• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Treatment of Sebacic Acid Industrial Wastewater by Extraction Process Using Castor Oil Acid as Extractant*

    2013-07-31 22:43:55XUHang徐航ZHOUQuan周全andWANGJinfu王金福
    關(guān)鍵詞:周全

    XU Hang (徐航), ZHOU Quan (周全)and WANG Jinfu (王金福),**

    1Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang 471023, China

    2Beijing Key Laboratory of Green Chemical Reaction Engineering and Te c hnol o gy, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

    Treatment of Sebacic Acid Industrial Wastewater by Extraction Process Using Castor Oil Acid as Extractant*

    XU Hang (徐航)1,2, ZHOU Quan (周全)2and WANG Jinfu (王金福)2,**

    1Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang 471023, China

    2Beijing Key Laboratory of Green Chemical Reaction Engineering and Te c hnol o gy, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

    Wastewater containing high concentrations of phenol and sodium sulfate is generated in sebacic acid (SA) industry. Castor oil acid, a raw material for producing SA, can be used to extract phenol from wastewater in order to reduce the amount of phenol used in the process and discharge of phenol. The results show that the extraction mechanism is that hydroxyl group of phenol is linked to carboxyl group of castor oil acid by hydrogen bond. The extraction process approaches equilibrium in 30 min. Extraction ratio increases with the increase of sodium sulfate and castor oil acid, and decreases as phenol increases. When the oil-water ratio is 1︰3, the optimal distribution coefficient of 40 is obtained. Phenol saturation concentration in castor oil acid is 1.03 mol·L?1after extraction for 4 times. The equilibrium constant (Kex) at 25 °C is 8.41 and the endothermic enthalpy (ΔH) is 1.513 kJ·mol?1. The Gibbs free energy (ΔG) is ?5.277 kJ·mol?1and the value of ΔS is calculated to be 22.3 J·mol?1·K?1.

    castor oil acid, wastewater, extraction, phenol, sodium sulfate

    1INTRODUCTION

    The sebacic acid (SA) is an important chemical product and has a wide application in production of plastic material [1], nylon [2], functioned polyester [3], elastomer [4], and medical composition material [5]. There are some methods to produce sebacic acid such as cracking [6], synthesis [7], and hydrolysis [8] in chemical industry. China is the second major producer of castor oil, which can be used to produce castor oil acid by hydrolysis. Domestic factories produce sebacic acid by cracking castor oil acid with NaOH and phenol settings. Fig. 1 shows the flow chart of sebacic acid production using castor oil acid by cracking method. Much NaOH and phenol are added in the cracking section and excessive H2SO4is used in the acidifying stage. A large quantity of water is consumed in the decoloring process of product. As a result, SA industry discharges an acidic wastewater with high concentrations of phenol and Na2SO4. According to the daily detection results of the effluent of the SA factory, the process releases nearly 30 tons of such wastewater containing about 3g·L?1phenol and 50 g·L?1Na2SO4for production of one ton of sebacic acid. Phenol is a common organic matter that is highly toxic and difficult to be degraded and therefore severely harmful to natural environment. The wastewater containing salt is also difficult to be treated. In our preliminary work the process of sebacic acid production was improved so that the amount of wastewater discharged could be reduced to 1/4 of that in the original process. Namely, to produce one ton of sebacic acid, about 8 tons of wastewater will be emitted. Consequently, the concentrations of phenol and sodium sulfate in the wastewater are increased, with Na2SO4concentration of more than 200 g·L?1and phenol concentration of 12 g·L?1(0.1277 mol·L?1). Enrichment of pollutant is advantage to be disposal, especially with extraction and evaporation methods.

    There are some ways to treat phenol wastewater, such as biological [9] and chemical methods [10], liquid membrane [11], adsorption [12], advanced oxidation [13], and solvent extraction [14]. High efficient strains are difficult to be cultured in this case of high salinity. High salt concentration reduces the degradation effect of advanced oxidation. Adsorption method consumes a large amount of expensive adsorbent. Thus conventional wastewater treatment methods arenot feasible and economical. As the solvent extraction process is simple and easy to operate with good extraction efficiency, it is often used for the treatment of phenol wastewater [15]. Nowadays, there is no effective way to treat high salt wastewater except evaporation method.

    Figure 1Preparation technological process of sebacic acid by cracking method

    In this work, castor oil acid is used to extract phenol from the wastewater, and the mixture of castor oil acid and recovered phenol can be used directly in the cracking process. This method can reduce the amount of phenol used and treat phenol wastewater. High Na2SO4concentration in wastewater causes salting-out effect, increasing the extraction ratio of castor oil acid and reduces its dissolvability in water. Therefore, it is necessary to investigate the phenol extraction performance of castor oil acid from wastewater containing phenol and Na2SO4in SA industry [16]. In this paper, factors that affect the extraction process are examined and the thermodynamic parameters are determined, which provides an effective method for treatment of wastewater containing high salt-phenol in SA industry.

    2MATERIALS AND METHOD

    2.1Materials

    Materials including phenol, sodium sulfate, sulfuric acid, sodium hydroxide, and n-hexane were of analytical grade and purchased from the Beijing Modern Eastern Fine Chemicals Co. Ltd. Castor oil acid is a present from the Nanjing Institute of Zhong Zhou Patented Technology Development and its chemical structure is CH3(CH2)5CHOHCH2CH CH(CH2)7COOH, with relative molecular mass of 298 g?mol?1, density of 0.94 g?ml?1and molar concentration of 3.15 mol?L?1.

