• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of Mesoporous Carbons from Acrylonitrile-methyl Methacrylate Copolymer/Silica Nanocomposites Synthesized by in-situ Emulsion Polymerization*

    2013-06-07 11:21:31BAOYongzhong包永忠ZHAOWenting趙雯婷andHUANGZhiming黃志明

    BAO Yongzhong (包永忠)**, ZHAO Wenting (趙雯婷) and HUANG Zhiming (黃志明)

    State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

    Preparation of Mesoporous Carbons from Acrylonitrile-methyl Methacrylate Copolymer/Silica Nanocomposites Synthesized by in-situ Emulsion Polymerization*

    BAO Yongzhong (包永忠)**, ZHAO Wenting (趙雯婷) and HUANG Zhiming (黃志明)

    State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

    Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2′-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal silica particles, and the mesoporous carbon materials were prepared through carbonization of the obtained AN-MMA copolymer/silica nanocomposites, followed by HF etching. Thermogravimetric analysis of AN-MMA copolymer/silica nanocomposites showed that the carbon yield of copolymer was slightly decreased as silica particle incorporated. N2adsorption-desorption, scan electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the mesoporous carbon materials. Both SEM and TEM results showed that disordered mesopores were formed in the obtained carbon material mainly through templating effect of silica nanoparticles. The diameter of mesopores was mainly distributed in the range from 5 nm to 15 nm. The mean pore diameter and total pore volume of the material increased as the mass fraction of silica in the nanocomposites increased from 0 to 24.93%. The significant increase of the mean pore diameter and the decrease of surface area for the carbon material prepared from the nanocomposite with 24.93% silica were caused by partial aggregation of silica nanoparticles in the polymer matrix.

    mesoporous carbon, templated synthesis, acrylonitrile, silica, emulsion polymerization

    1 INTRODUCTION

    Mesoporous carbons have pores of diameter ranging from 2 nm to 50 nm. Due to high surface areas and pore volume, high thermal stability and chemical inertness of mesoporous carbons, they are fostered by prospects of their application as adsorbents for large, hydrophobic molecules and biomolecules [1]; catalyst supports [2]; components of electro-chemical double-layer capacitors [3], fuel cells [4] and lithium ion batteries [5]; chromatographic packing [6]; and templates for synthesis of nanostructured inorganic materials [7]. Typical synthetic methods for mesoporous carbons include [8, 9]: (1) chemical activation, physical activation, or their combination; (2) catalytic activation of carbon precursors using metal salts or organicmetallic compounds; (3) carbonation of polymer blends composed of a carbonizable polymer and a pyrolyzable polymer; (4) carbonization of polymer aerogels or cryogels; (5) templating with rigid and designed inorganic particles, either incorporated or formed in-situ during the synthesis of carbon precursor.

    Among these methods, the inorganic templating method is the most efficient method to prepare mesoporous carbons with strictly controlled pore structures (such as porosity, surface area and pore volume) by tuning the trait of inorganic templates. Up to date, colloidal silica [10-13] and mesoporous silica [14-16] have been widely employed as templates, and many polymers, such as phenolic resin [10], polyacrylonitrile [12, 15-17], poly(furfuryl alcohol) [18], polyvinylbenzene [11] and vinylidene chloride copolymers [13] as carbon precursors.

    Compared to porous silica templating, using of commercial colloidal silica as templates is a convenient way to prepare mesoporous carbon [10-13]. It is not required to pre-synthesize suitable porous silica templates at high cost due to complicated synthetic routes. Moreover, the pore size of mesoporous carbon can be easily controlled by using colloidal silica with different diameters. However, nanometer silica particles are easily to aggregate during their synthesis and combination with carbon precursors. Thus, the formation of nanocomposite containing carbon precursors and well-dispersed silica particles becomes a key step in the preparation of mesoporous carbon by the colloidal silica templating method. Han et al. [19] conducted the polymerization of resorcinol and formaldehyde (RF) in the presence of colloidal silica to generate RF gel/silica nanocomposite. The mesoporous carbon materials with high pore volume were obtained by carbonization of the nanocomposites and successive HF etching of the silica templates. Due to the aggregation of silica nanoparticles during the synthesis, the obtained carbon materials exhibited a broad pore size distribution ranging from 10 to 100 nm. In order to prevent the aggregation of silica nanoparticles during the synthesis of RF gel/silica nanocomposite, they [10] used cationic surfactant (cetryltrimethylammonium bromide) stabilized colloidal silica as templates. The produced carbon material exhibited a narrow pore size distribution centered at 12 nm, which matched very well with the size of the silica nanoparticles. Jang andLim [11] reported the selective fabrication of carbon nanocapusules and mesocellular foams by colloidal silica templating. The colloidal silica nanoparticles chemically treated with chlorodimethylvinylsilane and stabilized with an anionic surfactant, sodium dodecylsulfate, were used as templates. Encapsulation of silica nanoparticle with divinylbenzene (co)polymer was achieved by in-situ polymerization initiated by 2,2′-azobisisobutyronitrile (AIBN). Jang et al. [12] also reported the synthesis of mesoporous carbons from polyacrylonitrile (PAN)/silica nanocomposites prepared by vapor deposition polymerization.

    Herein, a novel templating method is applied to prepare mesoporous carbon using colloidal silica as templates and acrylonitrile (AN) copolymer as a carbon precursor. In order to achieve a well dispersion of silica nanoparticles in the polymer matrix, in-situ emulsion copolymerization of AN and methyl methacrylate is conducted in the presence of colloidal silica particles absorbed with an azo initiator. The mesoporous carbon can be obtained after the carbonization of the nanocomposite and removal of the silica template. The morphology of porous carbon and effects of the mass ratio of AN copolymer to silica on the pore structure were investigated.

