• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adsorption and Desorption Behavior of Tannic Acid in Aqueous Solution on Polyaniline Adsorbent*

    2013-06-07 11:21:31WANGJiahong王家宏JIYanfen吉艷芬DINGShaolan丁紹蘭MAHongrui馬宏瑞andHANXiaojing韓曉晶
    關(guān)鍵詞:王家

    WANG Jiahong (王家宏), JI Yanfen (吉艷芬), DING Shaolan (丁紹蘭), MA Hongrui (馬宏瑞)and HAN Xiaojing (韓曉晶)

    1College of Resource and Environment, Shaanxi University of Science & Technology, Xi’an 710021, China

    2Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China

    Adsorption and Desorption Behavior of Tannic Acid in Aqueous Solution on Polyaniline Adsorbent*

    WANG Jiahong (王家宏)1,2,**, JI Yanfen (吉艷芬)1, DING Shaolan (丁紹蘭)1, MA Hongrui (馬宏瑞)1and HAN Xiaojing (韓曉晶)2

    1College of Resource and Environment, Shaanxi University of Science & Technology, Xi’an 710021, China

    2Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China

    Tannic acid is generally considered as one of polyphenolic pollutants, which may cause severe threats to the environment. In this study, polyaniline adsorbent was synthesized by chemical oxidation to remove tannic acid in aqueous solutions. The adsorption amount of tannic acid varied greatly with pH of solution and strong adsorption was at pH 5.8-6.7. Coexisting cations, such as Na+, K+, and Ca2+, can enhance the adsorption of tannic acid on polyaniline, which may be contributed to the electrostatic interaction between tannic acid and polyaniline. The adsorption process could be well described by Langmuir model and the maximum adsorption capacity was 117.65 mg·g?1at 35 °C and pH 6.0. The thermodynamic parameters calculated from the adsorption isotherms indicate that the adsorption of tannic acid is spontaneous and endothermic process. The polyaniline saturated with tannic acid can be desorbed in alkaline solution and regenerated adsorbent can be used repeatedly with high adsorption capacity, which implies that polyaniline adsorbents have a great potential in water purification for the removal of tannic acid.

    polyaniline, adsorption, desorption, tannic acid

    1 INTRODUCTION

    Tannic acid is one of phytic substances, from the decomposition of plant biomass. Tannic acid is present in most surface and ground water, which is also identified in industrial wastewater streams from coir and cork factories, paper and pulp board mills, tanneries, etc [1]. As a water soluble polyphenolic compound, tannic acid has been found to be toxic to the aquatic organism such as algae, fish and invertebrates [2, 3]. Moreover, tannic acid is a natural dissolved organic matter, which may react with chlorine disinfectants and form carcinogenic disinfection by-products during drinking water production [4, 5]. Hence, it is necessary to develop effective methods to minimize tannic acid in drinking water or other process waters.

    Adsorption treatment is usually considered as an effective approach to remove polyphenolic compounds from aqueous solutions because of its simplicity and high efficiency. For example, it is found that activated carbon, clay, resin, metal-oxide and chitosan remove tannic acid from aqueous solutions effectively [6-12]. Among them, amino-adsorbents, such as aminated chitosan and polymeric resin, show high adsorption capacity, in which amino groups on the adsorbent matrix may play an important role on adsorption of tannic acid [11-13].

    Polyaniline and its composites as adsorbents show strong affinity for organic and inorganic pollutants in aqueous solutions because of its large amount of amine and imine nitrogen. For example, heavy metals such as mercury, chromium, and arsenate can be efficiently removed from aqueous solutions by complexation, ion exchange and reduction process [14-19], and a few studies have been conducted for the removal of organic pollutants [20, 21]. However, no effort has been made to remove tannic acid from aqueous solutions by polyaniline and its composites.

    In this study, polyaniline adsorbent is synthesized by chemical oxidation. Adsorption and desorption of tannic acid on polyaniline are studied by batch experiments. Effects of pH of solution and ionic strength on the adsorption are also investigated.

    2 EX PERIMENTAL

    2.1 Materials

    Tannic acid of ACS reagent grade was purchased from Sigma Chemical Co. All other reagents of analytical grade were purchased from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China.

    Polyaniline was prepared by conventional chemical oxidation according to the procedure described by Shimano and MacDiarmid [22]. Briefly, 0.11 mmol aniline was dissolved in 300 ml HCl (1.0 mol·L?1) and 0.11 mmol ammonium peroxodisulphate was dissolved in 200 ml HCl (1.0 mol·L?1). Both solutions were cooled to 273-277 K in an ice bath. Then, ammonium peroxodisulphate solution was added to the aniline solution with continuous stirring in an ice bath. After reaction for 2 h at temperature below 277 K under N2protection, the dark-green precipitate was filteredand washed with copious deionized water until the filtrate became colorless. The resulting material was dried in a vacuum desiccator.

    2.2 Characterization of polyaniline

    Fourier transform infrared (FTIR) spectrum of polyaniline was recorded on a Nicolet Nexus 870 FTIR spectrometer (Nicolet, USA) with the KBr pellet technique. BET surface area was calculated from N2adsorption-desorption isotherms collected on a Micromeritics ASAP 2200 instrument. The surface zeta potential of polyaniline was measured using Zeta Potential Analyzer (Brookhaven Instruments Co.) [23].

