• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electro-osmotic flow of a second-grade fluid in a porous microchannel subject to an AC electric field*

    2013-06-01 12:29:57MISRA
    水動力學研究與進展 B輯 2013年2期
    關鍵詞:液硫噴射器焚燒爐

    MISRA J. C.

    Department of Mathematics, Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar, India, E-mail:misrajc@gmail.com

    CHANDRA S.

    Department of Physics, Sabang S. K. Mahavidyalaya, Vidyasagar University, Midnapore, India

    Electro-osmotic flow of a second-grade fluid in a porous microchannel subject to an AC electric field*

    MISRA J. C.

    Department of Mathematics, Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar, India, E-mail:misrajc@gmail.com

    CHANDRA S.

    Department of Physics, Sabang S. K. Mahavidyalaya, Vidyasagar University, Midnapore, India

    (Received May 17, 2012, Revised August 7, 2012)

    Studies on electro-osmotic flows of various types of fluids in microchannel are of great importance owing to their multifold applications in the transport of liquids, particularly when the ionized liquid flows with respect to a charged surface in the presence of an external electric field. In the case of viscoelastic fluids, the volumetric flow rate differs significantly from that of Newtonian fluids, even when the flow takes place under the same pressure gradient and the same electric field. With this end in view, this paper is devoted to a study concerning the flow pattern of an electro-osmotic flow in a porous microchannel, which is under the action of an alternating electric field. The influence of various rheological and electro-osmotic parameters, e.g., the Reynolds number, Debye-Huckel parameter, shape factor and fluid viscoelasticity on the kinematics of the fluid, has been investigated for a secondgrade viscoelastic fluid. The problem is first treated by using analytical methods, but the quantitative estimates are obtained numerically with the help of the software MATHEMATICA. The results presented here are applicable to the cases where the channel height is much greater than the thickness of the electrical double layer comprising the Stern and diffuse layers. The study reveals that a larger value of the Debye-Huckel parameter creates sharper profile near the wall and also that the velocity of electro-osmotic flow increases as the permeability of the porous microchannel is enhanced. The study further shows that the electro-osmotic flow dominates at lower values of Reynolds number. The results presented here will be quite useful to validate the observations of experimental investigations on the characteristics of electro-osmotic flows and also the results of complex numerical models that are necessary to deal with more realistic situations, where electro-osmotic flows come into the picture, as in blood flow in the micro-circulatory system subject to an electric field.

    electrical double layer, Debye length, second-grade fluid, Ionic energy

    Introduction

    In recent years microfluidics has emerged as an important branch of fluid mechanics. It has occupied a central position in scientific research and has profuse applications not only in engineering and technology, but also in various branches of science, including physiological and medical sciences. Studies on electroosmotic flow in microchannels have been receiving growing interest of researchers in recent years, because of their wide range of applications in many biomedical lab-on-a-chip devices to transport liquids in narrow confinements like sample injection, in the investigation of bio-chemical reactions and in the process of species separation[1-3]. Owing to the developments in micro-fabrication technologies, there has been an urgent need of research on various aspects of miniaturized fluidic systems in order that they can be utilized in a better way for drug delivery, DNA analysis/sequencing systems as well as in the improvement of biological/chemical agent detection sensors.

    When a solid surface comes in contact with an aqueous solution of an electrolyte, a structure is formed that comprises a layer of charges of one polarity on the solid side and a layer of charges of opposite polarity on the liquid side of the solid-liquid interface. This phenomenon is known as the Electrical Double Layer (EDL). In order to resolve problems arising out of highly charged double layers, Stern suggested the consideration of an additional internal layer, where the ions are strongly bound.

    The Stern layer is formed in the immediate vicinity of the wall with charges opposite to that of the wall and has a typical thickness of one ionic diameter. The ions within the Stern layer are attracted towards the wall with very strong electrostatic forces. But the ions in the outer diffuse layer are less associated and when these free ions experience a force due to the influence of an external electric field, there occurs a bulk motion of the liquid. This type of flow is termed as electro-osmotic flow.

    The concept of electro-osmosis has been established experimentally. Several studies on electro-osmosis in microchannels were carried out by some researchers in the recent past[4-7]. Different aspects of electro-osmotic flow in microchannels were investigated by them. All these studies were, however, confined to simple Newtonian fluids. But the flow behavior of a non-Newtonian fluid is of greater interest in many areas of science and technology, including physiology and medicine. Many physiological fluids such as blood, saliva and DNA solutions have been found to be viscoelastic in nature. It is now well known that changes due to different diseases or surgical interventions can be readily identified, considering blood viscoelasticity as a useful clinical parameter. Tang et al.[8]studied the electro-osmotic flow of a non-Newtonian viscous fluid described by the power law model, using the lattice Boltzmann method. Zhao et al.[9]presented a detailed account of studying the effect of dynamic viscosity on the velocity of the electro-osmotic flow of power-law fluids.

    Analysis, prediction and simulation of the behaviour of viscoelastic fluids by the use of Newtonian fluid models have been made in the past and they also have been adopted in many industries. But the flow behavior of viscoelastic fluids exhibits wide departure from that of Newtonian fluids. Various non-Newtonian models have been tried by several investigators to explain the complex behavior of viscoelastic fluids. Among them the second grade fluid models have become quite popular. One of the reasons for their popularity is that it has been possible to derive analytical solutions of different problems by adopting the second-grade fluid model and to explore thereby different characteristics of viscoelastic fluids. From the analytical solutions it is also possible to derive various information by using the method of parametric variation.

