• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Hydrogen Reduction of Silver Ions on the Performance and Structure of New Solid Polymer Electrolyte PEI/Pebax2533/AgBF4Composite Membranes*

    2013-06-07 11:21:31WANGYanbei王雁北RENJizhong任吉中LIHui李暉andDENGMaicun鄧麥村
    關(guān)鍵詞:李暉雁北

    WANG Yanbei (王雁北), REN Jizhong (任吉中)**, LI Hui (李暉) and DENG Maicun (鄧麥村)

    National Engineering Research Center of Membrane Technology, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China

    Effect of Hydrogen Reduction of Silver Ions on the Performance and Structure of New Solid Polymer Electrolyte PEI/Pebax2533/AgBF4Composite Membranes*

    WANG Yanbei (王雁北), REN Jizhong (任吉中)**, LI Hui (李暉) and DENG Maicun (鄧麥村)

    National Engineering Research Center of Membrane Technology, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China

    In this paper, the effect of hydrogen reduction of silver ions on the performance and structure of new solid polymer electrolyte polyetherimide (PEI)/Pebax2533 (Polynylon12/tetramethylene oxide block copolymer, PA12-PTMO)/AgBF4composite membranes is investigated. For PEI/Pebax2533/AgBF4composite membranes prepared with different AgBF4concentration, the permeances of propylene and ethylene increase with the increase of AgBF4concentration due to the carrier-facilitated transport, resulting in a high selectivity. But for propylene/propane mixture, the mixed-gas selectivity is lower than its ideal selectivity. The hydrogen reduction strongly influences the membrane performance, which causes the decrease of propylene permeance and the increase of propane permeance. With the increase of hydrogen reduction time, the membranes show a clearly color change from white to brown, yielding a great selectivity loss. The data of X-ray diffraction and FT-IR prove that silver ions are reduced to Ag0after hydrogen reduction, and aggregated on the surface of PEI/Pebax2533/AgBF4composite membranes.

    solid polymer electrolyte membrane, hydrogen reduction of silver ions, facilitated transport, olefin/ paraffin separation

    1 INTRODUCTION

    Ethylene and propylene are the most important organic materials in the petrochemical industry. Currently, olefins and paraffins (low relative volatilities) are mainly separated by cryogenic distillation processes, which require enormous capital investment and high operational costs [1]. Usually the polymeric membranes are not attractive for industrial purposes due to the plasticization effect induced by the olefins and their low selectivity [2-4]. The separation of olefins from paraffins by carrier-facilitated transport process is mainly studied according to reversible complexation between olefins and carriers [5, 6], which concerns ion-exchange membranes, supported liquid membranes, solid polymer electrolyte membranes, etc [6-14]. The solid polymer electrolyte membranes have attracted extensive attention because of their remarkable selectivity for separation of olefin/paraffin [5, 6]. Generally, solid polymer electrolyte membranes are complexes of polar polymer with metal salts, which are formed by dissolving the salts in polymer hosts. Pinnau et al. [9] found that the properties of the PEO/AgBF4membrane were strongly dependent on the silver salt content. Provided that the AgBF4concentration is high enough (>50%, by mass), the silver ions dissolved in the PEO matrix simultaneously facilitate ethylene transport and hinder ethane transport. This phenomenon suggests that threshold carrier content exists, below which no facilitated transport process occurs for olefins. Because of high carrier concentration, some defects usually arise on the surface of the solid polymer electrolyte membranes. In order to prepare a defect-free thin solid polymer electrolyte layer, the membranes are usually coated with a sealing layer such as polydimethylsiloxane [6].

    Because of the plasticization and selectivity loss caused by silver carrier poisoning compounds present in the industrial gas streams, the application of solid polymer electrolyte membranes is facing challenges from commercialized purposes. In previous works, it is well known that silver salt-based solid polymer electrolyte membranes are not stable in the presence of carrier poisoning materials such as hydrogen, light, hydrogen sulfide and acetylenic compounds [9, 10]. However, there are scarce literatures describing the effect of poisoning compounds on the performance and structure of facilitated transport membranes. The mechanisms of carrier reduction under the exposure to these compounds and light are indeterminate. These poisoning compounds affect the lifetime and performance of solid polymer electrolyte membranes through reacting with silver ions. As an olefin carrier, Ag (I) is more active than Ag (0) [11, 12]. In order to develop membranes with lifetime satisfactory for industrial implementation, the effect of hydrogen on the performance and structure of PEI/Pebax2533/AgBF4composite membranes is studied. If the stability problem could be mainly circumvented by investigation of the carrier poisoning mechanisms, it would provide a breakthrough toward finally commercial application of facilitated transport membranes.

    In this paper, defect-free PEI/Pebax2533 composite membranes (PEI: polyetherimide; Pebax2533: Polynylon12/tetramethylene oxide block copolymer, PA12-PTMO) are firstly prepared with Pebax2533 as a coating layer on the microporous PEI supporting membranes. And new solid polymer electrolyte PEI/ Pebax2533/AgBF4composite membranes are prepared with complexing method. The effect of reduction of silver ions on the performance and structure of PEI/ Pebax2533/AgBF4composite membranes is investigated. The surface morphology of PEI/Pebax2533/AgBF4composite membranes (before and after reduction) is also analyzed with X-ray diffraction and FT-IR.

    2 EX PERIMENTAL

    2.1 Materials

    The microporous polyetherimide (PEI, Ultem?1000, General Electric) supporting membranes were supplied by National Engineering Research Center of Membrane Technology, Dalian Institute of Chemical Physics. The average pore size of the microporous PEI membranes was about 65 nm. Pebax?2533 (Polynylon12/ tetramethylene oxide block copolymer, PA12-PTMO) was purchased from Arkema, which comprised 80% (by mass) of poly(tetramethylene oxide) and 20% (by mass) of nylon-12. The 1-butanol (Tianjin Bodi Chemical Engineering Co., Ltd.) was used for preparing Pebax2533 solutions. Silver tetrafluoroborate (AgBF4) was purchased from Alfa Aesar. Milli-Q ultrapure water was used to prepare AgBF4solution. All chemicals were used without further purification. All gases used in the permeation experiments were of research grade (purity >99.9%) from Dalian Gases Company.

    2.2 Preparation of PEI/Pebax2533/AgBF4composite membranes

    PEI/Pebax2533 composite membrane was prepared by dip-coating a thin layer of Pebax2533 on the microporous PEI flat sheet supporting membrane. A predetermined amount of Pebax2533 was dissolved in 1-butanol to form a 2.0%-6.0% (by mass) homogeneous Pebax2533/1-butanol solution with vigorous stirring at 80 °C for 12 h. The prepared Pebax2533/1-butanol solution was kept still for 24 h to remove gas bubbles dissolved in the solution. Then, it was cast on the treated microporous PEI supporting membrane, and the nascent composite membrane coated with Pebax2533 was dried at ambient conditions for 24 h. The prepared PEI/Pebax2533 composite membranes were further dried under vacuum at 50 °C for 24 h before permeation experiments. The thickness of dense Pebax2533 layer for PEI/Pebax2533 composite membranes was about 3-7 μm.