    2 EX PERIMENTAL

    2.1 Materials

    Commercial acrylonitrile (AN, Wulian Chemical Co., China) and methyl methacrylate (MMA, Wulian Chemical, China) were distilled under atmospheric and reduced pressure, respectively, and kept refrigerated until use. Colloidal silica [32% (by mass) solid content in water] was purchased from Zhejiang Yuda Chemical Co., China. The mean size of silica particles was 12 nm, determined by dynamic light scattering on a Zetasizer 3000HS particle size analyzer (Malvern Instruments, Laramie, USA). 2,2′-azobis(2-amidinopropane) dihydrochloride (AIBA, Across Organics Co., Geel, Belgium) and sodium dodecylsulfate (SDS, Shantou Xilong Chemical Co., Guangdong, China, analytical purity) were used as received. Nonionic surfactant, polysorbate 80 (Tween-80) were supplied by Qingming Chemical Factory, Wenzhou, China. Aqueous solution of hydrofluoride acid [30% (by mass)] was supplied by Juhua Group Co., Quzhou, China.

    2.2 Preparation of AN-MMA copolyme r/silica nanocomposites

    The recipes for the preparation of AN-MMA copolymer and AN-MMA copolymer/silica nanocomposites are shown in Table 1. In a typical preparation procedure, certain amounts of colloidal silica and AIBA aqueous solution [5.0% (by mass)] were weighed and the pH value of them was adjusted to 11. The electrostatic adsorption of AIBA onto silica particles surface carried out by adding AIBA aqueous solution dropwise into the colloidal silica under magnetic stirring in 10 min under ambient temperature. The above dispersion was added into a 500 ml glass reactor fitted with a condenser, an N2inlet, a thermometer and a paddle-type agitator. After agitation under ambient temperature for further 20 min, the remained deionized water (pH value also adjusted to 11), 0.4 g Tween-80 and 20 g AN and MMA monomers (AN/MMA=5/1 in mass) were added into the reactor. After agitating the mixture for 20 min, the polymerization was started by increasing the temperature to 65 °C under nitrogen atmosphere. 4 ml SDS solution [10% (by mass)] was added when the emulsion polymerization proceeded for 3 h. The polymerization time of all runs was 5 h.

    Table 1 Recipes for emulsion polymerizations of AN-MMA in the presence of AIBA adsorbed silica particles

    2.3 Preparation of mesoporous carbon

    The AN-MMA copolymer/silica nanocomposite powder was obtained by coagulating the resultant AN-MMA copolymer/silica nanocomposite latex, filtering, washing and drying at 65 °C. The nanocomposite powder was carbonized under pure N2atmosphere at 800 °C for 1 h to achieve complete carbonization of AN copolymer. Then, the obtained carbon/silica nanocomposites were dispersed in HF aqueous solution [10% (by mass)] for 24 h to remove the silica. The desired mesoporous carbon materials were obtained after separating, washing with distilled water and drying.

    2.4 Characterization

    Thermogravimetric analysis (TGA) of AN-MMA copolymer/silica nanocomposites was conducted to determine the carbon yield under nitrogen atmosphere using a Pyris1 TGA thermogravimetric instrument (Perkin-Elmer Co. USA). The heating rate was set at 20 °C·min?1, and temperature was ranged from room temperature to 800 °C.

    Nitrogen adsorption-desorption isotherms of carbon materials were measured by using an Autosorb-1-C analyzer (Quantachrome Instruments Co., USA) at 77.4 K. The carbon samples were degassed undervacum at 200 °C for at least 3 h prior to the nitrogen adsorption measurements. The specific surface area was calculated from the adsorption data in the relative pressure below 0.3 using the Brunauer-Emmett-Teller (BET) method, and the mesopore size distribution curve were calculated by the Barrett-Joyner-Halenda (BJH) method from the desorption result [20]. The total pore volume and micro-pore volume were calculated from the amount of absorbed nitrogen (in the liquid state) at the highest relative pressure (P/P0) and at P/P0=0.1.

    A Nexus 670 Fourier transform infrared (FT-IR) spectrometer was used to characterize the composition of the samples. X-ray diffraction (XRD) patterns of mesoporous carbons were determined using a Shimadzu XRD-6000 X-ray diffractometer at 40 kV and 36 mA, using CuKαradiation (k=0.1506 nm), at 2θ=4°·min?1between 15° and 70°.

    The morphology of mesoporous carbon materials was observed by using a 1230EX type transmission electron microscope (TEM, JEOL Co., Japan) and a S-4800 type scanning electron microscopy (SEM, Hitachi Co., Japan).

    3 RESUL TS AND DISCUSSION

    3.1 Thermal decomposition of AN-MMA copolymer/silica nanocomposites

    The previous papers showed that most of added AIBA could be absorbed onto silica at pH=11 through the electrostatic action, and the encapsulation of silica by polymer could be achieved through the polymerization initiated by absorbed AIBA initiator [21, 22]. Under polymerization conditions of Table 1, the conversion of monomers to polymer was determined by the weighing method. The mass percentages of copolymer and silica in the nanocomposite (wcopolymerand wsilica) calculated from the feed mass percentages of silica and monomers, and the conversion are shown in Table 2. It can be seen that the monomers conversion of in-situ emulsion polymerization is increased as the usage of AIBA increased, but the conversion of in-situ emulsion polymerization is lower than that of conventional emulsion (Sample S0) at the same usage of AIBA.

    The residual mass percentages (wresidual) of AN-MMA copolymer and AN-MMA copolymer/silica nanocomposites determined by TGA are also shown in Table 2. The carbon yields of AN-MMA copolymers calculated by

    Figure 1 Typical TEM micrographs of AN-MMA copolymer/silica nanocomposite latex particles S20

    Table 2 TGA result and carbon yields of AN-MMA copolymer/silica nanocomposites with different compositions

    are also shown in Table 2.