    There is another more important reason for considering second-grade viscoelastic fluid model in preference to other non-Newtonian fluid models. In a recent communication by Misra et al.[I0]it has been mentioned that the second-grade fluid model is compatible with the principles of thermodynamics. Moreover, the specific Helmholtz free energy is minimum in the equilibrium state of the fluid. This is owing to the fact that for a second-grade fluid, all of the following three conditions are met simultaneously whereμrepresents the fluid viscosity coefficient and a1,a2are normal stress moduli. It is worthwhile to emphasize that as a1<0, the fluid exhibits an anomalous behavior, even if the two other conditions are satisfied and therefore, that sort of fluid model is not suitable for use in any study of rheological fluids.

    It may further be mentioned that all porous media are stable both mechanically and chemically. Poroelastic and poroviscoelastic media possess the characteristics of porosity and permeability both. By utilizing the porosity factor, it is possible to control the fluid flow[10].

    Due to inherent analytical difficulties introduced by more complex constitutive equations, studies of non-Newtonian fluids have been limited to simple inelastic fluid models, such as the power-law model. Influences of viscosity index and electro-kinetic effects on the velocity of a third-grade fluid between microparallel plates were demonstrated by Akgul and Pakdemirli[11]. Dhinakaran et al.[12]presented a solution for a viscoelastic fluid model using the Phan-Thien-Tanner model. Some different aspects of electro-osmotic flow of a viscoelastic fluid in a channel was studied by Misra et al.[13]who also illustrated the applicability of their theoretical analysis to physiological fluid dynamics. But all these studies were limited to the steady case of electro-osmotic flow, where the external electric field was of DC nature, which requires extremely large voltages for producing significant electro-kinetic forces for a controlled transport of the fluid. To maintain controlled micro-bio-fluidic transport, a periodic electric field is better than a DC electric field in multiple ways. Moreover, in the study of some pathological situations as well as in various medical treatment methods, studies on flows in porous channels find significant applications. But all the investigations referred to above are not suitable to depict the exact behavioral pattern of fluid flow through a porous channel.

    The present study is motivated towards investigating the flow behavior of a second-grade viscoelastic fluid between two porous plates executing oscillatory motion, under the influence of electro-kinetic forces. In this study, an AC electric field is considered and for the sake of generality, the frequency of the oscillatory plates and that of the electric field are considered to be different. By adopting appropriate constitutive equations, a mathematical analysis has been presented with the purpose of examining the effect of the viscoelastic parameter in the ionized motion of the viscoelastic fluid. Analytical solutions are derived and the derived expressions have been computed numerically for aspecific situation. The numerical estimates obtained on the basis of our computational work, for different physical quantities of special interest are presented graphically. The results will be highly beneficial for validating the results of complex numerical models required for dealing with more realistic situations and also for establishing related experimental observations.

    1. The model and its analysis

    The constitutive equation of an incompressible second-grade fluid is of the form[14]

    where T is the Cauchy stress tensor,pis the pressure,-pIdenotes the indeterminate spherical stress andu,α1and α2are measurable material constants which denote, respectively, the viscosity, elasticity and cross-viscosity. These material constants can be determined from viscometric flows for any real fluid. A1and A2are the Rivlin-Ericksen tensors[14]and they denote, respectively, the rate of strain and acceleration.A1and A2are defined as

    whereu is the velocity vector,?, the gradient operator,T, the transpose andd/dtthe material time derivative.

    The basic equations governing the motion of an incompressible fluid are

    in which ρrepresents the fluid density,J, the current density,Hthe total magnetic field,μm, the magnetic permeability,E, the total electric field and kp, the permeability of the porous channel.

    Considering the flow to be symmetric, we can confine the analysis of the model to the region0≤y≤h, for Ex[0,L], whereL represents the length of the channel (cf. Fig.1) The effect of gravity and the Joule heating effect, being quite small for the situation taken up for the present study, will be disregarded. The Debye lengthλis assumed to be much smaller than the channel height2h . Further, h is supposed to be much smaller than the widthw and the lengthL of the channel.

    Fig.1 Physical sketch of the problem

    Inserting Eq.(2) into Eq.(6) and making use of Eqs.(3), (4) and (7) and assuming Boussinesq incomepressible fluid model yield the boundary-layer equations[15,16]governing the second grade viscoelastic fluid in the presence of a time-periodic electric field

    The charge density and electric potential are related to each other according to Gauss’s law of charge distribution. The relation is given by the equation

    where ρe=2 n0ez sinh(e z/ KBTψ)represents the distribution of net electric charge density in equilibrium near a charged surface, as in a fully developed flow, weis the angular velocity of the AC electric field,Exis the amplitude of the field andt denotes the time. The electrical double layers are considered to be so thin that there is no mutual interference between the walls. The symbolsv,K,ρand kpdenote respectively the kinematic viscosity, viscoelastic coefficient, density and porous medium permeability coefficient.

    Let us now introduce the following set of non-dimensional variables:

    In Eqs.(11) and (12),UHSdenotes the Helmholtz-Smoluchowski electro-osmotic velocity, which is defined by

    in which M stands for the mobility,ζfor the zeta potential,εfor the dielectric constant of the medium and u =ρvis the dynamic viscosity.

    In terms of the dimensionless variables defined in Eqs.(11) and (12), Eqs.(8)-(10) can be rewritten in the form

    where m2is called the Debye-Huckel parameter (in the non-dimensional form) and is defined by

    λbeing the thickness of the Debye layer.

    The solution of Eq.(16) subject to the boundary conditions

    In the sequel, we shall drop the superscript “?” to give a more convenient look to the equations involving non-dimensional variables. To solve the Eqs.(14), (15) and (16), we further write the velocityuas u= useiw1t, whereusrepresents the steady part of the velocity (independent of time).