    2.3 Adsorption experiment

    A series of batch experiments were conducted to determine the adsorption isotherms, adsorption kinetics, and effects of solution pH and ionic strength on adsorption of tannic acid. In the preliminary tests, the adsorption reached equilibrium within 24 h. For determination of adsorption isotherms, 25 mg polyaniline was dispensed in 60 ml polytetrafluoroethylene-lined screw cap glass tubes containing 50 ml tannic acid solution at pH 6.0 and different initial concentrations in the range of 10-100 mg·L?1. The suspensions were mixed in incubator shaker at 15, 25, and 35 °C and shaken at 120 r·min?1for 24 h. After reaching adsorption equilibrium, the adsorbents were separated from solution by filtration and the residual concentrations of tannic acid in the aliquot were measured by a UV-vis spectrophotometer at wavelength 278 nm [10]. The adsorption amount of tannic acid on polyaniline was calculated as follows

    where C0(mg·L?1) is the initial concentration of tannic acid, Ce(mg·L?1) is the equilibrium concentration, V (L) is the volume of solution, and W (g) is the mass of polyaniline.

    In the experiments of adsorption kinetics, 250 mg polyaniline adsorbent was added into 500 ml flask containing 500 ml tannic acid solution at pH value of 6.0 and initial concentration of 25, 50, and 100 mg·L?1separately, with strongly stirred in an incubator at 25 °C. At time intervals, 4 ml of sample was withdrawn from the flask and filtrated. The residual tannic acid concentration in the solution was determined spectrophotometrically.

    To study the effect of solution pH on the adsorption, a series of glass tubes with 25 mg polyaniline and 50 ml of 50 mg·L?1tannic acid solution were pre-adjusted to the desired pH value by 0.1 mol·L?1HCl or NaOH and shaken in an incubator at 120 r·min?1and 25 °C for 24 h. Effect of ionic strength on the adsorption was studied by dispersing 25 mg of adsorbents in 50 ml of NaCl, KCl, or CaCl2solution (2.5-25 mmol·L?1) containing 50 mg·L?1tannic acid at pH 6.0 and 25 °C.

    2.4 Desorption and regeneration

    To examine the desorption of tannic acid from polyaniline adsorbent, 25 mg polyaniline was placed into 50 ml of 50 mg·L?1tannic acid solution. After the adsorption in an incubator at pH 6.0 and 25 °C for 24 h, the loaded polyaniline was separated centrifugally and regenerated in 50 ml 0.1 mol·L?1NaOH solution for 2 h. Then regenerated polyaniline was separated centrifugally and washed with deionized water for four times to remove desorbed tannic acid. The adsorption and regeneration experiments were conducted for 4 cycles.

    3 RESUL TS AND DISCUSSION

    3.1 Characterization of adsorbent

    BET analysis shows that the surface area of polyaniline is 29.97 m2·g?1. The FTIR spectrum of polyaniline is shown in Fig. 1. The characteristic vibration peaks of CC groups at 1575 and 1496 cm?1are ascribed to the quinine ring and benzene ring of polyaniline, respectively. The other characteristic peaks at 1301, 1245, 1105 and 804 cm?1are assigned to CN stretching vibration connected with benzene ring, CN+·stretching vibration, CN stretching vibration connected with quinine ring, and CH out of plane bending vibration, respectively. The observations suggest that as-synthesized polyaniline is in its emeraldine salt state [14].

    Figure 1 FTIR spectrum of polyaniline adsorbent

    3.2 Adsorption experiments

    3.2.1Effect of solution pH on the adsorption

    The effect of solution pH on the adsorption is shown in Fig. 2. The adsorption amount of tannic acid on polyaniline increases with pH in 3.0-5.8, which may be explained by the surface properties of adsorbent. Zeta potential of polyaniline is illustrated in Fig. 3. The isoelectric point (IEP) of polyaniline is about 5.8,so at pH below 5.8 the polyaniline adsorbent carries positive charges due to the protonation of imine and amine groups. When the IEP is about 4.5, tannic acid molecules exist as anions at pH 4.5-5.8, which may invoke the strong electrostatic interaction between positive polyaniline and negative tannic acid and enhance the adsorption of tannic acid [12]. In contrast, at pH below 4.5, tannic acid is in neutral form, and the weak hydrogen bonding interaction may be responsible for the less adsorption. At pH above 6.7, the adsorption amount of tannic acid decreases as solution pH increases due to the repulsive force between negative polyaniline and negative tannic acid. Moreover, higher solution pH improves the solubility of tannic acid, which may decrease its adsorption. The high adsorption amount at pH 5.8-6.7 suggest that in addition to electrostatic interactions, other driving forces such as the hydrogen bonding between tannic acid and uncharged polyaniline chain may contribute to the enhanced adsorption.

    3.2.2Effect of ionic strength on the adsorption

    Effect of different cations (Na+, K+, Ca2+) on the adsorption of tannic acid on polyaniline is shown in Fig. 4. The presence of Na+, K+, and Ca2+can improve the adsorption, and the adsorption amount increases with ionic concentration of three cations. The adsorption is enhanced in the order of Ca2+>K+≈Na+. It is notable that the adsorption amount increases markedly from 73.41 to 86.15 mg·g?1with Ca2+concentration from 0 to 10 mmol·L?1and gradually becomes constant as Ca2+concentration increases further, because the presence of Ca2+may weaken the repulsive forces between tannic acid molecules in the solution and adsorbed on polyaniline, which may create favorable adsorption sites and enhance the adsorption. Moreover, Ca2+adsorbed on polyaniline may form complex compound with tannic acid [24], which may be another reason for enhancing the adsorption. In addition, an increase in ionic strength decreases the solubility of tannic acid, which favors the transfer of tannic acid molecules from the solution to adsorbent surface, improving their adsorption [8]. The strong dependence of adsorption on ionic strength suggests that electrostatic interaction may play a significant role in the adsorption of tannic acid onto polyaniline [10].