    2.2Analysis of phenol

    Figure 2 shows the UV-Vis absorption spectra of phenol and sodium sulfate. There are two characteristic absorption peaks for phenol at 215 and 270 nm, and one for sodium sulfate at 198 nm. There is no overlap of the characteristic peak of sodium sulfate and phenol, so the two absorption peaks of phenol can be used as its characteristic absorption peak. 270 nm is selected as the characteristic absorption peak of phenol, and the standard curve for the absorbance (A) and phenol concentration is A=3908[C6H5OH]+0.0773, with R2=0.9999, where [C6H5OH] is the molar concentration of phenol (mol·L?1).

    2.3Experimental method

    Extraction was carried out by shaking equal volumes of castor oil acid as extractant and simulated wastewater containing C6H5OH and Na2SO4in a centrifugal tube. After shaking for 30 min, the distribution ratio changed little and the extractant reaction reached the equilibrium. Phase disengagement was obtained by centrifugation for a while at 4000 r·min?1. Sodium hydroxide and sulfuric acid were used to adjust pH value. After extraction the centrifugal stratified water phase was brought out and phenol in water was analyzed by UV-Vis spectrophotometer. The extraction ratio of phenol (E) is calculated as follows [17].

    Where [C6H5OH]wis the molar concentration of phenol in water phase after extraction, [C6H5OH]ois the molar concentration of phenol in oil phase afterextraction, and [C6H5OH]ais the initial molar concentration of phenol.

    Figure 2UV-Vis spectrum of phenol and typical curve

    3RESULTS AND DISCUSSION

    3.1The influence of extraction time

    To determine the time required for extraction equilibrium, the extraction ratio of castor oil acid at different extraction time is presented in Fig. 3. The castor oil acid has a strong ability to extract phenol. At 1 min the extraction ratio reaches 65%, and after 30 min it reaches extraction equilibrium with the extraction ratio of 78%. In the following experiments, the extraction time is chosen to be 30 min.

    Figure 3The influence of extraction time on extraction ratio ([C18H34O3]=3.15 mol·L?1; [C6H5OH]a=0.1277 mol·L?1; Na2SO4=200 g·L?1; T=25 °C; oil/water=1/5; pH=7.18)

    3.2The influence of initial phenol concentration

    The mechanism for castor oil acid (C18H34O3) to extract phenol is as follows [18]

    The expression of reaction equilibrium constant Kexis [19, 20]

    where [C18H34O3] is the molar concentration of castor oil acid, and [n C6H5OH·m C18H34O3] is the molar concentration of phenol in oil phase.

    The expression of distribution coefficient D is

    Figure 4The influence of initial phenol concentration on extraction ratio and distribution coefficient ([C18H34O3]= 3.15 mol·L?1; Na2SO4=200 g·L?1; pH=7.18; T=25 °C; t=30 min; oil/water=1/5)

    Figure 4 shows the effects of initial phenol concentration on extraction ratio and distribution coefficient. As the phenol concentration in water increases from 0.064 mol·L?1to 0.17 mol·L?1, the extraction ratio decreases from 92.32% to 72.1% and the distribution coefficient changes from 60 to 13, while the corresponding phenol concentration in oil phase is 0.2945 and 0.6139 mol·L?1, respectively. The extraction ratio and distribution coefficient at equilibrium decrease, since the extractant dosage does not change while the initial phenol concentration increases. After extraction equilibrium, phenol concentrations in water and in oil increase with the initial phenol concentration, but the recruitment in water is higher than that in oil. As a result, the extraction ratio and distribution coefficient of phenol decrease with the increase of initial phenol concentration.

    Combining Eqs. (3) and (4), we have

    Figure 5 indicates the relationship between distribution coefficient D and the molar concentration of phenol in water, in which ln D and ln[C6H5OH] has a linear relationship, ln D=?0.6660ln[C6H5OH]+0.4964, with the correlation coefficient R2of 0.9945. Therefore, (n?1)=?0.6660 and n=0.3340.

    Figure 5Dependence of distribution ratio of phenol on phenol concentration

    3.3The influence of concentration of castor oil acid

    With initial phenol concentration at 0.1277 mol·L?1,temperature at 25°C, volume ratio of oil and water phases of 1︰5, mixing time of 30 min, pH at 7.18, concentration of sodium sulfate at 200 g·L?1, the influences of concentration of castor oil acid on the extraction ratio and distribution coefficient are shown in Fig. 6, both of which increase with castor oil acid concentration. When the initial concentration of castor oil acid increases from 0.63 to 3.15 mol·L?1, the extraction ratio and distribution coefficient increase from 30% to 78% and from 2.2 to 18, respectively. The extractant is good for phenol recovery.

    Figure 6The influence of castor oil acid concentration on E and D ([C6H5OH]a=0.1277 mol·L?1; Na2SO4=200 g·L?1; T=25 °C; oil/water=1/5; pH=7.18; t=30 min)

    To obtain the value of m and extraction equilibrium constant Kexat 25 °C, Eq. (5) is rearranged as

    Figure 7 shows the linear relationship between ln D+0.666ln[C6H5OH]wand ln[C18H34O3], from which m=1.46 and Kex=8.41 at 25 °C are obtained. The Gibbs free energy ΔG is calculated by

    For castor oil acid to extract phenol at 25 °C, ΔG=?5.277 kJ·mol?1.

    Figure 7Dependence of distribution ratio of phenol on castor oil acid concentration

    3.4The influence of temperature

    At the initial concentration of phenol 0.1277 mol·L?1, castor oil acid concentration 3.15 mol·L?1, volume ratio of oil and water phases of 1︰5, mixing time 30 min, and pH value of 7.18, the extraction ratio and the distribution coefficient at different temperatures are shown in Fig. 8. As the temperature increases from 25 °C to 70 °C, the extraction ratio increases from 78.3% to 80.4%, and the distribution coefficient increases from 18.02 to 20.54. It indicates that the extraction process is an endothermic process, but the absorption heat is not much, since the influence of temperature on the extraction is small. The reason is that as the temperature increases, the solubility of phenol in water and in castor oil acid increases, but because higher temperature will reduce the viscosity of castor oil acid, the solubility of phenol in castor oil acid is better than that in water, so that the extraction ratio and the distribution coefficient increase. Taking into account the viscosity of castor oil acid, the extraction process must be maintained at certain temperature (30 °C or so).

