• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of flow field on stability of throttled surge tanks with standpipe*

    2013-06-01 12:29:57ANJianfeng安建峰ZHANGJian張健YUXiaodong俞曉東CHENSheng陳勝
    關(guān)鍵詞:陳勝張健

    AN Jian-feng (安建峰), ZHANG Jian (張健), YU Xiao-dong (俞曉東), CHEN Sheng (陳勝)

    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China, E-mail: ajf102520@hhu.edu.cn

    Influence of flow field on stability of throttled surge tanks with standpipe*

    AN Jian-feng (安建峰), ZHANG Jian (張健), YU Xiao-dong (俞曉東), CHEN Sheng (陳勝)

    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China, E-mail: ajf102520@hhu.edu.cn

    (Received February 9, 2013, Revised March 3, 2013)

    The steady-state flow field characteristics have important effects on the stability of the throttled surge tank with the standpipe. This paper analyzes these effects on the basis of the numerical simulation of the flow field by using the Computational Fluid Dynamics (CFD) method. It is shown that the anticlockwise recirculation zone is formed in the standpipe, which affects the local head loss at the junction of the standpipe with the pipeline. The variation of the head loss coefficient at the junction is linearly related with the diameter ratio of the standpipe to the pipeline. The dimensionless recirculation flow rate is proportional to the square of the diameter ratio. Considering the effects of the recirculation zone, an empirical expression of the critical stability area is obtained. Comparing with the Thoma critical area, the area obtained by the present method is smaller, and the reduction depends on the diameter ratio and the ratio of the velocity head to the head losses in the tunnel.

    critical stability area, throttled surge tank, Computational Fluid Dynamics (CFD) simulation, turbulence model, flow field

    Introduction

    A throttled surge tank is usually used to reduce the amplitude of the pressure fluctuations by reflecting the incoming pressure waves, and to improve the regulating characteristics of a hydraulic turbine. It serves as a storage for the excess water during the period of the load reduction and provides water during the period of the load acceptance in a hydropower plant. A standpipe, which connects the tank and the tunnel in this type of the surge tank, forms a T-junction between them[1].

    In a steady state, there are almost no inflow into and outflow from the standpipe. The steady-state flow field of the throttled surge tank with the standpipe is similar to that of a sudden expansion flow[2,3]. Because of the abrupt change of direction of the boundary and the sudden expansion in the cross-sectional area at the junction, a recirculation zone forms in the standpipe, and the velocity head at the junction is not the same as that at the end of the tunnel[1]. These features of the flow field have very important effects on the size of the cross-sectional area of the throttled surge tank[4,5].

    The effect of the velocity head at the junction on the critical stability area was studied by Jaeger[4]and Anderson[5]. They came to similar conclusions that the gross head loss coefficient αin the Thoma critical stability area becomesα+k/2g(k =1-0.5, gis the gravitational acceleration), and the velocity head is favorable to the upstream throttled surge tank. Based on Gardel’s T-junction gross head loss formulas[6], Lai et al.[7,8]analyzed the effect of the momentum ex- change at the junction on the size of the cross-sec- tional area of the downstream throttled surge tank. Nevertheless, the effect of the recirculation zone on the critical stability area of a throttled surge tank were not considered in these investigations.

    The head loss coefficient corresponding to the recirculation flow rate could not be neglected in the determination of the critical stability area, even if the head losses caused by the recirculation zone are small compared with those of the tunnel. The effect of the recirculation zone on the stability of the throttled surge tank could be studied by using the Computational Fluid Dynamics (CFD) method[9]. The keyissues in using the CFD method are the turbulence model and the wall treatment. To improve the numerical accuracy, the realizable k-εmodel and the standard wall function method could be employed for the turbulent flow and the near wall flow[10-14], respectively. Using these numerical techniques, Cheng et al.[15]simulated the flow fields in T-type bifurcation and throttled surge tanks with consideration of the inflow and outflow from the standpipe. The results are in good agreement with the experiments conducted by Cai et al.[16]. These studies focused on the head losses at the junction, but not so much on the characteristics of the flow field without the inflow and outflow from the standpipe.

    The present study analyzes the stability of the throttled surge tank with the standpipe, and comes up with an empirical expression of the critical stability area of this type of the surge tank with consideration of the flow field characteristics.