    Now the boundary conditions applicable to our flow problem are,

    Making use of these boundary conditions and the Eq.(14), we have derived the following equation

    where w =we-ω1represents the difference between the angular velocity of the applied electric field and that of the oscillatory motion of the plates.

    來自各級硫冷凝器的液硫隨重力自流至液硫池(S-301),在液硫池中通過Black&Veatch的專利技術(shù)MAG○R脫氣工藝可將液硫中的硫化氫質(zhì)量分數(shù)脫除至15×10-6以下[2]。MAG○R液硫脫氣工藝無需采用任何化學添加劑,其工藝原理為:液硫在液硫池的不同分區(qū)中循環(huán)流動,并通過一、二級噴射器(EJ-302/303)進行機械攪動,溶解在液硫中的硫化氫釋放到氣相中并由蒸汽抽空器(EJ-301A/B)送入尾氣焚燒爐焚燒[3]。

    Solving the Eq.(20) subject to the boundary condition (19), we obtain,

    Equation (21) gives the required solution for the steady part of the electro-osmotic flow velocity, while for the problem under consideration at any instant, the fluid velocity is given by u= useiω1t. The numerical estimates of the velocity variations have been computed and presented graphically in the section that follows. They are quite useful to derive a variety of information in respect of different bio-medical applications.

    2. Application: Quantitative estimates for physiological flows

    In this section we want to present some numerical estimates that are useful to examine the variation in velocity distribution as well as the change in velocity as time progresses for different values of the parameters involved in the analysis of the problem. The software MATHEMATICA has been used for the purpose of computational work. In order to illustrate the applicability of the mathematical analysis presented in Section 1, we consider an example concerning the physiological problem of the hemodynamical channel flow of blood under the action of an applied alternating electric field. We have confined our computational work to electro-osmotic flows of blood in the microcirculatory system. With this end in view, the effects of the blood viscoelasticity parameter K, the Reynolds numberRe , the porous medium shape factor parameterD , the Debye-Huckel parameterm on velocity distribution of blood flow has been investigated thoroughly. For the purpose of computation of the concerned analytical expressions, we have made use of experimental data for different parameters for blood and its flow, as available from Refs.[17]-[20].

    Fig.2 Distribution of blood velocity during electro-osmotic flow, in lower range values of Reynolds number Re, when m =50,t =5,D =0.1,B =30,K =0.005, we=50,ω1=20

    Fig.3 Distribution of blood velocity during electro-osmotic flow, in higher range values of Reynolds number Re, when m =50,t =5,D =0.1,B =30,K =0.005, we=50,ω1=20

    Figure 2 provides an idea of the velocity distribution in the lower range of the Reynolds number Re. This figure reveals that with an increase in the Reynolds numberRe, the velocity of blood in a micro-channel decreases. But from Fig.3, it is revealed that the velocity increases with the increase in the Reynolds number (at a higher range values ofRe). Physically, the Reynolds number can be defined as a ratio between the inertia force and the viscous force. So, logically any increase in the Reynolds number causes a rise in the magnitude of the inertia force, and so the velocity should increase. But, for an electroosmotically actuated flow at lower values ofRe, flow due to electro-osmosis dominates first and with an increase in the value ofRe, the flow gradually turns out to be controlled by the inertia force arising out of the increasing value of Reynolds number. It is also to be observed from Fig.3 that the electrokinetic force is more dominant near the vicinity of the wall due to the formation of electrical double layer.

    From Fig.4 it is observed that the velocity increases with a rise in porous medium shape factorD. The shape factor of porous medium is the ratio between the permeability coefficient and the square of the height of the channel. So, any increase in theporous medium permeability coefficient causes a rise in the velocity of the fluid (blood). Figure 5 illustrates that the amplitude of oscillation of blood velocity u increases as the value of the shape factorD is enhanced.

    Fig.4 Variation in distribution of blood velocity during electroosmotic flow, for different values of porous medium shape factor parameter D, when m =50,t =5,Re= 0.001,B =30,K =0.005,we=50,ω1=20

    Fig.5 Variation in velocity field during electro-osmotic flow of blood with change in porous medium shape factor parameter D, when m =50,y =0.95,Re =0.01,B =30, K =0.005,we=5,ω1=2

    Fig.6 Variation in velocity distribution in electro-osmotic blood flow with change in blood viscoelasticity (K), when m =50,t =5,D =0.1,B =30,Re =0.01,we=50, ω1=20

    Fig.7 Change in velocity field of blood during electro-osmotic flow, with change in blood viscoelasticity (K), when m =50,y =0.9,D =0.1,B =30,Re =0.01,we= 5,ω1=2

    Fig.8 Change in distribution of electro-osmotic flow velocity of blood, as the value of the Debye-Huckel parameter m changes, where Re =0.1,t =10,D =0.1,B =30, K =0.005,we=500,ω1=200

    Fig.9 Change in distribution of electro-osmotic flow velocity with time as the value of the Debye-Huckel parameter m changes, when Re =0.1,y =0.9,D =0.1,B= 30,K =0.005,we=50,ω1=20

    3. Concluding remark

    The study has been motivated by recent developments of bio-sensing and high thought-put screening technologies for several important applications, such as sample collection for detection of viruses like adenovirus and Dengue Hemorrhagic fever. Basically the problem is formulated as a boundary-value problem concerning the flow of a second-grade viscoelastic fluid under the influence of electro-kinetic forces. The object of this theoretical investigation has been to have an idea of the distribution of the fluid velocity through a porous channel, with the change in different parameters of interest in the viscoelastic fluid flow pattern. The study serves as a first step towards a better understanding of the role of electro-osmosis in the viscoelastic flow pattern, which is oscillatory in nature, when influenced by an alternating electric field. The numerical estimates presented in the preceding section bear the potential of throwing some light on the electro-osmotic flow behavior of blood in the micro-circulatory system, when the system is under the influence of an external electric field. These results are expected to be of immense interest to clinicians and bio-engineers.