    3.2.3Adsorption isotherms

    Adsorption isotherms of tannic acid on polyaniline adsorbent at 15, 25, and 35 °C are illustrated in Fig. 5. The adsorption amount increases with the increase of equilibrium concentration of tannic acid in the solution and reaches a plateau. To verify the adsorption mechanism, Langmuir and Freundlich models are used to fit the experimental data. The Langmuir model is given as

    Figure 2 Effect of solution pH on the adsorption of tannic acid on polyaniline

    Figure 3 Zeta potential of polyaniline as a function of pH

    Figure 4 Effect of ionic strength on adsorption of tannic acid on polyaniline▲ Ca2+; ■ K+; ◆ Na+

    and the Freundlich model can be expressed as

    where qeis the equilibrium adsorption amount, qmis the theoretical maximum adsorption capacity, Ceis the equilibrium concentration of tannic acid, b is the affinity coefficient, Kfis the Freundlich constant, and 1/n is the heterogeneity factor.

    Fitted parameters of adsorption isotherms by Langmuir and Freundlich models at 15, 25, and 35 °Care listed in Table 1. All the correlation factors (R2) with Langmuir model are larger than those with Freundlich model, suggesting that Langmuir model is preferable to Freundlich model.

    Figure 5 Adsorption isotherms of tannic acid on polyaniline■ 35 °C; ◆ 25 °C; ▲ 15 °C

    Table 1 Fitted parameters of adsorption isotherm by Freundlich and Langmuir model

    Separation factor is the characteristic parameter of Langmuir isotherm, which is defined as

    where C0is the initial concentration of tannic acid and b is the Langmuir isotherm constant [25]. The adsorption process is favorable at RL<1 and unfavorable at RL>1. The calculated RLvalues between 0.088 and 0.0096 at the initial concentration of 10-100 mg·L?1and 25 °C indicate that the adsorption of tannic acid on polyaniline is favorable.

    Thermodynamic parameters for adsorption of tannic acid on polyaniline adsorbent, such as the change in standard free energy ΔG?, enthalpy ΔH?, and entropy ΔS?, can be obtained from adsorption isotherms with following equations

    where R is the gas constant, T is the adsorption temperature, Kcis the equilibrium constant, and CAeand CSeare the equilibrium concentrations adsorbed on the adsorbent and in the solution, respectively.

    The thermodynamic parameters for adsorption of tannic acid on polyaniline at different concentrations are calculated and illustrated in Table 2. The negative free energy values of ΔG?reveal that the adsorption of tannic acid on polyaniline is spontaneous and thermodynamically favorable at tested temperatures. The free energy is more negative at higher temperature at all concentrations tested, suggesting that the spontaneity of adsorption process increases with temperature [26]. The positive value of enthalpy change ΔH?manifests that the adsorption is endothermic. In addition, the positive value of entropy ΔS?shows the strong affinity of tannic acid molecules on polyaniline surface.

    Table 2 Thermodynamic parameters for adsorption of tannic acid on polyaniline adsorbent

    3.2.4Adsorption kinetics

    The adsorption kinetics of tannic acid on polyaniline is shown in Fig. 6. The adsorption of tannic acid is quick in the first 2 h and reaches equilibrium within 6 h. To describe experimental data, the pseudofirst-order and pseudo-second-order models are used. The pseudo-first-order kinetics model is given as

    The pseudo-second-order kinetics model is expressed as

    Figure 6 Adsorption kinetics of tannic acid on polyaniline at different initial concentrations▲ 100 mg·L?1; ■ 50 mg·L?1; ◆ 25 mg·L?1

    Table 3 Fitted parameters for adsorption of tannic acid on polyaniline

    where qeis the equilibrium adsorption amount, qtis the adsorption amount at time t, k1and k2are pseudofirst-order and pseudo-second-order rate constants, respectively.

    The fitted parameters based on the two models are tabulated in Table 3. With the pseudo-first-order kinetic model, the correlation coefficient (R2) is relatively low and the calculated equilibrium amount is not in agreement with the experimental data, so the model is not appropriate. With the pseudo-second-order kinetics, the correlation coefficient is satisfactory (R2>0.99) and the calculated equilibrium adsorption amount is almost identical to the experimental data, suggesting that the adsorption of tannic acid on polyaniline obeys the pseudo-second-order kinetics. In addition, the rate constants of adsorption at initial concentration of 25, 50, and 100 mg·L?1are 5.59×10?3, 2.08×10?3, and 1.12×10?3g·mg?1·min?1, respectively, indicating more rapid uptake rate at lower initial concentration of tannic acid, probably because tannic acid molecules in the solution can easily find available amino or imine groups of polyaniline and attach instantly to the adsorbent surface at lower initial concentrations. However, at higher initial concentrations, a larger number of tannic acid molecules are adsorbed on the surface of polyaniline and occupy most of active adsorption sites, so that tannic acid molecules to be further adsorbed must overcome the electrostatic repulsion with those in the solution and find available adsorption sites on the surface, leading to lower adsorption rate.

    3.3 Desorption and regeneration

    The suppressed adsorption amount of tannic acid on polyaniline at higher pH implies that the loaded polyaniline can be desorbed in alkaline solutions. The adsorption amount of tannic acid with regenerated adsorbent is shown in Fig. 7. The adsorption amount decreases by 12.1% and 21.7% in the first and second adsorption-regeneration cycle, respectively, but does not change obviously in the next two cycles, indicating that the regenerated polyaniline possesses relatively high adsorption capacity and can be recycled in removal of tannic acid in aqueous solutions.

    4 CONCLU SIONS

    The polyaniline adsorbent prepared by chemical oxidation is in its emeraldine salt state. Polyaniline adsorbents show high adsorption capacity for tannic acid in its aqueous solutions. The adsorption of tannic acid is highly dependent on solution pH and the maximum adsorption amount is at pH 5.8-6.7. Coexisting cations such as Na+, K+, and Ca2+may improve the electrostatic force between tannic acid and polyaniline and increase the adsorption of tannic acid onto polyaniline. The loaded polyaniline can be easily desorbed by NaOH solutions and the regenerated adsorbent possesses relatively high adsorption capacity. The results indicate that polyaniline may be used as an adsorbent in removal of tannic acid from water and wastewater.

