• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Planar-busting Curves on the Boundary of a Handlebody

    2013-08-27 01:41:54SUNDONGQITANGJINGYANANDLIFENGLING

    SUN DONG-QI,TANG JING-YANAND LI FENG-LING

    (1.School of Mathematical Sciences,Dalian University of Technology,

    Dalian,Liaoning,116024) (2.College of Science,Harbin Engineering University,Harbin,150001) (3.School of Mathematical Sciences,Harbin Normal University,Harbin,150025)

    Communicated by Lei Feng-chun

    Planar-busting Curves on the Boundary of a Handlebody

    SUN DONG-QI1,2,TANG JING-YAN1,3AND LI FENG-LING1

    (1.School of Mathematical Sciences,Dalian University of Technology,

    Dalian,Liaoning,116024) (2.College of Science,Harbin Engineering University,Harbin,150001) (3.School of Mathematical Sciences,Harbin Normal University,Harbin,150025)

    Communicated by Lei Feng-chun

    Let Hnbe an orientable handlebody of genus n.It has been proved that for n not less than 2,there exists an annulus-busting curve in?Hn.In the present paper,we prove that for n not less than 2,there exists an essential simple closed curve C in?Hnwhich intersects each essential planar surface in Hnnon-emptily. Furthermore,we show that for n not less than 3,a pants-busting curve must also be an annulus-busting curve.

    handlebody,planar surface,planar-busting curve,pants-busting curve

    1 Introduction

    Let Hnbe an orientable handlebody of genus n.A planar surface in Hnis a 2-sphere with some holes.The relation between planar surfaces and thin positions is considered in[1–2].

    Rubinstein and Scharlemann[3]considered the maximal essential annuli in H2.Lei and Tang[4]detected the maximal essential annuli in Hn(n≥2).It is a result in[5]that for each n≥2,there exists an essential simple closed curve C on the boundary of Hnsuch that C intersects every essential annulus in Hnnon-emptily.This curve C is called an annulus-busting curve.

    In the present paper,we show the existence of planar-busting curves.Namely,for each n≥2,there exists an essential simple closed curve C on the boundary of Hnsuch thatC intersects every essential planar surface in Hnnon-emptily.Furthermore,we show that under some conditions,a pants-busting curve is also an annulus-busting curve.

    In Section 2,we show some useful propositions,and we use them to prove the main results in Sections 3 and 4.

    All the manifolds considered in the paper are assumed to be compact,orientable and connected.The def i nitions and terminologies not def i ned here are standard;see,for example, [6–7].

    2 Preliminaries

    Let Hnbe an orientable handlebody of genus n.A connected properly embedded surface P in Hnis essential if P is incompressible and is not boundary parallel in Hn.

    Def i nition 2.1Let Hnbe a handlebody of genus n.An essential simple closed curve C in?Hnwhich intersects each essential pair of pants(annulus)in Hnnon-emptily is called a pants-busting(annulus-busting)curve.An essential simple closed curve C in?Hnwhich intersects each essential planar surface in Hnnon-emptily is called a planar-busting curve.

    From a result of Schultens[8],it is easy to see the following proposition.

    Proposition 2.1Let Hnbe a handlebody with genus n≥2,and P be an essential planar surface in Hn.Then the manifold obtained from cutting Hnopen along P may be a handlebody or consist of two handlebodies.

    Let S be a closed orientable surface,α0,α1,···,αnbe a sequence of essential simple closed curves in S such that for each 1≤i≤n,αi-1and αican be isotoped to be disjoint. Then we say that the sequence is a path of length n.

    The distance d(α,β)between a pair α,β of essential simple closed curves in S is the smallest integer n such that there is a path from α to β of length n.Le tbe a Heegaard splitting of a 3-manifold M.

    Denote by d(S)the distance of the Heegaard splitting which is def i ned as

    d(S)=min{d(C1,C2)|Cibounds an essential disk in Vi,i=1,2}.

    The following theorem of Hempel[9]is important for proving our main theorem.

    Theorem 2.1[9]For positive integers m,n≥2,there exists a Heegaard splittingof genus n for a closed orientable 3-manifold M with the distance d(S)>m.

    For convenience,we give the following def i nition and we will use it later.

    Def i nition 2.2Let Hn(n≥2)be a handlebody of genus n,A be an essential annulus in Hn,and?A=a∪b.Let α be a simple arc in?Hnwith α∩A=α∩a=?α(or α∩A=α∩b=?α),and both ends of α meet a(or b)from the same sides.N(α)=α×[-1,1]is the regular neighborhood of α in?Hn,α=α×{0},and N(α)∩A=?α×[-1,1].Connect N(α)and A along?α×[-1,1]and push α×(-1,1)into the interior of Hn.Denote this new properly embedded pair of pants by P.We say that P is the band sum of A along α. This process is also called to do a band sum to A along α to get a pair of pants.See Fig. 2.1.

