• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diffusion-controlled Adsorption Kinetics of Surfactant at Air/Solution Interface

    2013-07-31 22:43:55LIUJunji劉俊吉XUYun徐蕓andSUNHongxiu孫紅秀

    LIU Junji (劉俊吉)*, XU Yun (徐蕓) and SUN Hongxiu (孫紅秀)

    School of Science, Tianjin University, Tianjin 300072, China

    Diffusion-controlled Adsorption Kinetics of Surfactant at Air/Solution Interface

    LIU Junji (劉俊吉)*, XU Yun (徐蕓) and SUN Hongxiu (孫紅秀)

    School of Science, Tianjin University, Tianjin 300072, China

    For the diffusion-controlled adsorption, the expression of dynamic surface adsorption Γ (t) was obtained by solving the diffusion equation. Two cases, i.e. the short and long time limits, were mainly discussed in this paper. From the measured dynamic surface tension of aqueous surfactant sodium dodecyl sulfate (SDS) solutions at 25 °C, the adsorption kinetics of SDS at air/solution interface was studied. It was proved that for both of the short and long time limits, the adsorption process of SDS was controlled by diffusion.

    adsorption, air/solution interface, dynamic surface tension

    1INTRODUCTION

    The adsorption kinetics of aqueous surfactant solutions at air/solution interface plays a very important role in wetting, foam stability, emulsion stability, fast coating, detergency, surface oscillation and adsorptive bubble separation technique etc. Therefore, a lot of research papers [1-24] focused on this field. For the adsorption process of aqueous surfactant solution at the air/solution interface, the whole process consists of two steps. The first step is the transport of surfactant molecules from the bulk phase to the subsurface due to concentration gradient, i.e., the diffusion step, and the second one is the transport of molecules from the subsurface to the surface, i.e., the adsorption step. If the rate of the first step is much slower than that of the second one, the whole process is controlled by diffusion. This kind of diffusion-controlled adsorption will be discussed in this paper.

    The diffusion-controlled adsorption kinetics was first treated quantitatively by Ward and Tordai [1]. An expression for the dynamic surface adsorption Γ (t), i.e., the famous Ward-Tordai-Equation, was derived and always cited by the authors studied the adsorption kinetics. In this paper, we focused on the discussion of Ward-Tordai-Equation in both of the short and long time limits.

    Surfactant sodium dodecyl sulfate (SDS) was chosen and the dynamic surface tensions of its aqueous solutions were measured by means of the maximum bubble pressure method. In the previous studies on SDS, there were conflicting conclusions [16-20]. The diffusion controlled [17], kinetic limited [18], and mixed diffusion-kinetic [19, 20] process were reported. This is the reason why SDS was chosen to be studied in this paper. Its adsorption kinetics was studied on the base of theoretical work.

    2THEORY

    When the whole process is dominated by diffusion, then the diffusion equation (Fick’s second law) is used,

    where (,)c x t is the concentration at distance x and time t, and D represents the diffusion coefficient of surfactant in water.

    In order to solve Eq. (1), the following initial condition (i.c.) and boundary condition (b.c.) are necessary:

    where c0is the bulk concentration of aqueous surfactant solution, and φ (t)is subsurface concentration (concentration at 0x=).

    By means of Laplace transformation, the solution of Eq. (1) under the above conditions [Eqs. (2)-(4)] is

    To get the surface adsorption, Fick’s first law should be used at 0x=,

    Inserting Eq. (5) into Eq. (6) and integrating it, the diffusion amount of the surfactant molecules from the subsurface to the surface in the time range 0t→can be obtained as

    The following two cases are always discussed.

    2.1Short-time limit (0→t)

    At the beginning of adsorption, the subsurface concentration is zero, i.e.

    then, Eq. (7) is reduced to

    2.2Long-time limit

    After a certain long time t1, the subsurface concentration will also trend to a constant assumed as cs(Fig. 1). Then, the whole time range can be divided into two parts: 0→t1and t1→t. For the first time range, there is

    Figure 1Schematic diagram of subsurface concentration

    For the second one (1tt→), there is

    Then, for the whole time range (0t→), the following Eq. (12) can be deduced as

    It is difficult to measure the dynamic surface adsorption Γ( t), however, the dynamic surface tension γ( t ) is easy to be measured. Therefore, it is necessary to find the relationship between γ( t) and Γ( t).

    2.3Relationship betweenΓ (t)andΓ (t)

    Gibbs’ adsorption equation can be used to describe the adsorption of surfactant on the surface of the aqueous solution.

    where γeqis the equilibrium surface tension, c0is the bulk concentration and z is a factor, which equals 2 for surfactant SDS.

    Equation (13a) can be rearranged as

    Combing with the Langmuir isotherm,Γeqcan be given by

    One can get

    This equation indicates the relationship between the equilibrium surface tension γeqand the equilibrium adsorption Γeq.

    It is well known that the surface tension γ depends only on the surface adsorption Γ. It means that the surface tension γ is only a function of the surface adsorption Γ. Here, one can also use this equation in the non-equilibrium adsorption process.