    In Eq. (1), x is the residual mass percentage of pure silica and equal to 95% as obtained from TGA analysis. It can be seen that the carbon yield of AN-MMA copolymer in the nanocomposite is slightly lower than that of pure AN-MMA copolymer. The incorporation of silica nanoparticles may change the thermal decomposition process of AN-MMA copolymer, and cause the decrease of carbon yield.

    The typical TEM micrographs of AN-MMA copolymer/silica nanocomposite latex particles are shown in Fig. 1. It can be seen that the obtained nanocomposite latex comprises big particles with size of greater than 200 nm, and small particles with size of about 25 nm. Due to the presence of encapsulated silica particles, the big particles show dark in TEM micrographs. The size of most small particles is greater than the size of original silica colloidal particles, indicated the coating of copolymer onto them. It is expected that both encapsulated and coated silica particles would be acted as templates during the formation of porous carbon.

    Figure 2 Infrared spectra of (1) pure silica, (2) AN-MMA copolymer/silica nanocomposite (S20), (3) carbon/silica composite S20, (4) carbon S20 after HF etching

    3.2 Composition change during preparation process of mesoporous carbon

    Figure 2 shows FT-IR spectra of silica, AN-MMA copolymer/silica nanocomposite, carbon/silica composite, and carbon material obtained after HF etching. It can be seen that pure silica exhibits the characteristic bands at 1112.7 cm?1and 476.6 cm?1assigned to SiOSi asymmetric and bending vibrations, respectively. Other bands appeared at 800.7 cm?1, 1603.3 cm?1and 3432.2 cm?1are assigned to SiOSi elastic stretching vibrations. AN-MMA copolymer/silica nanocomposite exhibits all the characteristic bands of silica, and absorption bands at 2359.2 cm?1, 2245.1 cm?1, 1629.3 cm?1corresponding to CN bond, and a band at 1727.7 cm?1corresponding to CO bond. From the FT-IR spectrum of carbon/silica composite obtained by carbonization of AN-MMA copolymer/silica nanocomposite, it can be seen that the characteristic absorption bands of AN-MMA copolymer disappear, and the characteristic bands of silica still remain. After removal of the silica template, the characteristic bands of silica also disappear, demonstrating the completely removal of silica template by HF treatment.

    X-ray diffraction (XRD) patterns of the resulted carbon materials are shown in Fig. 3.

    Figure 3 X-ray diffraction patterns of mesoporous carbon prepared: S10, S20, S30

    The appearance of a broad characteristic peak at~24° corresponding to (002) reflection and a less intense peak at ~44° corresponding to (101) reflection demonstrates the graphitized structure of the obtained carbon materials. The characteristic patterns of silica do not appear in XRD patterns, also indicating the complete removal of silica from the composite after HF etching.

    3.3 Nitrogen adsorption-desorption behavior and pore structure of carbon materials

    Figure 4 shows nitrogen adsorption-desorption isotherms of the carbon materials prepared from the pure AN-MMA copolymer and AN-MMA copolymer/ silica nanocomposites with different silica contents.

    It can be seen from Fig. 4 (b), 4 (c) and 4 (d) that the nitrogen adsorption-desorption isotherm of the carbon materials prepared by carbonization of AN-MMA copolymer/silica nanocomposites with silica removed by HF etching, exhibit hysteretic loops at great relative pressures (P/P0), indicating the presence of mesopores. While the carbonization products of AN-MMA copolymer [Fig. 4 (a)] and of AN-MMA copolymer/silica nanocomposite without the HF etching exhibit very small hysteretic loops. It can also be seen that the absorption volume of the carbonization product before HF etching is much lower that after HF etching using the same AN-MMA copolymer/silica nanocomposite.

    The calculated pore size distributions of carbon materials are shown in Fig. 5.

    It can be seen that the carbonization products of AN-MMA copolymer [Fig. 5 (a)] and AN-MMA copolymer/silica nanocomposite without HF etching [in Fig. 5 (c)] show less volume of pores with size greater than 2 nm, while the carbons prepared by carbonization of AN-MMA copolymer/silica nanocomposites exhibit greater pore size distributions in the range of 5-15 nm after removal of silica. The size distribution of pores was in consistent with that of silica particles,demonstrating that silica particles actually act as template in the formation of mesopores in the carbon. So, it is feasible to control the diameter of mesopores in carbon materials using the proposed method.

    The porosity parameters of carbons prepared from AN-MMA copolymer and AN-MMA copolymer/ silica nanocomposites with different silica contents are shown in Table 3. It can be seen that the mean pore size and the total pore volume of carbons increase as the silica content in AN-MMA copolymer/silica nanocomposites increased from 12.24% to 24.93%. The mean pore size and the total pore volume of carbon sample S30 are much greater than that of carbons S10 and S20, while SBETof carbon S30 is lower than that of carbon S20. This should be caused by the aggregation of silica nanoparticles when the content of incorporated silica particles is greater.

    Jang et al. [12] prepared PAN/silica naocomposites with the mass fraction of silica closed to 50% by vapor polymerization. The porous carbons obtained after carbonization and removal of silica exhibited BET surface area of 473 m2·g?1, using silica particles with size of 12 nm as templates. The BET surface areas of carbon materials obtained in this work were all greater than that of Jang’s results, even at lower usage of silica templates.

    Figure 4 Nitrogen adsorption (solid sy mbol) and desorption(open symbol) isotherms curves of carbon materials obtained by carbonization of products from S0 (a), S10 (b) (after HF etching), S20 (c) (before and after HF etching) and S30 (d) (after HF etching)

    Table 3 Porous textural parameters of carbons prepared from AN-MMA copolymer and its nanocomposites with different silica contents

    3.4 Morphology of mesoporous carbon

    SEM and TEM micrographs of mesoporous carbons prepared from AN-MMA copolymer/silica nanocomposite with different silica percentages are shown in Figs. 6 and 7, respectively.