    3 The Existence of Planar-busting Curves

    The following lemma is important for the proof of the main theorem.

    Lemma 3.1Let M be a compact orientable 3-manifold,andbe a Heegaard splitting of M.If d(S)≥k+1(k≥2),then there is no essential planar surface P with |?P|≤k in M.

    Proof.Otherwise,assume that M contains an essential planar surface P with|?P|≤k in M.When|?P|=k,for d(S)≥k+1≥3,M=V1∪SV2is strongly irreducible.It is clear that P∩S/=?.Then P∩S are essential simple closed curves in P and S.Denote

    So Piis essential in Vi.Then Piis?-compressible in Vi,and

    Compress Piin Vifor ki-1 times.Then we get at least one essential disk in Vi.So

    It contradicts the assumption.

    When|?P|<k,the proof is similar to that the case for|?P|=k.

    Theorem 3.1For each n≥2,there exists an essential simple closed curve C on the boundary of a handlebody Hnof genus n such that C intersects every essential planar surface P non-emptily.

    Proof.Let Hnbe a handlebody of genus n,and P be a properly embedded essential planar surface with|?P|=k in Hn.By Theorem 2.1,there exists a Heegaard splitting M′=V1∪S′V2of genus n≥2 for a closed orientable 3-manifold M′with d(S′)≥k+1 (k≥2).Let Hn=V1,and C be a meridian curve of?V2,that is,C be the boundary of an essential disk in V2.Let M be the 3-manifold obtained by adding a 2-handle to V1along C. Pushing S′slightly into the interior of M by isotopy,we get a surface S which is,in fact,a Heegaard surface of M.Clearly,d(S)≥d(S′)≥k+1.Suppose that P∩C=?.Then we have the following claim:

    Claim 3.1P is essential in M.

    Otherwise,there are two possibilities:

    (1)P is compressible in M;

    (2)P is boundary parallel in M.

    Suppose that case(1)happens.For P is a properly embedded essential planar surface in Hn,we can?-compress P in Hn.However,?-compressing P in Hnis just the case that isotope P in M.For|?P|≤k,after?-compressing P at most k-1 times,we must get an essential disk in Hn.For P∩C=?,we have d(S)≤k,contradicting the condition of the theorem.

    In case(2),P is?-parallel in M.Then P is separating both in M and Hn.Denote MP=H∪N,in which H is a handlebody of genus k-1 and N~=M.By Proposition 2.1,HnP=H1∪H2,where both H1and H2are handlebodies.Suppose that C??H1-P. Then H is obtained from adding a 2-handle to H1along C.Thus,H1is a handlebody of genus k,and C is a longitude on?H1.Note C∩P=?.Thus d(S)≤k,contradicting the assumption d(S)≥k+1.

    Thus,P is essential in M.On the other hand,by Lemma 3.1,M contains no essential planar surface P with|?P|≤k,a contradiction.

    4 Annulus-busting Curves and Pants-busting Curves

    Lemma 4.1Let Hn(n≥2)be a handlebody of genus n,A be an essential annulus in Hn,and?A=a∪b.Then both a and b are non-separating in?Hn.

    Proof.Let S=?Hn(a∪b).Denote the two cutting sections of a(b)by a+,a-(b+,b-, respectively).If A is separating in Hn,then S will have two components S1and S2.Suppose that

    Then

    So a is non-separating in?Hn.Similarly,b is non-separating in?Hn.

    If A is non-separating in Hn,then S is connected and

    ?Hna can be obtained from S by gluing b+and b-together.So?Hna is connected,and a is non-separating in?Hn.Similarly,b is non-separating in?Hn.

    Lemma 4.2Let Hn(n≥2)be a handlebody of genus n,A be an essential annulus in Hn,and?A=a∪b.Let α be a simple arc in?Hnwith α∩A=?α∩a=?α,and P be the pair of pants which is the band sum of A along α.If P is boundary parallel in Hn,then A cuts Hninto a handlebody H1of genus two and a handlebody H2of genus n-1 with α∈?H1.At this time,the cutting section of A in H1and the arc α are as illustrated in Fig.4.1,where A1denotes a cutting section of A.

    Fig.4.1Arc α and a cutting section of A

    Proof.Let D be the essential disk in Hnwhich comes from?-compressing A in Hn.Since P is boundary parallel in Hnand P is separating in Hn,A is separating in Hn.Denote

    Then

    Denote

    Then

    Suppose that D?H1A.There are two cases for the arc α: Case 1.α??H2A.

    One of H1Pand H2P,say H1P,is obtained from H1Aby adding a 1-handle to it.Thus,H2Pis isotopic to H2A,g(H1P)=g(H1A)+1 and g(H2P)=g(H2A).

    For this case,we prove the conclusion by three steps as follows.

    Step 1.We prove g(H2P)=g(H2A)≥2.

    In fact,if g(H2P)=g(H2A)=1,then

    which implies that one boundary component of P is trivial in?Hn,a contradiction.