    Integrating Eq. (15) yields

    where Γ0x is the equilibrium surface tension of water (pure solvent).

    Simplifying these two equations, one gets

    Substituting Γ (t) [Eq. ( 9)] into Eq. (18a), there is

    (for the short time limit adsorption)(19) Substituting Γ (t) [Eq. (12)] into Eq. (18b), Eq. (20) can be obtained as

    These two equations show that for the two limit cases, the short and long time adsorption, there should be a linear relationship between Γ (t) and t.

    Equations (9) and (19), the results for the short time limit, were well known and always adopted to discuss the experimental data in the literatures [1, 13-15, 21-23]. However, the results, i.e. Eqs. (12) and (20) in our paper, have never been reported by the others. They could be used to treat the experimental data and determine the adsorption mechanism as t→∞.

    3EXPERIMENTAL

    The equilibrium surface tensions were measured with Wilhelmy plate tensiometer (K12 from the Company Krüss GmbH Hamburg, Germany). The measurements of dynamic surface tension were carried out by means of a maximum bubble pressure tensiometer (BP-2 made by Krüss GmbH Hamburg, Germany). The measuring range in the time window is from 0.005 to 60 s. The capillary diameter is d=0.264 mm. Surfactant sodium dodecyl sulfate (SDS) was obtained from SIGMA-ALDRICH Chemie GmbH, Fluka, Swiss. The surfactants were used without any further purification. Three aqueous surfactant solutions were prepared using double distilled and deionized water. The last distillation was performed over alkaline KMnO4in order to remove the effect of surface active impurities. All measurements of dynamic surface tension were performed at (25±0.1) °C.

    4RESULTS AND DISCUSSION

    To determine the critical micelle concentrations (CMC) of surfactant SDS, the equilibrium surface tensions γeqof its aqueous solutions are measured and plotted in Fig. 2. The CMC at 25 °C is 7.6×10?3mol·L?1. In the adsorption kinetics studies, the concentrations should be below CMC so that the effect of micelle on adsorption does not exist.

    Figure 2Equilibrium surface tensions of aqueous SDS solutions

    The measured dynamic surface tensions of aqueous SDS solutions at 25°C are shown in Fig. 3. For all the three pre-CMC concentrations at the shortest measuring time (about 5 ms), the value of surface tension of pure solvent (γ0) is reached. It indicates that the new created surface in solution is occupied only by the solvent molecules and the adsorption does not yet happen. With increasing time, the dynamic surface tension γ(t) decays rapidly within 5 s. This is the result of adsorption of surfactant at the surface. After about 5 s, γ(t) reaches a constant value. The surface is fast full-occupied and there are few free adsorption positions at the surface. Then, the adsorption rate should tend to zero, i.e., Γd( t)/dt≈0.

    Figure 3Dynamic surface tensions of aqueous SDS solutions▲ 1.054×10?3mol·L?1; ○ 2.081×10?3mol·L?1; ● 3.939×10?3mol·L?1

    By using Eqs. (17a) and (14a) in equilibrium state, ?!辌an be fitted from the experimental equilibrium surface tensions. The fitted result is ?!?8.82×10?6mol·m?2for SDS. Then, the calculated -t Γ (t) by means of Eq. (17a) is shown in Fig. 4. It is found from Fig. 4 that the adsorption rate at the beginning is much faster than at the end. The adsorption happens mainly in the initial stage. This phenomena can be interpreted as that at the beginning the surface is empty enough toadsorb the arrived surfactant molecules and the surface adsorption Γ (t) will increase with time rapidly. However, at the end of adsorption, Γ (t) will tend to a constant and d/d tΓ (t) will approach to zero. Eqs. (9) and (12) can be combined as

    Figure 4The dynamic surface adsorptions of aqueous SDS solutions▲ 1.054×10?3mol·L?1; ○ 2.081×10?3mol·L?1; ● 3.939×10?3mol·L?1

    For the shot time limit (t→0), the adsorption rate (dΓ( t)/d t) should be very high. But for the long time limit (t→∞), there is cs→c0in most cases and the adsorption rate (dΓ( t)/d t) should be very small and tends to zero. The calculated Γ( t) from the experimental γ( t) shows such results (Fig. 4).

    For diffusion-controlled adsorption, the reduction of γ( t) should follow a square-root decay in the short time limit, corresponding to Eq. (19). Plotting γ( t)-tin Fig. 5, there are good linear relations for all three pre-CMC concentrations. It means that the adsorption is really controlled by diffusion in the short time range. This conclusion is consistent with that of the previous study by Joos [17]. From the slope of the lines, the apparent diffusion coefficient of the surfactant in water can be calculated [Eq. (19)]. The calculated results are listed in Table 1. It is shown that the apparent diffusion coefficient is slightly concentration-dependent.