    Figure 8The influence of temperature on E and D ([C6H5OH]a=0.1277 mol·L?1; [C18H34O3]=3.15 mol·L?1; N2SO4=200 g·L?1; t=30 min; oil/solution=1/5; pH=7.18)

    According to literature [18, 21],

    Adding Eq. (8) to Eq. (5), we have

    The linear correlation is shown in Fig. 9, which is ln D?(n?1)ln[C6H5OH]=165(?1/T)?0.578, with the correlation coefficient R2=0.9918. The endothermic enthalpy ΔH is calculated as 1.372 kJ·mol?1. The small endothermic enthalpy value also shows the strong extraction ability of castor oil acid for phenol. According to the formula ΔG=ΔH?TΔS, the entropy for the process at 25 °C is 22.3 J·mol?1·K?1.

    Figure 9Relationship between ln D and ?1/T

    3.5The influence of sodium sulfate concentration

    At the initial concentration of phenol 0.1277 mol·L?1, castor oil acid concentration 3.15 mol·L?1, temperature 25°C, volume ratio of oil and water phases of 1︰5, and mixing time 30 min, the effects of sodium sulfate concentration in the wastewater on extraction ratio and distribution coefficient are shown in Fig. 10. With the increase of sodium sulfate concentration, the oil and water stratifies faster. As the sodium sulfate concentration increases from 100 g·L?1to 300 g·L?1, the extraction ratio of phenol gradually increases from 0.74 to 0.86. The reason is that phenol is an organic material whose solubility in castor oil acid is far greater than that in water. If sodium sulfate is present in water, it will increase the ionic strength, increasing salting-out effect and reducing the solubility of phenol in water, thereby enhancing the extraction ratio and the distribution coefficient.

    Figure 10The influence of concentration of sodium sulfate on E and D ([C6H5OH]a=0.1277 mol·L?1; [C18H34O3]=3.15 mol·L?1; pH=7.18; T=25 °C; t=30 min; oil/solution=1/5)

    3.6The influence of pH

    The pH is an important factor to affect the extraction efficiency. With sodium sulfate concentration at 200 g·L?1, phenol concentration at 0.1277 mol·L?1, castor oil acid concentration at 3.15 mol·L?1, temperature at 25°C, mixing time of 30 min, and volume ratio of oil and water phases of 1︰5, the influence of the initial pH value on the extraction ratio and distribution coefficient is shown in Fig. 11. When the pH value is less than 8, the extraction ratio is 0.78 and the distribution coefficient is 16-19; when the pH value is greater than 8, the extraction ratio and distribution coefficient decline sharply; when the pH value is higher than 9, the extraction ratio approaches 0. The reason is as follows. When the pH value is less than 8, castor oil acid and phenol exist mainly in molecular state; when the pH value is more than 9, a large quantity of castor oil acid reacts with the hydroxide in the solution, forming castor oil acid salt that has greater solubility in water; phenol also reacts to form salt and the castor oil acid salt will dissolve in water to form an emulsion, so that it cannot extract phenol anymore. Thus, in the extraction of phenol by castor oil acid, it is necessary to use an appropriate pH value .

    Figure 11The influence of pH value on E and D (Na2SO4= 200 g·L?1; [C6H5OH]a=0.1277 mol·L?1; [C18H34O3]=3.15 mol·L?1; T=25 °C; t=10 min; oil/water=1/5)

    3.7The influence of extraction times

    Figure 12The influence of extraction times on E and D (Na2SO4=200 g·L?1; [C6H5OH]a=0.1277 mol·L?1; [C18H34O3]= 3.15 mol·L?1; T=25 °C; t=10 min; oil/water=1/5; pH=7.18)

    To determine the maximum extraction amount of castor oil acid, the wastewater was extracted by castor oil acid for 5 times under the standard conditions. The experimental result is show in Fig. 12. With the increaseof extraction times, the extraction ratio and distribution coefficient decrease significantly. When the extraction is carried out for 4 times, the extractant is saturated, with the phenol concentration in castor oil acid at 1.03 mol·L?1. Therefore, multi-stage extraction can be used in actual extraction process.

    3.8The influence of oil-water volume ratio

    With sodium sulfate concentration at 200 g·L?1, phenol concentration at 0.1277 mol·L?1, castor oil acid concentration at 3.15 mol·L?1, temperature at 25 °C, mixing time for 30 min, and pH value at 7.18, the effect ofoil-water phase volume ratio is shown in Fig. 12. The extraction ratio reduces as the phase ratio decreases. When the phase ratio changes from3︰1 to 1︰10, the extraction ratio declines to 0.45 from 1. The distribution coefficient firstly increases and then decreases. When the oil-water volume ratio is 1︰3, the distribution coefficient reaches a maximum of 40. The reason is that when the oil-water ratio decreases, i.e., the extractant is less, the extraction ratio declines. The distribution coefficient is determined by phenol concentration in the oil and water phases. When the oil-water ratio is large, although extracted phenol is more and castor oil acid dosage is also large, the phenol concentration in the castor oil acid will decrease since the castor oil acid volume decreases. With the oil-water ratio decreases, the amount of castor oil acid declines quickly and the volume is reduced much. Because the extraction ratio declines slowly, the concentration of phenol in the oil phase will increase substantially, so that the distribution coefficient increases. When the oil-water ratio drops to 1︰3 and lower, with the substantially reduced amount of extractant, the extraction ability is abated accordingly and the phenol concentration in water phase increases significantly, so the distribution coefficient also decreases. Therefore, the best distribution coefficient appears at oil-water ratio of 1︰3.