    Step 2.We prove g(H1A)≥2.

    In fact,if g(H1A)=1,then A is twisted on?H1Aand D must be boundary parallel in Hn,and this is a contradiction.

    Step 3.We prove that the conclusion holds.

    Since g(H1A)≥2,

    By the assumption,P is boundary parallel,so we can only push P into?Hntowards H2P. Thus,

    and the cutting section of A and the arc α in H1Amust be the cases illustrated in Fig.4.1.

    Case 2.α??H1A.

    One of H1Pand H2P,say H2P,is obtained from H2Aby adding a 1-handle to it.Thus,H1Pis isotopic to H1A,g(H2P)=g(H2A)+1,and g(H1P)=g(H1A).

    Similarly to Case 1,we prove the conclusion by three steps as follows.

    Step 1.We prove g(H1P)=g(H1A)=2.

    In fact,if g(H1P)=g(H1A)/=2,then either

    or

    When g(H1P)=g(H1A)=1,A is twisted in?H1A,so D is trivial in Hn,and this is a contradiction.

    When g(H1P)=g(H1A)>2,we can only push P into?Hntowards H2P.Thus,

    and A is twisted in?H2A,which implies that at least one boundary component of P is twisted in?H2P,and P cannot be boundary parallel in Hn,a contradiction.

    Step 2.We prove g(H2A)≥2.

    In fact,if g(H2A)=1,then A is twisted in?H2A,which implies that at least one boundary component of P is twisted in?H2P,and P cannot be boundary parallel in Hn,contradicting the assumption.

    Step 3.We prove that the conclusion holds.

    Since g(H2A)≥2,one hasand we can only push P into?Hntowards H1P.By the assumption,D is contained in H1A. Then the cutting section of A,say A1,in H1Ais illustrated in Fig.4.1(1),and the arc α must be the case illustrated in Fig.4.1(1).

    Theorem 4.1Let Hn(n≥3)be a handlebody of genus n,and C be an essential simple closed curve in?Hn.If C is pants-busting,then C is annulus-busting.

    Proof.Otherwise,there would exist essential annuli in Hndisjoint from C.Let A be a maximal collection of all essential annuli in Hnwhich disjoint from C.By the assumption, A/=?.Let A1be some component of A,?A1=α1∪β1,S=?Hn(C∪?A).Denote the cutting sections of C,α1,β1by C+,C-,α+1,α-1,β+1,β-1,respectively.There exists some component of S,say S1,which contains a cutting section of C,say C+,on its boundary.

    For the curve C,we have the proposition as follows:

    Proposition 4.1C does not bound an essential disk in Hn.

    Otherwise,C bounded an essential disk DCin Hn.DCis either separating or nonseparating in Hn.If DCis separating in Hn,then denote HnDC=H1∪H2.For n≥3,at least one of g(H1)>1 and g(H2)>1 holds.Without loss of generality,assume g(H1)>1. Then there must exist an essential pair of pants P in H1with P∩C=? and P also essential in Hn,which is a contradiction.If DCis non-separating in Hn,then denote HnDC=H. Evidently,

    and there must exist an essential pair of pants P in H with P∩C=? and P also essential in Hn,a contradiction.

    For the surface S1,we have the proposition as follows:

    Proposition 4.2S1is not an annulus.

    Otherwise,S1were an annulus.Without loss of generality,assume?S1=C+∪α+1. Then C is parallel to α1in?Hn.Now we can obtain an essential pair of pants P from A1which contains a boundary component parallel to C.Thus C∩P=?,and this is a contradiction.

    Similarly to the proof of Proposition 4.2,we can prove that the component of S,which contains C-on its boundary,is not an annulus.

    Now we consider the cutting section C-of C.We break the proof into two cases, depending on whether C-is contained in?S1or not.

    Case 1.C-??S1.

    By Lemma 4.1,|?S1|≥4.Without loss of generality,we can assume α+1∈?S1,so there exists a properly embedded simple arc γ in S1with?γ∈α+1such that the pair of pants P, obtained from doing a band sum to A1along γ,has a boundary component parallel to C. So P∩C=?.Note that C is annulus-busting,so P is inessential in Hn.Thus P is eithercompressible or?-parallel in Hn,and we will prove that there is a contradiction in either case.

    If P is compressible in Hn,then at least one component of?P bounds an essential disk in Hn.Let?P=C∪β1∪δ.Since neither C nor β1bounds essential disk in Hn,δ must bound an essential disk,denoted by Dδ,in Hn.Let Aδ=P∪δDδbe an annulus in Hncoming from pasting Dδto P along δ and pushing δ slightly into the interior of Hn.?Aδ=C∪β1. By Proposition 4.2,C is not parallel to β1,so Aδis not?-parallel.Thus,Aδis essential in Hnand Aδdoes not belong to A,contradicting the maximality of A.