    The preparation of PEI/Pebax2533/AgBF4composite membranes was described in the previous work [15]. AgBF4was dissolved in ultrapure water to prepare AgBF4aqueous solution with different AgBF4concentration. The external surface of PEI/Pebax2533 composite membrane was immersed into the AgBF4aqueous solution for 2 h and the other side of the composite membrane was not contacted with the AgBF4aqueous solution. Due to the reversible complexation between silver salt and ether oxygen in Pebax2533 backbone, AgBF4was transferred into the external surface of Pebax2533 layer and formed a solid polymer electrolyte layer. After PEI/Pebax2533/AgBF4composite membrane was removed from AgBF4aqueous solution, the external surface of the prepared membrane was washed quickly with ultrapure water to remove the resident AgBF4solution. The prepared PEI/Pebax2533/ AgBF4composite membranes were dried and then kept into a desiccator away from light before the permeation and reduction experiments. The AgBF4content incorporated into the membranes can be controlled by AgBF4solution with different concentration.

    2.3 Hydrogen reduction of silver ions in PEI/ Pebax2533/AgBF4composite membranes

    For the hydrogen reduction, the prepared PEI/ Pebax2533/AgBF4composite membranes with different AgBF4content were reduced by continuous hydrogen permeation. The main chemical reaction discussed in this paper is believed to occur as follows:

    2.4 Membrane permeation properties

    The membrane permeation properties for pure gases and 50/50 (vol/vol) propylene/propane gas mixture were determined according to the permeation testing apparatus at 25 °C. For a new PEI/Pebax2533/ AgBF4composite membrane, its permeance and selectivity were not stable, which changed with time. In order to obtain steady membrane performance, the new PEI/Pebax2533/AgBF4composite membrane was usually conditioned by permeating pure propane for 8-24 h before use. In the hydrogen reduction test, pure hydrogen continuously permeated through the membrane except for periodic interruptions where the permeances of propylene and propane were measured without conditioning.

    For the pure gases, the upstream pressure was controlled from 0.2 to 0.8 MPa, and the downstream pressure was atmospheric pressure (0.1 MPa). For the gas mixtures, the feed pressure was 0.2 to 0.7 MPa and the permeate pressure was 0.02 MPa. The composition of feed and permeate stream was determined by a gas chromatograph equipped with an aluminum oxide packed column. The ratio of permeate flow rate to total feed flow rate (stage-cut) was always less than 1%, The pure gas permeance (J) was measured by the volume displacement using a gas bubble flow meter and determined by the following Eq. (1).

    where J is the gas permeance of PEI/Pebax2533/AgBF4composite membranes [1GPU=1×10?6cm3·cm?2·s?1· (cmHg)?1], ΔV is the gas flux reading (cm3·s?1), ΔP is the pressure difference between feed and permeate (cmHg), and A is the membrane effective area (cm2).

    The mixed-gas permeance of each gas component is calculated from Eq. (2):

    whereiJ′ is the permeance of each component, p1and p2are the feed and permeate pressures, respectively, x1iand x2iare the mole fraction of the gas components in the feed and permeate streams, respectively.

    The ideal selectivity (α) for pure components A and B is calculated by Eq. (3):

    For gas mixture A and B, the mixed-gas selectivity is obtained from Eq. (4):

    2.5 X-ray diffraction

    X-ray diffraction (XRD) data were acquired using a Philips X’Pert Pro diffractometer fitted with CuKαradiation (λ=0.154 nm) operating at 40 mA and 40 kV.

    2.6 Fourier transform infrared spectroscopy

    Fourier transform infrared (FT-IR) spectra characterizations of the membrane samples were obtained in ATR (attenuated total reflectance) mode on an AVATAR 370 (Thero Nicolet) instrument and IR spectra presented absorbance from 4000 to 650 cm?1.

    2.7 Atomic force microscopy

    Tapping mode atomic force microscopy (AFM) was utilized to study the morphology of the hydrogen reduced PEI/Pebax2533/AgBF4samples. The AFM analysis was carried out with Veeco-di310 equipment.

    3 RESUL TS AND DISCUSSION

    3.1 Pur e-gas perm eation pr operties of PEI/P ebax2533/AgBF4composite membranes

    AgBF4is an efficient carrier for olefins. It is believed that non-coordinating anion4BF?bound loosely with silver ion Ag+can be easily complexed with olefin molecules to achieve facilitated transport. Pebax2533 is a thermoplastic elastomer comprising of soft polyether segments (polytetramethylene oxide) and hard polyamide segments (nylon-12). Due to weak complexation of its ether oxygen with silver ions and its good permeability for olefins and paraffins, PEI/Pebax2533 composite membranes are used to prepare new solid polymer electrolyte PEI/Pebax2533/AgBF4composite membranes. When the external surface of PEI/ Pebax2533 composite membrane is immersed into the AgBF4aqueous solution, AgBF4will transfer into the Pebax2533 layer through the complexation between silver salt and ether oxygen in Pebax2533 backbone. And then, new solid polymer electrolyte PEI/Pebax2533/ AgBF4composite membranes are prepared.

    Figure 1 Effect of testing pressure difference on the permeances of e thylene, ethane, propylene and propane for PEI/Pebax2533 and PEI/Pebax2533/AgBF4composite membranes(testing temperature: 25 °C )● C3H6; ○ C3H8; ▲ C2H4; △ C2H6

    The pure-gas performance of PEI/Pebax2533 and PEI/Pebax2533/AgBF4composite membranes are illustrated in Fig. 1. For PEI/Pebax2533 composite membrane shown in Fig. 1 (a), the permeances of ethylene, ethane, propylene and propane increase with the increase of testing pressure difference, resulting in a strong plasticization effect. For the PEI/Pebax2533/ AgBF4composite membrane shown in Fig. 1 (b), the permeances of ethylene, ethane, propylene and propane are almost not influenced by the testing pressure difference, showing a suppressed plasticization effect. From these results, it is evident that the permeances of ethane and propane for PEI/Pebax2533/AgBF4composite membrane are roughly one to two orders ofmagnitude lower than those for PEI/Pebax2533 composite membrane. It is mainly caused by the poor solubility of ethane and propane in the solid polymer electrolyte films [16, 17]. With the presence of carrier, the olefin permeance decreases slowly because of the facilitated olefin transport, but the olefin-induced plasticization effect is partially suppressed. Fig. 2 shows the effect of testing pressure difference on the ideal selectivities of ethylene/ethane and propylene/ propane for PEI/Pebax2533 and PEI/Pebax2533/ AgBF4(prepared with 8.0 mol·L?1AgBF4solution) composite membranes. From Fig. 2, PEI/Pebax2533 composite membrane exhibits poor selectivity for ethylene/ethane and propylene/propane separations and the ideal selectivities of ethylene/ethane and propylene/propane are about 1 and 2, respectively. But for PEI/Pebax2533/AgBF4composite membrane, the defect-free solid polymer electrolyte layer can be a barrier to prevent the diffusion of paraffins and facilitate the transport of olefins, which leads to high selectivities of ethylene/ethane and propylene/propane.