    Figure 7 Adsorption amount of tannic acid on virgin and regenerated p olyaniline in fou r s uccessive ad sorption-regeneration cycles

    REFERENCES

    1 Buso, A., Balbo, L., Giomo, M., Farnia, G., Sandona, G., “Electrochemical removal of tannins from aqueous solutions”, Ind. Eng. Chem. Res.,39(2), 494-499 (2000).

    2 Lowry, J., McSweeney, C., Palmer, B., “Changing perceptions of the effect of plant phenolics on nutrient supply in the ruminant”, Aust. J. Agric. Res.,47(6), 829-842 (1996).

    3 Liao, X.P., Lu, Z.B., Shi, B., “Selective adsorption of vegetable tannins onto collagen fibers”, Ind. Eng. Chem. Res.,42(14), 3397-3402 (2003).

    4 Lu, Z.Y., Jiang, B.C., Li, A.M., Wang, X., Ma, Y.F., Sheng, X.P.,“Competitive adsorption of tannic acid and phenol onto a bi-functional polymeric adsorbent”, Acta. Chim. Sinica,68(5), 437-442 (2010).

    5 Lin, Y.L., Chiang, P.C., Chang, E.E., “Removal of small trihalomethane precursors from aqueous solution by nanofiltration”, J. Hazard. Mater.,146(1-2), 20-29 (2007).

    6 Rivera-Utrilla, J., Moreno-Castilla, C., Utrera-Hidalgo, E., Carrasco-Marin, F., “Removal of tannic acid from aqueous solutions by activated carbons”, Chem. Eng. J.,52(1), 37-39 (1993).

    7 Sarici-Ozdemirnal, C., Onal, Y., “Equilibrium, kinetic and thermodynamic adsorptions of the environmental pollutant tannic acid onto activated carbon”, Desalination, 251 (1-3), 146-152 (2010).

    8 Vinod, V., Anirudhan, T., “Sorption of tannic acid on zirconium pillared clay”, J. Chem. Technol. Biotechnol., 77 (1), 92-101 (2002).

    9 Wang, J.N., Li, A.M., Xu, L., Zhou, Y., “Adsorption of tannic and gallic acids on a new polymeric adsorbent and the effect of Cu (II) on their removal”, J. Hazard. Mater., 169 (1-3), 794-800 (2009).

    10 Anirudhan, T.S., Ramachandran, M., “Adsorptive removal of tannin from aqueous solutions by cationic surfactant-modified bentonite clay”, J. Colloid Interf. Sci., 299 (1), 116-124 (2006).

    11 Chang, M.Y., Juang, R.S., “Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay”, J. Colloid Interf. Sci., 278 (1), 18-25 (2004).

    12 An, J.H., Dultz, S., “Adsorption of tannic acid on chitosan-montmorillonite as a function of pH and surface charge properties”, Appl. Clay Sci., 36 (4), 256-264 (2007).

    13 Sun, Y., Li, A.M., Zhang, Q.X., Chen, J.L., Fu, D.F., Wang, S.H.,“Adsorptive separation of tannic acid from aqueous solution by polymeric resins”, Sep. Sci. Technol., 43 (2), 389-402 (2008).

    14 Wang, J., Deng, B.L., Chen, H., Wang, X.R., Zheng, J.Z., “Removal of aqueous Hg(II) by polyaniline: sorption characteristics and mechanisms”, Environ. Sci. Technol., 43 (14), 5223-5228 (2009).

    15 Zhang, Y., Li, Q., Sun, L., Tang, R., Zhai, J.P., “High efficient removal of mercury from aqueous solution by polyaniline/humic acid nanocomposite”, J. Hazard. Mater., 175 (1-3), 404-409 (2010).

    16 Ansari, R., “Application of polyaniline and its composites for adsorption/recovery of chromium (VI) from aqueous solutions”, Acta Chim. Slov., 53, 88-94 (2006).

    17 Gupta, R.K., Dubey, S.S., “Removal of cesium Ions from aqueous solution by polyaniline: a radiotracer study”, J. Polym. Res., 12 (1), 31-35 (2005).

    18 Ruotolo, L., Gubulin, J.C., “Chromium (VI) reduction using conducting polymer films”, React. Funct. Polym., 62 (2), 141-151 (2005).

    19 Zhang, Y., Li, Q., Tang, R., Hu, Q.C., Sun, L., Zhai, J.P., “Electrocatalytic reduction of chromium by poly (aniline-co-o-aminophenol): An efficient and recyclable way to remove Cr (VI) in wastewater”, Appl. Catal. B: Environ., 92 (3-4), 351-356 (2009).

    20 Mahanta, D., Madras, G., Radhakrishnan, S., Patil, S., “Adsorption of sulfonated dyes by polyaniline emeraldine salt and its kinetics”, J. Phys. Chem. B., 112 (33), 10153-10157 (2008).

    21 Anbia, M., Ghaffari, A., “Adsorption of phenolic compounds from aqueous solutions using carbon nanoporous adsorbent coated with polymer”, Appl. Surf. Sci., 255 (23), 9487-9492 (2009).

    22 Shimano, J.Y., MacDiarmid, A.G., “Polyaniline, a dynamic block copolymer: key to attaining its intrinsic conductivity”, Synth. Met., 123 (2), 251-262 (2001).

    23 Wang, J.H., Zheng, S.R., Shao, Y., Liu, J.L., Xu, Z.Y., Zhu, D.Q.,“Amino-functionalized Fe3O4@SiO2core-shell magnetic nanomaterial as novel adsorbent for aqueous heavy metals removal”, J. Colloid Interf. Sci., 349 (1), 293-299 (2010).