    If P is boundary parallel in Hn,then by Lemma 4.2,A1separates Hninto a genus two handlebody H1and a genus n-1 handlebody H2,and C must be the cases illustrated in Fig.4.2.Thus,H1contains no other essential annulus in A,S1is a 4-punctured sphere with?S1=C+∪C-∪α+1∪β+1,and there must exist an essential pair of pants P′in H2, which is also essential in Hn,with P′∩C=?,contradicting the assumption.

    Fig.4.2Two possibilities of curve C

    Case 2.C-?S1.

    Without loss of generality,we can assume|?S1|≥2.In fact,if|?S1|=1,then the component of S including C-on its boundary,denoted by S2,has more than one boundary components,so we just need to consider S2instead of S1.As in Case 1,we can assume α+1∈?S1.It is clear that either g(S1)>0 or g(S1)=0,and we will prove that there is a contradiction in either case.

    If g(S1)>0,then there would exist a simple properly embedded arc γ in S1withsuch that the pair of pants P which is obtained from doing a band sum to A1along γ has a boundary component paralle to C.By the assumption,P is inessential in Hn,so P is either compressible or boundary parallel in Hn.In either case,there is a contradiction.In fact,if P is compressible in Hn,then similarly to the Case 1,we obtain an essential annulus which is disjoint from C and does not belong to A,contradicting the maximality of A.If P is boundary parallel in Hn,then similarly to Case 1,S1is a 4-punctured sphere,contradicting g(S1)>0.

    If g(S1)=0,then by Proposition 4.2,,and?S1would contain a component, say,of a boundary component of some Aiin A.Then there exists a simple properly embedded arc γ in S1with?γ∈α+1such that the pair of pants P obtained from doing a band sum to A1along γ has a boundary component paralle to C.By the assumption,P is inessential in Hn,so P is either compressible or boundary parallel in Hn.In either cases, as in Case 1,there is a contradiction.

    [1]Wu Y.Thin position and essential planar surfaces.Proc.Amer.Math.Soc.,2004,132:3417–3421.

    [2]Li T.Thin position and planar surfaces for graphs in the 3-sphere.Proc.Amer.Math.Soc., 2010,138:333–340.

    [3]Rubinstein H,Scharlemann M.Genus Two Heegaard Splittings of Orientable Three-manifolds. In:Hass J,Scharlemann M.Proceedings of the 1998 Kirbyfest.Berkeley:Mathematical Sciences Publishers,1999,2:489–553.

    [4]Lei F,Tang J.On maximal collections of essential annuli in a handlebody.J.Knot Theory Ramif i cations,2006,15:1363–1369.

    [5]Yin X,Tang J,Lei F.On maximal collections of essential annuli in a handlebody II.J.Knot Theory Ramif i cations,2009,18:199–208.

    [6]Hempel J.3-Manifold.Annals of Math.Studies 86,Princeton:Princeton Univ.Press,1975.

    [7]Jaco W.Lectures on Three-manifold Topology.Washington:American Mathematical Society, 1981.

    [8]Schultens J.Additivity of tunnel number for small knots.Comment.Math.Helv.,2000,75: 353–363.

    [9]Hempel J.3-manifolds as viewed from the curve complex.Topology,2001,40:631–657.

    A

    1674-5647(2013)02-0184-09

    Received date:Sept.17,2012.

    The grant(09XBKQ09)of Harbin Normal University,the NSF(11101058)of China,and China Postdoctoral Science Foundation(2011M500049).

    E-mail address:sundq1029@yahoo.com.cn(Sun D Q).