    Figure 2 Effect of testing pressure difference on the ideal selectivities of ethylene/ethane and pr opylene/propane for PEI/Pebax2533 and PEI/Pebax2533/AgBF4composite membranes(testing temperature: 25 °C ) [PEI/Pebax2533: △ ethylene/ethane; ○ propylene/propane. PEI/ Pebax2533/AgBF4(prepared with 8.0 mol·L?1AgBF4solution):▲ ethylene/ethane; ● propylene/propane]

    Figures 3 and 4 illustrate the pure-gas performance and the ideal selectivity of propylene/propane for PEI/Pebax2533/AgBF4composite membranes prepared with different AgBF4concentration (5.0 mol·L?1, 6.0 mol·L?1and 8.0 mol·L?1). For facilitated gas, propylene, its permeance increases significantly with increasing AgBF4concentration. Conversely, for propane, the non-facilitated gas, its permeance decreases sharply with increasing silver carrier concentration. Consequently, the ideal selectivity of propylene/propane increases quickly with increasing AgBF4content. When AgBF4concentration increases from 5.0 to 8.0 mol·L?1, the percolation channels are formed and carrierfacilitated transport process occurs, resulting in the increase of propylene permeance [15]. Meanwhile, the formation of percolation channels strongly retards the transport process of propane, leading to a sharp decrease of propane permeance and a rapid increase of ideal selectivity (shown in Figs. 3 and 4).

    Figure 3 The p ermeances of propylene, p ropane for PEI/Pebax2533/AgBF4composite membranes prepared with different AgBF4concentrations(testing temperature: 25 °C)● 5.0 mol·L?1AgBF4; ○ 6.0 mol·L?1AgBF4; ◆ 8.0 mol·L?1AgBF4

    Figure 4 Ideal selectivities of propylene/propane for PEI/ Pebax2533/AgBF4comp osite membranes p repared with different AgBF4concentration(testing temperature: 25 °C)● 5.0 mol·L?1AgBF4; ○ 6.0 mol·L?1AgBF4; ◆ 8.0 mol·L?1AgBF4

    3.2 Mix ed-gas per meation pr operties of PEI/ Pebax2533/AgBF4composite membranes

    The mixed-gas permeation properties of PEI/ Pebax2533/AgBF4composite membranes were characterized with a 50/50 (vol/vol) propylene/propane mixture. Fig. 5 represents mixed-gas permeances of PEI/Pebax2533/AgBF4composite membranes (prepared with 5.0 and 8.0 mol·L?1AgBF4solutions) as a function of testing pressure difference. It shows anincrease in propane permeance and a simultaneous decrease in propylene permeance. In Fig. 5 (a) and 5 (b), the upper and lower straight lines describe the mean permeances of pure propylene and propane in the scope of testing pressure difference. Fig. 6 shows that the mixed-gas selectivity of propylene/propane for PEI/Pebax2533/AgBF4composite membranes decreases as the testing pressure increases. With an increase in the testing pressure difference from 0.2 to 0.7 MPa, the mixed-gas selectivity of propylene/propane decreases from ~130 to ~30 for PEI/Pebax2533/AgBF4composite membrane prepared with 8.0 mol·L?1AgBF4solution. For membrane prepared with 5.0 mol·L?1AgBF4solution, its mixed-gas selectivity decreases from ~70 to ~20. From Fig. 5, the obvious increase in propane permeance results from swelling of Pebax2533 matrix caused by the high sorption of propylene and the co-permeance of propane and propylene. For propylene/propane mixture, the plasticization and swelling caused by propylene increase the permeance of propane in gas mixture. The presence of propane in the mixture will compete with propylene for the sorption sites in Pebax2533, which decreases the permeance of propylene in gas mixture. Partial carrier saturation may be responsible for the decrease in propylene permeance too [9]. At a given testing pressure difference, the permeance of propylene in the gas mixture is lower than that of pure propylene, while it is higher for propane in the gas mixture than that of pure propane. For PEI/Pebax2533/AgBF4composite membranes, their mixed-gas selectivity of olefin/paraffin is lower than the ideal selectivity.

    Figure 5 Effect of testing pressure difference on mixed-gas permeances of propylene and propane for PEI/Pebax2533/ AgBF4composite membranes[feed: 50/50 (vol/vol) propylene/propane mixture; testing temperature: 25 °C]

    Figure 6 Effect of testing pressure difference on the selectivities of propylene/propane for PEI/Pebax2533/AgBF4composite m embranes[feed: 50/50 (vol/vol) propylene/ propane mixture; testing temperature: 25 °C] a—prepared with 5.0 mol·L?1AgBF4; b—prepared with 8.0 mol·L?1AgBF4

    3.3 Effect of hydrogen reduction on the perme ation properties of PEI/Pebax2533/AgBF4composite membranes

    Solid polymer electrolyte membrane process failed to achieve commercial success under industrial operating conditions mainly due to the lack of carrier stability [9]. Carriers tend to react with some poisoning compounds, causing carrier inactivation except for complexing with olefins. Silver ions can be reduced to silver metal particles under the exposure of light or reducing gases (such as hydrogen). Further more, silver ions can react with hydrogen sulfide or acetylenic compounds to form silver compounds (silver acetylide or silver sulfide) [18]. These side reactions can inactivate the silver carrier to complex olefin molecules. Consequently, facilitated transport membranes lost their olefin/paraffin selectivity with exposure time. Fortunately, poisoned carriers in the facilitated transport membrane process can be refreshed by hydrogen peroxide (except silver sulfide due to its irreversible effect on the silver carrier) [10, 19]. Nowadays, H2O2/HBF4is used as the stabilizer in facilitated transport membranes [20].