    For the long time limit, there should also be the linear relationship between γ( t) and t according to Eq. (20) although the values of the constant variables γeq, Γeq, csand t1are unknown. The experimental results demonstrate such linear relation (see Fig. 6) as expected. It indicates that for these three concentrations the adsorption is also controlled by the diffusion in the long time range.

    Figure 5The relation between γ(t) and t in the short time limit▲ 1.054×10?3mol·L?1; ○ 2.081×10?3mol·L?1; ● 3.939×10?3mol·L?1

    Figure 6The relation between Γ (t) and t in the long time limit▲ 1.054×10?3mol·L?1; ○ 2.081×10?3mol·L?1; ● 3.939×10?3mol·L?1

    When the adsorption was controlled by diffusion in both the short and long time ranges, the following equation from Eqs. (20) and (19) can be deduced.

    Inserting the experimental results into Eq. (23), the value of cs/c0can be calculated. It equals to about 99.5% for the three concentrations (Table 1). It means that at the end of adsorption (after 8000 ms), the subsurface concentration reach the 99.5% of the bulk concentration (c0) for the aqueous SDS solutions. In this case, the concentration difference ( Δc=c0?cs), i.e., the diffusion force, is very small. The diffusion step is much slower than adsorption step. The whole process is dominated by diffusion in the long timerange for aqueous SDS solution.

    Table 1Fitting and calculation results of experimental dada

    5CONCLUSIONS

    For the diffusion-controlled adsorption, there should be linear relation between Γ (t) and t in both the short and long time limits. The equilibrium and dynamic surface tensions of aqueous sodium dodecyl sulfate (SDS) solutions at 25 °C were measured by means of Wilhelmy plate tensiometer and maximal bubble pressure tensiometer, respectively. From the experimental data, the expected linear relation between γ( t ) andwas obtained. The diffusion-controlled adsorption was proved in both of the short and long time limits. In addition, the diffusion coefficient was calculated from the experimental data in the range of short limit and the subsurface concentration in the long time limit was estimated.

    NOMENCLATURE

    b adsorption constant in Langmuir isotherm

    c0bulk concentration, mol·m?3

    cssubsurface concentration after t1

    c(x, t) concentration, mol·m?3

    D diffusion coefficient, m2·s?1

    R ideal gas constant, J·mol?1·K?1

    x distance to the subsurface, m

    T temperature, K

    t time, s

    t1assumed long time

    u integration variable in Eqs. (5, 7, 10, 12, 20) y integration variable

    z factor in Gibbs’ adsorption equation

    Γ1(t)0→tdynamic surface adsorption before t1, mol·m?2

    1

    Γ2(t)t→tdynamic surface adsorption after t1, mol·m?2

    1

    Γeqequilibrium adsorption, mol·m?2

    ?!辳aturation adsorption, mol·m?2

    Γ(t) dynamic surface adsorption, mol·m?2

    γ0surface tension of the solvent (water), mN·m?1

    γeqequilibrium surface tension, mN·m?1

    γ(t) dynamic surface tension, mN·m?1

    π constant, π=3.141592···

    φ( t) subsurface concentration, mol·m?3

    REFERENCES

    1 Ward, A.F.H., Tordai, L., “Time-dependence of boundary tensions of solutions. 1. The role of diffusion in time-effects”, J. Ch em. Phys.,14(7), 453-461 (1946).

    2 Hansen, R.S., “Diffusion and the kinetics of adsorption of aliphatic acids and alcohols at the water-air interface”, J. Colloid Sci.,16, 549-560 (1961).

    3 Sutherland, K.L., “The kinetics of adsorption at liquid surfaces”, Austr. J. Sci. Res., A5, 683?696(1952).

    4 Petrov, J. G., Miller, R., “On the solution of diffusion problems in adsorption kinetics”, Colloid & Polymer Sci.,255(7), 669-674 (1977).

    5 Kao, R. L., Edwards, D. A., Wasan, D. T., Chen, E., “Measurement of interfacial dilatational viscosity at high rates of interface expansion using the maximum bubble pressure method. 1. Gas-liquid surface”, J. Colloid Interf. Sci.,148(1), 247-256 (1992).

    6 Liggieri, L., Ravera, F., Passerone, A., “A diffusion-based approach to mixed adsorption kinetics”, Colloid and Surfaces A,114(8), 351-359 (1996).

    7 Filippov, L.K., “Dynamic surface tension of aqueous surfactant solutions. 1. Diffusion-converctive controlled adsorption”, J. Colloid Interface Sci.,163(1), 49-60 (1994).

    8 Fang, J., Wantke, K., Lunkenheimer, K., “Evalution of the dynamic surface tension of alkylphosphine oxides”, J. Phys. Chem.,99(13), 4632-4638 (1995).

    9 Eastoe, J., Dalton, J.S., Rogueda, P.G.A., Griffiths, P.C., “Evidence for activation-diffusion controlled dynamic surface tension with a nonionic surfactant”, Langmuir,14(5), 979-981(1998).