    Figure 13The influence of oil/water ratio on E and D (Na2SO4=200 g·L?1; [C6H5OH]a=0.1277 mol·L?1; [C18H34O3]= 3.15 mol·L?1; T=25 °C; t=10 min; pH=7.18)

    3.9IR spectrum of castor oil acid before and after extraction

    The IR spectra of castor oil acid and the castor oil acid loaded with phenol are shown in Fig. 14. The changes of IR spectrum are some strong absorption peaks at 1610 cm?1, 1500 cm?1, 725 cm?1and 692 cm?1, which are characteristic absorption of phenol. Castor oil acid molecule has a hydroxyl and a carboxyl group, and phenol molecule has a hydroxyl group. At 3200-3400 cm?1there is no change before and after extraction, indicating no alcohol-phenol hydrogen bonding. Carboxyl combination of hydrogen bonding is in the range of 2500-3300 cm?1. Since the castor oil acid itself has hydrogen bond connections between carboxylic, the characteristic absorption peaks are the same before and after the extraction. Carboxyl and hydroxyl, carboxyl and carboxyl form hydrogen bonds. The hydroxyl in phenol and the carboxylic in castor oil acid are connected by hydrogen bonds.

    Figure 14IR spectra of castor oil acid with and without phenol loaded

    4CONCLUSIONS

    In the extraction of phenol by castor oil acid, it is very quick to reach equilibrium. The extraction ratio increases with the increase of sodium sulfate and castor oil acid concentrations, and decreases as phenol concentration increases. When the oil-water ratio is 1︰3, there is an optimal distribution coefficient of 40. The extraction process must be maintained at a pH value of less than 8. After extraction for 4 times, the phenol saturated in castor oil acid is 1.03 mol·L?1. At 25 °C the extraction equilibrium constant Kexis 8.41, the endothermic enthalpy ΔH is 1.372 kJ·mol?1, the Gibbs free energy ΔG is ?5.277 kJ·mol?1, and the entropy is 22.3 J·mol?1· K?1. The mechanism of the extraction of phenol by castor oil acid is that the hydroxyl in phenol and the carboxylic in castor oil acid are connected by hydrogen bonding.

    REFERENCES

    1 Kricheldorf, H. R., Behnken, G., Schwarz, G., “Telechelic polyestersof ethane diol and adipic or sebacic acid by means of bismuth carboxylates as non-toxic catalysts”, Ploymer,46, 11219-11224 (2007).

    2 Franco, L., Subirana, J.A., Puiggali, J., “Incorporation of glycine residues in even-even polyamides. Part II: Nylons 6, 10 and 12, 10”, Polymer,40(9), 2429-2438 (1999).

    3 Ning, Z.Y., Zhang, Q.S., Wu, Q.P., Li, Y.Z., Ma, D.X., Chen, J.Z.,“Efficient synthesis of hydroxyl functioned polyesters from natural polyols and sebacic acid”, Chin. Chem. Lett.,22, 635-638 (2011).

    4 Djordjevic, I., Choudhury, N.R., Dutta, N.K., Kumar, S., “Synthesis and characterization of novel citric acid-based polyester elastomers”, Polymer,50, 1682-1691 (2009).

    5 Tang, J.C., Zhang, Z.G., Song, Z.F., “Synthesis and characterization of elastic aliphatic polyesters from sebacic acid, glycol and glycerol”, Eur. Polym. J.,42, 3360-3366 (2006).

    6 Azcan, N., Demirel, E., “Obtaining 2-octanol, 2-octanone, and sebacic acid from castor oil by microwave-induced alkali fusion”, Ind. En g. Chem. Res.,47, 174-1778 (2008).

    7 Vasishtha, A.K., Trivedi, R.K., Das, G., “Sebacic acid and 2-octranol from castor oil”, Journal of the American Oil Chemists Society,67, 333-337 (1990).

    8 Kaneyuki, H.D., Hiratsuka, J., “Production of sebacic acid from n-decane by mutants derived from torulopsis-candida”, J. Ferment. Technol.,58, 405-410 (1980).

    9 Al-Zuhair, S., EI-Naas, M., “Immobilization of pseudomonas putida in PVA gel particles for the biodegradation of phenol at high concentrations”, Biochem. Eng. J.,56, 46-50 (2011).

    10 Tay, J.H., Jiang, H.L., Tay, S.T., “High-rate biodegradation of phenol by aerobically grown microbial granules”, J. Environ. Eng.,24, 243-247 (2004).

    11 Zheng, H.D., Wang, B.Y., Wu, Y.X., Ren, Q.L., “Instability mechanisms of supported liquid membrane for phenol transport”, Chin. J. Chem. Eng.,17, 750-755 (2009).

    12 Lu, G.C., Hao, J., Liu, L., Ma, H.W., Fang, Q.F., Wu, L.M., Wei, M.Q., Zhang, Y.H., “The adsorption of phenol by lignite activated carbon”, Chin. J. Chem. En g.,19, 380-385 (2011).

    13 Fortuny, A., Bengoa, C., Font, J., “Bimetallic catalysts for continuous catalytic wet air oxidation of phenol”, J. Hazard. Mater.,64, 181-193 (1999).

    14 Jiang, H., Fang, Y., Guo, Q.X., “Studies on the extraction of phenol in wastewater”, J. Hazard. Mater.,101, 179-190 (2003).

    15 Zhang, J.Y., Hu, A.X., Wang, Y., Xiao, X.H., Guo, J.B., Luo, X.F.,“The separation of catechol from carbofuran phenol by extractive distillation”, Chin. J. Chem. Eng.,17, 42-46 (2009).