    Figure 5 Pore size distributions of carbons obtained by carbonization of AN-MMA copolymer (a), and nanocomposites of S10 (b) (after HF etching), S20 (c) (before and after HF etching) and S30 (d) (after HF etching) runs

    Figure 6 SEM micrographs of mesoporous carbons prepared from AN-MMA copolymer/silica nanocomposites with different silica percentages (a) S10, (b) S20, (c) S30

    Figure 7 TEM micrographs of mesoporous carbons prepared by AN-MMA copolymer/silica nanocomposites with different silica percentages

    From Fig. 6, it can be seen that many mesopores appear at the surface of the resulted carbons, and the number of mesopores increases with the increase of silica contents in polymer/silica nanocomposites. From Fig. 7, it reveals that all the carbons have thetypical morphology of mesoporous materials with 3-dimensionlly interconnected and disordered pore structure. The mesopores are evident in carbon frameworks and entirely close-packed. It demonstrates that the mesopores in the carbons are generated by removal of the silica particles and remained intact during the etching process.

    4 CONCLU SIONS

    Silica nanoparticles could be effectively encapsulated and well dispersed into AN-MMA copolymer latex particles via in-situ emulsion polymerization initiated by AIBA initiator absorbed onto silica particles. The carbon yield of AN-MMA copolymer was slightly decreased as silica incorporated into the copolymer. The silica nanoparticles template could be completely removed from the carbons by HF etching, and acted as templates to form the mesopores in the AN copolymer-based carbon. The mesoporous carbons with different pore sizes and pore structures could be prepared by varying the mass ratios of silica to AN copolymer, and the resulted carbons exhibited greater BET surface areas than the previous reported PAN-based carbons prepared by silica templating method via vapor polymerization. Due to the aggregation of silica nanoparticles at higher silica content, the obtained carbon showed a widened pore size distribution and decreased surface area. So far, to synthesize AN copolymer/silica nanocomposite with greater silica content and well dispersion of silica are still challenge in preparing mesoporous carbon with greater pore volume and surface area, and narrow pore size distribution through the proposed approach.

    REFERENCES

    1 Tamai, H., Kakii, T., Hirota, Y., Kumamota, T., Yasuda, H., “Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules”, Chem. Mater., 8 (2), 454-462 (1996).

    2 Joo, J.B., Kim, P., Kim, J., Yi, J., “Advances in catalysis and catalytic materials for energy and environmental protection: Preparation of mesoporous carbon templated by silica particles for use as a catalyst support in polymer electrolyte membrane fuel cells”, Catal. Today, 111 (3-4), 171-175 (2006).

    3 Xia, N.N., Zhou, T.X., Mo, S.S., Zhou, S.L., Zou, W.J., Yuan, D.S.,“Supercapacitive behaviors of worm-like mesoporous carbon in non-aqueous electrolyte”, J. Appl. Electrochem., 41 (1), 71-75 (2011).

    4 Chai, S., Yoon, S.B., Yu, J.S., Choi, J.H., Sung, Y.E., “Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell”, J. Phys. Chem. B, 108 (22), 7074-7079 (2004).

    5 Guo, B.K., Wang, X.Q., Fulvio, P.F., Chi, M.F., Mahurin, S.M., Sun, X.G., Dai, S., “Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries”, Adv. Mater., 23 (40), 4661-4666 (2011).

    6 Li, Z.J., Jaroniec, M., “Colloid-imprinted carbons as stationary phases for reversed-phase liquid chromatography”, Anal. Chem., 76 (18), 5479-5485 (2004).

    7 Kim, S.S., Shah, J., Pinnavaia, T.J., “Colloid-imprinted carbons as templates for the nanocasting synthesis of mesoporous ZSM-5 zeolite”, Chem. Mater., 15 (8), 1664-1668 (2003).

    8 Lee, J., Kim, J., Hyeon, T., “Recent progress in the synthesis of porous carbon materials”, Adv. Mater., 18 (16), 2073-2094 (2006).

    9 Liang, C.D., Li, Z.J., Dai, S., “Mesoporous carbon materials: Synthesis and modification”, Angew. Chem. Int. Ed., 47 (20), 3696-3717 (2008).

    10 Han, S., Hyeon, T., “Simple silica-particle template synthesis of mesoporous carbons”, Chem. Commun., 999 (19), 1955-1956 (1999).

    11 Jang, J., Lim, B., “Selective fabrication of carbon nanocapsules and mesocellular foams by surface-modified colloidal silica templating”, Adv. Mater., 14 (19), 1390-1393 (2002).

    12 Jang, J., Lim, B., Choi, M., “A simple synthesis of mesoporous carbons with tunable mesopores using a colloidal template-mediated vapor deposition polymerization”, Chem. Commun., (33), 4214-4216 (2005).

    13 Choma, J., Zawislak, A., Gorka, J., “Synthesis and adsorption properties of colloid-imprinted mesoporous carbons using poly(vinylidene chloride-co-viny chloride) as a carbon precursor”, Adsorption, 15 (1), 167-171 (2009).

    14 Ryoo, R., Joo, S.H., Kruk, M., Jaroniec, M., “Ordered mesoporous carbons”, Adv. Mater., 13 (9), 677-681 (2001).

    15 Kruk, M., Dufour, B., Celer, E.B., Kowalewski, T., Jaroniec, M., Matyjaszewski, K., “Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor”, J. Phys. Chem. B, 109 (19), 9216-9225 (2005).