    10 Lin, S., Tsay, R., Lin, L., Chen, S., “Adsorption kinetics of C12E8at the air-water interface: Adsorption onto a clean interface”, Langmuir,12(26), 6530-6536 (1996).

    11 Gao, T., Rosen, M. J., “Dynamic surface tension of aqueous surfactant solutions. 7. Physical significance of dynamic parameters and the induction period”, J. Colloid Interf. Sci.,172(1), 242-248 (1995).

    12 Makievski, A.V., Fainerman, V.B., Miller, R., Bree, M., Liggieri, L., Ravera, F., “Determination of equilibrium surface tension values by extrapolation via long time approximations”, Colloids Surfaces A,122(1-3), 269-273 (1997).

    13 Borwankar, R.P., Wasen, D.T., “The kinetics of adsorption of surface active agents at gas-liquid surfaces”, Chem. Eng. Sci.,38(10), 1637-1649 (1983).

    14 Eastoe. J., Dalton, J.S., Rogueda, P.G.A., Crooks, E.R., Pitt, A.R., Simister, E.A., “Dynamic surface tensions of nonionic surfactant solutions”, J. Colloid Interf. Sci.,188(2), 423-430(1997).

    15 Xu, S., Damodaran, S., “Kinetics of adsorption of proteins at theair/water interface from a binary mixture”, L angmuir,10(2), 472-480 (1994).

    16 MacLeod, C.A., Radke, C.J., “Chage effects in the transient adsorption of ionic surfactant at fluid interfaces”, Langmuir,10(10), 3555-3566 (1994).

    17 Joos, P., Fang, J.P., Serrien, G., “Comments on some dynamic surface tension measurements by the dynamic bubble pressure method”, J. Colloid Interf. Sci.,151(1), 144-149 (1992).

    18 Borwankar, R.P., Wasen, D.T., “The kinetics of adsorption of ionic surfactants at gas-liquid surfaces”, Chem. Eng. Sci.,41, 199-201 (1986).

    19 Bonfillon, A., Langevin, D., “Viscoelasticity of monolayer at oil/water interfaces”, Lan gmuir,9(8), 2172-2177 (1993).

    20 Chang, C.H., Franses, E.I, “Modified Langmuir-Hinselwood kinetics for dynamic adsorption of surfactants at air/water interface”, Colloids and S urfaces,69, 189-201 (1992).

    21 Jeong, J.B., Kim, J.Y., Kim, H.C., “Dynamic surface tension and its diffusional decay of dodecyl ethoxylates with different homologue distribution”, J. Colloid Interf. Sci.,250(2), 496-502 (2002).

    22 Mak, C., Cornu, E., Moresoli, C., Chen, P., “Surface tension, diffusion and kinetics studies of an air-stripping process”, Sep. Purif. Technol.,36(2), 95-106 (2004).

    23 Liu, J.J., Li, P.L., Li, C.M., Wang, Y.M., “Diffusion-controlled adsorption kinetics of aqueous micellar solution at air/solution interface”, Colloid & Polymer Sci.,287(9), 1083-1088 (2009).

    24 Ritacco, H., Langevin, D., Diamant, H., Andelman, D., “Dynamic surface tension of aqueous solutions of ionic surfactants: Role of electrostatics”, Langmuir,27(3), 1009-1014 (2011).

    10.1016/S1004-9541(13)60562-5

    2012-03-19, accepted 2012-08-06.