    16 Rao, N.N., Singh, J.R., Misra, R., Nandy, T., “Liquid-liquid extraction of phenol form simulated sebacic acid”, J. Scientific and Industrial Research,68, 823-828 (2009).

    17 Jacek, O., Jacek, S., Jan, S., “Extraction of phenols and phenyl acetates with diethyl carbonate”, Analytica Chimica Acta,535, 251-257 (2005).

    18 Li, Z., Wu, M.H., Jiao, Z., Bao, B.R., Lu, S.L., “Extraction of phenol from wastewater by N-octanoylpyrrolidine”, J. Hazard. Mater.,114, 111-114 (2004).

    19 Bernhard, B., Edwin, Z., Andre, B., “Phenol extraction with cyanex 923: Kinetics of the solvent impregnated resin application”, Reactive and Functional Polymers,69, 264-271 (2009).

    20 Tanase, D., Anicuta, G.S., Octavian, F., “Reactive extraction of phenols using sulfuric acid salts of trioctylamine” Chem. Eng. S ci.,54, 1559-1563 (1999).

    21 Fu, X.C., Shen, W.X., Yao, T.Y., Physical Chemistry, Higher Education Press, Beijing (1990). (in Chinese)

    10.1016/S1004-9541(13)60546-7

    2012-02-14, accepted 2012-11-26.

    * Supported by the National Natural Science Foundation of China (21006057) and the National Science Foundation for Post-doctoral Scientists of China (20100470351).