    In order to study the influence of carrier reduction on the permeation properties of propylene and propane, some new PEI/Pebax2533/AgBF4composite membranes are prepared with 5.0 mol·L?1and 8.0 mol·L?1AgBF4solutions. Figs. 7 and 8 show the permeances of propylene, propane and hydrogen for PEI/Pebax2533/AgBF4composite membranes reduced by hydrogen. In this test, hydrogen transports across the membranes continuously at 0.6 MPa feed pressure and 0.1 MPa permeate pressure except for periodic interruptions where the permeation fluxes of purepropylene and propane are measured. From Fig. 7, it is clearly that the permeance of propylene decreases sharply in the first 10 h by hydrogen reduction, but the propane permeance almost does not change. After the first 10 h, the propane permeance increases continually, but the propylene permeance is relatively constant. From Fig. 8, the propylene permeance of PEI/Pebax2533/AgBF4composite membrane prepared with 8.0 mol·L?1AgBF4solution also decreases with the increase of hydrogen reduction time and then almost does not change, but the propane permeance increases simultaneously. From Figs. 7 and 8, the permeance of hydrogen is independent of the hydrogen reduction time.

    Figure 9 shows that ideal selectivity of propylene/ propane decreases rather rapidly after the membranes are reduced continuously. Figs. 7 and 8 indicate that this loss in selectivity is primarily due to the decreasing propylene permeance and increasing propane permeance. Fig. 10 illustrates the effect of hydrogen reduction on the surface color of a PEI/Pebax2533/AgBF4composite membrane prepared with 8.0 mol·L?1AgBF4solution. Hydrogen-reduced membrane shows a clearly color change from white to brown. With the increase of hydrogen reduction time, more silver ions are reduced to metal particles, which appear deep dark in color.

    Figure 7 Th e p ermeances o f p ropylene, p ropane an d hydrogen as a function of h ydrogen reduction time for a PEI/Pebax2533/AgBF4composite membrane prepared with 5.0 mol·L?1AgBF4solution(testing pressure difference: 0.5 MPa; testing temperature:25 °C)● C3H6; ■ C3H8; ○ H2

    Figure 8 Th e p ermeances o f p ropylene, p ropane an d hydrogen as a function of h ydrogen reduction time for a PEI/Pebax2533/AgBF4composite membrane prepared with 8.0 mol·L?1AgBF4solution(testing pressure difference: 0.5 MPa; testing temperature: 25 °C).● C3H6; ■ C3H8; ○ H2

    Figure 9 Ideal selectivity of propylene/propane as a function of hy drogen reduction time for PEI/Pebax2533/AgBF4composite membranes prepared with 5.0 and 8.0 mol·L?1AgBF4solution(testing pressure difference: 0.5 MPa; testing temperature: 25 °C)○ 5.0 mol·L?1AgBF4; ● 8.0 mol·L?1AgBF4

    The structure of PEI/Pebax2533/AgBF4composite membranes after hydrogen reduction studied by X-ray diffraction using CuKαradiation with 2θ from 5° to 65°. From Fig. 11, the Bragg’s reflections exhibit 30° to 40° attribute to the existence of Ag0, which are found only in data of the hydrogen reduced membrane sample c. After hydrogen reduction, silver ions are reduced to Ag0particles and aggregate on the surface of membrane samples. The more the exposure time to hydrogen, the more silver ions are reduced to metal particles, which appear obvious diffraction peak in XRD spectrogram. The prominent non-crystal peaks at 2θ values of about 15° to 30° are attributable to thePebax2533, which weaken gradually with the increase of aggregated Ag0particles on the surface of PEI/Pebax2533/AgBF4composite membranes.

    Figure 10 Photograph of a PEI/Pebax2533/AgBF4composite membrane prepared with 8.0 mol·L?1AgBF4solution with different hydrogen reduction time

    For PEI/Pebax2533/AgBF4composite membranes, the interaction between ether oxygen and silver salt can also be reflected from the spectra of ether oxygen bond stretching mode. Fig. 12 shows FT-IR spectra of PEI/Pebax2533/AgBF4composite membranes with hydrogen reduction in the range 2100-700 cm?1. The peak appears at approximately 1100 cm?1corresponds to CO stretching frequency of ether linkages of Pebax2533 (sample a in Fig. 12). From the sample b in Fig. 12, the interaction of ether oxygen with silver ions makes ether oxygen bond stretching peak broaden and shift to lower wave numbers [10]. The interaction induces silver ions to keep disassociating and form complexes with olefins, resulting in the facilitated transport process of olefins. For PEI/Pebax2533/AgBF4composite membranes with hydrogen reduction (sample c), that the intensity of ether linkages diminishes due to the reduction of silver ions indicates the formation of silver particle layer. As the membrane sample is reduced by hydrogen, more and more silver particles aggregate on the surface of PEI/Pebax2533/AgBF4composite membrane.

    The surface morphology of PEI/Pebax2533/AgBF4composite membranes with hydrogen reduction is also monitored by three-dimensional AFM images as shown in Fig. 13. The surface morphology of PEI/Pebax2533 composite membranes is relatively smooth and featureless (sample a in Fig. 13). Due to hydrogen reduction, silver particles gradually start to form and aggregate on the membrane surface, and the membrane surface becomes relatively tough, which is reflected from samples b, c and d in Fig. 13. This phenomenon is a good agreement with the results of FT-IR spectroscopy.

    Figure 11 X-ray analysis of PEI/Pebax2533/AgBF4composite membranes with hydrogen reductiona—without AgBF4; b—prepared with 8.0 mol·L?1AgBF4; c—prepared with 8.0 mol·L?1AgBF4and reduced by hydrogen for 92 h; d—Ag

    Figure 12 FT-IR spectra of PEI/Pebax2533/AgBF4composite membranes with hydrogen reductiona—without AgBF4; b—prepared with 8.0 mol·L?1AgBF4; c—prepared with 8.0 mol·L?1AgBF4and reduced by hydrogen for 92 h

    Figure 13 AFM images of PEI/Pebax2533/AgBF4composite membranes with hydrogen reduction for 92 h

    The hydrogen reduction experiment is a relatively harsh test because pure hydrogen permeates the membrane continuously. In the actual application process, such at the bottom of a C2 splitter or on metathesis C4purge streams, the concentration of hydrogen is in the ppm range. Additionally, according to HSAB (hard and soft acid and base) theory, in a mixture with olefins, silver ions may be more resistant to hydrogen reduction because they are complexed with olefin molecules preferentially.

    From above analysis, after hydrogen reduction, the selectivity of propylene/propane for PEI/Pebax2533/ AgBF4composite membranes decreases over time. This result may reflect that the silver ions become deactivated (reduced to silver metal particles) in the presence of hydrogen. In fact, peroxide/acid treatment is very effective for regenerating membranes deactivated by hydrogen exposure [10].

    4 CONCLU SIONS

    New PEI/Pebax2533/AgBF4composite membranes are prepared and the effect of hydrogen reduction of silver ions on the membrane performance and structure is investigated. Some conclusions can be made as follows:

    (1) For PEI/Pebax2533/AgBF4composite membranes prepared with 5.0 to 8.0 mol·L?1AgBF4solutions, due to the carrier-facilitated transport, the permeances of propylene and ethylene increase with the increase of AgBF4concentration, and a high selectivity can be obtained.

