洲精品国产色婷婷电影| videossex国产| 天堂俺去俺来也www色官网| 黄色欧美视频在线观看| www.av在线官网国产| 91午夜精品亚洲一区二区三区| 亚洲精品日韩av片在线观看| 国产精品欧美亚洲77777| 日韩亚洲欧美综合| 涩涩av久久男人的天堂| 免费大片黄手机在线观看| 成人手机av| 夫妻午夜视频| 2021少妇久久久久久久久久久| 中文字幕制服av| 日日摸夜夜添夜夜添av毛片| 国产女主播在线喷水免费视频网站| 亚洲欧美成人综合另类久久久| 在线观看国产h片| 亚洲五月色婷婷综合| 国产成人精品一,二区| www.av在线官网国产| 大香蕉久久成人网| 日韩av免费高清视频| 中文字幕精品免费在线观看视频 | 亚洲精品国产av蜜桃| 熟女av电影| 久久久亚洲精品成人影院| 在线观看三级黄色| 黄色毛片三级朝国网站| 国产无遮挡羞羞视频在线观看| 久热这里只有精品99| 国产成人精品久久久久久| 草草在线视频免费看| 欧美日韩一区二区视频在线观看视频在线| 日产精品乱码卡一卡2卡三| 男女高潮啪啪啪动态图| 日韩 亚洲 欧美在线| 国产一区有黄有色的免费视频| 最近中文字幕2019免费版| 日韩伦理黄色片| 日本av手机在线免费观看| 久久精品国产亚洲网站| 午夜视频国产福利| 亚洲精品亚洲一区二区| 免费久久久久久久精品成人欧美视频 | 999精品在线视频| 97超碰精品成人国产| 精品人妻偷拍中文字幕| 亚洲av福利一区| 亚洲av免费高清在线观看| 极品少妇高潮喷水抽搐| 人体艺术视频欧美日本| 中文欧美无线码| 高清av免费在线| 亚洲精品日本国产第一区| 在线观看一区二区三区激情| 亚洲成人av在线免费| 成人国产麻豆网| 一区二区三区四区激情视频| 晚上一个人看的免费电影| 日本黄色日本黄色录像| 欧美亚洲 丝袜 人妻 在线| 天天躁夜夜躁狠狠久久av| 成人国产麻豆网| 最近中文字幕高清免费大全6| 免费看av在线观看网站| 亚洲性久久影院| 久久99蜜桃精品久久| 伦理电影免费视频| 美女cb高潮喷水在线观看| 国产精品久久久久成人av| 十八禁高潮呻吟视频| 欧美最新免费一区二区三区| 两个人的视频大全免费| 91国产中文字幕| 国产国拍精品亚洲av在线观看| 久久午夜综合久久蜜桃| 狂野欧美激情性bbbbbb| 国产不卡av网站在线观看| 男女边摸边吃奶| 免费av中文字幕在线| 日本欧美国产在线视频| 国产日韩欧美在线精品| 午夜福利在线观看免费完整高清在| 一本色道久久久久久精品综合| 人妻人人澡人人爽人人| av在线app专区| 国产高清不卡午夜福利| 菩萨蛮人人尽说江南好唐韦庄| 成人18禁高潮啪啪吃奶动态图 | av视频免费观看在线观看| 视频在线观看一区二区三区| 国产精品免费大片| 色婷婷久久久亚洲欧美| 一级毛片aaaaaa免费看小| 国产免费福利视频在线观看| 成人国语在线视频| 春色校园在线视频观看| 中文字幕人妻熟人妻熟丝袜美| 熟女电影av网| 久久久久久伊人网av| av电影中文网址| 在线观看一区二区三区激情| 男女免费视频国产| 亚洲欧洲日产国产| 少妇人妻精品综合一区二区| 少妇被粗大的猛进出69影院 | 欧美老熟妇乱子伦牲交| 超色免费av| 久久人人爽av亚洲精品天堂| 丝袜在线中文字幕| 午夜福利,免费看| 最黄视频免费看| 卡戴珊不雅视频在线播放| 亚洲av综合色区一区| 欧美激情极品国产一区二区三区 | 久久精品国产自在天天线| 啦啦啦视频在线资源免费观看| 亚洲精品456在线播放app| 99re6热这里在线精品视频| 日韩精品有码人妻一区| 中文字幕av电影在线播放| 中文字幕免费在线视频6| 狠狠婷婷综合久久久久久88av| 国产精品免费大片| 99热6这里只有精品| 国产毛片在线视频| av福利片在线| 久久 成人 亚洲| 乱码一卡2卡4卡精品| 精品国产露脸久久av麻豆| 啦啦啦在线观看免费高清www| 国产精品嫩草影院av在线观看| 99久久精品一区二区三区| 男女边摸边吃奶| 色视频在线一区二区三区| 晚上一个人看的免费电影| 亚洲av二区三区四区| 精品国产一区二区久久| 一本久久精品| 大又大粗又爽又黄少妇毛片口| 久久99一区二区三区| 亚洲欧洲日产国产| 麻豆乱淫一区二区| 不卡视频在线观看欧美| 欧美人与性动交α欧美精品济南到 | av天堂久久9| 晚上一个人看的免费电影| 精品国产露脸久久av麻豆| 夫妻午夜视频| 嘟嘟电影网在线观看| 高清午夜精品一区二区三区| 久久人人爽人人爽人人片va| 97超碰精品成人国产| .