    Acknowledgement

    The authors wish to express their deep sense of gratitude to the esteemed reviewers for their comments on original version of the manuscript, based on which the revised manuscript has been prepared.

    [1] STONE H. A., STROOCK A. D. and AJDARI A. Engineering flows in small devides: Microfluidics toward a lab-on-a-chip[J]. Annual Review and Fluid Mechanics, 2004, 36: 381-411.

    [3] HLUSHKOU D., KANDHAI D. and TALLAREK U. Coupled lattice-Boltzmann and finite-difference simulation of velectroosmosis in microfluidic channels[J]. International Journal of Numerical Methods Fluids, 2004, 46(5): 507-532.

    [4] HERR A. E., MOLHO J. I. and SANTIAGO J. G. et al. Electro-osmotic capillary flow with non-uniform zeta potential[J]. Analytical Chemistry, 2000, 72: 1053-1057.

    [5] CHEN C.-I., CHEN C.-K. and LIN H.-J. Analysis of unsteady flow through a microtube with wall slip and given inlet volume flow variations[J]. Journal of Applied Mechanics, 2008, 75(1): 014506.

    [6] YANG R. J., FU L. M. and LIN Y. C. Electro-osmotic flow in microchannels[J]. Journal of Colloid Interface Science, 2001, 239: 98-105.

    [7] PIKAL M. J. The role of electroosmotic flow in transdermal ionotophoresis[J]. Advance Drug Delivery Reviews, 2001, 46(1-3): 281-305.

    [8] TANG G. H., LI X. F. and HE Y. L. et al. Electroosmotic flow of non-Newtonian fluid in microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 157(1-2): 133-137.

    [9] ZHAO C., ZHOLKOVSKIJ E. and JACOB H. et al. Analysis of electroosmotic flow of power-law fluids in a slit microchannel[J]. Journal of Colloid Interface Science, 2008, 326(2): 503-510.

    [10] MISRA J. C., SINHA A. and SHIT G. C. Flow of a biomagnetic viscoelastic fluid: Application to estimation of blood flow in arteries during electromagnetic hyperthermia, a therapautic procedure for cancer treatment[J]. Applied Mathematics Mechanics, 2010, 31(11): 1405-1420.

    [11] AKGUL M. B., PAKDEMIRLI M. Analytical and numerical solutions of electro-osmotically driven flow of a third-grade fluid between micro-parallel plates[J]. International Journal of Non-Linear Mechanics, 2008, 43(9): 985-992.

    [12] DHINAKARAN S., AFONSO A. M. and ALVES M. A. et al. Steady viscoelastic fluid flow between parallel plates under electro-osmotic forces: Phan-Thien-Tanner model[J]. Journal of Colloid Interface Science, 2010, 344(2): 513-520.

    [13] MISRA J. C., SHIT G. C. and CHANDRA S. et al. Electro-osmotic flow of a vis-coelastic fluid in a channel: Applications to physiological fluid mechanics[J]. Applied Mathematics and Computation, 2011, 217: 7932-7939.

    [14] RIVLIN R. S., ERICKSEN J. L. Stress deformation relations for isotropic materials[J]. Journal of Rational Mechanics Analysis, 1955, 4: 323-425.

    [15] MAKINDE O. D., MHONE P. Y. Heat transfer to MHD oscillatory flow in a channel filled with porous medium[J]. Rom Journal of Physics, 2005, 50(9-10): 931-938.

    [16] HAMZA M. M., ISAH B. Y. and USMAN H. Unsteady heat transfer to MHD oscillatory flow through a porous medium under slip condition[J]. International Journal of Computer Applications, 2011, 33(4): 12-17.

    [17] MISRA J. C., SHIT G. C. and RATH H. J. Flow and heat transfer of a MHD viscoelastic fluid in a channel with stretching wall: Some applications to hemodynamics[J]. Computers and Fluids, 2008, 37(1): 1-11.

    [18] MISRA J. C., SHIT G. C. and CHANDRA S. et al. Hydromagnetic flow and heat transfer of a second-grade viscoelastic fluid in a channel with oscillatory stretching walls: Application to the dynamics of blood flow[J]. Journal of Engineering Mathematics, 2011, 69(1): 91-100.

    [19] PAPADOPOULOS P. K., TZIRTZILAKIS E. E. Biomagnetic flow in a curved square duct under the influence of an applied magnetic field[J]. Physics of Fluids, 2004, 16(8): 29-52.

    [20] TZIRTZILAKIS E. E. A mathematical model for blood flow in magnetic field[J]. Physics of Fluids, 2005, 17(7): 07710.