    (2) For propylene/propane mixture, the swelling of propylene in Pebax2533 matrix and co-permeance of propane and propylene induce the increase of propane permeance. And the competition of propane in the sorption sites decreases the propylene permeance. The mixed-gas selectivity is lower than its ideal selectivity.

    (3) For hydrogen reduced membranes, the selectivity loss of propylene/propane is primarily due to the decreasing permeance of propylene and the increasing permeance of propane. With the increase of hydrogen reduction time, the membranes show a clearly color change from white to brown.

    (4) The data of X-ray diffraction prove that silver ions are reduced to Ag0after hydrogen reduction and aggregated on the surface of PEI/Pebax2533/AgBF4composite membranes.

    REFERENCES

    1 Baker, R.W., “Future directions of membrane gas separation technology”, Ind. Eng. Chem. Res., 41, 1393-1411 (2002).

    2 IIinitch, O.M., Semin, G.L., Chertova, M.V., Zamaraev, K.I., “Novel polymeric membranes for separation of hydrocarbons”, J. Membr. Sci., 66, 1-8 (1992).

    3 Burns, R.L., Koros, W.J., “Defining the challenges for C3H6/C3H8 separation using polymeric membranes”, J. Membr. Sci., 211, 299-309 (2003).

    4 Wind, J.D., Paul, D.R., Koros, W.J., “Natural gas permeation in polyimide membranes”, J. Membr. Sci., 228, 227-236 (2004).

    5 Park, Y.S., Won, J., Kang, Y.S., “Facilitated transport of olefin through solid PAAm and PAAm-graft composite membranes with silver ions”, J. Membr. Sci., 183,163-170 (2001).

    6 Pinnau, I., Toy, L.G., Casillas, C., “Olefin separation membrane and process”, U.S. Pat., 5670051 (1997).

    7 LeBlanc Jr., O.H., Ward, W.J., Matson, S.L., Kimura, S.G., “Facilitated transport in ion-exchange membranes”, J. Membr. Sci., 6, 339-343 (1980).

    8 Teramoto, M., Matsuyama, H., Yamashiro, T., Okamoto, S., “Separation of ethylene from ethane by a flowing liquid membrane using silver nitrate as a carrier”, J. Membr. Sci., 45, 115-136 (1989).

    9 Pinnau, I., Toy, L.G., “Solid polymer electrolyte composite membranes for olefin/ paraffin separation”, J. Membr. Sci., 184, 39-48 (2001).

    10 Merkel, T., Blanc, R., Zeid, J., Suwarlim, A., Firat, B., Wijmans, H., Asaro, M., Greene, M, “Separation of olefin/paraffin mixtures with carrier facilitated membrane”, Department of Energy Report No. DE-FC36-04GO14151 (2007).

    11 Jose, B., Ryu, J.H., Lee, B.G., “Effect of phthalates on the stability and performance of AgBF4-PVP membrane for olefin/paraffin separation”, Chem. Commun., 20, 2046-2047 (2001).

    12 Jose, B., Ryu, J.H., Kim, Y.J., Kim, H., Kang, Y.S., Lee, S.D., Kim, H.S., “Effect of plasticizers on the formation of silver nanoparticles in polymer electrolyte membranes for olefin/paraffin separation”, Chem. Mater., 14, 2134-2139 (2002).

    13 Kim, J.H., Lee, D.H., Won, J., Jinnai, H., Kang, Y.S., “The structural transitions of π-complexes of poly(styrene-β-butadiene-β-styrene) block copolymers with silver salts and their relation to facilitated olefin transport”, J. Membr. Sci., 281, 369-376 (2006).

    14 Müller, J., Peinemann, K.V., Müller, J., “Development of facilitated transport membranes for the separation of olefins from gas streams”, Desalination, 145, 339-345 (2002).

    15 Wang, Y., Ren, J., Deng, M., “Ultrathin solid polymer electrolyte PEI/Pebax2533/AgBF4composite membrane for propylene/propane separation”, Sep. Purif. Technol., 77, 46-52 (2011).

    16 Sunderrajan, S., Freeman, B.D., Hall, C.K., Pinnau, I., “Propane and propylene sorption in solid polymer electrolytes based on poly (ethylene oxide) and silver salts”, J. Membr. Sci., 182, 1-12 (2001).

    17 Morisato, A., He, Z., Pinnau, I., Merkel, T.C., “Transport properties of PA12-PTMO/AgBF4solid polymer electrolyte membranes for olefin/paraffin separation”, Desalination, 145, 347-351 (2002).

    18 Marcinkowsky, A.E., Keller II, G.E., Verma, S.K., “Olefin separation process”, U.S. Pat., 4174353 (1979).

    19 Steigelmann, E.F., “Membrane process and product”, U.S. Pat., 4014665 (1977).

    20 Kim, J.H., Min, B.R., Kim, H.S., Won, J., Kang, Y.S., “Facilitated transport of ethylene across polymer membranes containing silver salt: effect of HBF4on the photoreduction of silver ions”, J. Membr. Sci., 212, 283-288 (2003).

    2012-02-08, accepted 2012-12-28.

    * Supported by the National Natural Science Foundation of China (20776137) and the National High Technology Research and Development Program of China (2008AA06Z325).