    24 ücer, A., Uyanik, A., Cay, S., Ozkan, Y., “Immobilisation of tannic acid onto activated carbon to improve Fe (III) adsorption”, Sep. Purif. Technol., 44 (1), 11-17 (2005).

    25 Hall, K., Eagleton, L., Acrivos, A., Vermeulen, T., “Pore-and soliddiffusion kinetics in fixed-bed adsorption under constant-pattern conditions”, Ind. Eng. Chem. Fund., 5 (2), 212-223 (1996).

    26 Liu, F.L., Wang, J.H., Li, L.Y., Shao, Y., Xu, Z.Y., Zheng, S.R.,“Adsorption of direct Yellow 12 onto ordered mesoporous carbon and activated carbon”, J. Chem. Eng. Data, 54 (11), 3043-3050 (2009).

    2012-02-09, accepted 2012-10-06.

    * Supported by the National Major Research Plan for Water Pollution Control and Treatment of China (2008ZX07010-003-002), the National Natural Science Foundation of China (21107065) and the Scientific Research Program Funded by Shaanxi Provincial Education Department (HJK0769).

    ** To whom correspondence should be addressed. E-mail: wangjiahong@sust.edu.cn

    猜你喜歡
    王家
    王家樂剪紙作品選
    江西教育(2022年32期)2022-10-17 09:03:42
    王家新的詩
    作品(2020年9期)2020-12-09 05:43:39
    王家灣
    王家春:一場“自我”的繪畫
    王家銀的創(chuàng)意人生
    漫畫欣賞
    中老年保健(2018年1期)2018-05-30 09:20:11
    也無風(fēng)雨也無晴
    讀者(2018年8期)2018-04-03 04:48:42
    輕松一閱
    中老年保健(2017年7期)2017-05-30 12:38:17
    輕松一閱
    中老年保健(2017年9期)2017-05-30 11:25:46
    【輕松一閱】
    中老年保健(2017年2期)2017-05-30 08:38:44
    黄网站色视频无遮挡免费观看| 亚洲精品国产一区二区精华液| 欧美精品人与动牲交sv欧美| 老司机影院毛片| 19禁男女啪啪无遮挡网站| 搡老岳熟女国产| 欧美乱码精品一区二区三区| 日韩大片免费观看网站| 久久人妻福利社区极品人妻图片 | 国产精品偷伦视频观看了| 成人免费观看视频高清| 日韩视频在线欧美| 亚洲精品一区蜜桃| 国产精品免费视频内射| 两个人看的免费小视频| 一级片'在线观看视频| 久久久亚洲精品成人影院| 考比视频在线观看| 欧美亚洲日本最大视频资源| 久久综合国产亚洲精品| 国产精品亚洲av一区麻豆| 国产黄色免费在线视频| 欧美激情 高清一区二区三区| 激情视频va一区二区三区| 91老司机精品| 女人精品久久久久毛片| 电影成人av| 国产一区二区三区综合在线观看| 777米奇影视久久| 精品国产乱码久久久久久男人| 在线精品无人区一区二区三| 女性生殖器流出的白浆| 日韩欧美一区视频在线观看| 国产免费现黄频在线看| 国产精品久久久av美女十八| 国产爽快片一区二区三区| 久久久久久久国产电影| 国产精品熟女久久久久浪| 激情五月婷婷亚洲| 狂野欧美激情性xxxx| 可以免费在线观看a视频的电影网站| 国产男女内射视频| 又大又爽又粗| 国产一级毛片在线| 久久国产亚洲av麻豆专区| 电影成人av| 久久中文字幕一级| 天天添夜夜摸| 欧美日韩亚洲综合一区二区三区_| 色94色欧美一区二区| 涩涩av久久男人的天堂| 国精品久久久久久国模美| 国产麻豆69| 国产一区二区在线观看av| 国产精品国产三级专区第一集| 永久免费av网站大全| 99国产综合亚洲精品| 亚洲中文av在线| 国产成人精品久久久久久| 免费人妻精品一区二区三区视频| 首页视频小说图片口味搜索 | 国产黄色视频一区二区在线观看| 99九九在线精品视频| 国产成人精品久久二区二区免费| 精品高清国产在线一区| 久久综合国产亚洲精品| 婷婷丁香在线五月| 丰满人妻熟妇乱又伦精品不卡| 黄色片一级片一级黄色片| 国产福利在线免费观看视频| 