    ** To whom correspondence should be addressed. E-mail: wangjfu@mail.tsinghua.edu.cn

    猜你喜歡
    周全
    輕盈優(yōu)雅
    思考周全 謹(jǐn)防錯解
    《人潮洶涌》:現(xiàn)代浮世繪
    打贏疫情阻擊戰(zhàn) 學(xué)校還應(yīng)周全準(zhǔn)備
    甘肅教育(2020年4期)2020-09-11 07:41:06
    大雁南飛
    喝晃湯
    故事會(2018年6期)2018-03-21 06:03:10
    考慮問題要周全
    關(guān)于“想”的成語
    李斌:從失敗中尋覓先機
    Scaling of maximum probability density function of velocity increments in turbulent Rayleigh-Bénard convection*
    国产片特级美女逼逼视频| 国产淫语在线视频| 久久久久人妻精品一区果冻| 亚洲一区二区三区欧美精品| 久久久久久久久久久免费av| 国产xxxxx性猛交| a 毛片基地| 咕卡用的链子| 超碰成人久久| 久久久久人妻精品一区果冻| 亚洲国产日韩一区二区| 日韩制服丝袜自拍偷拍| 日日爽夜夜爽网站| 一本色道久久久久久精品综合| 成人毛片60女人毛片免费| 在线观看免费视频网站a站| 五月天丁香电影| 人人妻人人添人人爽欧美一区卜| 99热国产这里只有精品6| 夫妻性生交免费视频一级片| 老汉色∧v一级毛片| 免费不卡黄色视频| 一级,二级,三级黄色视频| h视频一区二区三区| svipshipincom国产片| 久久狼人影院| 久久狼人影院| 亚洲国产成人一精品久久久| 爱豆传媒免费全集在线观看| 亚洲av电影在线进入| 波野结衣二区三区在线| 国产一区二区激情短视频 | 亚洲精品视频女| 免费黄网站久久成人精品| 天堂8中文在线网| 男女之事视频高清在线观看 | 中文欧美无线码| 久久精品熟女亚洲av麻豆精品| 久久韩国三级中文字幕| 亚洲国产中文字幕在线视频| 欧美日韩综合久久久久久| 免费少妇av软件| 国产黄色视频一区二区在线观看| 国产精品 国内视频| 91老司机精品| 久久精品国产亚洲av涩爱| 国产亚洲午夜精品一区二区久久| 成人三级做爰电影| 99久久人妻综合| 中国三级夫妇交换| 极品少妇高潮喷水抽搐| 久久性视频一级片| 国产深夜福利视频在线观看| 哪个播放器可以免费观看大片| 9热在线视频观看99| 9热在线视频观看99| 日韩大片免费观看网站| 只有这里有精品99| 亚洲,欧美,日韩| 亚洲精品久久久久久婷婷小说| 亚洲男人天堂网一区| 精品亚洲乱码少妇综合久久| 啦啦啦在线免费观看视频4| 色婷婷av一区二区三区视频| 免费高清在线观看视频在线观看| 亚洲精品一二三| 一级,二级,三级黄色视频| kizo精华| 日韩欧美一区视频在线观看| tube8黄色片| 少妇人妻精品综合一区二区| av电影中文网址| 欧美久久黑人一区二区| 欧美另类一区| 亚洲av福利一区| av网站在线播放免费| 婷婷色麻豆天堂久久| 成年动漫av网址| 人人妻人人添人人爽欧美一区卜| 午夜福利,免费看| 日韩免费高清中文字幕av| 丝袜人妻中文字幕| 一级爰片在线观看| 午夜福利视频精品| 国产精品av久久久久免费| 亚洲欧美日韩另类电影网站| 日本av免费视频播放| 熟妇人妻不卡中文字幕| 国产激情久久老熟女| 深夜精品福利| 男人爽女人下面视频在线观看| 亚洲av国产av综合av卡| 伊人久久国产一区二区| 男女国产视频网站| 91aial.com中文字幕在线观看| 国产探花极品一区二区| 宅男免费午夜| 午夜福利一区二区在线看| 午夜福利,免费看| 国产一区二区激情短视频 | 亚洲色图 男人天堂 中文字幕| 亚洲七黄色美女视频| 国产不卡av网站在线观看| 两个人免费观看高清视频| 久久亚洲国产成人精品v| 日日啪夜夜爽| 欧美日韩福利视频一区二区| 久久精品国产亚洲av涩爱| 看免费成人av毛片| 久久久国产精品麻豆| 18禁动态无遮挡网站| 99九九在线精品视频| 9色porny在线观看| 国产男人的电影天堂91| 国产熟女午夜一区二区三区| 18在线观看网站| 免费人妻精品一区二区三区视频| 免费不卡黄色视频| 国产亚洲最大av| 国产男人的电影天堂91| 99热网站在线观看| 欧美日韩一级在线毛片| 精品国产一区二区久久| 久久久久国产一级毛片高清牌| 综合色丁香网| 亚洲国产精品成人久久小说| 女性被躁到高潮视频| 免费高清在线观看视频在线观看| 日韩伦理黄色片| 美女扒开内裤让男人捅视频| 日本一区二区免费在线视频| 国产高清国产精品国产三级| 韩国av在线不卡| 午夜福利一区二区在线看| 欧美在线一区亚洲| 欧美激情高清一区二区三区 | 亚洲精品国产色婷婷电影| 国产成人av激情在线播放| 久久久久国产一级毛片高清牌| 深夜精品福利| 久久人人爽人人片av| 毛片一级片免费看久久久久| 欧美国产精品一级二级三级| 深夜精品福利| 国产色婷婷99| 18禁动态无遮挡网站| 在线观看免费午夜福利视频| 亚洲成av片中文字幕在线观看| 久久久久久人妻| 丝袜美足系列| 国产精品成人在线| 国产毛片在线视频| 一边摸一边做爽爽视频免费| 一二三四中文在线观看免费高清| 少妇猛男粗大的猛烈进出视频| 麻豆乱淫一区二区| 亚洲精品一区蜜桃| 亚洲久久久国产精品| 捣出白浆h1v1| 黄频高清免费视频| 国产黄色免费在线视频| 欧美日韩视频精品一区| 免费人妻精品一区二区三区视频| 国产一区二区三区av在线| 久久ye,这里只有精品| 美女扒开内裤让男人捅视频| 久久国产亚洲av麻豆专区| 黑人欧美特级aaaaaa片| 一级片'在线观看视频| 国产精品一国产av| av免费观看日本| 嫩草影院入口| 涩涩av久久男人的天堂| 亚洲人成网站在线观看播放| 肉色欧美久久久久久久蜜桃| 国产熟女欧美一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 免费av中文字幕在线| 97人妻天天添夜夜摸| 日韩精品免费视频一区二区三区| 伊人亚洲综合成人网| 免费av中文字幕在线| 