    ** To whom correspondence should be addressed. E-mail: renjizhong@dicp.ac.cn

    猜你喜歡
    李暉雁北
    懷念雁北
    都市(2022年11期)2022-09-28 05:34:47
    雁北黑釉剔劃花瓷器分析
    青年生活(2020年23期)2020-08-04 10:27:43
    大雁北飛又南歸——尋訪原紅一軍團(tuán)供給部科員藍(lán)勇的人生足跡
    紅土地(2019年10期)2019-10-30 03:35:14
    曹乃謙小說中的區(qū)域民俗特征
    5G網(wǎng)絡(luò)安全問題分析與展望
    李暉
    Microteaching in Sports English
    24節(jié)氣
    Biocontrol Efficiency of Bacillus subtilis SL-13 and Characterization of an Antifungal Chitinase*
    色网站视频免费| 亚洲四区av| 两个人看的免费小视频| 亚洲精品乱久久久久久| 日韩人妻精品一区2区三区| 五月开心婷婷网| 成年动漫av网址| 精品99又大又爽又粗少妇毛片| av女优亚洲男人天堂| 一本久久精品| 嫩草影院入口| 亚洲精品av麻豆狂野| 久久ye,这里只有精品| 欧美国产精品一级二级三级| 日本vs欧美在线观看视频| 国产 一区精品| 七月丁香在线播放| 亚洲熟女精品中文字幕| 欧美日韩成人在线一区二区| 精品福利永久在线观看| 国产熟女欧美一区二区| 国产白丝娇喘喷水9色精品| 看免费成人av毛片| 国产伦理片在线播放av一区| 少妇的逼水好多| 久久毛片免费看一区二区三区| 日韩电影二区| 免费少妇av软件| 青春草视频在线免费观看| 亚洲国产精品国产精品| 国产野战对白在线观看| 久久久精品区二区三区| 少妇人妻精品综合一区二区| 欧美精品亚洲一区二区| 国产黄色视频一区二区在线观看| 国产精品熟女久久久久浪| 最近手机中文字幕大全| 老司机影院成人| av国产久精品久网站免费入址| 高清不卡的av网站| 久久精品国产综合久久久| 久久午夜福利片| 热99国产精品久久久久久7| 日本欧美国产在线视频| a 毛片基地| 久久久久精品性色| 少妇熟女欧美另类| 久久久精品区二区三区| 99re6热这里在线精品视频| 欧美成人午夜免费资源| 女人高潮潮喷娇喘18禁视频| 国产日韩欧美亚洲二区| 成年动漫av网址| 欧美老熟妇乱子伦牲交| 免费在线观看完整版高清| 国产一区二区三区综合在线观看| 亚洲国产精品999| 成年人免费黄色播放视频| 亚洲经典国产精华液单| 国产成人精品久久久久久| 日韩人妻精品一区2区三区| 欧美日韩成人在线一区二区| 久久精品久久久久久噜噜老黄| 久久精品久久久久久噜噜老黄| 99久久中文字幕三级久久日本| 成人国语在线视频| 国产成人免费观看mmmm| 桃花免费在线播放| 99精国产麻豆久久婷婷| 国产免费福利视频在线观看| 亚洲av中文av极速乱| 中文字幕人妻熟女乱码| 99香蕉大伊视频| 桃花免费在线播放| 国产亚洲午夜精品一区二区久久| 欧美中文综合在线视频| 国产毛片在线视频| 免费大片黄手机在线观看| 女人久久www免费人成看片| 狠狠婷婷综合久久久久久88av| 视频在线观看一区二区三区| 亚洲天堂av无毛| 亚洲伊人久久精品综合| 国产一区亚洲一区在线观看| 制服人妻中文乱码| 丰满迷人的少妇在线观看| 欧美另类一区| 黑人欧美特级aaaaaa片| 久久青草综合色| 午夜福利影视在线免费观看| 在现免费观看毛片| 97精品久久久久久久久久精品| 亚洲成人一二三区av| 91成人精品电影| 免费看不卡的av| 在线天堂中文资源库| av.在线天堂| 母亲3免费完整高清在线观看 | 黑丝袜美女国产一区| 最近最新中文字幕大全免费视频 | 999久久久国产精品视频| 亚洲精品一区蜜桃| 巨乳人妻的诱惑在线观看| 成人午夜精彩视频在线观看| 少妇的逼水好多| 国产一区二区三区综合在线观看| 人体艺术视频欧美日本| av网站免费在线观看视频| 这个男人来自地球电影免费观看 | 国产精品无大码| 亚洲欧洲国产日韩| 国产成人精品婷婷| 免费av中文字幕在线| 黄片播放在线免费| 久久人人爽av亚洲精品天堂| 午夜免费鲁丝| 午夜日韩欧美国产| 美女国产高潮福利片在线看| 人妻系列 视频| 超碰97精品在线观看| 亚洲伊人色综图| av视频免费观看在线观看| 亚洲国产日韩一区二区| 国产一区二区激情短视频 | 成年美女黄网站色视频大全免费| 日韩av在线免费看完整版不卡| 日韩中字成人| 国产精品人妻久久久影院| 成人漫画全彩无遮挡| 久久精品国产综合久久久| 人妻少妇偷人精品九色| 国产无遮挡羞羞视频在线观看| 久久精品国产亚洲av天美| 1024香蕉在线观看| 国产成人精品在线电影| 最近中文字幕2019免费版| 在线看a的网站| 青草久久国产| 少妇人妻 视频| 日韩av免费高清视频| 一区二区三区四区激情视频| 免费日韩欧美在线观看| 婷婷色av中文字幕| 国产精品久久久av美女十八| 免费女性裸体啪啪无遮挡网站| 国产女主播在线喷水免费视频网站| 亚洲精品日韩在线中文字幕| 国产精品一国产av| 免费不卡的大黄色大毛片视频在线观看| 国产高清国产精品国产三级| 久久精品国产亚洲av天美| 自线自在国产av| 一本大道久久a久久精品| 国产免费一区二区三区四区乱码| 男女国产视频网站| 免费av中文字幕在线| 高清不卡的av网站| 精品久久久精品久久久| 午夜激情av网站| 丝袜在线中文字幕| 黑人巨大精品欧美一区二区蜜桃| 免费看不卡的av| 成人亚洲精品一区在线观看| 国产成人精品久久二区二区91 | 巨乳人妻的诱惑在线观看| 欧美人与善性xxx| 国产精品av久久久久免费| 在线观看免费日韩欧美大片| 亚洲色图 男人天堂 中文字幕| 视频在线观看一区二区三区| 亚洲av.av天堂| 伦理电影免费视频| 国产精品一二三区在线看| 伊人久久国产一区二区| 宅男免费午夜| 成人亚洲欧美一区二区av| 久久久亚洲精品成人影院| 日韩不卡一区二区三区视频在线| 国产高清国产精品国产三级| 99久国产av精品国产电影| 