女人久久www免费人成看片| 亚洲精品一二三| 18禁国产床啪视频网站| 十八禁高潮呻吟视频| 欧美日韩视频高清一区二区三区二| 国产精品亚洲av一区麻豆| 各种免费的搞黄视频| 少妇的丰满在线观看| 亚洲av电影在线进入| 免费黄频网站在线观看国产| 激情视频va一区二区三区| 欧美精品亚洲一区二区| 一本久久精品| 黄色毛片三级朝国网站| 午夜久久久在线观看| 黑丝袜美女国产一区| 大香蕉久久网| 欧美激情高清一区二区三区| 男人添女人高潮全过程视频| 亚洲国产欧美网| 午夜久久久在线观看| 一级毛片 在线播放| 性少妇av在线| 欧美激情高清一区二区三区| 高清视频免费观看一区二区| 国产一区二区三区综合在线观看| 女性生殖器流出的白浆| 国产精品久久久久成人av| 亚洲av成人精品一二三区| 一区在线观看完整版| 99热网站在线观看| 777米奇影视久久| 青青草视频在线视频观看| 一级毛片女人18水好多 | svipshipincom国产片| 久久久久精品国产欧美久久久 | 少妇裸体淫交视频免费看高清 | 啦啦啦啦在线视频资源| 久久久久久免费高清国产稀缺| 国产一区有黄有色的免费视频| 亚洲国产看品久久| 国产av国产精品国产| www.精华液| 欧美黄色淫秽网站| 777米奇影视久久| √禁漫天堂资源中文www| 国产精品香港三级国产av潘金莲 | 一区二区av电影网| 免费观看a级毛片全部| 欧美成狂野欧美在线观看| 最新在线观看一区二区三区 | 18禁黄网站禁片午夜丰满| 操出白浆在线播放| 国产男女内射视频| 亚洲国产精品一区三区| 国产一区二区 视频在线| 亚洲国产欧美一区二区综合| 你懂的网址亚洲精品在线观看| 大香蕉久久网| 人成视频在线观看免费观看| 婷婷色麻豆天堂久久| 十八禁高潮呻吟视频| 美女视频免费永久观看网站| 欧美日韩黄片免| 少妇粗大呻吟视频| 国产精品一二三区在线看| 热re99久久精品国产66热6| 午夜两性在线视频| 久久影院123| 在线观看免费高清a一片| 9191精品国产免费久久| 爱豆传媒免费全集在线观看| 肉色欧美久久久久久久蜜桃| 国产精品二区激情视频| 免费看不卡的av| 热99久久久久精品小说推荐| 亚洲视频免费观看视频| videos熟女内射| 欧美亚洲日本最大视频资源| 在线观看一区二区三区激情| 日韩,欧美,国产一区二区三区| 免费在线观看完整版高清| 国产免费又黄又爽又色| 天堂俺去俺来也www色官网| 亚洲三区欧美一区| 免费黄频网站在线观看国产| 成年人免费黄色播放视频| 天堂中文最新版在线下载| www.av在线官网国产| 老汉色av国产亚洲站长工具| 国产男女超爽视频在线观看| 国产成人精品久久二区二区91| 视频区欧美日本亚洲| 丝瓜视频免费看黄片| 国产视频一区二区在线看| 黄色 视频免费看| 久久精品熟女亚洲av麻豆精品| 在线天堂中文资源库| 亚洲七黄色美女视频| 日韩伦理黄色片| 麻豆av在线久日| 夫妻性生交免费视频一级片| 亚洲第一青青草原| 在线精品无人区一区二区三| 亚洲国产日韩一区二区| 男女之事视频高清在线观看 | 精品欧美一区二区三区在线| 黄色毛片三级朝国网站| 无限看片的www在线观看| 国产成人免费无遮挡视频| 欧美人与性动交α欧美软件| 亚洲专区中文字幕在线| 一二三四在线观看免费中文在| 女人被躁到高潮嗷嗷叫费观| 一个人免费看片子| 老汉色av国产亚洲站长工具| 久久久亚洲精品成人影院| 操出白浆在线播放| 中文字幕av电影在线播放| 婷婷色av中文字幕| 国产精品免费视频内射| 久久影院123| www.熟女人妻精品国产| 脱女人内裤的视频| 亚洲精品第二区| 国产淫语在线视频| 在线天堂中文资源库| 精品人妻1区二区| 国产深夜福利视频在线观看| 无遮挡黄片免费观看| 国产主播在线观看一区二区 | 大码成人一级视频| 国产激情久久老熟女| 久久久久视频综合| 极品人妻少妇av视频| 精品第一国产精品| 亚洲精品av麻豆狂野| 欧美精品av麻豆av| 久久久久久久久免费视频了| 国产1区2区3区精品| 一本久久精品| 9热在线视频观看99| 热re99久久精品国产66热6| 成年av动漫网址| 秋霞在线观看毛片| 免费看av在线观看网站| 韩国精品一区二区三区| 亚洲欧美色中文字幕在线| 巨乳人妻的诱惑在线观看| 亚洲av美国av| 黄色视频不卡| 精品国产一区二区三区久久久樱花| 日韩av在线免费看完整版不卡| 两人在一起打扑克的视频| 人人澡人人妻人| 9热在线视频观看99| 下体分泌物呈黄色| 久久国产精品影院| 国产在线观看jvid| 亚洲国产日韩一区二区| 国产女主播在线喷水免费视频网站| 亚洲伊人久久精品综合| 中文字幕av电影在线播放| 三上悠亚av全集在线观看| 看免费成人av毛片| 亚洲精品日韩在线中文字幕| 老司机午夜十八禁免费视频| 多毛熟女@视频| 国产老妇伦熟女老妇高清| 久久久久久久国产电影| 亚洲国产日韩一区二区| 制服诱惑二区| 又粗又硬又长又爽又黄的视频| 啦啦啦在线观看免费高清www| 少妇人妻久久综合中文| 搡老乐熟女国产| 啦啦啦在线免费观看视频4| 少妇 在线观看| 在线亚洲精品国产二区图片欧美| 欧美黑人欧美精品刺激| 91国产中文字幕| 中文字幕最新亚洲高清| 亚洲精品第二区| 丝瓜视频免费看黄片| 欧美av亚洲av综合av国产av| 