    Nomenclature

    (x, y)– Space coordinates in Cartesian system

    u– Velocity of the fluid along x-direction

    us– The steady value of the velocity

    L– Length of the channel

    Ex– Amplitude of the instantaneous electric field applied externally

    E– Value of dc electric field

    v – The kinematic viscosity

    K– The coefficient of viscoelasticity

    kp– Porous medium permeability coefficient

    e– Charge of an electron

    z – Absolute value of the ionic valance

    KB– Boltzmann constant

    T– Temperature in Kelvin scale

    no– Ionic number concentration

    ω– The angular velocity

    ψ– Potential field in the transverse direction (induced)

    ζ– Wall zeta potential

    ε– Dielectric constant

    ρ– Density of the fluid

    ρe– Electric charge density

    v – The kinematic viscosity

    m– Non-dimensional Debye-Huckel parameter

    μ– Dynamicor viscometric viscosity

    p– Pressure

    D =k/h2– Porous medium shape factor parameter

    p

    λ– The thickness of electrical double layer

    B– Amplitude of the instantaneous pressure

    ωe– Angular velocity of the applied electric field ω1– Angular velocity of the oscillatory plates

    M– Mobility

    h– Half-width of the channel

    Re – Reynolds number

    10.1016/S1001-6058(13)60368-6

    * Biography: MISRA J. C. (1944-), Male, Ph. D., Professor

    猜你喜歡
    液硫噴射器焚燒爐
    尾氣處理工藝中尾氣焚燒爐的控制原理及應用
    液硫輸送和液位測量技改實踐
    垃圾焚燒爐的專利技術(shù)綜述
    含堿廢液焚燒爐耐火材料研究進展
    硫化氫制酸焚燒爐的模擬分析
    山東化工(2020年9期)2020-06-01 06:56:48
    液硫噴射鼓泡脫氣工藝運行及設計總結(jié)
    大型液硫脫氣裝置改造
    超深高含硫氣藏氣—液硫兩相滲流實驗
    噴射器氣體動力函數(shù)法的真實氣體修正
    喉嘴距可調(diào)的組裝式噴射器
    三级男女做爰猛烈吃奶摸视频| 91九色精品人成在线观看| 久久久久免费精品人妻一区二区| 波多野结衣高清无吗| 国产精品一区二区三区四区久久| 国产精华一区二区三区| 精品久久久久久久久久免费视频| 亚洲人成网站在线播放欧美日韩| 午夜影院日韩av| 久久久久久久午夜电影| 国产成人aa在线观看| 亚洲av电影不卡..在线观看| 亚洲一区二区三区不卡视频| 婷婷精品国产亚洲av在线| 99热只有精品国产| 国产亚洲av嫩草精品影院| 久久久国产成人精品二区| a级一级毛片免费在线观看| 午夜福利在线观看免费完整高清在 | 亚洲精品美女久久久久99蜜臀| 国产精品久久视频播放| 亚洲国产精品久久男人天堂| 99久久九九国产精品国产免费| 日韩欧美精品v在线| 亚洲狠狠婷婷综合久久图片| 性欧美人与动物交配| 免费在线观看日本一区| 国产亚洲精品久久久久久毛片| 99国产综合亚洲精品| 禁无遮挡网站| 看免费av毛片| 91字幕亚洲| 亚洲熟妇熟女久久| 最近在线观看免费完整版| 观看免费一级毛片| 每晚都被弄得嗷嗷叫到高潮| 九九热线精品视视频播放| 精品欧美国产一区二区三| 欧洲精品卡2卡3卡4卡5卡区| 九九在线视频观看精品| 亚洲av美国av| 一级作爱视频免费观看| 丁香六月欧美| 国产三级在线视频| 欧美激情在线99| 欧美日韩一级在线毛片| 18+在线观看网站| 亚洲 国产 在线| 九色成人免费人妻av| 1024手机看黄色片| 日韩欧美在线乱码| 午夜福利在线在线| 国产黄色小视频在线观看| 国产97色在线日韩免费| 少妇高潮的动态图| 精品国产三级普通话版| 日韩欧美精品免费久久 | 老熟妇乱子伦视频在线观看| 