亚洲欧美精品综合一区二区三区| 免费黄频网站在线观看国产| 国产一卡二卡三卡精品 | 国产成人91sexporn| 日本av手机在线免费观看| 亚洲精品第二区| 国产色婷婷99| 看免费成人av毛片| 操美女的视频在线观看| 日本欧美国产在线视频| 99热全是精品| av卡一久久| 欧美日韩精品网址| 国产xxxxx性猛交| 亚洲国产欧美一区二区综合| 国产日韩一区二区三区精品不卡| 免费黄色在线免费观看| 亚洲男人天堂网一区| 在线看a的网站| 伦理电影免费视频| 国产亚洲一区二区精品| 中文字幕人妻丝袜一区二区 | 欧美 亚洲 国产 日韩一| 极品少妇高潮喷水抽搐| 国产成人精品福利久久| 十分钟在线观看高清视频www| 最近中文字幕高清免费大全6| 建设人人有责人人尽责人人享有的| 免费在线观看完整版高清| 99热国产这里只有精品6| 久久精品国产综合久久久| 十分钟在线观看高清视频www| 91国产中文字幕| 国产亚洲最大av| 韩国av在线不卡| 欧美日本中文国产一区发布| 亚洲免费av在线视频| 王馨瑶露胸无遮挡在线观看| 国产亚洲精品第一综合不卡| 亚洲国产欧美一区二区综合| 精品第一国产精品| 中文字幕亚洲精品专区| 90打野战视频偷拍视频| 色吧在线观看| 精品国产国语对白av| 亚洲av在线观看美女高潮| 黑丝袜美女国产一区| 十分钟在线观看高清视频www| 我要看黄色一级片免费的| 乱人伦中国视频| 久久久国产精品麻豆| 最近最新中文字幕免费大全7| 精品国产一区二区久久| 狂野欧美激情性xxxx| 国产成人免费无遮挡视频| 欧美 日韩 精品 国产| 亚洲国产看品久久| 久久天躁狠狠躁夜夜2o2o | 日韩av不卡免费在线播放| 国产男人的电影天堂91| 久热爱精品视频在线9| 精品少妇黑人巨大在线播放| 大话2 男鬼变身卡| 最新在线观看一区二区三区 | 男女国产视频网站| 好男人视频免费观看在线| 老熟女久久久| 精品国产乱码久久久久久男人| 精品久久久久久电影网| 日韩免费高清中文字幕av| 一个人免费看片子| 精品福利永久在线观看| 在线观看国产h片| 老司机靠b影院| www.av在线官网国产| 少妇人妻久久综合中文| 搡老乐熟女国产| 少妇 在线观看| 日本黄色日本黄色录像| 日韩一卡2卡3卡4卡2021年| 午夜日本视频在线| 久久国产精品大桥未久av| 亚洲国产中文字幕在线视频| 侵犯人妻中文字幕一二三四区| 精品少妇黑人巨大在线播放| 视频区图区小说| 亚洲自偷自拍图片 自拍| 一级爰片在线观看| 国产男女超爽视频在线观看| 丝袜美腿诱惑在线| 激情五月婷婷亚洲| 久久人人97超碰香蕉20202| 国产高清不卡午夜福利| 午夜激情久久久久久久| 精品国产超薄肉色丝袜足j| 精品少妇黑人巨大在线播放| 亚洲美女黄色视频免费看| 少妇猛男粗大的猛烈进出视频| 亚洲图色成人| 国产av精品麻豆| 精品久久蜜臀av无| 久热爱精品视频在线9| av视频免费观看在线观看| 免费高清在线观看视频在线观看| 日韩成人av中文字幕在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产高清不卡午夜福利| xxx大片免费视频| 少妇 在线观看| 午夜福利,免费看| 亚洲av成人精品一二三区| 亚洲欧美清纯卡通| 一级爰片在线观看| 1024视频免费在线观看| 色视频在线一区二区三区| 中文字幕亚洲精品专区| 免费女性裸体啪啪无遮挡网站| 久久久精品94久久精品| 亚洲av综合色区一区| 国产一区二区三区综合在线观看| 亚洲一级一片aⅴ在线观看| 男人舔女人的私密视频| 亚洲激情五月婷婷啪啪| 97人妻天天添夜夜摸| 国产熟女欧美一区二区| 色播在线永久视频| 老司机影院毛片| 久久青草综合色| 久久精品aⅴ一区二区三区四区| 久久精品久久久久久噜噜老黄| 一级a爱视频在线免费观看| 色网站视频免费| 啦啦啦在线免费观看视频4| 国产成人一区二区在线| 亚洲国产精品一区三区| 亚洲国产精品999| 精品一区在线观看国产| 国产av一区二区精品久久| 亚洲综合色网址| 伊人久久国产一区二区| 欧美日韩福利视频一区二区| 久久久久久人人人人人| 亚洲一卡2卡3卡4卡5卡精品中文| 如何舔出高潮| 中文字幕人妻熟女乱码| 成年av动漫网址| 如日韩欧美国产精品一区二区三区| 国产 精品1| 精品免费久久久久久久清纯 | 国产精品一区二区精品视频观看| 精品人妻一区二区三区麻豆| 母亲3免费完整高清在线观看| 国产一区二区 视频在线| 韩国精品一区二区三区| 欧美变态另类bdsm刘玥| av福利片在线| 午夜激情av网站| 欧美人与善性xxx| 午夜老司机福利片| 亚洲精品日本国产第一区| 亚洲人成网站在线观看播放| av福利片在线| 热99国产精品久久久久久7| 一区福利在线观看| 欧美精品一区二区免费开放| 一本久久精品| 久久天堂一区二区三区四区| videosex国产| 欧美日韩综合久久久久久| 成年女人毛片免费观看观看9 | 亚洲男人天堂网一区| 亚洲美女视频黄频| av女优亚洲男人天堂| 久久精品国产亚洲av涩爱| 亚洲免费av在线视频| 国产亚洲一区二区精品| 国产有黄有色有爽视频| 国产片内射在线| 嫩草影视91久久| 日韩一本色道免费dvd| 黄色毛片三级朝国网站| 人妻 亚洲 视频| 极品人妻少妇av视频| 亚洲精品成人av观看孕妇| 国产免费现黄频在线看| 黑人猛操日本美女一级片| 国产爽快片一区二区三区| 高清黄色对白视频在线免费看| xxxhd国产人妻xxx| 99久久人妻综合| 操出白浆在线播放| 乱人伦中国视频| 国产成人91sexporn| 97在线人人人人妻| 在线观看三级黄色| 欧美黑人精品巨大| 伦理电影免费视频| 中文字幕人妻丝袜一区二区 | 国产有黄有色有爽视频| 最近手机中文字幕大全| 国产成人精品无人区| 成年人午夜在线观看视频| 亚洲七黄色美女视频| 国产老妇伦熟女老妇高清| 男女免费视频国产| 下体分泌物呈黄色| 国产精品国产三级专区第一集| 日韩一区二区三区影片| 黄片无遮挡物在线观看| 三上悠亚av全集在线观看| 午夜老司机福利片| 一个人免费看片子| 国产精品三级大全| 尾随美女入室| 国产99久久九九免费精品| 国产欧美亚洲国产| 一级毛片我不卡| 国产av精品麻豆| 我要看黄色一级片免费的| 