日韩,欧美,国产一区二区三区| 老鸭窝网址在线观看| 日韩中文字幕视频在线看片| 日日爽夜夜爽网站| 激情视频va一区二区三区| 少妇被粗大的猛进出69影院| 伊人亚洲综合成人网| 午夜激情久久久久久久| 欧美日韩国产mv在线观看视频| 国产视频一区二区在线看| 久久精品熟女亚洲av麻豆精品| av网站免费在线观看视频| 多毛熟女@视频| netflix在线观看网站| 男人爽女人下面视频在线观看| 国产成人欧美| 19禁男女啪啪无遮挡网站| 欧美日韩一级在线毛片| 国产成人a∨麻豆精品| 极品少妇高潮喷水抽搐| 免费在线观看完整版高清| 欧美激情 高清一区二区三区| 午夜福利,免费看| 叶爱在线成人免费视频播放| 国产精品亚洲av一区麻豆| 无限看片的www在线观看| 男女午夜视频在线观看| 日韩精品免费视频一区二区三区| 女人久久www免费人成看片| 永久免费av网站大全| 18禁黄网站禁片午夜丰满| 国产日韩一区二区三区精品不卡| 免费在线观看视频国产中文字幕亚洲 | videos熟女内射| 免费黄频网站在线观看国产| 日韩熟女老妇一区二区性免费视频| 人人妻人人澡人人爽人人夜夜| 满18在线观看网站| 日韩伦理黄色片| 国产人伦9x9x在线观看| 欧美 亚洲 国产 日韩一| 老司机靠b影院| 亚洲精品久久成人aⅴ小说| 大陆偷拍与自拍| 日本午夜av视频| 男女国产视频网站| 欧美 亚洲 国产 日韩一| 91字幕亚洲| 亚洲男人天堂网一区| 男的添女的下面高潮视频| 精品一区二区三区四区五区乱码 | 女性被躁到高潮视频| 超碰97精品在线观看| 日韩电影二区| 久久女婷五月综合色啪小说| 欧美精品一区二区免费开放| 色综合欧美亚洲国产小说| 色播在线永久视频| 亚洲精品国产区一区二| av欧美777| 免费观看人在逋| 亚洲av成人精品一二三区| 国产成人av激情在线播放| 欧美精品亚洲一区二区| 亚洲第一av免费看| 国产91精品成人一区二区三区 | 2021少妇久久久久久久久久久| 建设人人有责人人尽责人人享有的| 亚洲成人免费电影在线观看 | 免费在线观看黄色视频的| 久久人人爽av亚洲精品天堂| 久久毛片免费看一区二区三区| 免费高清在线观看视频在线观看| 9色porny在线观看| 亚洲三区欧美一区| 精品人妻在线不人妻| 老鸭窝网址在线观看| 日本av手机在线免费观看| 丁香六月天网| 亚洲国产精品一区二区三区在线| 激情五月婷婷亚洲| 999精品在线视频| 日本黄色日本黄色录像| 婷婷色麻豆天堂久久| 各种免费的搞黄视频| 久久午夜综合久久蜜桃| 又紧又爽又黄一区二区| 人妻一区二区av| 国产成人一区二区三区免费视频网站 | 欧美成狂野欧美在线观看| 亚洲欧洲日产国产| 男人爽女人下面视频在线观看| 十八禁高潮呻吟视频| 国产一区二区激情短视频 | a级毛片在线看网站| 欧美另类一区| 热re99久久精品国产66热6| 老汉色av国产亚洲站长工具| 国产成人91sexporn| 欧美国产精品va在线观看不卡| 国产一区有黄有色的免费视频| 男女之事视频高清在线观看 | 婷婷色综合www| 国产在线观看jvid| 大型av网站在线播放| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久精品精品| 狠狠精品人妻久久久久久综合| 男女之事视频高清在线观看 | 欧美 亚洲 国产 日韩一| 国产午夜精品一二区理论片| cao死你这个sao货| 国产精品欧美亚洲77777| 亚洲一区中文字幕在线| 午夜影院在线不卡| 欧美精品一区二区大全| 久久久久久久久免费视频了| 午夜免费成人在线视频| 日韩一本色道免费dvd| 丁香六月欧美| 亚洲国产看品久久| 在线看a的网站| 国产成人啪精品午夜网站| 国产黄色视频一区二区在线观看| 国产午夜精品一二区理论片| 只有这里有精品99| 久久99热这里只频精品6学生| 999久久久国产精品视频| 精品久久久久久久毛片微露脸 | 尾随美女入室| 日本wwww免费看| 老司机在亚洲福利影院| 亚洲成色77777| 国产精品 欧美亚洲| 美女视频免费永久观看网站| 亚洲欧美一区二区三区黑人| 欧美精品av麻豆av| 亚洲国产欧美日韩在线播放| 国产成人精品在线电影| 日韩制服骚丝袜av| 女人爽到高潮嗷嗷叫在线视频| 精品亚洲成国产av| 黄频高清免费视频| 国产男人的电影天堂91| 欧美精品亚洲一区二区| 久久天堂一区二区三区四区| 久久99精品国语久久久| 精品少妇久久久久久888优播| 久久久久久人人人人人| 国产精品.