    16 Kruk, M., Kohlhaas, K.M., Dufour, B., Celer, E.B., Jaroniec, M., Matyjaszewski, K., Ruoff, R. S., Kowalewski, T., “Partially graphitic, high-surface-area mesoporous carbons form polyacrylonitrile templated by ordered and disordered mesoporous silicas”, Micropor. Mesopor. Mater., 102 (1-3), 178-187 (2007).

    17 Yang, Z.L., Tang, F.F., Yuan, J.J., Pu, H.T., Luo, Z.Y., Shao, Q.C.,“Preparation and applications of mesoporous carbon materials from polyacrylonitrile”, Polym. Mater. Sci. Eng., 27 (7), 187-190 (2011). (in Chinese)

    18 Kawashima, D., Aihara, T., Kobayashi, Y., Kyotani, T., Tomita, A.,“Preparation of mesoporous carbon from orgainc polymer/silica nanocomposite”, Chem. Mater., 12 (11), 3397-3401 (2000).

    19 Han, S., Sohn, K., Hyeon, T., “Fabrication of new nanoporous carbons through silica templates and their application to the adsorption of bulky dyes”, Chem. Mater., 12 (11), 3337-3341 (2000).

    20 Barrett, E.P., Joyner, L.G., Halenda, P.P., “The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms”, J. Am. Chem. Soc., 73 (1), 373-380 (1951).

    21 Qi, D.M., Bao, Y.Z., Weng, Z.X., Huang, Z.M., “Synthesis and characterization of poly(butyl acrylate) /silica and poly(butyl acrylate)/silica/poly(methyl methacrylate) composite particles”, J. Appl. Polym. Sci., 99 (6), 3425-3432 (2006).

    22 Qi, D.M., Bao, Y.Z, Weng, Z.X., Huang, Z.M., “Anchoring of polyacrylate onto silica and formation of polyacrylate/silica nanocomposite particles via in situ emulsion polymerization”, Colloid Polym. Sci., 286 (2), 233-241 (2008).

    2011-05-22, accepted 2011-11-02.

    * Supported by the Program for New Century Excellent Talents in University (NCET-07-0738).