少妇丰满av| 一个人观看的视频www高清免费观看| 亚洲第一欧美日韩一区二区三区| 激情在线观看视频在线高清| 黄片小视频在线播放| 午夜福利在线观看吧| 亚洲欧美日韩东京热| 国产黄片美女视频| 国产91精品成人一区二区三区| 日韩高清综合在线| 啦啦啦韩国在线观看视频| 中文亚洲av片在线观看爽| 久久精品国产清高在天天线| 久9热在线精品视频| 亚洲欧美日韩高清在线视频| 精品电影一区二区在线| 乱人视频在线观看| 欧美成人免费av一区二区三区| 伊人久久精品亚洲午夜| 色综合亚洲欧美另类图片| www.www免费av| 国产单亲对白刺激| 婷婷精品国产亚洲av| 热99在线观看视频| 欧美乱妇无乱码| 欧美最黄视频在线播放免费| 日韩欧美国产一区二区入口| 日韩欧美免费精品| 成人18禁在线播放| 身体一侧抽搐| 欧美日韩中文字幕国产精品一区二区三区| 老司机午夜十八禁免费视频| 欧美+日韩+精品| 国产av在哪里看| 淫秽高清视频在线观看| 少妇人妻精品综合一区二区 | 无限看片的www在线观看| 97碰自拍视频| 亚洲av熟女| 欧美日韩亚洲国产一区二区在线观看| 欧美激情久久久久久爽电影| 久久精品国产亚洲av香蕉五月| 欧美成人一区二区免费高清观看| 淫妇啪啪啪对白视频| 精品一区二区三区人妻视频| 九九热线精品视视频播放| 久久久久久久久中文| 少妇高潮的动态图| 国产欧美日韩一区二区三| 久久精品91无色码中文字幕| 免费人成在线观看视频色| 久久久久久人人人人人| 日本免费a在线| 女人被狂操c到高潮| 91九色精品人成在线观看| 村上凉子中文字幕在线| 色精品久久人妻99蜜桃| 亚洲在线观看片| 一区二区三区高清视频在线| 观看美女的网站| 最新在线观看一区二区三区| 网址你懂的国产日韩在线| 亚洲成人中文字幕在线播放| 日本一二三区视频观看| 中文字幕av在线有码专区| 99国产极品粉嫩在线观看| 叶爱在线成人免费视频播放| 亚洲国产精品久久男人天堂| 亚洲 国产 在线| 叶爱在线成人免费视频播放| 制服人妻中文乱码| 国产乱人视频| 一个人观看的视频www高清免费观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产黄片美女视频| 亚洲国产欧美人成| 亚洲av不卡在线观看| 亚洲国产精品合色在线| 哪里可以看免费的av片| 亚洲一区高清亚洲精品| 精品不卡国产一区二区三区| 国产一区二区激情短视频| 两人在一起打扑克的视频| 少妇熟女aⅴ在线视频| 国产高清激情床上av| 久久久久九九精品影院| 波多野结衣巨乳人妻| 亚洲乱码一区二区免费版| 日韩av在线大香蕉| 最近最新中文字幕大全电影3| 12—13女人毛片做爰片一| 亚洲狠狠婷婷综合久久图片| 中文在线观看免费www的网站| 亚洲一区二区三区色噜噜| 九色成人免费人妻av| 欧美黄色淫秽网站| 欧美三级亚洲精品| 欧美一区二区亚洲| 51国产日韩欧美| 亚洲中文日韩欧美视频| 最新中文字幕久久久久| 成人av在线播放网站| 9191精品国产免费久久| 在线免费观看的www视频| 无人区码免费观看不卡| 免费av不卡在线播放| 亚洲国产欧洲综合997久久,| 国产精品久久久久久久久免 | 久久精品人妻少妇| 午夜亚洲福利在线播放| 国产探花在线观看一区二区| 97人妻精品一区二区三区麻豆| 日韩欧美精品免费久久 | 久久久久亚洲av毛片大全| 午夜亚洲福利在线播放| 日日夜夜操网爽| 亚洲专区中文字幕在线| 久久久久久久精品吃奶| 麻豆一二三区av精品| 亚洲精品成人久久久久久| 99riav亚洲国产免费| 国产伦精品一区二区三区四那| 丁香欧美五月| 99精品久久久久人妻精品| 亚洲国产欧美网| 国产一区二区在线观看日韩 | 一个人看的www免费观看视频| 国产蜜桃级精品一区二区三区| 麻豆国产av国片精品| 一本综合久久免费| 国产精品免费一区二区三区在线| 亚洲第一欧美日韩一区二区三区| 亚洲 欧美 日韩 在线 免费| 亚洲国产欧洲综合997久久,| 中国美女看黄片| 国产 一区 欧美 日韩| 国产爱豆传媒在线观看| 中国美女看黄片| 久久久久久久久中文| 国产精品av视频在线免费观看| 青草久久国产| 欧美激情久久久久久爽电影| 九色成人免费人妻av| 精品午夜福利视频在线观看一区| 国产乱人视频| 毛片女人毛片| 国产精品98久久久久久宅男小说| 亚洲av一区综合| 国产成人a区在线观看| 久久国产乱子伦精品免费另类| 日韩欧美精品免费久久 | 午夜福利18| 精品久久久久久久末码| 亚洲无线观看免费| 一二三四社区在线视频社区8| 成人鲁丝片一二三区免费| 欧美日韩综合久久久久久 | 午夜免费成人在线视频| 成年人黄色毛片网站| 99国产精品一区二区三区| 国产高清视频在线观看网站| 亚洲精品乱码久久久v下载方式 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品国产美女av久久久久小说| bbb黄色大片| 欧美激情久久久久久爽电影| 久久香蕉国产精品| 国内久久婷婷六月综合欲色啪| 欧美一区二区精品小视频在线| 欧美激情在线99| a级一级毛片免费在线观看| 久久精品国产亚洲av香蕉五月| x7x7x7水蜜桃| 成人特级黄色片久久久久久久| 午夜亚洲福利在线播放| 人人妻人人看人人澡| 国产欧美日韩一区二区三| 桃色一区二区三区在线观看| 一进一出抽搐gif免费好疼| 欧美成人性av电影在线观看| 亚洲在线观看片| 国产不卡一卡二| 