国产精品久久| 各种免费的搞黄视频| 51国产日韩欧美| 亚洲精品美女久久av网站| www.色视频.com| 曰老女人黄片| 夜夜爽夜夜爽视频| 婷婷色麻豆天堂久久| 国产高清有码在线观看视频| 免费黄频网站在线观看国产| 国产女主播在线喷水免费视频网站| 丰满乱子伦码专区| 国产无遮挡羞羞视频在线观看| 女性生殖器流出的白浆| 日本vs欧美在线观看视频| 国产成人aa在线观看| av有码第一页| 精品久久蜜臀av无| 久久精品久久久久久久性| 久久精品人人爽人人爽视色| 精品午夜福利在线看| 麻豆精品久久久久久蜜桃| 日韩熟女老妇一区二区性免费视频| 成人国语在线视频| 一级黄片播放器| www.av在线官网国产| 自拍欧美九色日韩亚洲蝌蚪91| 久久国内精品自在自线图片| 精品人妻在线不人妻| 精品国产乱码久久久久久小说| 国产精品久久久久成人av| 在线播放无遮挡| 精品国产乱码久久久久久小说| 免费观看的影片在线观看| 国产不卡av网站在线观看| 人人妻人人澡人人看| 人妻少妇偷人精品九色| 色5月婷婷丁香| 久久久久久伊人网av| 亚洲人与动物交配视频| 亚洲精品美女久久av网站| 日韩中文字幕视频在线看片| 午夜激情av网站| 欧美日本中文国产一区发布| 黑人高潮一二区| 亚洲欧美中文字幕日韩二区| 国产伦理片在线播放av一区| 超色免费av| 亚洲精品国产色婷婷电影| 熟妇人妻不卡中文字幕| 91久久精品电影网| 啦啦啦中文免费视频观看日本| 一个人免费看片子| 久久久久久久久久久久大奶| 久久ye,这里只有精品| 老熟女久久久| 国产黄色免费在线视频| 在线观看人妻少妇| 精品视频人人做人人爽| 亚洲激情五月婷婷啪啪| 在线观看免费高清a一片| 午夜影院在线不卡| 亚洲激情五月婷婷啪啪| 午夜福利视频精品| 国产一区有黄有色的免费视频| 人成视频在线观看免费观看| 18禁在线播放成人免费| 亚洲av在线观看美女高潮| 人成视频在线观看免费观看| 啦啦啦中文免费视频观看日本| 精品视频人人做人人爽| 国产精品无大码| 99久久精品国产国产毛片| 人人妻人人爽人人添夜夜欢视频| 99久久中文字幕三级久久日本| 国产视频内射| 中文字幕人妻丝袜制服| 国产日韩一区二区三区精品不卡 | 日韩精品免费视频一区二区三区 | 成人亚洲精品一区在线观看| 午夜久久久在线观看| 熟妇人妻不卡中文字幕| 亚洲色图综合在线观看| 欧美精品亚洲一区二区| 国产白丝娇喘喷水9色精品| 有码 亚洲区| 中文字幕免费在线视频6| 亚洲av中文av极速乱| 免费观看无遮挡的男女| 99久久精品一区二区三区| 日本wwww免费看| 少妇人妻精品综合一区二区| 九九在线视频观看精品| av天堂久久9| 亚洲国产毛片av蜜桃av| 日韩中字成人| 亚洲欧美日韩另类电影网站| 久久精品人人爽人人爽视色| 伦理电影免费视频| 中文字幕人妻熟人妻熟丝袜美| 2022亚洲国产成人精品| 久久国内精品自在自线图片| 国产亚洲精品久久久com| 美女视频免费永久观看网站| 欧美精品一区二区大全| 精品少妇久久久久久888优播| 日韩一区二区视频免费看| 亚洲怡红院男人天堂| 韩国高清视频一区二区三区| 午夜福利网站1000一区二区三区| 一二三四中文在线观看免费高清| 久久毛片免费看一区二区三区| 亚洲av男天堂| 亚洲精品国产av蜜桃| 午夜日本视频在线| 婷婷色综合www| 欧美激情极品国产一区二区三区 | 午夜日本视频在线| 性色avwww在线观看| 看免费成人av毛片| 男女国产视频网站| 亚洲欧美色中文字幕在线| 亚洲国产av新网站| 欧美日韩亚洲高清精品| 欧美日韩成人在线一区二区| 亚洲精品日本国产第一区| 插逼视频在线观看| 久久综合国产亚洲精品| 少妇被粗大的猛进出69影院 | 午夜福利在线观看免费完整高清在| 一区二区三区四区激情视频| 