    ** To whom correspondence should be addressed. E-mail: yongzhongbao@zju.edu.cn

    白带黄色成豆腐渣| 国产蜜桃级精品一区二区三区| 精品人妻1区二区| 九九在线视频观看精品| 91在线观看av| 99久久精品一区二区三区| av在线老鸭窝| 中文在线观看免费www的网站| 国产又黄又爽又无遮挡在线| 内地一区二区视频在线| 免费黄网站久久成人精品| 午夜久久久久精精品| 中文字幕人妻熟人妻熟丝袜美| 午夜精品一区二区三区免费看| 成人一区二区视频在线观看| 国产精品人妻久久久久久| 女同久久另类99精品国产91| 男女下面进入的视频免费午夜| 欧美一区二区亚洲| 99热这里只有是精品在线观看| 99热这里只有是精品50| 欧美三级亚洲精品| 欧美黑人欧美精品刺激| 97热精品久久久久久| 女的被弄到高潮叫床怎么办 | 国产伦精品一区二区三区视频9| 国内毛片毛片毛片毛片毛片| 少妇人妻精品综合一区二区 | 给我免费播放毛片高清在线观看| 99久久成人亚洲精品观看| 黄色配什么色好看| 一区福利在线观看| 色精品久久人妻99蜜桃| 国产色爽女视频免费观看| 亚洲av二区三区四区| 美女免费视频网站| 乱人视频在线观看| 一级av片app| 欧美日本视频| 亚洲美女黄片视频| 九九热线精品视视频播放| 天美传媒精品一区二区| 欧美一区二区亚洲| 亚洲av.av天堂| 美女大奶头视频| 男女做爰动态图高潮gif福利片| 国产亚洲91精品色在线| 国产精品精品国产色婷婷| 日韩欧美免费精品| 国产精品久久视频播放| 亚洲七黄色美女视频| 欧美一区二区国产精品久久精品| 深爱激情五月婷婷| 国产高清有码在线观看视频| 一本久久中文字幕| 国产成人av教育| 亚洲人与动物交配视频| 欧美丝袜亚洲另类 | 成人三级黄色视频| 久久久成人免费电影| 精华霜和精华液先用哪个| 波多野结衣高清作品| 男插女下体视频免费在线播放| 色尼玛亚洲综合影院| 成年版毛片免费区| 99久久精品热视频| 男人和女人高潮做爰伦理| 乱码一卡2卡4卡精品| 国产高清不卡午夜福利| 久久久久久久久久黄片| 俺也久久电影网| 中文在线观看免费www的网站| 一级黄色大片毛片| 亚洲自偷自拍三级| 麻豆国产av国片精品| 大又大粗又爽又黄少妇毛片口| av.在线天堂| 精品乱码久久久久久99久播| 男人和女人高潮做爰伦理| 久久久精品大字幕| 一区二区三区高清视频在线| av在线天堂中文字幕| 国产亚洲欧美98| 伊人久久精品亚洲午夜| 香蕉av资源在线| 日本一二三区视频观看| 欧美高清成人免费视频www| 亚洲人成网站在线播| 国产综合懂色| 真实男女啪啪啪动态图| 国产午夜精品论理片| 一个人看的www免费观看视频| 中文字幕久久专区| 亚洲午夜理论影院| 国内精品一区二区在线观看| 国产午夜福利久久久久久| 色在线成人网| 99热网站在线观看| 露出奶头的视频| 最后的刺客免费高清国语| 欧美另类亚洲清纯唯美| 精品不卡国产一区二区三区| 88av欧美| 欧美色欧美亚洲另类二区| 91在线观看av| 婷婷色综合大香蕉| 一本久久中文字幕| 久久久久久久久中文| 久久欧美精品欧美久久欧美| 岛国在线免费视频观看| xxxwww97欧美| 成人亚洲精品av一区二区| 亚洲熟妇熟女久久| 国产黄色小视频在线观看| 国产综合懂色| 中文字幕免费在线视频6| 色综合婷婷激情| 日韩欧美 国产精品| 一进一出好大好爽视频| 亚洲国产精品成人综合色| 国产麻豆成人av免费视频| 国产av一区在线观看免费| netflix在线观看网站| 亚洲国产高清在线一区二区三| 国产精品久久久久久亚洲av鲁大| 国产高清激情床上av| 成年女人永久免费观看视频| 校园人妻丝袜中文字幕| 亚洲精品影视一区二区三区av| 乱系列少妇在线播放| 亚洲avbb在线观看| 日韩大尺度精品在线看网址| 黄色配什么色好看| 又粗又爽又猛毛片免费看| 日韩欧美三级三区| 一区二区三区四区激情视频 | 精品久久国产蜜桃| 午夜福利成人在线免费观看| 日本-黄色视频高清免费观看| 国产国拍精品亚洲av在线观看| 热99re8久久精品国产| 国产在线男女| 午夜福利在线观看免费完整高清在 | 欧美zozozo另类| 久久精品国产鲁丝片午夜精品 | 99久久精品国产国产毛片| 99精品在免费线老司机午夜| 欧美日韩精品成人综合77777| 色精品久久人妻99蜜桃| 免费av观看视频| 美女大奶头视频| 久久久久国内视频| 欧美日韩国产亚洲二区| 国产精品一及| 干丝袜人妻中文字幕| 国产黄片美女视频| 色综合站精品国产| 亚洲第一电影网av| 午夜福利在线在线| 97热精品久久久久久| 可以在线观看毛片的网站| 午夜福利18| 一区二区三区免费毛片| netflix在线观看网站| 日韩精品有码人妻一区| 亚洲人与动物交配视频| 女同久久另类99精品国产91| 亚洲性夜色夜夜综合| 亚洲久久久久久中文字幕| 全区人妻精品视频| 欧美性猛交╳xxx乱大交人| 欧美日韩亚洲国产一区二区在线观看| 一进一出抽搐gif免费好疼| av在线天堂中文字幕| 精品99又大又爽又粗少妇毛片 | 国产中年淑女户外野战色| 国内精品一区二区在线观看| 久久久久久国产a免费观看| 蜜桃亚洲精品一区二区三区| 悠悠久久av| 制服丝袜大香蕉在线| 午夜久久久久精精品| 久久久久久九九精品二区国产| 国产黄色小视频在线观看| 最近最新中文字幕大全电影3| 国产乱人视频| 久久久久国内视频| 亚洲va日本ⅴa欧美va伊人久久| 他把我摸到了高潮在线观看| 欧美中文日本在线观看视频| 日本黄色视频三级网站网址| 久久6这里有精品| 国产色爽女视频免费观看| 国产av在哪里看| 色播亚洲综合网| 日韩大尺度精品在线看网址| 久久婷婷人人爽人人干人人爱| 人妻少妇偷人精品九色| 亚洲欧美日韩东京热| 日韩欧美三级三区| 校园春色视频在线观看| 97碰自拍视频| 免费观看的影片在线观看| 亚洲国产日韩欧美精品在线观看| 