    57M99

    男女啪啪激烈高潮av片| 26uuu在线亚洲综合色| 成人国产麻豆网| 午夜激情久久久久久久| 亚洲综合精品二区| 中文字幕免费在线视频6| 男人添女人高潮全过程视频| 亚洲欧美一区二区三区黑人 | 色婷婷av一区二区三区视频| 免费观看性生交大片5| 亚洲欧美一区二区三区国产| 在线观看免费视频网站a站| 国产黄频视频在线观看| 国产精品无大码| 一边亲一边摸免费视频| 一本一本综合久久| 国产成人精品一,二区| 成人免费观看视频高清| 国产一区二区三区av在线| 日韩av免费高清视频| videossex国产| 亚洲成人一二三区av| 日韩欧美一区视频在线观看 | av在线观看视频网站免费| 各种免费的搞黄视频| 在线观看免费高清a一片| 日韩一区二区三区影片| 国产成人午夜福利电影在线观看| 日韩av不卡免费在线播放| 亚洲精品乱久久久久久| 国产精品久久久久成人av| 狠狠精品人妻久久久久久综合| 国产精品人妻久久久久久| 大话2 男鬼变身卡| 自拍欧美九色日韩亚洲蝌蚪91 | 国产91av在线免费观看| 久久久久久久久久久免费av| 亚洲美女视频黄频| 国产成人a∨麻豆精品| 国产无遮挡羞羞视频在线观看| 午夜视频国产福利| 亚洲精品亚洲一区二区| 国产精品爽爽va在线观看网站| 国内精品宾馆在线| 男人添女人高潮全过程视频| 久久久久久九九精品二区国产| 亚洲精品乱久久久久久| 国产精品嫩草影院av在线观看| 久久久久久久久久久丰满| 国产欧美亚洲国产| 久久精品国产自在天天线| 久久人人爽av亚洲精品天堂 | 亚洲天堂av无毛| 激情 狠狠 欧美| 在线免费十八禁| 老师上课跳d突然被开到最大视频| 九草在线视频观看| 日韩不卡一区二区三区视频在线| 国产成人a∨麻豆精品| 中文字幕制服av| 国产探花极品一区二区| 欧美日韩精品成人综合77777| 成人漫画全彩无遮挡| 免费黄色在线免费观看| 在线播放无遮挡| 欧美 日韩 精品 国产| 日韩在线高清观看一区二区三区| 自拍偷自拍亚洲精品老妇| 激情五月婷婷亚洲| 亚洲国产色片| 国产午夜精品一二区理论片| 汤姆久久久久久久影院中文字幕| 一级a做视频免费观看| 在现免费观看毛片| 国产欧美日韩精品一区二区| 亚洲精品乱码久久久久久按摩| 日本猛色少妇xxxxx猛交久久| 毛片女人毛片| 国产一级毛片在线| 五月开心婷婷网| 哪个播放器可以免费观看大片| 深爱激情五月婷婷| 国产v大片淫在线免费观看| 久久av网站| 国产精品偷伦视频观看了| 国产视频首页在线观看| 欧美丝袜亚洲另类| 一个人看视频在线观看www免费| 久久99精品国语久久久| 亚洲精品久久午夜乱码| 亚洲美女搞黄在线观看| 你懂的网址亚洲精品在线观看| 99热网站在线观看| av不卡在线播放| 直男gayav资源| 久久女婷五月综合色啪小说| 97超视频在线观看视频| 国产人妻一区二区三区在| av专区在线播放| 久久热精品热| 欧美日韩视频高清一区二区三区二| 少妇 在线观看| 久热这里只有精品99| 交换朋友夫妻互换小说| 日本猛色少妇xxxxx猛交久久| 人妻少妇偷人精品九色| 中国美白少妇内射xxxbb| 在线观看免费日韩欧美大片 | 国产精品一区二区性色av| 七月丁香在线播放| 91久久精品国产一区二区成人| 一级av片app| 欧美激情国产日韩精品一区| 久久精品久久久久久噜噜老黄| 一区二区三区四区激情视频| 乱码一卡2卡4卡精品| 国产精品一区二区三区四区免费观看| 只有这里有精品99| 观看美女的网站| 国产中年淑女户外野战色| 午夜视频国产福利| 精品国产乱码久久久久久小说| 成人18禁高潮啪啪吃奶动态图 | 午夜福利网站1000一区二区三区| av网站免费在线观看视频| 亚洲精品亚洲一区二区| 中国三级夫妇交换| 成人漫画全彩无遮挡| 高清av免费在线| 97热精品久久久久久| 精品99又大又爽又粗少妇毛片| 91精品一卡2卡3卡4卡| 亚洲av二区三区四区| 欧美日韩在线观看h| 国产精品爽爽va在线观看网站| av女优亚洲男人天堂| 内地一区二区视频在线| 成人一区二区视频在线观看| 看免费成人av毛片| 婷婷色麻豆天堂久久| 看十八女毛片水多多多| 久久国产精品大桥未久av | 少妇人妻一区二区三区视频| 噜噜噜噜噜久久久久久91| 99久久精品国产国产毛片| 国产精品久久久久久精品古装| 国产91av在线免费观看| 男人添女人高潮全过程视频| 国产白丝娇喘喷水9色精品| 国产免费福利视频在线观看| 