国产成人精品久久久久久| 国产片特级美女逼逼视频| 永久免费av网站大全| 国产精品久久久久久精品电影小说| 满18在线观看网站| 亚洲一区中文字幕在线| 成人亚洲欧美一区二区av| 精品第一国产精品| 19禁男女啪啪无遮挡网站| 亚洲情色 制服丝袜| 亚洲欧美色中文字幕在线| 国产成人91sexporn| 亚洲成人免费av在线播放| 18禁裸乳无遮挡动漫免费视频| 欧美精品高潮呻吟av久久| 爱豆传媒免费全集在线观看| 成人午夜精彩视频在线观看| 中文字幕最新亚洲高清| 九草在线视频观看| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美清纯卡通| 婷婷色av中文字幕| 国产成人精品久久二区二区91 | 亚洲婷婷狠狠爱综合网| 一本一本久久a久久精品综合妖精| 日本一区二区免费在线视频| 成人漫画全彩无遮挡| 精品一区二区三卡| 菩萨蛮人人尽说江南好唐韦庄| 免费看av在线观看网站| 人成视频在线观看免费观看| 久久精品国产综合久久久| 1024香蕉在线观看| www.熟女人妻精品国产| 男人添女人高潮全过程视频| 777米奇影视久久| 中文字幕亚洲精品专区| 欧美精品一区二区免费开放| 女性被躁到高潮视频| 宅男免费午夜| 久久午夜综合久久蜜桃| 人妻 亚洲 视频| 多毛熟女@视频| 国产精品香港三级国产av潘金莲 | 综合色丁香网| 久热这里只有精品99| 男女边吃奶边做爰视频| 秋霞伦理黄片| 大片电影免费在线观看免费| 丝袜喷水一区| 亚洲伊人久久精品综合| 亚洲av成人不卡在线观看播放网 | 亚洲伊人色综图| 大香蕉久久成人网| 在线免费观看不下载黄p国产| 亚洲国产精品一区二区三区在线| 亚洲婷婷狠狠爱综合网| 看十八女毛片水多多多| 日日摸夜夜添夜夜爱| 一本一本久久a久久精品综合妖精| 亚洲欧洲日产国产| 一区福利在线观看| 久久这里只有精品19| 久久久久久人人人人人| 国产精品成人在线| 久久人人爽人人片av| 这个男人来自地球电影免费观看 | 日韩 欧美 亚洲 中文字幕| 免费在线观看完整版高清| 亚洲国产中文字幕在线视频| 欧美在线黄色| 午夜av观看不卡| 韩国av在线不卡| 天天躁夜夜躁狠狠久久av| 夜夜骑夜夜射夜夜干| 欧美激情 高清一区二区三区| 久久久久视频综合| 国产精品久久久久久精品古装| 欧美亚洲 丝袜 人妻 在线| 日本欧美国产在线视频| 精品酒店卫生间| 丰满迷人的少妇在线观看| 国产成人午夜福利电影在线观看| 国产精品亚洲av一区麻豆 | 午夜福利网站1000一区二区三区| 欧美日韩国产mv在线观看视频| 国产一区二区激情短视频 | 啦啦啦 在线观看视频| 日韩成人av中文字幕在线观看| 久久天堂一区二区三区四区| 亚洲成国产人片在线观看| 三上悠亚av全集在线观看| 久久午夜综合久久蜜桃| 99久久99久久久精品蜜桃| 国产一区二区三区综合在线观看| 多毛熟女@视频| 丝袜喷水一区| 国产男人的电影天堂91| 国产在线一区二区三区精| 成人国产麻豆网| 日韩制服丝袜自拍偷拍| 色婷婷av一区二区三区视频| av在线老鸭窝| 一级毛片 在线播放| 午夜精品国产一区二区电影| 国产精品无大码| 一级黄片播放器| 亚洲激情五月婷婷啪啪| 欧美 亚洲 国产 日韩一| 免费观看人在逋| 老司机深夜福利视频在线观看 | 国产免费一区二区三区四区乱码| 波野结衣二区三区在线| 中文字幕高清在线视频| 国产伦人伦偷精品视频| 午夜激情av网站| 只有这里有精品99| 亚洲精品国产区一区二| 如日韩欧美国产精品一区二区三区| 久久久久久免费高清国产稀缺| 午夜av观看不卡| 成年av动漫网址| 一本—道久久a久久精品蜜桃钙片| 免费黄频网站在线观看国产| 亚洲av福利一区| 久久婷婷青草| 夫妻午夜视频| 久久国产精品男人的天堂亚洲| 免费久久久久久久精品成人欧美视频| 国产亚洲av片在线观看秒播厂| 波多野结衣一区麻豆| 久久久久久人人人人人| 丝袜人妻中文字幕| 国产黄色视频一区二区在线观看| 国产成人精品久久久久久| 我要看黄色一级片免费的| 香蕉丝袜av| 国产精品无大码| 91精品国产国语对白视频| 日本黄色日本黄色录像| xxxhd国产人妻xxx| 女性生殖器流出的白浆| 少妇猛男粗大的猛烈进出视频| 亚洲av电影在线进入| 热99国产精品久久久久久7| 久久久久久久久久久久大奶| 性色av一级| 日韩精品有码人妻一区| 午夜福利视频在线观看免费| 亚洲av福利一区| kizo精华| 国产免费视频播放在线视频| 精品国产一区二区三区久久久樱花| 天天躁日日躁夜夜躁夜夜| 免费观看av网站的网址| 国产精品久久久久成人av| 亚洲av日韩在线播放| 日韩 亚洲 欧美在线| 午夜福利网站1000一区二区三区| 男人爽女人下面视频在线观看| 婷婷色麻豆天堂久久| 国产精品国产三级国产专区5o| 汤姆久久久久久久影院中文字幕| 亚洲熟女毛片儿| 最新的欧美精品一区二区| 激情视频va一区二区三区| 制服诱惑二区| 欧美亚洲日本最大视频资源| 99精品久久久久人妻精品| 高清在线视频一区二区三区| 可以免费在线观看a视频的电影网站 | 国产免费视频播放在线视频| 欧美日韩综合久久久久久| 国产精品熟女久久久久浪| a级毛片在线看网站| 一区二区三区激情视频| 精品国产乱码久久久久久小说| 日日啪夜夜爽| 国产亚洲欧美精品永久| kizo精华| 日日摸夜夜添夜夜爱| 人体艺术视频欧美日本| 亚洲精品日本国产第一区| 天天躁夜夜躁狠狠久久av| 丰满饥渴人妻一区二区三| 久久精品久久久久久噜噜老黄| 精品亚洲成a人片在线观看| 美女扒开内裤让男人捅视频| 亚洲精品一二三| 日日爽夜夜爽网站| 色网站视频免费| 婷婷成人精品国产| 午夜久久久在线观看| 国产精品一区二区在线观看99| 亚洲欧美激情在线| 亚洲成国产人片在线观看| 国产在线免费精品| 国产亚洲av高清不卡| 狂野欧美激情性xxxx| 精品一区二区三卡| 亚洲国产欧美网| 久久精品亚洲av国产电影网| 青春草视频在线免费观看| 精品国产国语对白av| 国产精品无大码| 一区二区日韩欧美中文字幕| 日韩欧美精品免费久久| 欧美人与性动交α欧美精品济南到| h视频一区二区三区| av电影中文网址| 国产熟女午夜一区二区三区| 赤兔流量卡办理| 国产精品熟女久久久久浪| 亚洲欧美成人综合另类久久久|