    Fig.1 Schematic diagram of experimental setup

    Fig.2 Comparisons of computed and measured head losses for the cases of different diameter ratios Dr, where the signs of various shapes are for computed results and the curves are for measured results

    1. Model description

    1.1 Numerical model

    The flow is assumed to be steady, incompressible, isothermal, and Newtonian. The continuity equation, the momentum equation, and the equations fork andεin the realizablek-εmodel are:

    respectively, where xiare the spatial coordinates, uiare the Reynolds-averaged velocity components, giare the body force components of unit mass, ρ is the fluid density, ν is the kinematic viscosity, P is the pressure, k is the turbulent kinetic energy, ε is the turbulent dissipation rate, the turbulence Prandtl numbers for k and ε areσk=1.0 and σε=1.2, respectively, C2= 1.90, C1is the maximum value between 0.43 andis the mean rate of the rotation tensor viewed in a rotating reference frame with angular velocity ωk.

    In the numerical model, the control volume method is used together with the second order upwind scheme[17]. The SIMPLEC algorithm is used for the pressure coupling[18]. The upsteam boundary condition is set as the velocity inlet. At the downstream end, the pressure outlet is used. The Standard Wall Functions method is employed for the near-wall treatment of the turbulence flow.

    1.2 Validation of numerical model

    Figure 2 shows the local head losses between Sections 1 and 2, for the cases of different diameter ratios of the standpipe to the main duct (Dr= D3/ D1):Dr =0.597, 0.833 and 1.000. As can be seen, the computed results are in good agreement with the measured ones. The absolute error increases with the velocity, but the maximum relative error is still less than 10%. These differences may result from the measurement errors and the accuracy of the turbulence model.

    2. Flow field characteristics

    2.1 Flow patterns

    The fluid emerging from the main duct can not follow the abrupt change of direction of the boundary, consequently, the flow separates and an anticlockwiserecirculation zone is formed in the standpipe. Figure 3 illustrates parts of the numerical results. The steamlines and the velocity contour plots in this figure demonstrate that the size and the strength of the recirculation zone increase with Drand the Reynolds numbers at inlet (Re=VD1/ν,V and D1are the mean velocity and the diameter of the main duct). It can be seen in this figure that for the sameDrthe size and the strength of the recirculation zone increase withRe. For the sameRe, the size of the recirculation zone increases withDr. The detailed computed results indicate the increase in the size of the recirculation zone in the range of 60000 <Re <92000/Dr is more significant than that outside of the range.

    Fig.4 Variations of Qrwith Dr? Re for Dr=0.597, 0.833 and 1.000

    Fig.5 Variation of Qrwith Dr for Dr? Re>92000

    2.2 Recirculation flow rate

    The recirculation flow rate Qschanges with the main duct flow rate Qand the diameter of the standpipe. Figure 4 shows the variations of the dimensionless flow rate(Qr= Qs/Q)against Dr? Re . Here, Dr? Re is the dimensionless product ofDrand Re, and represents the flow condition and the geometrical property of the model. It is observed that the flow-ratioQrincreases with Dr? Rewhen0 92 000. In this case, according to Fig.5, the best fit is

    Obviously,Qris approximately proportional to the square ofDr.

    For the practical hydraulic engineering projects, the conditionDr? Re>92000is always satisfied, so Eq.(5) could be used to estimate the steady-state recirculation flow rate for throttled surge tanks with standpipe.

    Fig.6 Schematic diagram of flow patterns

    Fig.7 Variation of α0with Dr for Dr? Re>92000

    2.3 Head loss coefficients

    Based on the steamlines and the velocity contour plots in Fig.3, Figure 6 illustrates the flow patterns. The recirculation causes the dissipation of energy as heat, and consequently, the head losses between Sections uandd , Section 3 and Point a, and Section 3 and Pointb(Δhu-d,Δh3-a, and Δh3-b, where the subscripts are the location indices as shown in Fig.1). These head losses follow a square law, i.e.,Δh= αV2/2g. The coefficients corresponding to these head losses are represented by α0,α1and α2, respectively. Figure 7 shows the variation of α0withDr in the range Dr? Re>92000. It is observed from this figure thatα0is proportional to Drapproximatively, and the best fitting formulae is

    On the other hand, the piezometric pressures at Sectionsuandd are approximately equal to those at Pointsaandb , respectively. The computed results show that the following conditions As1/ AT= 8Dr/9and As2/ AT= Dr/9are always satisfied. The coefficientsα1and α2may be, therefore, obtained as illustrated in Fig.8. In this figure,α1and α2are approximately proportional toDrby using the piecewise functions. The same values ofDr at the boundary points are 0.225. Note that the condition As/ AT>0.15is always satisfied for throttled surge tanks with standpipe, that is to say, the condition of Dr>0.225always holds.