亚洲成av人片免费观看| av福利片在线观看| av视频在线观看入口| 久久久精品大字幕| 97人妻精品一区二区三区麻豆| 午夜精品久久久久久毛片777| 欧美日韩精品网址| 深爱激情五月婷婷| 99精品在免费线老司机午夜| 岛国视频午夜一区免费看| 两人在一起打扑克的视频| 亚洲中文字幕一区二区三区有码在线看| а√天堂www在线а√下载| 高潮久久久久久久久久久不卡| 男女下面进入的视频免费午夜| 美女 人体艺术 gogo| 日本成人三级电影网站| 亚洲av熟女| 午夜日韩欧美国产| 国产成人福利小说| 国产高清三级在线| 91麻豆精品激情在线观看国产| 成年免费大片在线观看| 亚洲精品亚洲一区二区| 一级作爱视频免费观看| 国内精品美女久久久久久| 国产高清有码在线观看视频| 欧美+日韩+精品| 有码 亚洲区| 高清在线国产一区| 国产高清激情床上av| 国产97色在线日韩免费| av天堂在线播放| 日本一二三区视频观看| 国产精品亚洲一级av第二区| 天天躁日日操中文字幕| 激情在线观看视频在线高清| 亚洲七黄色美女视频| 99久久精品一区二区三区| 国产欧美日韩一区二区三| 亚洲第一欧美日韩一区二区三区| 国产午夜精品久久久久久一区二区三区 | 最新美女视频免费是黄的| www日本黄色视频网| x7x7x7水蜜桃| 亚洲av成人不卡在线观看播放网| 久99久视频精品免费| 精品不卡国产一区二区三区| 久久天躁狠狠躁夜夜2o2o| 欧美乱码精品一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 欧美最黄视频在线播放免费| 免费高清视频大片| 国产高清三级在线| 欧美黄色片欧美黄色片| 尤物成人国产欧美一区二区三区| 色噜噜av男人的天堂激情| 国产视频内射| av天堂在线播放| 在线观看日韩欧美| 亚洲一区二区三区色噜噜| 日韩欧美精品免费久久 | 99久久精品热视频| 性欧美人与动物交配| 成人特级黄色片久久久久久久| h日本视频在线播放| 日韩 欧美 亚洲 中文字幕| 国产色婷婷99| 亚洲精品成人久久久久久| 成年人黄色毛片网站| 无限看片的www在线观看| 免费高清视频大片| 首页视频小说图片口味搜索| 99视频精品全部免费 在线| 国产成人福利小说| 99久国产av精品| 亚洲精品在线美女| 男女之事视频高清在线观看| 夜夜躁狠狠躁天天躁| 亚洲乱码一区二区免费版| 国产精品嫩草影院av在线观看 | 免费电影在线观看免费观看| 国产亚洲欧美98| 欧美日韩黄片免| 99国产综合亚洲精品| 精品久久久久久久久久久久久| 国产午夜福利久久久久久| 香蕉丝袜av| 制服人妻中文乱码| 国产爱豆传媒在线观看| 观看美女的网站| 亚洲人成网站高清观看| 女人高潮潮喷娇喘18禁视频| av视频在线观看入口| 午夜精品一区二区三区免费看| 国产av在哪里看| 日韩欧美精品免费久久 | 亚洲国产日韩欧美精品在线观看 | 久久久国产成人精品二区| 国产精品久久久久久久电影 | 午夜日韩欧美国产| 久久亚洲精品不卡| 法律面前人人平等表现在哪些方面| 成人国产一区最新在线观看| 免费在线观看亚洲国产| 91字幕亚洲| 亚洲成av人片免费观看| 1000部很黄的大片| 亚洲五月婷婷丁香| 精品一区二区三区人妻视频| 成人性生交大片免费视频hd| 男人舔奶头视频| 操出白浆在线播放| 国产精品久久久久久亚洲av鲁大| 非洲黑人性xxxx精品又粗又长| 97碰自拍视频| 桃色一区二区三区在线观看| 国产成人系列免费观看| 中出人妻视频一区二区| 女人高潮潮喷娇喘18禁视频| 免费看日本二区| 国产成人系列免费观看| 成人亚洲精品av一区二区| 亚洲精品日韩av片在线观看 | 亚洲 国产 在线| 亚洲人与动物交配视频| 日本免费一区二区三区高清不卡| 久久久国产成人免费| 夜夜看夜夜爽夜夜摸| 色精品久久人妻99蜜桃| 亚洲国产高清在线一区二区三| 男人的好看免费观看在线视频| 内射极品少妇av片p| 我要搜黄色片| 欧美不卡视频在线免费观看| 精品久久久久久久末码| 一区二区三区激情视频| 亚洲欧美日韩高清专用| 精品电影一区二区在线| 日本撒尿小便嘘嘘汇集6| av天堂在线播放| av片东京热男人的天堂| 国产一区在线观看成人免费| 老司机福利观看| 欧美bdsm另类| 国产视频内射| 国产一区在线观看成人免费| 高清在线国产一区| 亚洲18禁久久av| 中文字幕久久专区| 国产精品爽爽va在线观看网站| 可以在线观看毛片的网站| 久久精品综合一区二区三区| 免费一级毛片在线播放高清视频| 中文字幕熟女人妻在线| 一个人看视频在线观看www免费 | 国产精品综合久久久久久久免费| 欧美日韩福利视频一区二区| 国产av在哪里看| 性欧美人与动物交配| 18禁黄网站禁片免费观看直播| 午夜福利成人在线免费观看| www.