    * To whom correspondence should be addressed. E-mail: liujunji@tju.edu.cn

    菩萨蛮人人尽说江南好唐韦庄| 国产成人欧美| 亚洲精品在线美女| a级片在线免费高清观看视频| 99re6热这里在线精品视频| 老汉色av国产亚洲站长工具| 久久精品人人爽人人爽视色| 国产亚洲av高清不卡| 十八禁人妻一区二区| 99久久国产精品久久久| www.熟女人妻精品国产| 一级毛片精品| 搡老熟女国产l中国老女人| 美女国产高潮福利片在线看| 日韩一区二区三区影片| 极品少妇高潮喷水抽搐| 欧美黑人欧美精品刺激| 啦啦啦 在线观看视频| 国产在线免费精品| 国产免费现黄频在线看| 成在线人永久免费视频| 午夜福利视频在线观看免费| 亚洲国产中文字幕在线视频| 国产成人av教育| 国产av又大| 一区在线观看完整版| 日韩有码中文字幕| 亚洲伊人久久精品综合| 欧美黄色淫秽网站| 精品午夜福利视频在线观看一区 | 视频区图区小说| 国产区一区二久久| 欧美日韩亚洲国产一区二区在线观看 | 99国产精品一区二区三区| 久久久精品区二区三区| 国产精品九九99| 国产熟女午夜一区二区三区| 亚洲中文日韩欧美视频| videos熟女内射| 欧美激情极品国产一区二区三区| 国产精品秋霞免费鲁丝片| 国产成人av激情在线播放| 激情视频va一区二区三区| 欧美老熟妇乱子伦牲交| 欧美乱妇无乱码| 国产aⅴ精品一区二区三区波| a级毛片黄视频| 丁香六月天网| 欧美精品一区二区大全| 亚洲avbb在线观看| 一边摸一边做爽爽视频免费| 欧美黄色片欧美黄色片| 日本一区二区免费在线视频| 美女福利国产在线| 日韩成人在线观看一区二区三区| 久久精品国产亚洲av高清一级| 老司机午夜福利在线观看视频 | 久久久水蜜桃国产精品网| 成年人黄色毛片网站| 色视频在线一区二区三区| 超碰97精品在线观看| 人妻一区二区av| 欧美乱妇无乱码| 精品国产乱子伦一区二区三区| 热re99久久精品国产66热6| 人人妻人人爽人人添夜夜欢视频| 国产极品粉嫩免费观看在线| 欧美日韩国产mv在线观看视频| av天堂在线播放| 黄色视频,在线免费观看| 性少妇av在线| 久久精品国产综合久久久| 日本五十路高清| 精品国产一区二区三区久久久樱花| 亚洲成a人片在线一区二区| 精品卡一卡二卡四卡免费| 精品亚洲乱码少妇综合久久| 大型av网站在线播放| 亚洲avbb在线观看| 妹子高潮喷水视频| 女同久久另类99精品国产91| 国产主播在线观看一区二区| 这个男人来自地球电影免费观看| 国精品久久久久久国模美| 大型黄色视频在线免费观看| 亚洲欧美一区二区三区黑人| 中文字幕最新亚洲高清| 午夜精品国产一区二区电影| 免费观看人在逋| 精品午夜福利视频在线观看一区 | 极品教师在线免费播放| 欧美一级毛片孕妇| 成人特级黄色片久久久久久久 | 正在播放国产对白刺激| 久久久久久久大尺度免费视频| 在线天堂中文资源库| 视频区图区小说| 搡老熟女国产l中国老女人| 乱人伦中国视频| 精品国产乱码久久久久久男人| 亚洲成国产人片在线观看| 色婷婷久久久亚洲欧美| 日本欧美视频一区| 如日韩欧美国产精品一区二区三区| 精品国内亚洲2022精品成人 | 国产淫语在线视频| 亚洲色图 男人天堂 中文字幕| 一级毛片女人18水好多| 亚洲国产毛片av蜜桃av| 人成视频在线观看免费观看| 50天的宝宝边吃奶边哭怎么回事| 国产在线一区二区三区精| 免费观看人在逋| 欧美另类亚洲清纯唯美| 国产精品98久久久久久宅男小说| 国产日韩欧美亚洲二区| 久久av网站| 久久久久久免费高清国产稀缺| 亚洲欧美日韩高清在线视频 | 亚洲精品在线观看二区| 19禁男女啪啪无遮挡网站| 亚洲一区二区三区欧美精品| 国产欧美日韩综合在线一区二区| 成人18禁高潮啪啪吃奶动态图| 一本大道久久a久久精品| 12—13女人毛片做爰片一| 欧美精品高潮呻吟av久久| 午夜福利免费观看在线| 桃红色精品国产亚洲av| 大片电影免费在线观看免费| 啦啦啦中文免费视频观看日本| 国产成+人综合+亚洲专区| 精品一区二区三区视频在线观看免费 | 国产免费av片在线观看野外av| 国产一区二区三区在线臀色熟女 | 午夜福利视频在线观看免费| 国产欧美日韩精品亚洲av| 满18在线观看网站| 夜夜夜夜夜久久久久| 国产在线精品亚洲第一网站| 热99国产精品久久久久久7| 女人爽到高潮嗷嗷叫在线视频| 99热网站在线观看| 国产人伦9x9x在线观看| 午夜91福利影院| 国产成人欧美| 欧美黑人精品巨大| 大型av网站在线播放| 