    Fig.8 Variation of α1and α2with Dr for Dr? Re> 92 000

    3. Critical stability area

    With Thoma’s assumption and considering the head loss for the recirculation zone, the dynamic equation of the fluid in the tunnel is

    where L is the length of the tunnel,ATis the average cross-sectional area of the tunnel,Qis the discharge of the tunnel,Qs1is the recirculation flow rate upstream as shown in Fig.6,Zis the water level in the surge tank above the reservoir level (positive upward), αu= α + k / 2g, α is the head loss coefficient of the tunnel,α= α/2gA2,

    s11 s1 α= α/2gA2, and g is the gravitational

    s22 s2 acceleration.

    The continuity equation for the junction of the tunnel and the standpipe is

    where Qtis the turbine flow,Qs2is the recirculation flow rate downstream as shown in Fig.6, and F is the horizontal cross-sectional area of the tank.

    By assuming the constant efficiency of the turbine, the constant hydraulic power equation therefore takes the form

    where H0is the static head,αdis the head loss factor in the penstock, and the subscript “0” represents the steady-state value.

    For the head losses at the junction of the tunnel and the standpipe, the following equation can be used

    By rewriting Eqs.(7)-(10) in terms of small deviations,Δz,ΔQ,ΔQt, from the steady-state values, and neglecting terms of second and higher orders, the second-order differential equation forΔz is obtained. If the coefficient of the term d/(Δz)/dt in this equation is equal to zero, the oscillations are in a stable state. The resulting expression for the criticalstability area of the surge tank is consequently obtai- ned as follows

    where the first fraction term is the Thoma critical sta-bility area,hw0is the head losses of the tunnel in the steady state, and hwm0is the head losses of penstocks in the steady state.

    Substitution ofAs1/ AT=8 Dr /9,As2/ AT= Dr /9, and computed results of α1and α2into the termαs2/(αs1- αs2)of Eq.(11), we have

    The term 1/2 gA2αof Eq.(13) is the ratio of the velocity head to the head losses in the tunnel. The comparison of this equation with the Thoma critical stability area indicates the critical stability area is re- duced. This reduction in the tank area is favorable to the economy of the construction. In general, the adva- ntage of this reduction is more significant for the low- head power plants.

    4. Conclusion

    In this study, the stability of the throttled surge tanks with standpipe is analyzed with consideration of the effects of the flow field characteristics in the steady state. The critical stability area is derived on the basis of the numerical results. The critical area presented in this study is smaller than the Thoma’s one, and is influenced by the diameter ratio and the ratio of the velocity head to the head losses in the tunnel. This reduction in the tank area is favorable to the economy of construction. In addition, the computed results show that there is an anticlockwise recirculation zone in the standpipe due to the abrupt change of direction of the boundary. The variation of the head loss coefficient at the junction is linearly related with the diameter ratio of the standpipe to the pipeline. The dimensionless recirculation flow rate is proportional to the square of the diameter ratio. The simulation results of the CFD could be used to calculate the critical stability area of the downstream throttled surge tanks with standpipe.

    [1] CHAUDHRY M. H. Applied hydraulic transients[M]. 2th Edition, New York: Van Nostrand Reinhold, 1987, 333-376.

    [2] CASARSA L., GIANNATTASIO P. Three-dimensional features of the turbulent flow through a planar sudden expansion[J]. Physics of Fluids, 2008, 20(1): 1-15

    [3] ROY V., MAJUMDER S. and SANYAL D. Analysis of the turbulent fluid flow in an axi-symmetric sudden expansion[J]. International Journal of Engineering Science and Technology, 2010, 2(6): 1569-1574

    [4] JAEGER C. A review of surge-tank stability criteria[J]. Journal of Basic Engineering, 1960, 82(4): 765-775.

    [5] ANDERSON A. Surge shaft stability with pumped-storage schemes[J]. Journal of Hydraulic Engineering, ASCE, 1985, 110(6): 687-706.

    [6] GARDEL A. Pressure drops in flows through T-shaped fittings[J]. Bulletin Technique De La Suisse Romande, 1957, 83(9): 123-130.