色视频.com| svipshipincom国产片| 久久久久久久久大av| 国产 一区 欧美 日韩| 99精品欧美一区二区三区四区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产亚洲欧美在线一区二区| 亚洲国产日韩欧美精品在线观看 | 全区人妻精品视频| 久久久国产成人免费| 伊人久久大香线蕉亚洲五| 99久久精品国产亚洲精品| 久久人人精品亚洲av| 免费看日本二区| 男人舔女人下体高潮全视频| 最近最新中文字幕大全电影3| 亚洲熟妇中文字幕五十中出| 深爱激情五月婷婷| 亚洲专区中文字幕在线| 免费观看人在逋| av专区在线播放| 国产精品一区二区三区四区久久| 国产精品久久电影中文字幕| 午夜影院日韩av| xxxwww97欧美| 国产精品综合久久久久久久免费| 黄片大片在线免费观看| 99国产精品一区二区三区| 久久久久久久午夜电影| 九色国产91popny在线| 国产精品香港三级国产av潘金莲| 无人区码免费观看不卡| 精品一区二区三区人妻视频| 欧美成人一区二区免费高清观看| 欧美绝顶高潮抽搐喷水| 午夜福利免费观看在线| 精品一区二区三区av网在线观看| 国产不卡一卡二| 国产97色在线日韩免费| 老熟妇仑乱视频hdxx| 久久性视频一级片| 黄色成人免费大全| 超碰av人人做人人爽久久 | 欧美成人一区二区免费高清观看| 老熟妇乱子伦视频在线观看| 两个人视频免费观看高清| 久久久久免费精品人妻一区二区| 久久久久久久午夜电影| 精品久久久久久久久久免费视频| 丰满的人妻完整版| 午夜激情福利司机影院| 两个人的视频大全免费| 久久精品91无色码中文字幕| 亚洲一区二区三区不卡视频| 亚洲精品国产精品久久久不卡| 国产精品一区二区免费欧美| 最新中文字幕久久久久| 91麻豆av在线| 午夜福利高清视频| 欧美成狂野欧美在线观看| 在线观看免费视频日本深夜| 丝袜美腿在线中文| 久久精品亚洲精品国产色婷小说| 亚洲国产欧美人成| 国产成人av激情在线播放| 搡女人真爽免费视频火全软件 | 91麻豆av在线| 91av网一区二区| 国产亚洲欧美98| 99国产极品粉嫩在线观看| 国产成人av教育| 精品人妻偷拍中文字幕| 青草久久国产| 动漫黄色视频在线观看| 美女cb高潮喷水在线观看| 小说图片视频综合网站| 色精品久久人妻99蜜桃| 手机成人av网站| 丝袜美腿在线中文| 亚洲av五月六月丁香网| 91久久精品国产一区二区成人 | 国产精品,欧美在线| 国产高清videossex| 中文字幕人成人乱码亚洲影| www国产在线视频色| 亚洲乱码一区二区免费版| 夜夜夜夜夜久久久久| 好男人电影高清在线观看| 久9热在线精品视频| 国产极品精品免费视频能看的| 久久天躁狠狠躁夜夜2o2o| 欧美激情久久久久久爽电影| 深爱激情五月婷婷| 亚洲成av人片在线播放无| 少妇的逼好多水| xxx96com| 美女黄网站色视频| 两个人看的免费小视频| 国产精品久久久久久精品电影| 首页视频小说图片口味搜索| 无遮挡黄片免费观看| 又爽又黄无遮挡网站| 午夜福利在线在线| 热99re8久久精品国产| av在线蜜桃| 亚洲五月婷婷丁香| 亚洲精品在线美女| 嫁个100分男人电影在线观看| 欧美不卡视频在线免费观看| 国产精品久久久久久人妻精品电影| 国内精品一区二区在线观看| 99国产精品一区二区蜜桃av| 婷婷亚洲欧美| 久久亚洲真实| 久久国产精品影院| 一边摸一边抽搐一进一小说| 99视频精品全部免费 在线| 午夜免费激情av| 在线a可以看的网站| 色精品久久人妻99蜜桃| 国产老妇女一区| 日本一二三区视频观看| 午夜福利在线观看免费完整高清在 | 精品不卡国产一区二区三区| 18美女黄网站色大片免费观看| 一级黄色大片毛片| 桃红色精品国产亚洲av| 亚洲电影在线观看av| 久9热在线精品视频| 久久精品人妻少妇| 亚洲欧美激情综合另类| 精品久久久久久,| 人妻久久中文字幕网| 亚洲成人中文字幕在线播放| 色综合欧美亚洲国产小说| 一区福利在线观看| 亚洲男人的天堂狠狠| 久久亚洲精品不卡| 国产久久久一区二区三区| 黄色女人牲交| 99热这里只有是精品50| 床上黄色一级片| 日韩欧美在线乱码| 在线观看美女被高潮喷水网站 | 欧美最黄视频在线播放免费| 精品久久久久久久毛片微露脸| 久久久久久久久中文| 噜噜噜噜噜久久久久久91| 欧美绝顶高潮抽搐喷水| 女人十人毛片免费观看3o分钟| 夜夜看夜夜爽夜夜摸| 三级毛片av免费| 欧美bdsm另类| 国产高清三级在线| 综合色av麻豆| 欧美激情久久久久久爽电影| 免费看十八禁软件| 九九在线视频观看精品| 午夜免费激情av| 国产免费一级a男人的天堂| 国产精华一区二区三区| 久久国产精品影院| 欧美色视频一区免费| 男人舔奶头视频| aaaaa片日本免费| 亚洲成人中文字幕在线播放| 法律面前人人平等表现在哪些方面| 97超视频在线观看视频| 国产激情偷乱视频一区二区| 叶爱在线成人免费视频播放| 成人国产综合亚洲| 男插女下体视频免费在线播放| 在线a可以看的网站| 欧美色视频一区免费| 日韩精品青青久久久久久| 成人性生交大片免费视频hd| 精品电影一区二区在线| 免费看日本二区| www.色视频.com| 久久久精品大字幕| 九九热线精品视视频播放| 国产精品99久久久久久久久| 色播亚洲综合网| 夜夜看夜夜爽夜夜摸| 日本撒尿小便嘘嘘汇集6| 日本 av在线| 可以在线观看毛片的网站| 国产精品自产拍在线观看55亚洲| 又黄又粗又硬又大视频| 亚洲五月天丁香| 1000部很黄的大片| 国内精品久久久久久久电影| 97人妻精品一区二区三区麻豆| 精品久久久久久久久久久久久| 久久精品影院6| 国产精品亚洲美女久久久| 一个人观看的视频www高清免费观看| 精品国产亚洲在线| 国产视频内射| 精品国产美女av久久久久小说| 丁香六月欧美| 51午夜福利影视在线观看| 免费av不卡在线播放| 熟女人妻精品中文字幕| www日本黄色视频网| 亚洲在线自拍视频| 乱人视频在线观看| 黄色成人免费大全| 亚洲成人久久爱视频| 91av网一区二区| 精品一区二区三区av网在线观看| 欧美性猛交黑人性爽| 欧美精品啪啪一区二区三区|