99热国产这里只有精品6| 有码 亚洲区| 我要看日韩黄色一级片| 午夜老司机福利剧场| 欧美日韩亚洲高清精品| 中文字幕久久专区| 欧美日韩一区二区视频在线观看视频在线| 国产精品成人在线| 精品午夜福利在线看| 精品久久久精品久久久| 最近最新中文字幕大全电影3| 精品熟女少妇av免费看| 大码成人一级视频| 久久 成人 亚洲| 人妻系列 视频| 免费人成在线观看视频色| 久久这里有精品视频免费| av福利片在线观看| av国产免费在线观看| 色哟哟·www| 国内精品宾馆在线| 精品亚洲成a人片在线观看 | 舔av片在线| 欧美精品亚洲一区二区| 国产色爽女视频免费观看| 中文字幕免费在线视频6| .国产精品久久| 在线看a的网站| 亚洲综合色惰| 免费不卡的大黄色大毛片视频在线观看| 成人漫画全彩无遮挡| 久久国内精品自在自线图片| 夜夜骑夜夜射夜夜干| kizo精华| av.在线天堂| 久久精品国产自在天天线| 人人妻人人添人人爽欧美一区卜 | 黄色欧美视频在线观看| 国产成人freesex在线| 免费高清在线观看视频在线观看| 国产国拍精品亚洲av在线观看| 人人妻人人添人人爽欧美一区卜 | 熟女av电影| 国产爱豆传媒在线观看| 欧美精品国产亚洲| 高清欧美精品videossex| 直男gayav资源| 伦理电影大哥的女人| 婷婷色综合大香蕉| 精品少妇久久久久久888优播| 亚洲av综合色区一区| 99re6热这里在线精品视频| 亚洲精品日韩在线中文字幕| 国国产精品蜜臀av免费| 国产成人aa在线观看| 国产在线男女| 亚洲精品亚洲一区二区| 色哟哟·www| 国产精品久久久久久精品电影小说 | 久久精品久久精品一区二区三区| 国产精品久久久久久精品电影小说 | 亚洲精品一二三| 国产熟女欧美一区二区| 三级经典国产精品| 午夜福利网站1000一区二区三区| 欧美bdsm另类| 一级毛片电影观看| 美女cb高潮喷水在线观看| 涩涩av久久男人的天堂| 看十八女毛片水多多多| 日本色播在线视频| 久久久久视频综合| 国产精品久久久久久av不卡| 国产精品国产三级国产专区5o| 日本欧美视频一区| 亚洲第一区二区三区不卡| 日韩大片免费观看网站| 一本久久精品| 国产日韩欧美在线精品| 日韩av在线免费看完整版不卡| 亚洲美女视频黄频| 欧美精品国产亚洲| 国产精品欧美亚洲77777| 国产黄色视频一区二区在线观看| 久久久久久人妻| 欧美 日韩 精品 国产| 亚洲性久久影院| 日本-黄色视频高清免费观看| 精品人妻偷拍中文字幕| 欧美精品国产亚洲| 在线观看国产h片| 99热全是精品| 国产精品99久久久久久久久| 欧美bdsm另类| 日韩欧美精品免费久久| 国产一区有黄有色的免费视频| 国产精品久久久久久久电影| 亚洲精品色激情综合| 嫩草影院入口| 午夜激情福利司机影院| 老熟女久久久| 日本爱情动作片www.在线观看| 色婷婷久久久亚洲欧美| 久久久a久久爽久久v久久| h日本视频在线播放| 黄片wwwwww| 国产成人精品久久久久久| 亚洲第一区二区三区不卡| 99久久精品热视频| 女人十人毛片免费观看3o分钟| 香蕉精品网在线| 黄色配什么色好看| 日韩精品有码人妻一区| 久久人人爽av亚洲精品天堂 | 久久精品国产亚洲av涩爱| 午夜日本视频在线| 国国产精品蜜臀av免费| 一级黄片播放器| 欧美人与善性xxx| 国产精品成人在线| 国精品久久久久久国模美| 丝瓜视频免费看黄片| 99国产精品免费福利视频| 欧美精品一区二区大全| 久久久国产一区二区| 五月天丁香电影| 久久久久久久亚洲中文字幕| 久久久久国产网址| 全区人妻精品视频| av免费在线看不卡| 久久久久网色| 联通29元200g的流量卡| 亚洲真实伦在线观看| 我要看日韩黄色一级片| 国产一级毛片在线| 欧美激情极品国产一区二区三区 | 我的女老师完整版在线观看| 国产淫片久久久久久久久| 小蜜桃在线观看免费完整版高清| 欧美xxⅹ黑人| 亚洲国产欧美在线一区| 毛片女人毛片| 成人一区二区视频在线观看| 寂寞人妻少妇视频99o| 国产精品欧美亚洲77777| 亚洲国产色片| 久久久精品免费免费高清| 亚洲欧美日韩无卡精品| 国产精品久久久久久av不卡| 亚洲人成网站高清观看| 边亲边吃奶的免费视频| 亚洲色图综合在线观看| 久久久久久人妻| 亚洲经典国产精华液单| 国产精品一及| 亚洲国产精品成人久久小说| 免费看不卡的av| 日产精品乱码卡一卡2卡三| 久久ye,这里只有精品| 热re99久久精品国产66热6| 