国产亚洲精品第一综合不卡| 热99久久久久精品小说推荐| 国产在线视频一区二区| 午夜日本视频在线| 一本色道久久久久久精品综合| 在线观看美女被高潮喷水网站| 国产 精品1| 国产精品麻豆人妻色哟哟久久| 国产免费现黄频在线看| 亚洲精品久久久久久婷婷小说| 国产亚洲欧美精品永久| 亚洲综合精品二区| 韩国精品一区二区三区| 日韩在线高清观看一区二区三区| 免费女性裸体啪啪无遮挡网站| 国产欧美日韩综合在线一区二区| 一级毛片电影观看| 99久国产av精品国产电影| 丝瓜视频免费看黄片| 亚洲在久久综合| 在线看a的网站| 日韩一卡2卡3卡4卡2021年| 国产一区二区 视频在线| 欧美日韩av久久| 乱人伦中国视频| 中文字幕人妻丝袜一区二区 | 国产精品一区二区在线观看99| 久久99精品国语久久久| 黑人猛操日本美女一级片| 中文字幕精品免费在线观看视频| 伊人久久国产一区二区| 精品人妻熟女毛片av久久网站| 欧美亚洲 丝袜 人妻 在线| 欧美精品国产亚洲| 9191精品国产免费久久| 久久久久久久国产电影| 久久亚洲国产成人精品v| 欧美精品一区二区大全| 免费播放大片免费观看视频在线观看| 亚洲情色 制服丝袜| 欧美日韩av久久| 日本欧美视频一区| 亚洲人成77777在线视频| 日本色播在线视频| 伦理电影免费视频| 五月天丁香电影| 男女午夜视频在线观看| 国产一区二区激情短视频 | 超色免费av| 七月丁香在线播放| 精品少妇内射三级| 美女视频免费永久观看网站| 国产午夜精品一二区理论片| 国产高清不卡午夜福利| 国产极品天堂在线| 99热网站在线观看| 91精品国产国语对白视频| 亚洲精品中文字幕在线视频| 巨乳人妻的诱惑在线观看| 国产探花极品一区二区| 午夜福利网站1000一区二区三区| 日韩人妻精品一区2区三区| 免费观看a级毛片全部| 日韩av免费高清视频| 免费观看性生交大片5| 秋霞在线观看毛片| 久久这里有精品视频免费| 亚洲国产精品一区二区三区在线| av免费在线看不卡| 啦啦啦在线免费观看视频4| 国产精品99久久99久久久不卡 | 久久99热这里只频精品6学生| 天堂8中文在线网| 国产精品99久久99久久久不卡 | 男人添女人高潮全过程视频| 国产欧美亚洲国产| av在线观看视频网站免费| av一本久久久久| 九色亚洲精品在线播放| 国产xxxxx性猛交| 欧美激情高清一区二区三区 | 精品国产一区二区久久| 校园人妻丝袜中文字幕| 亚洲国产精品成人久久小说| 精品人妻一区二区三区麻豆| 免费高清在线观看日韩| 亚洲精品久久久久久婷婷小说| 午夜久久久在线观看| 欧美人与性动交α欧美软件| 国产欧美日韩一区二区三区在线| 伦精品一区二区三区| 免费高清在线观看视频在线观看| 欧美国产精品一级二级三级| 国产 精品1| 80岁老熟妇乱子伦牲交| 天天躁夜夜躁狠狠久久av| 夫妻午夜视频| 少妇熟女欧美另类| 美女中出高潮动态图| 天堂中文最新版在线下载| 一区在线观看完整版| 久久99热这里只频精品6学生| 久久久久久免费高清国产稀缺| 18+在线观看网站| 亚洲激情五月婷婷啪啪| 精品久久久久久电影网| 一级毛片电影观看| 欧美黄色片欧美黄色片| 精品久久久精品久久久| 久久99一区二区三区| 亚洲精品一区蜜桃| 少妇被粗大的猛进出69影院| 男女免费视频国产| 亚洲av福利一区| a 毛片基地| 国产淫语在线视频| 日韩人妻精品一区2区三区| 国产亚洲最大av| 一区二区三区激情视频| 国产一区二区三区综合在线观看| 欧美人与性动交α欧美精品济南到 | 巨乳人妻的诱惑在线观看| 国产女主播在线喷水免费视频网站| 一级毛片电影观看| 韩国av在线不卡| 深夜精品福利| 婷婷色综合大香蕉| 久久韩国三级中文字幕| 亚洲图色成人| 午夜福利在线观看免费完整高清在| 最近最新中文字幕免费大全7| 夜夜骑夜夜射夜夜干| 国产免费又黄又爽又色| 一级,二级,三级黄色视频| 青青草视频在线视频观看| 女人被躁到高潮嗷嗷叫费观| 五月开心婷婷网| 日本vs欧美在线观看视频| 超碰成人久久| 欧美变态另类bdsm刘玥| 国产精品国产三级专区第一集| 久久综合国产亚洲精品| 久久人人97超碰香蕉20202| 波野结衣二区三区在线| 久久久久视频综合| 9热在线视频观看99| 久久久欧美国产精品| 亚洲色图 男人天堂 中文字幕| av卡一久久| 国产xxxxx性猛交| 亚洲av中文av极速乱| 久久精品久久精品一区二区三区| 熟妇人妻不卡中文字幕| 女人久久www免费人成看片| 国产精品亚洲av一区麻豆 | 久久久久国产精品人妻一区二区| 久久毛片免费看一区二区三区| 亚洲色图 男人天堂 中文字幕| 国产综合精华液| 免费黄网站久久成人精品| 国产熟女欧美一区二区| 午夜久久久在线观看| 超碰97精品在线观看| 波野结衣二区三区在线| 国产男人的电影天堂91| 青春草国产在线视频| 精品酒店卫生间| 免费不卡的大黄色大毛片视频在线观看| 国产精品99久久99久久久不卡 | 少妇被粗大的猛进出69影院| 黄片无遮挡物在线观看| 中文字幕av电影在线播放| 免费黄频网站在线观看国产| 欧美精品人与动牲交sv欧美| 亚洲情色 制服丝袜| 久久久a久久爽久久v久久| 国产精品 国内视频| 成人漫画全彩无遮挡| 欧美日韩亚洲高清精品| 你懂的网址亚洲精品在线观看| 夫妻午夜视频| 香蕉精品网在线| av.在线天堂| 亚洲精品国产色婷婷电影| 欧美成人精品欧美一级黄| 精品国产乱码久久久久久男人| 黑人猛操日本美女一级片| 纯流量卡能插随身wifi吗| 天堂中文最新版在线下载| 欧美国产精品一级二级三级| 蜜桃国产av成人99| 在线天堂最新版资源| 欧美精品国产亚洲| 建设人人有责人人尽责人人享有的| 国产白丝娇喘喷水9色精品| 久久久久视频综合| 久久人人爽人人片av| 成人免费观看视频高清| 亚洲综合色网址| 久久精品久久久久久久性| 久久国产精品大桥未久av| 丰满乱子伦码专区| 三上悠亚av全集在线观看| 永久网站在线| 亚洲情色 制服丝袜| 18禁观看日本| 久久99一区二区三区| 亚洲国产精品一区三区| 久久精品国产鲁丝片午夜精品| 亚洲av欧美aⅴ国产| 91在线精品国自产拍蜜月| 日本欧美视频一区| 超色免费av| 精品久久久精品久久久| 少妇被粗大的猛进出69影院| 欧美bdsm另类| 国产精品久久久久久精品电影小说| 精品少妇黑人巨大在线播放| 国产麻豆69| 亚洲欧美一区二区三区国产| 五月开心婷婷网| 国产精品三级大全| 国产精品蜜桃在线观看| 成人毛片60女人毛片免费| 日本爱情动作片www.