国产高清视频在线观看网站| 精品99又大又爽又粗少妇毛片 | 国产精品伦人一区二区| 国产免费一级a男人的天堂| 极品教师在线免费播放| 国产色爽女视频免费观看| 国产精品福利在线免费观看| 成人性生交大片免费视频hd| 久久久久国产精品人妻aⅴ院| 少妇被粗大猛烈的视频| 能在线免费观看的黄片| 日日摸夜夜添夜夜添av毛片 | 亚洲七黄色美女视频| 午夜激情欧美在线| 两性午夜刺激爽爽歪歪视频在线观看| 女生性感内裤真人,穿戴方法视频| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲精品av在线| 我的女老师完整版在线观看| 国产精品久久视频播放| 日本熟妇午夜| 国产精品久久久久久精品电影| 午夜激情欧美在线| 国产黄片美女视频| 深爱激情五月婷婷| 99久久成人亚洲精品观看| 变态另类成人亚洲欧美熟女| 国产精品精品国产色婷婷| 国产日本99.免费观看| 成人欧美大片| 亚洲av.av天堂| 久久久色成人| 国产精品1区2区在线观看.| 久久精品国产清高在天天线| 一级av片app| 免费无遮挡裸体视频| 露出奶头的视频| 国产亚洲欧美98| 日韩一区二区视频免费看| 色噜噜av男人的天堂激情| 成人无遮挡网站| 麻豆成人午夜福利视频| 欧美最黄视频在线播放免费| 最好的美女福利视频网| 乱系列少妇在线播放| 韩国av一区二区三区四区| 久久这里只有精品中国| 日韩精品青青久久久久久| 美女大奶头视频| 亚洲熟妇熟女久久| 国产一区二区三区av在线 | 色在线成人网| 一a级毛片在线观看| 国产亚洲91精品色在线| 日韩欧美精品免费久久| 成年人黄色毛片网站| 日本撒尿小便嘘嘘汇集6| 精品人妻一区二区三区麻豆 | 国产高清有码在线观看视频| 国内精品宾馆在线| 国产欧美日韩精品一区二区| 亚洲精品成人久久久久久| 成人性生交大片免费视频hd| 午夜免费男女啪啪视频观看 | 国产精品国产三级国产av玫瑰| 女人被狂操c到高潮| 国内精品一区二区在线观看| 国产伦人伦偷精品视频| 国产成人a区在线观看| 欧美区成人在线视频| а√天堂www在线а√下载| 日日夜夜操网爽| 中文字幕av成人在线电影| www.www免费av| 天堂av国产一区二区熟女人妻| 日韩欧美一区二区三区在线观看| 亚洲成人久久爱视频| 夜夜看夜夜爽夜夜摸| 国产一区二区亚洲精品在线观看| 国产成人a区在线观看| 久久久午夜欧美精品| 国产亚洲91精品色在线| 校园春色视频在线观看| 12—13女人毛片做爰片一| 国产精品精品国产色婷婷| 内地一区二区视频在线| 1000部很黄的大片| 桃红色精品国产亚洲av| 变态另类成人亚洲欧美熟女| 少妇被粗大猛烈的视频| 成人二区视频| 12—13女人毛片做爰片一| 一夜夜www| 中出人妻视频一区二区| 熟女电影av网| 美女黄网站色视频| 久久国产精品人妻蜜桃| 日韩欧美精品v在线| 男人和女人高潮做爰伦理| 欧美激情久久久久久爽电影| 久久久久久久久久黄片| 国产 一区 欧美 日韩| 国产一区二区三区视频了| 国模一区二区三区四区视频| 看黄色毛片网站| 国产精品人妻久久久影院| 成年免费大片在线观看| 在线观看av片永久免费下载| 欧美zozozo另类| 国产探花极品一区二区| 听说在线观看完整版免费高清| av黄色大香蕉| 2021天堂中文幕一二区在线观| 免费观看人在逋| 十八禁国产超污无遮挡网站| 免费av不卡在线播放| 国产一级毛片七仙女欲春2| 亚洲成人久久性| 成人国产一区最新在线观看| 国产一区二区激情短视频| 久久久久九九精品影院| 国内精品久久久久精免费| 夜夜看夜夜爽夜夜摸| av天堂在线播放| 国产私拍福利视频在线观看| 男女之事视频高清在线观看| 午夜精品久久久久久毛片777| av在线亚洲专区| 男女啪啪激烈高潮av片| 亚洲熟妇中文字幕五十中出| 一边摸一边抽搐一进一小说| 亚洲人成网站高清观看| 在线观看免费视频日本深夜| 波多野结衣高清作品| 高清毛片免费观看视频网站| 精品人妻一区二区三区麻豆 | 男人和女人高潮做爰伦理| 国产精品亚洲一级av第二区| 国产精品女同一区二区软件 | 草草在线视频免费看| 国产69精品久久久久777片| 变态另类成人亚洲欧美熟女| 狂野欧美激情性xxxx在线观看| a级一级毛片免费在线观看| 国产伦精品一区二区三区视频9| 国产精品久久电影中文字幕| 欧美+亚洲+日韩+国产| 午夜福利在线观看吧| 免费av不卡在线播放| 淫秽高清视频在线观看| 麻豆av噜噜一区二区三区| 国产在线男女| 88av欧美| 精品日产1卡2卡| 3wmmmm亚洲av在线观看| 在线免费十八禁| 免费看光身美女| 十八禁网站免费在线| 久久久国产成人精品二区| av中文乱码字幕在线| 在现免费观看毛片| 色综合色国产| 成人无遮挡网站| 中文资源天堂在线| 精品午夜福利在线看| 99热这里只有是精品50| 精品久久久久久久久亚洲 | 色综合婷婷激情| 久久久久久国产a免费观看| 直男gayav资源| 日本五十路高清| 18禁黄网站禁片午夜丰满| 亚洲成人免费电影在线观看| 女人十人毛片免费观看3o分钟| 99久久成人亚洲精品观看| 一进一出好大好爽视频| 人妻久久中文字幕网| 色哟哟哟哟哟哟| 欧美成人性av电影在线观看| 在线国产一区二区在线| 亚洲av一区综合| 亚洲在线自拍视频| 丰满乱子伦码专区| 亚洲不卡免费看| 日韩一本色道免费dvd| 国产成人av教育| 国产精品久久久久久久电影| 欧美日韩乱码在线| 国产在视频线在精品| 不卡一级毛片| 亚洲熟妇中文字幕五十中出| 日本-黄色视频高清免费观看| 一进一出好大好爽视频| 最近中文字幕高清免费大全6 | 桃红色精品国产亚洲av| 久久久久久久久久久丰满 | 精品一区二区三区视频在线观看免费| 18禁黄网站禁片免费观看直播| 在线观看美女被高潮喷水网站| 亚洲人成伊人成综合网2020| 亚洲精华国产精华液的使用体验 | 97超视频在线观看视频| 国产精品一区二区免费欧美| 