成人午夜精彩视频在线观看| freevideosex欧美| 久久99热这里只频精品6学生| 久久久久久人妻| 大话2 男鬼变身卡| 97在线视频观看| 亚洲欧美日韩另类电影网站 | 夫妻性生交免费视频一级片| 日韩精品有码人妻一区| 日日摸夜夜添夜夜爱| 免费黄频网站在线观看国产| 午夜福利在线在线| 精品久久久精品久久久| 久久av网站| 亚洲一级一片aⅴ在线观看| 少妇 在线观看| 国产av一区二区精品久久 | 成人18禁高潮啪啪吃奶动态图 | 欧美激情极品国产一区二区三区 | 狂野欧美激情性bbbbbb| 人妻系列 视频| 日韩欧美一区视频在线观看 | 亚洲人成网站在线观看播放| 亚洲美女黄色视频免费看| 欧美xxxx黑人xx丫x性爽| 国产亚洲精品久久久com| 久久国产精品男人的天堂亚洲 | 国产一区二区三区av在线| 亚洲欧洲日产国产| av女优亚洲男人天堂| 国产伦精品一区二区三区四那| av视频免费观看在线观看| 只有这里有精品99| 搡老乐熟女国产| 晚上一个人看的免费电影| 国产成人freesex在线| 最近最新中文字幕免费大全7| 亚洲va在线va天堂va国产| 国产高清三级在线| 日韩av在线免费看完整版不卡| 一级二级三级毛片免费看| 国产深夜福利视频在线观看| .国产精品久久| 一边亲一边摸免费视频| 51国产日韩欧美| 十八禁网站网址无遮挡 | 三级经典国产精品| 中国三级夫妇交换| 纯流量卡能插随身wifi吗| 亚洲欧美精品专区久久| videossex国产| 80岁老熟妇乱子伦牲交| 国产女主播在线喷水免费视频网站| 91久久精品国产一区二区三区| 日本黄色片子视频| 国产精品99久久久久久久久| av在线蜜桃| 亚洲国产欧美在线一区| 国内精品宾馆在线| 内地一区二区视频在线| 色综合色国产| 国产一区二区在线观看日韩| 大香蕉97超碰在线| 97在线人人人人妻| 一级毛片aaaaaa免费看小| 美女脱内裤让男人舔精品视频| 亚洲精品色激情综合| 国产精品国产三级国产专区5o| 国产精品国产av在线观看| 高清日韩中文字幕在线| 亚洲国产精品成人久久小说| 婷婷色av中文字幕| 久久精品久久久久久久性| 国产色婷婷99| 男人舔奶头视频| 人人妻人人添人人爽欧美一区卜 | 久热这里只有精品99| 亚洲精品自拍成人| 毛片一级片免费看久久久久| 欧美成人午夜免费资源| 天堂中文最新版在线下载| 少妇的逼好多水| 免费在线观看成人毛片| 国产成人精品福利久久| 久久久久久久久大av| 国产老妇伦熟女老妇高清| 少妇的逼水好多| 欧美bdsm另类| 99热全是精品| 99re6热这里在线精品视频| 亚洲av男天堂| 最近手机中文字幕大全| 大又大粗又爽又黄少妇毛片口| 亚洲国产av新网站| 亚洲av免费高清在线观看| 久久久精品免费免费高清| 在线看a的网站| 日韩成人av中文字幕在线观看| 伊人久久国产一区二区| 制服丝袜香蕉在线| 高清不卡的av网站| 亚洲国产毛片av蜜桃av| 最新中文字幕久久久久| 精品久久久精品久久久| 人妻一区二区av| av在线观看视频网站免费| 国模一区二区三区四区视频| 久久久精品免费免费高清| 观看av在线不卡| 免费观看无遮挡的男女| 国产色婷婷99| 婷婷色麻豆天堂久久| 国产综合精华液| 又爽又黄a免费视频| 美女脱内裤让男人舔精品视频| 青春草亚洲视频在线观看| 免费黄色在线免费观看| 在线天堂最新版资源| 国产精品爽爽va在线观看网站| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品aⅴ在线观看| 成人特级av手机在线观看| 免费看av在线观看网站| 黄色日韩在线| 男女边吃奶边做爰视频| 韩国av在线不卡| 欧美+日韩+精品| 一级片'在线观看视频| 免费在线观看成人毛片| 99国产精品免费福利视频| 中国三级夫妇交换| 51国产日韩欧美| 我的老师免费观看完整版| 欧美另类一区| 涩涩av久久男人的天堂| 日本黄大片高清| 午夜免费鲁丝| 欧美极品一区二区三区四区| 免费观看在线日韩| 欧美一区二区亚洲| 久久婷婷青草| 亚洲av日韩在线播放| 观看美女的网站| 亚洲人成网站高清观看| 一区二区三区精品91| 国产免费视频播放在线视频| 中文字幕制服av| 午夜福利在线在线| 丝袜脚勾引网站| 久久av网站| 亚洲内射少妇av| 内地一区二区视频在线| 国产精品成人在线| 中文乱码字字幕精品一区二区三区| 免费av不卡在线播放| 