少妇的丰满在线观看| 精品卡一卡二卡四卡免费| 大型黄色视频在线免费观看| 欧美老熟妇乱子伦牲交| 电影成人av| 精品久久蜜臀av无| 啦啦啦视频在线资源免费观看| 亚洲av片天天在线观看| av免费在线观看网站| av天堂在线播放| 老汉色av国产亚洲站长工具| 色精品久久人妻99蜜桃| 两人在一起打扑克的视频| 怎么达到女性高潮| 国产精品99久久99久久久不卡| 男女午夜视频在线观看| 亚洲精品美女久久久久99蜜臀| 久久亚洲真实| 亚洲免费av在线视频| 国产av国产精品国产| 在线观看免费视频日本深夜| 精品视频人人做人人爽| 亚洲精品中文字幕一二三四区 | 精品福利观看| 国产精品二区激情视频| 精品欧美一区二区三区在线| 久久国产精品影院| 精品国产一区二区三区久久久樱花| 亚洲国产中文字幕在线视频| 国产成人欧美| 免费观看av网站的网址| 正在播放国产对白刺激| 亚洲伊人色综图| 母亲3免费完整高清在线观看| 91老司机精品| 精品视频人人做人人爽| 极品人妻少妇av视频| 国产精品一区二区精品视频观看| 久久国产精品大桥未久av| 国产激情久久老熟女| 久久婷婷成人综合色麻豆| 免费观看av网站的网址| 啦啦啦视频在线资源免费观看| 美女午夜性视频免费| 亚洲色图 男人天堂 中文字幕| 久久精品亚洲精品国产色婷小说| 国产欧美日韩精品亚洲av| 91麻豆av在线| 精品亚洲乱码少妇综合久久| 男人操女人黄网站| 国产精品一区二区精品视频观看| 日韩欧美免费精品| 日日摸夜夜添夜夜添小说| 午夜福利欧美成人| 亚洲伊人久久精品综合| 亚洲精品中文字幕在线视频| 色精品久久人妻99蜜桃| 老司机深夜福利视频在线观看| 午夜福利影视在线免费观看| 欧美午夜高清在线| 大码成人一级视频| 国产精品影院久久| 国产av又大| www日本在线高清视频| 国产在线视频一区二区| 国产人伦9x9x在线观看| 嫩草影视91久久| 欧美精品人与动牲交sv欧美| 国产成+人综合+亚洲专区| 亚洲男人天堂网一区| 十分钟在线观看高清视频www| 国产日韩欧美视频二区| 久久久久久久精品吃奶| 一区二区三区国产精品乱码| 欧美午夜高清在线| 18禁裸乳无遮挡动漫免费视频| 热re99久久精品国产66热6| 极品教师在线免费播放| 啦啦啦中文免费视频观看日本| 男女无遮挡免费网站观看| 免费在线观看黄色视频的| 黄色视频在线播放观看不卡| 国产主播在线观看一区二区| 精品福利永久在线观看| 欧美成人免费av一区二区三区 | 法律面前人人平等表现在哪些方面| 亚洲 欧美一区二区三区| 天堂俺去俺来也www色官网| h视频一区二区三区| 狠狠狠狠99中文字幕| 狂野欧美激情性xxxx| 欧美乱码精品一区二区三区| 精品人妻1区二区| 日韩欧美免费精品| 日韩中文字幕视频在线看片| 欧美 亚洲 国产 日韩一| 一个人免费看片子| 亚洲精品中文字幕一二三四区 | 美女午夜性视频免费| 国产免费福利视频在线观看| av网站在线播放免费| 变态另类成人亚洲欧美熟女 | 色视频在线一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 热99re8久久精品国产| 一级a爱视频在线免费观看| 亚洲av电影在线进入| 天堂8中文在线网| 日韩视频在线欧美| 最新在线观看一区二区三区| 好男人电影高清在线观看| 最新的欧美精品一区二区| 亚洲自偷自拍图片 自拍| 久久久水蜜桃国产精品网| svipshipincom国产片| 午夜免费成人在线视频| 视频区图区小说| 亚洲中文字幕日韩| 亚洲av国产av综合av卡| 国产精品99久久99久久久不卡| 国产精品av久久久久免费| 看免费av毛片| 人妻一区二区av| 美女扒开内裤让男人捅视频| 国产在线观看jvid| 在线av久久热| 新久久久久国产一级毛片| 国产av又大| 变态另类成人亚洲欧美熟女 | 欧美日韩黄片免| 一级片免费观看大全| 久久精品国产综合久久久| 老汉色av国产亚洲站长工具| 国产成人av激情在线播放| 久热这里只有精品99| av片东京热男人的天堂| 午夜免费成人在线视频| 亚洲国产av新网站| 好男人电影高清在线观看| 91国产中文字幕| 成年版毛片免费区| 国产成人精品无人区| 亚洲欧美一区二区三区久久| 免费高清在线观看日韩| 男男h啪啪无遮挡| 久久中文看片网| 2018国产大陆天天弄谢| 美女午夜性视频免费| av片东京热男人的天堂| 亚洲伊人色综图| 99精品久久久久人妻精品| 亚洲中文字幕日韩| 亚洲五月婷婷丁香| 久久久精品区二区三区| 91国产中文字幕| 又紧又爽又黄一区二区| 日韩人妻精品一区2区三区| 