色噜噜av男人的天堂激情| 一本一本综合久久| 黄色日韩在线| 亚洲最大成人手机在线| 日韩,欧美,国产一区二区三区 | 午夜福利欧美成人| 人妻少妇偷人精品九色| 麻豆久久精品国产亚洲av| 久99久视频精品免费| 在线观看免费视频日本深夜| 亚洲国产精品成人综合色| 中文字幕高清在线视频| 乱人视频在线观看| 99热精品在线国产| 久久中文看片网| 人妻丰满熟妇av一区二区三区| 亚洲美女视频黄频| 如何舔出高潮| 日韩精品有码人妻一区| 亚洲精品456在线播放app | 麻豆精品久久久久久蜜桃| 国产精品国产高清国产av| 精品久久久久久久久亚洲 | 国内精品久久久久久久电影| 级片在线观看| 国产在线精品亚洲第一网站| 国产精品98久久久久久宅男小说| 国产免费av片在线观看野外av| 成人午夜高清在线视频| 啦啦啦啦在线视频资源| 熟妇人妻久久中文字幕3abv| 欧美日韩精品成人综合77777| 岛国在线免费视频观看| 日本三级黄在线观看| 免费看光身美女| 久久亚洲精品不卡| 一边摸一边抽搐一进一小说| 国产aⅴ精品一区二区三区波| 久久精品91蜜桃| 97超视频在线观看视频| 色精品久久人妻99蜜桃| 国产av一区在线观看免费| 永久网站在线| 91久久精品国产一区二区三区| 97超级碰碰碰精品色视频在线观看| av专区在线播放| 成人三级黄色视频| 国产亚洲av嫩草精品影院| 黄色丝袜av网址大全| 熟女电影av网| 国产男人的电影天堂91| 91狼人影院| av天堂在线播放| 亚洲国产色片| 国产老妇女一区| 一区二区三区四区激情视频 | 欧美在线一区亚洲| 国产午夜精品论理片| 日韩欧美一区二区三区在线观看| 国产 一区 欧美 日韩| 国产精品av视频在线免费观看| 熟女人妻精品中文字幕| 少妇人妻一区二区三区视频| 乱系列少妇在线播放| 麻豆成人av在线观看| 亚洲欧美日韩高清专用| 变态另类成人亚洲欧美熟女| 夜夜爽天天搞| 国产午夜福利久久久久久| 久久久久国内视频| 久久热精品热| 精品午夜福利视频在线观看一区| 国产三级中文精品| 男女视频在线观看网站免费| 老熟妇乱子伦视频在线观看| 亚洲av一区综合| 日韩一区二区视频免费看| 欧美性感艳星| 日韩欧美在线乱码| 一夜夜www| 欧美日韩瑟瑟在线播放| 搡老妇女老女人老熟妇| 国产视频一区二区在线看| 岛国在线免费视频观看| 不卡视频在线观看欧美| 亚洲五月天丁香| 少妇熟女aⅴ在线视频| 精品国产三级普通话版| 校园春色视频在线观看| 97碰自拍视频| 99国产精品一区二区蜜桃av| 免费一级毛片在线播放高清视频| 久久精品影院6| 精品久久久久久久久久久久久| 亚洲熟妇熟女久久| 国产av麻豆久久久久久久| 日日干狠狠操夜夜爽| 色5月婷婷丁香| 欧美日韩中文字幕国产精品一区二区三区| 欧美绝顶高潮抽搐喷水| 国产精品人妻久久久影院| 老司机午夜福利在线观看视频| 国产一区二区三区视频了| 亚洲va在线va天堂va国产| 国产午夜福利久久久久久| 狠狠狠狠99中文字幕| 久久久久久大精品| 99热这里只有是精品在线观看| 天天一区二区日本电影三级| 久久久精品欧美日韩精品| 久久精品国产亚洲av天美| 国产爱豆传媒在线观看| 夜夜爽天天搞| 波多野结衣巨乳人妻| 久久精品久久久久久噜噜老黄 | a在线观看视频网站| 内射极品少妇av片p| 一级毛片久久久久久久久女| 色尼玛亚洲综合影院| 久久久久久伊人网av| 在线播放国产精品三级| 国产女主播在线喷水免费视频网站 | 精品久久久久久久久av| 欧洲精品卡2卡3卡4卡5卡区| 久久国产乱子免费精品| a在线观看视频网站| 韩国av一区二区三区四区| 男女边吃奶边做爰视频| 欧美国产日韩亚洲一区| 黄色日韩在线| 国产黄色小视频在线观看| 久久国产精品人妻蜜桃| 日本与韩国留学比较| 成人鲁丝片一二三区免费| 国内精品美女久久久久久| 观看美女的网站| 人妻制服诱惑在线中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 十八禁网站免费在线| 麻豆av噜噜一区二区三区| 男人舔奶头视频| 久久午夜福利片| av在线亚洲专区| 俄罗斯特黄特色一大片| 精品久久久久久成人av| 日本免费一区二区三区高清不卡| 淫秽高清视频在线观看| 亚洲三级黄色毛片| 此物有八面人人有两片| 女生性感内裤真人,穿戴方法视频| 精品一区二区三区视频在线| 99久久九九国产精品国产免费| 欧美日韩精品成人综合77777| 桃红色精品国产亚洲av| 成人一区二区视频在线观看| 亚洲精品日韩av片在线观看| 久久久久国内视频| 国产伦一二天堂av在线观看| 长腿黑丝高跟| 久久草成人影院| 久久精品91蜜桃| 听说在线观看完整版免费高清| 99久久成人亚洲精品观看| 午夜福利在线在线| 有码 亚洲区| 亚洲欧美精品综合久久99| 亚洲av二区三区四区| 黄色视频,在线免费观看| 久久精品国产亚洲av天美| 亚洲成人久久性| 色播亚洲综合网| 人人妻人人看人人澡| 少妇的逼好多水| 亚洲av电影不卡..在线观看| 一进一出抽搐gif免费好疼| 搡老妇女老女人老熟妇| 蜜桃久久精品国产亚洲av| 永久网站在线| 国内毛片毛片毛片毛片毛片| 九色国产91popny在线| 精品人妻1区二区| 桃红色精品国产亚洲av| 免费av观看视频| 97人妻精品一区二区三区麻豆| 99久久精品国产国产毛片| 日韩中文字幕欧美一区二区| 18禁在线播放成人免费| 亚洲av不卡在线观看| 一区二区三区激情视频| 深爱激情五月婷婷| 人妻丰满熟妇av一区二区三区| 18禁黄网站禁片免费观看直播| 久久久色成人| 亚洲av二区三区四区| 一级毛片久久久久久久久女| 校园春色视频在线观看| 人人妻,人人澡人人爽秒播| 久99久视频精品免费| 免费av不卡在线播放| 深爱激情五月婷婷| 精品久久久噜噜| 午夜福利欧美成人| 亚洲欧美激情综合另类| 精品福利观看| 国产蜜桃级精品一区二区三区| 蜜桃久久精品国产亚洲av| av天堂在线播放| 亚洲成人久久爱视频|