久久久| 女人精品久久久久毛片| 五月天丁香电影| 午夜福利一区二区在线看| 久久精品亚洲av国产电影网| 黄片播放在线免费| 亚洲国产成人一精品久久久| 精品久久久久久久毛片微露脸 | 久久精品国产亚洲av涩爱| 精品国产乱码久久久久久小说| 好男人视频免费观看在线| 男女午夜视频在线观看| 亚洲国产精品一区二区三区在线| 欧美国产精品一级二级三级| 久久久精品区二区三区| 大香蕉久久网| 成人国产av品久久久| 久久亚洲精品不卡| 别揉我奶头~嗯~啊~动态视频 | a级毛片黄视频| 成人亚洲精品一区在线观看| 成人影院久久| 亚洲欧美色中文字幕在线| 久9热在线精品视频| 91精品国产国语对白视频| av在线app专区| 中国美女看黄片| 91精品伊人久久大香线蕉| 另类亚洲欧美激情| 精品欧美一区二区三区在线| 成年av动漫网址| 嫁个100分男人电影在线观看 | 波野结衣二区三区在线| 国产精品一区二区免费欧美 | 七月丁香在线播放| 激情视频va一区二区三区| 少妇裸体淫交视频免费看高清 | 精品一区二区三区四区五区乱码 | 国产亚洲精品第一综合不卡| 国产黄频视频在线观看| 2021少妇久久久久久久久久久| 性高湖久久久久久久久免费观看| 国产精品免费大片| 乱人伦中国视频| 国产精品成人在线| 欧美日韩av久久| 女人久久www免费人成看片| av网站在线播放免费| 亚洲av在线观看美女高潮| 免费人妻精品一区二区三区视频| 日韩免费高清中文字幕av| 在线精品无人区一区二区三| 午夜久久久在线观看| 少妇精品久久久久久久| 欧美精品一区二区免费开放| 欧美日韩国产mv在线观看视频| 国产91精品成人一区二区三区 | 日韩欧美一区视频在线观看| 日韩一卡2卡3卡4卡2021年| 老司机靠b影院| 丝袜人妻中文字幕| 2021少妇久久久久久久久久久| 欧美黑人欧美精品刺激| av网站在线播放免费| 亚洲精品国产av蜜桃| 永久免费av网站大全| 在线观看免费高清a一片| 日韩欧美一区视频在线观看| e午夜精品久久久久久久| 亚洲国产成人一精品久久久| 国产色视频综合| 国产精品一区二区精品视频观看| 免费观看人在逋| 啦啦啦视频在线资源免费观看| 久久亚洲国产成人精品v| www.精华液| 午夜视频精品福利| 叶爱在线成人免费视频播放| 黄色a级毛片大全视频| 日本欧美视频一区| 国产欧美日韩综合在线一区二区| 亚洲欧美精品综合一区二区三区| 免费高清在线观看日韩| 精品第一国产精品| 国产xxxxx性猛交| 亚洲人成电影免费在线| 国产精品99久久99久久久不卡| 午夜福利免费观看在线| 制服人妻中文乱码| 国产精品麻豆人妻色哟哟久久| 一区在线观看完整版| 亚洲欧美日韩另类电影网站| 亚洲av日韩在线播放| 又黄又粗又硬又大视频| 天天添夜夜摸| xxxhd国产人妻xxx| 欧美黑人精品巨大| 国产一区二区在线观看av| 99热全是精品| 久久中文字幕一级| 国产成人av激情在线播放| 美女午夜性视频免费| 18禁黄网站禁片午夜丰满| 精品少妇一区二区三区视频日本电影| 欧美日韩综合久久久久久| 青青草视频在线视频观看| 美女午夜性视频免费| 国产成人av教育| 国产日韩欧美视频二区| 欧美xxⅹ黑人| 美女福利国产在线| 久久亚洲国产成人精品v| 精品欧美一区二区三区在线| 18禁观看日本| 免费高清在线观看视频在线观看| 我要看黄色一级片免费的| 国产一区二区三区综合在线观看| 男女边吃奶边做爰视频| 日本91视频免费播放| 中文字幕人妻熟女乱码| 国产精品免费视频内射| 中文字幕人妻丝袜制服| 免费一级毛片在线播放高清视频 | 久久国产精品男人的天堂亚洲| 午夜老司机福利片| 亚洲精品国产区一区二| a级毛片在线看网站| www日本在线高清视频| 久久人妻福利社区极品人妻图片 | 精品少妇黑人巨大在线播放| 国产精品一区二区在线不卡| 成人午夜精彩视频在线观看| 免费久久久久久久精品成人欧美视频| 女人高潮潮喷娇喘18禁视频| 制服诱惑二区| 建设人人有责人人尽责人人享有的| 黄频高清免费视频| 好男人视频免费观看在线| 国产亚洲欧美在线一区二区| 亚洲精品av麻豆狂野| 久久鲁丝午夜福利片| 久久青草综合色| 久久鲁丝午夜福利片| 午夜福利视频精品| 久久国产精品大桥未久av| 亚洲国产欧美网| 国产欧美亚洲国产| 久久久久久久久免费视频了| 久久av网站| 国产99久久九九免费精品| 成年人免费黄色播放视频| 免费一级毛片在线播放高清视频 | 国产成人精品无人区| 欧美精品啪啪一区二区三区 | 欧美 日韩 精品 国产| 大香蕉久久成人网| 天堂俺去俺来也www色官网| 久久99精品国语久久久| 性色av一级| 国产熟女午夜一区二区三区| 老司机靠b影院| 观看av在线不卡| 日韩制服丝袜自拍偷拍| 十分钟在线观看高清视频www| 亚洲精品一区蜜桃| 精品国产一区二区久久| 18禁观看日本| 久久精品久久久久久噜噜老黄| 午夜视频精品福利| 最黄视频免费看| 在线亚洲精品国产二区图片欧美| 国产一区二区三区av在线| 婷婷成人精品国产| 欧美亚洲 丝袜 人妻 在线| 国产精品一二三区在线看| 婷婷色综合大香蕉| 久久精品国产a三级三级三级| 18禁裸乳无遮挡动漫免费视频| h视频一区二区三区| 国产精品一区二区在线不卡| 深夜精品福利| 国产av国产精品国产| 久久国产精品大桥未久av| 亚洲欧美清纯卡通| 亚洲av日韩在线播放| 曰老女人黄片| 免费看十八禁软件| 欧美成人午夜精品| 久久性视频一级片| 叶爱在线成人免费视频播放| 精品久久久精品久久久| 成在线人永久免费视频| 亚洲国产最新在线播放| 国产精品av久久久久免费| 亚洲自偷自拍图片 自拍| 交换朋友夫妻互换小说| 日韩一区二区三区影片| 国产熟女午夜一区二区三区| 国产爽快片一区二区三区| 国产成人免费观看mmmm| 日韩电影二区| 欧美大码av| 久久鲁丝午夜福利片| 丰满少妇做爰视频| 亚洲七黄色美女视频| 欧美日韩av久久| 亚洲人成电影观看| 免费看av在线观看网站| 观看av在线不卡| 久久人人97超碰香蕉20202| 操美女的视频在线观看|