噜噜噜噜噜久久久久久91| 国产亚洲av片在线观看秒播厂| 国产一区二区在线观看日韩| 99热这里只有是精品在线观看| 肉色欧美久久久久久久蜜桃| 亚洲国产欧美人成| 麻豆乱淫一区二区| 久久鲁丝午夜福利片| 国产亚洲午夜精品一区二区久久| 热re99久久精品国产66热6| 纵有疾风起免费观看全集完整版| 国产精品人妻久久久影院| 热re99久久精品国产66热6| 高清午夜精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 下体分泌物呈黄色| 午夜福利在线观看免费完整高清在| 91久久精品国产一区二区成人| 国产毛片在线视频| 日韩av免费高清视频| 免费少妇av软件| 又大又黄又爽视频免费| 狂野欧美白嫩少妇大欣赏| 九九在线视频观看精品| 99久久综合免费| 欧美+日韩+精品| 久久久国产一区二区| 在线观看一区二区三区激情| 亚洲综合色惰| 18禁动态无遮挡网站| av免费观看日本| 水蜜桃什么品种好| 插逼视频在线观看| 久久韩国三级中文字幕| 男女无遮挡免费网站观看| 菩萨蛮人人尽说江南好唐韦庄| 男男h啪啪无遮挡| 精品亚洲成a人片在线观看 | 欧美区成人在线视频| 国产国拍精品亚洲av在线观看| 超碰97精品在线观看| 日韩av在线免费看完整版不卡| 插阴视频在线观看视频| 一个人看视频在线观看www免费| 一本—道久久a久久精品蜜桃钙片| 免费黄网站久久成人精品| 精品人妻偷拍中文字幕| 精品一区二区三区视频在线| 日本黄色日本黄色录像| 久久久久久伊人网av| 91精品国产九色| 十分钟在线观看高清视频www | 国产一级毛片在线| 一本—道久久a久久精品蜜桃钙片| 乱码一卡2卡4卡精品| a级毛片免费高清观看在线播放| 亚洲国产日韩一区二区| 少妇猛男粗大的猛烈进出视频| 人妻夜夜爽99麻豆av| 国产精品久久久久成人av| 精品国产露脸久久av麻豆| 一级黄片播放器| 亚洲欧美日韩无卡精品| 少妇精品久久久久久久| 搡老乐熟女国产| 99re6热这里在线精品视频| 最近手机中文字幕大全| 亚洲av国产av综合av卡| 91精品国产九色| 99久久中文字幕三级久久日本| 欧美成人精品欧美一级黄| 18禁裸乳无遮挡动漫免费视频| 91精品一卡2卡3卡4卡| 国产黄片视频在线免费观看| 国产精品一区二区性色av| 国产乱来视频区| 最黄视频免费看| 成人美女网站在线观看视频| 国产亚洲欧美精品永久| 成人高潮视频无遮挡免费网站| 日韩中文字幕视频在线看片 | 搡老乐熟女国产| 国产午夜精品一二区理论片| 深爱激情五月婷婷| 精品酒店卫生间| 一级a做视频免费观看| 尾随美女入室| 亚洲精品456在线播放app| 一区二区av电影网| 国产91av在线免费观看| 成人国产av品久久久| 国模一区二区三区四区视频| 你懂的网址亚洲精品在线观看| 在现免费观看毛片| 中文天堂在线官网| 秋霞在线观看毛片| 我的女老师完整版在线观看| 精品99又大又爽又粗少妇毛片| 久久99热这里只有精品18| 亚洲人成网站在线观看播放| 日韩成人av中文字幕在线观看| 国产免费福利视频在线观看| 久久精品夜色国产| 精品人妻视频免费看| 成年av动漫网址| 一级a做视频免费观看| 美女福利国产在线 | 国语对白做爰xxxⅹ性视频网站| 两个人的视频大全免费| 国产精品人妻久久久影院| 欧美一级a爱片免费观看看| 99热国产这里只有精品6| 777米奇影视久久| 成年人午夜在线观看视频| 久久久久国产网址| 91精品国产国语对白视频| 在线观看一区二区三区激情| 高清av免费在线| 国产黄片视频在线免费观看| 色综合色国产| 国模一区二区三区四区视频| 伊人久久精品亚洲午夜| 色视频在线一区二区三区| 亚洲av综合色区一区| 国产午夜精品久久久久久一区二区三区| 日韩av免费高清视频| 韩国高清视频一区二区三区| 亚洲熟女精品中文字幕| 免费在线观看成人毛片| 国产精品偷伦视频观看了| 久久 成人 亚洲| av黄色大香蕉| 国产成人freesex在线| 在线观看一区二区三区| 99热全是精品| av免费观看日本| 亚洲av中文字字幕乱码综合| 亚洲精品久久午夜乱码| 一级毛片黄色毛片免费观看视频| 观看美女的网站| 大陆偷拍与自拍| 一二三四中文在线观看免费高清| 少妇 在线观看| 久久久亚洲精品成人影院| 嘟嘟电影网在线观看| 一本色道久久久久久精品综合| 久久久欧美国产精品| 国产成人免费无遮挡视频| 伊人久久精品亚洲午夜| 我要看黄色一级片免费的|