亚洲自偷自拍图片 自拍| 人人妻人人澡人人爽人人夜夜| 午夜免费鲁丝| 99re6热这里在线精品视频| 久久久久精品国产欧美久久久| 国产真人三级小视频在线观看| av片东京热男人的天堂| 男女午夜视频在线观看| 十分钟在线观看高清视频www| 伊人久久大香线蕉亚洲五| 如日韩欧美国产精品一区二区三区| 久久国产精品影院| 日韩大码丰满熟妇| 国产亚洲一区二区精品| 18在线观看网站| 777久久人妻少妇嫩草av网站| 久久精品国产亚洲av高清一级| 欧美乱码精品一区二区三区| 久久中文字幕一级| 高清欧美精品videossex| 人人妻人人澡人人爽人人夜夜| 亚洲色图综合在线观看| 国产在线免费精品| 成人精品一区二区免费| 91成年电影在线观看| 亚洲 欧美一区二区三区| 亚洲av美国av| 黄色a级毛片大全视频| 国产伦理片在线播放av一区| 黄片播放在线免费| 99国产精品免费福利视频| 丰满迷人的少妇在线观看| 一进一出好大好爽视频| 国产高清国产精品国产三级| 国产91精品成人一区二区三区 | 欧美日韩中文字幕国产精品一区二区三区 | 亚洲成人免费电影在线观看| 桃红色精品国产亚洲av| 另类精品久久| 国产熟女午夜一区二区三区| 天天躁夜夜躁狠狠躁躁| 精品久久久久久电影网| 亚洲少妇的诱惑av| 久久精品国产99精品国产亚洲性色 | 天天添夜夜摸| 在线观看舔阴道视频| 捣出白浆h1v1| 操美女的视频在线观看| 一本色道久久久久久精品综合| 久久精品国产a三级三级三级| 人人妻人人澡人人看| 老熟妇仑乱视频hdxx| 久9热在线精品视频| 欧美成人午夜精品| 国产精品偷伦视频观看了| 日韩一区二区三区影片| 亚洲色图 男人天堂 中文字幕| 精品一区二区三区视频在线观看免费 | 无限看片的www在线观看| 香蕉丝袜av| 一本大道久久a久久精品| 91av网站免费观看| 亚洲午夜精品一区,二区,三区| 国产福利在线免费观看视频| 黄色成人免费大全| 国产黄频视频在线观看| 欧美日韩亚洲高清精品| 国产麻豆69| av线在线观看网站| 操出白浆在线播放| 国产在线一区二区三区精| 老司机午夜十八禁免费视频| 国产精品麻豆人妻色哟哟久久| 成人国产av品久久久| 精品一区二区三区四区五区乱码| 免费看a级黄色片| 十分钟在线观看高清视频www| 色在线成人网| 国产精品免费大片| 国产91精品成人一区二区三区 | 黄色视频,在线免费观看| 91九色精品人成在线观看| 国产av精品麻豆| 美国免费a级毛片| 国产伦人伦偷精品视频| 老熟妇乱子伦视频在线观看| 汤姆久久久久久久影院中文字幕| 国产成人欧美| 老司机午夜十八禁免费视频| 巨乳人妻的诱惑在线观看| av网站在线播放免费| 精品一品国产午夜福利视频| 黄色片一级片一级黄色片| 黑人巨大精品欧美一区二区mp4| 午夜福利在线免费观看网站| 免费av中文字幕在线| 91字幕亚洲| 日韩人妻精品一区2区三区| 中文字幕高清在线视频| 午夜福利欧美成人| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩国产mv在线观看视频| 欧美激情 高清一区二区三区| 操美女的视频在线观看| 午夜两性在线视频| 亚洲av第一区精品v没综合| 久久热在线av| 啦啦啦免费观看视频1| 视频区图区小说| 中文亚洲av片在线观看爽 | 18禁美女被吸乳视频| 一区二区三区乱码不卡18| 亚洲精品粉嫩美女一区| 久久精品国产综合久久久| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久久久久精品电影小说| av超薄肉色丝袜交足视频| 麻豆乱淫一区二区| 国产精品美女特级片免费视频播放器 | 在线观看免费日韩欧美大片| 三上悠亚av全集在线观看| 国产成人av教育| 在线观看人妻少妇| svipshipincom国产片| 国产伦理片在线播放av一区| 午夜福利视频精品| 香蕉丝袜av| 9热在线视频观看99| 十八禁人妻一区二区| 12—13女人毛片做爰片一| 精品一区二区三区四区五区乱码| 精品国产一区二区三区四区第35| av天堂久久9| 成年人免费黄色播放视频| 亚洲av片天天在线观看| 亚洲一码二码三码区别大吗| 一区二区三区激情视频| 无人区码免费观看不卡 | 最新美女视频免费是黄的| 亚洲久久久国产精品| 中文字幕高清在线视频| 国产成人精品久久二区二区91| 亚洲五月色婷婷综合| 久久九九热精品免费| 久久久久久久大尺度免费视频| 色婷婷av一区二区三区视频| 亚洲国产看品久久| 天堂8中文在线网| 欧美日韩中文字幕国产精品一区二区三区 | 免费黄频网站在线观看国产| 