在线观看| 日韩视频在线欧美| 欧美日韩精品成人综合77777| 老司机影院成人| 久久鲁丝午夜福利片| av又黄又爽大尺度在线免费看| 精品国产超薄肉色丝袜足j| 欧美日韩一区二区视频在线观看视频在线| 两个人看的免费小视频| 丁香六月天网| 超色免费av| 夜夜骑夜夜射夜夜干| 亚洲久久久国产精品| 大码成人一级视频| 晚上一个人看的免费电影| 永久网站在线| 亚洲精品av麻豆狂野| 人妻 亚洲 视频| 亚洲国产av新网站| 一区二区三区激情视频| 日韩精品免费视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 女性被躁到高潮视频| 女性生殖器流出的白浆| 免费av中文字幕在线| 国产亚洲av片在线观看秒播厂| 91国产中文字幕| 国产精品久久久久成人av| 捣出白浆h1v1| 可以免费在线观看a视频的电影网站 | 亚洲一区二区三区欧美精品| 精品国产国语对白av| 黄片小视频在线播放| 少妇的丰满在线观看| 香蕉精品网在线| 亚洲精品自拍成人| 大片免费播放器 马上看| 久久这里有精品视频免费| 性少妇av在线| 三级国产精品片| 免费女性裸体啪啪无遮挡网站| 亚洲精品av麻豆狂野| 少妇被粗大的猛进出69影院| 色婷婷av一区二区三区视频| 建设人人有责人人尽责人人享有的| 亚洲国产精品一区二区三区在线| 卡戴珊不雅视频在线播放| 国产精品无大码| 国产精品人妻久久久影院| 黄色 视频免费看| 日韩一本色道免费dvd| 国产在视频线精品| 99re6热这里在线精品视频| 啦啦啦在线观看免费高清www| 亚洲国产成人一精品久久久| 视频在线观看一区二区三区| 午夜老司机福利剧场| 十八禁网站网址无遮挡| 男女国产视频网站| 久久国产精品男人的天堂亚洲| 日韩不卡一区二区三区视频在线| 麻豆乱淫一区二区| 交换朋友夫妻互换小说| 咕卡用的链子| 亚洲在久久综合| 成人影院久久| 精品视频人人做人人爽| 国产一区二区在线观看av| 亚洲精品中文字幕在线视频| 天天躁夜夜躁狠狠久久av| 亚洲精品国产av成人精品| 亚洲精品美女久久av网站| 丰满乱子伦码专区| 精品一区二区三卡| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕制服av| 午夜av观看不卡| 久久精品夜色国产| 精品国产乱码久久久久久男人| 男男h啪啪无遮挡| 精品人妻熟女毛片av久久网站| 国产精品 欧美亚洲| 国产xxxxx性猛交| 桃花免费在线播放| 在线亚洲精品国产二区图片欧美| 超色免费av| 一二三四在线观看免费中文在| 亚洲人成77777在线视频| av国产精品久久久久影院| 国产毛片在线视频| √禁漫天堂资源中文www| av在线老鸭窝| 少妇人妻久久综合中文| 亚洲精品国产av蜜桃| 国产一区二区三区av在线| 一边摸一边做爽爽视频免费| 欧美精品一区二区大全| 老司机亚洲免费影院| 叶爱在线成人免费视频播放| 久久国产亚洲av麻豆专区| 看免费成人av毛片| 日韩成人av中文字幕在线观看| 亚洲精华国产精华液的使用体验| 国产男女内射视频| 巨乳人妻的诱惑在线观看| 七月丁香在线播放| 久久久久久人妻| 欧美日韩一级在线毛片| 国产一级毛片在线| 制服诱惑二区| 热re99久久精品国产66热6| 免费高清在线观看视频在线观看| 国产成人aa在线观看| 国产福利在线免费观看视频| 日韩欧美精品免费久久| 黑丝袜美女国产一区| 国产成人a∨麻豆精品| 日本黄色日本黄色录像| 青青草视频在线视频观看| 久久亚洲国产成人精品v| 成人影院久久| 欧美变态另类bdsm刘玥| 欧美少妇被猛烈插入视频| 日韩精品免费视频一区二区三区| 少妇的丰满在线观看| 一级爰片在线观看| 久久久久久伊人网av| videos熟女内射| 亚洲av男天堂| 新久久久久国产一级毛片| 女人精品久久久久毛片| 亚洲精品一区蜜桃| 少妇人妻 视频| 免费黄网站久久成人精品| 久久精品久久久久久噜噜老黄| 久久久久久久大尺度免费视频| 国产 一区精品| 欧美 日韩 精品 国产| 制服诱惑二区| 婷婷成人精品国产| 如日韩欧美国产精品一区二区三区| 麻豆乱淫一区二区| av在线观看视频网站免费| 精品国产超薄肉色丝袜足j| 成人手机av| 亚洲成人一二三区av| 亚洲熟女精品中文字幕| 美女视频免费永久观看网站| 一区在线观看完整版| 纯流量卡能插随身wifi吗| av福利片在线| 伊人久久大香线蕉亚洲五| 一区二区av电影网| 伊人久久大香线蕉亚洲五| 少妇人妻 视频| 十八禁高潮呻吟视频| 亚洲一级一片aⅴ在线观看| 精品亚洲成国产av| 色吧在线观看| 国产又爽黄色视频| 熟女少妇亚洲综合色aaa.| h视频一区二区三区| 多毛熟女@视频| 欧美变态另类bdsm刘玥| 亚洲精品国产色婷婷电影| 免费在线观看完整版高清| 校园人妻丝袜中文字幕| 十八禁网站网址无遮挡| 日日摸夜夜添夜夜爱| 免费高清在线观看日韩| 一本久久精品| 国产女主播在线喷水免费视频网站| a 毛片基地| 欧美亚洲 丝袜 人妻 在线| 老汉色∧v一级毛片| 久久精品久久久久久噜噜老黄| av线在线观看网站| 中文字幕色久视频| 一区二区日韩欧美中文字幕| 久久久精品94久久精品| 久久亚洲国产成人精品v| 校园人妻丝袜中文字幕| 日韩熟女老妇一区二区性免费视频| 亚洲国产欧美网| 美女xxoo啪啪120秒动态图| 亚洲第一青青草原| 黄色怎么调成土黄色| 久久精品人人爽人人爽视色| 久久精品国产综合久久久| 国产成人精品久久久久久| 97精品久久久久久久久久精品| 国产精品无大码| 久久久久久人妻| 免费不卡的大黄色大毛片视频在线观看| 青春草视频在线免费观看| 成人影院久久| 老汉色av国产亚洲站长工具| 亚洲国产欧美网| 最近最新中文字幕大全免费视频 | 熟女电影av网| 老司机亚洲免费影院| 久久久亚洲精品成人影院| 天堂俺去俺来也www色官网| 看非洲黑人一级黄片| 伊人久久国产一区二区| 777米奇影视久久| 午夜免费男女啪啪视频观看| 青青草视频在线视频观看| 成人亚洲精品一区在线观看| 一本大道久久a久久精品| a级毛片在线看网站|