    [7] LAI Xu, YANG Jian-dong and CHEN Jian-zhi. Effects of velocity and momentum exchange on critical stable sectional area of downstream throttled surge tank[J]. Journal of Energy Engineering, 2003, 129(3): 96-106. [8] LAI Xu, YANG Jian-dong and CHEN Jian-zhi. Critical stable sectional area of downstream throttled surge tank[C]. 4th ASME/JSME Joint Fluids Summer Engineering Conference. Honolulu, Hawaii, USA, 2003, 2885-2890.

    [9] FERZIGER J. H., PERIC M. Computational methods for fluid dynamics[M]. 3th Edition, New York: Springer-Verlag, 2002.

    [10] WILCOX D. C. Turbulence modeling for CFD[M]. 3th Edition, San Diego, USA: DCW Industries, Inc., 2006.

    [11] SAMY M. E., MOFREH H. H. A comparative study of turbulence models performance for separating flow in a planar asymmetric diffuser[J]. Computers and Fluids, 2011, 44(1): 248-257.

    [12] SAQR K. M., WAHID M. A. Comparison of four eddyviscosity turbulence models in the eddy dissipation modeling of turbulent diffusion flames[J]. International Journal of Applied Mathematics and Mechanics, 2011, 7(19): 1-18.

    [13] NICHOLS R. H., NELSON C. C. Wall function boundary condition including heat transfer and compressibility[J]. AIAA Journal, 2004, 42(6): 1107-1114.

    [14] CRAFT T. J., GANT S. E., IACOVIDES H. and LAUNDER B. E. Development and application of a new wall function for complex turbulent flows[C]. European Congress on Computational Methods in Applied Sciences and Engineering. Swansea, Wales, UK, 2001.

    [15] CHENG Yong-guang, YANG Jian-dong. Hydraulic resistance coefficient determination of throttled surge tanks by means of computational fluid dynamics[J]. Journal of Hydraulic Engineering, 2005, 36(7): 792-797 (in Chinese).

    [16] CAI Fu-lin, HU Ming and CAO Qing. Coefficients of head losses of throttled surge tanks with long linking pipe[J]. International Journal of Hydroelectric Energy, 2001, 19(4): 40-42.

    [17] HUA Zu-lin, XING Ling-hang and GU Li. Application of a modified quick scheme to depth-averaged k-ε turbulence model based on unstructured grids[J].

    10.1016/S1001-6058(13)60366-2

    * Project supported by the National Natural Science Foundation of China (Grant No. 51079050) the Doctoral Innovation Foundation in Jiangsu Province (Grant No. 2017-B0803338).