久久久精品94久久精品| 亚洲精品美女久久av网站| 丰满少妇做爰视频| 电影成人av| 婷婷成人精品国产| 日韩大片免费观看网站| 亚洲视频免费观看视频| 日日爽夜夜爽网站| 欧美日本中文国产一区发布| 精品一区二区三区av网在线观看 | 亚洲精品国产一区二区精华液| 丝袜喷水一区| 狂野欧美激情性xxxx| 国产精品国产av在线观看| 啦啦啦中文免费视频观看日本| 国产av精品麻豆| 777久久人妻少妇嫩草av网站| 久久午夜亚洲精品久久| 国产亚洲精品第一综合不卡| 成人18禁在线播放| 国产精品九九99| av不卡在线播放| 一级,二级,三级黄色视频| 悠悠久久av| 亚洲成国产人片在线观看| 久久久欧美国产精品| 日日摸夜夜添夜夜添小说| 天堂中文最新版在线下载| 一边摸一边做爽爽视频免费| 精品一区二区三区四区五区乱码| 久久精品aⅴ一区二区三区四区| 天堂8中文在线网| 黄色视频,在线免费观看| 国产精品99久久99久久久不卡| 麻豆国产av国片精品| 色在线成人网| 久久人妻av系列| 亚洲av电影在线进入| 下体分泌物呈黄色| 亚洲人成电影免费在线| 国产又色又爽无遮挡免费看| 色视频在线一区二区三区| 亚洲九九香蕉| 女同久久另类99精品国产91| 精品一区二区三区四区五区乱码| 80岁老熟妇乱子伦牲交| 午夜福利视频精品| 电影成人av| 国产欧美日韩一区二区三区在线| 亚洲国产欧美在线一区| www.999成人在线观看| 夜夜骑夜夜射夜夜干| 久久久久国内视频| 99久久人妻综合| 国产精品欧美亚洲77777| 亚洲精品粉嫩美女一区| 激情在线观看视频在线高清 | 中文字幕av电影在线播放| 久久精品国产亚洲av高清一级| 热re99久久精品国产66热6| 桃花免费在线播放| 免费在线观看完整版高清| 天天躁日日躁夜夜躁夜夜| 男女边摸边吃奶| 91字幕亚洲| 亚洲欧洲日产国产| av有码第一页| 国产精品一区二区精品视频观看| 人人妻人人澡人人看| 午夜福利乱码中文字幕| 少妇猛男粗大的猛烈进出视频| 69av精品久久久久久 | 精品午夜福利视频在线观看一区 | 中文字幕最新亚洲高清| 黄色视频,在线免费观看| 国产精品亚洲一级av第二区| av片东京热男人的天堂| 亚洲,欧美精品.| 一本久久精品| 欧美成狂野欧美在线观看| 国产一区有黄有色的免费视频| 久久人人爽av亚洲精品天堂| 天堂中文最新版在线下载| 亚洲精品中文字幕在线视频| 一二三四社区在线视频社区8| av不卡在线播放| 成人黄色视频免费在线看| 欧美在线黄色| 国精品久久久久久国模美| 天天操日日干夜夜撸| 成人av一区二区三区在线看| 大片电影免费在线观看免费| 五月开心婷婷网| 国产精品免费视频内射| 色婷婷av一区二区三区视频| 午夜福利,免费看| 又黄又粗又硬又大视频| 亚洲熟女精品中文字幕| 美女午夜性视频免费| 丁香六月欧美| 1024视频免费在线观看| 国产野战对白在线观看| 人人妻人人添人人爽欧美一区卜| 久久99一区二区三区| 老熟妇仑乱视频hdxx| 国产精品 欧美亚洲| 一个人免费在线观看的高清视频| 女同久久另类99精品国产91| 欧美黄色淫秽网站| 国产欧美日韩精品亚洲av| 曰老女人黄片| 一区二区av电影网| 一区福利在线观看| 色综合婷婷激情| 国产成人影院久久av| 精品亚洲成国产av| 青青草视频在线视频观看| 高清黄色对白视频在线免费看| 狠狠精品人妻久久久久久综合| 丰满人妻熟妇乱又伦精品不卡| 日韩视频一区二区在线观看| 精品一区二区三区视频在线观看免费 | 国产又色又爽无遮挡免费看| 一区二区三区国产精品乱码| 高清毛片免费观看视频网站 | 欧美日韩av久久| 国产成人av教育| 亚洲第一青青草原| 757午夜福利合集在线观看| 黄色片一级片一级黄色片| 亚洲精品一二三| 欧美性长视频在线观看| bbb黄色大片| 91麻豆精品激情在线观看国产 | 亚洲av片天天在线观看| 国产色视频综合| 久久精品熟女亚洲av麻豆精品| 国产成人精品久久二区二区免费| 在线观看免费日韩欧美大片| 精品一区二区三卡| 大片免费播放器 马上看| 国产色视频综合| 日韩精品免费视频一区二区三区| 99久久99久久久精品蜜桃| 日本av免费视频播放| 国产主播在线观看一区二区| 一本久久精品| 亚洲人成电影免费在线| 国产一卡二卡三卡精品| 国产精品熟女久久久久浪| 精品国产一区二区久久| 高清视频免费观看一区二区| 午夜激情av网站| 日韩大片免费观看网站| 亚洲精品国产精品久久久不卡| 亚洲欧美日韩另类电影网站| 亚洲国产欧美在线一区| 露出奶头的视频| 黄色 视频免费看| 男女高潮啪啪啪动态图|