国产不卡av网站在线观看| 久久久久视频综合| 亚洲不卡免费看| 街头女战士在线观看网站| 国产黄色视频一区二区在线观看| 熟女电影av网| 亚洲高清免费不卡视频| 成年人免费黄色播放视频| 激情五月婷婷亚洲| 欧美精品高潮呻吟av久久| 日韩不卡一区二区三区视频在线| 最近的中文字幕免费完整| 永久免费av网站大全| 国产精品国产av在线观看| 2018国产大陆天天弄谢| 亚洲,欧美,日韩| 成人国产av品久久久| 国产精品一国产av| 水蜜桃什么品种好| 成年美女黄网站色视频大全免费 | 波野结衣二区三区在线| av在线播放精品| 久久亚洲国产成人精品v| 国产亚洲午夜精品一区二区久久| 精品亚洲成a人片在线观看| 国产精品秋霞免费鲁丝片| 免费观看av网站的网址| 欧美另类一区| 日韩精品免费视频一区二区三区 | 亚洲av日韩在线播放| 春色校园在线视频观看| 久久久国产精品麻豆| av在线播放精品| 伦精品一区二区三区| 久久ye,这里只有精品| 成年女人在线观看亚洲视频| 免费不卡的大黄色大毛片视频在线观看| 国产乱人偷精品视频| 亚洲欧美成人综合另类久久久| 欧美 日韩 精品 国产| 一区在线观看完整版| 一边摸一边做爽爽视频免费| 美女大奶头黄色视频| 老司机影院成人| 亚洲国产精品一区二区三区在线| 精品久久久精品久久久| 日韩大片免费观看网站| 国产爽快片一区二区三区| 欧美日韩精品成人综合77777| 少妇熟女欧美另类| 美女大奶头黄色视频| 欧美精品亚洲一区二区| 美女大奶头黄色视频| 成人无遮挡网站| 久久久久久久久久成人| 成人国语在线视频| 成人无遮挡网站| 久久久久久久国产电影| 久久久欧美国产精品| 男的添女的下面高潮视频| 国产伦精品一区二区三区视频9| 91精品伊人久久大香线蕉| 亚洲国产欧美日韩在线播放| 精品人妻熟女毛片av久久网站| 久久综合国产亚洲精品| 久久久精品免费免费高清| 在线观看三级黄色| 黑人巨大精品欧美一区二区蜜桃 | 草草在线视频免费看| 亚洲精品乱码久久久v下载方式| 日韩不卡一区二区三区视频在线| 国产爽快片一区二区三区| av福利片在线| 18禁观看日本| 精品久久久久久电影网| videos熟女内射| 我的女老师完整版在线观看| 丝袜喷水一区| 一级片'在线观看视频| 青春草视频在线免费观看| 国产精品三级大全| 亚洲精品久久成人aⅴ小说 | 在线免费观看不下载黄p国产| 亚洲精品久久久久久婷婷小说| 麻豆乱淫一区二区| 亚洲美女黄色视频免费看| 妹子高潮喷水视频| 如日韩欧美国产精品一区二区三区 | 人妻人人澡人人爽人人| 高清午夜精品一区二区三区| 亚洲四区av| 人成视频在线观看免费观看| 久久久久精品性色| 高清黄色对白视频在线免费看| 简卡轻食公司| 视频在线观看一区二区三区| 99热全是精品| 91aial.com中文字幕在线观看| 亚洲精品456在线播放app| 美女主播在线视频| 久久精品国产a三级三级三级| 99久久中文字幕三级久久日本| 亚洲av成人精品一区久久| 亚洲内射少妇av| 考比视频在线观看| 国产片内射在线| 高清视频免费观看一区二区| 在线观看美女被高潮喷水网站| 不卡视频在线观看欧美| 国产成人免费无遮挡视频| 亚洲成色77777| 成人无遮挡网站| 18+在线观看网站| 男女高潮啪啪啪动态图| 成人午夜精彩视频在线观看| 制服人妻中文乱码| 日本黄色日本黄色录像| 久久97久久精品| 国产成人精品在线电影| 一本久久精品| av网站免费在线观看视频| 国产黄色视频一区二区在线观看| 2022亚洲国产成人精品| 国产精品久久久久久久久免| www.色视频.com| 国产成人精品一,二区| √禁漫天堂资源中文www| 亚洲无线观看免费| 黄色怎么调成土黄色| 九草在线视频观看| 国产免费一区二区三区四区乱码| 在线天堂最新版资源| 国产成人aa在线观看| 国产精品偷伦视频观看了| 18禁观看日本| 中国三级夫妇交换| 秋霞伦理黄片| 亚洲情色 制服丝袜| 国产白丝娇喘喷水9色精品| 一级毛片我不卡| 男的添女的下面高潮视频| 欧美丝袜亚洲另类| 草草在线视频免费看| 在线观看一区二区三区激情| 亚洲精品国产色婷婷电影|