    Biography: AN Jian-feng (1981-), Male, Ph. D. Candidate

    ZHANG Jian,

    E-mail: jzhang@hhu.edu.cn

    猜你喜歡
    陳勝張健
    燕雀焉知鴻鵠之志
    Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
    張健書法作品
    廣告大觀(2020年3期)2020-10-20 12:34:00
    張健書法作品
    青年生活(2020年23期)2020-08-04 10:27:43
    鴻鵠之志
    Transient air-water flow patterns in the vent tube in hydropower tailrace system simulated by 1-D-3-D coupling method *
    張健的傳銷邪教
    “勾股定理”之我見
    陳勝起義
    會(huì)說話的樹
    欧美乱色亚洲激情| 一级作爱视频免费观看| 淫妇啪啪啪对白视频| 9热在线视频观看99| 亚洲精品国产区一区二| 国产成年人精品一区二区| 亚洲国产欧美一区二区综合| 免费久久久久久久精品成人欧美视频| 亚洲va日本ⅴa欧美va伊人久久| 韩国精品一区二区三区| 色综合亚洲欧美另类图片| 国产亚洲欧美在线一区二区| 香蕉丝袜av| 国产亚洲av嫩草精品影院| 亚洲av电影不卡..在线观看| av免费在线观看网站| 国产男靠女视频免费网站| 国产精品日韩av在线免费观看 | 老汉色∧v一级毛片| 色综合亚洲欧美另类图片| 大型av网站在线播放| 欧美中文日本在线观看视频| 日韩精品中文字幕看吧| 国产高清激情床上av| 黄频高清免费视频| 精品欧美一区二区三区在线| 精品福利观看| 国产私拍福利视频在线观看| 后天国语完整版免费观看| 久久影院123| 九色亚洲精品在线播放| 宅男免费午夜| 国产成人影院久久av| 国产精品久久电影中文字幕| 一级黄色大片毛片| 亚洲,欧美精品.| 欧美成人一区二区免费高清观看 | 老汉色av国产亚洲站长工具| 一级作爱视频免费观看| 咕卡用的链子| 精品人妻1区二区| 亚洲无线在线观看| 国产麻豆69| 久久国产亚洲av麻豆专区| 黄色 视频免费看| 国产成年人精品一区二区| 国产亚洲av嫩草精品影院| 看免费av毛片| 999久久久国产精品视频| 国产黄a三级三级三级人| 亚洲色图 男人天堂 中文字幕| 成人18禁高潮啪啪吃奶动态图| 在线观看66精品国产| 国产av一区二区精品久久| 夜夜爽天天搞| 高清在线国产一区| 亚洲 欧美 日韩 在线 免费| 人人妻人人爽人人添夜夜欢视频| 日韩大码丰满熟妇| 窝窝影院91人妻| 国产高清视频在线播放一区| 国产精品二区激情视频| 男人操女人黄网站| 精品卡一卡二卡四卡免费| 此物有八面人人有两片| 精品免费久久久久久久清纯| 成人18禁在线播放| 日本黄色视频三级网站网址| 免费在线观看完整版高清| 久久性视频一级片| 在线国产一区二区在线| 无遮挡黄片免费观看| 免费女性裸体啪啪无遮挡网站| 亚洲成国产人片在线观看| 日韩国内少妇激情av| 成人三级黄色视频| а√天堂www在线а√下载| 亚洲第一欧美日韩一区二区三区| 欧美成人午夜精品| 欧美激情 高清一区二区三区| 久久久久九九精品影院| 免费一级毛片在线播放高清视频 | 狂野欧美激情性xxxx| 欧美绝顶高潮抽搐喷水| 亚洲国产精品999在线| 搡老妇女老女人老熟妇| 在线播放国产精品三级| 12—13女人毛片做爰片一| 亚洲精品粉嫩美女一区| 性少妇av在线| 国产精品国产高清国产av| 在线观看一区二区三区| 母亲3免费完整高清在线观看| 国产成人啪精品午夜网站| 黑人巨大精品欧美一区二区mp4| 欧美老熟妇乱子伦牲交| 无人区码免费观看不卡| www日本在线高清视频| 男人舔女人下体高潮全视频| 视频在线观看一区二区三区| 中文字幕av电影在线播放| 自线自在国产av| 亚洲av电影在线进入| 最新在线观看一区二区三区| 国产精品乱码一区二三区的特点 | 国产99久久九九免费精品| 日本免费一区二区三区高清不卡 | 国语自产精品视频在线第100页| 日韩欧美一区视频在线观看| 午夜免费激情av| 亚洲欧美日韩高清在线视频| 黄色成人免费大全| 在线观看免费视频网站a站| 国产伦人伦偷精品视频| 免费在线观看黄色视频的| 热re99久久国产66热| 精品人妻1区二区| 亚洲av第一区精品v没综合| 免费久久久久久久精品成人欧美视频| 亚洲欧美日韩另类电影网站| 久久久久久国产a免费观看| 欧美色欧美亚洲另类二区 | 高清毛片免费观看视频网站| 久久国产亚洲av麻豆专区| 午夜影院日韩av| 色播亚洲综合网| 久久久久精品国产欧美久久久| 亚洲国产高清在线一区二区三 | 一夜夜www| 成人亚洲精品av一区二区| 女性被躁到高潮视频| 国产亚洲精品第一综合不卡| 美女国产高潮福利片在线看| 亚洲国产欧美网| 变态另类成人亚洲欧美熟女 | 日本a在线网址| 后天国语完整版免费观看| 久久草成人影院| 日日爽夜夜爽网站| 少妇 在线观看| 日本五十路高清| 欧美激情 高清一区二区三区| 天堂动漫精品| 69av精品久久久久久| 后天国语完整版免费观看| 精品久久久久久成人av| 久久精品国产综合久久久| 侵犯人妻中文字幕一二三四区| 国产亚洲精品第一综合不卡| 日本精品一区二区三区蜜桃| 日日干狠狠操夜夜爽| 国产欧美日韩一区二区精品| 欧美一级毛片孕妇| 可以在线观看毛片的网站| 国产成人欧美| 国产成人精品无人区| 精品第一国产精品| 在线视频色国产色| 国产av又大| 看片在线看免费视频| 日韩成人在线观看一区二区三区| 欧美成狂野欧美在线观看| 午夜日韩欧美国产| 精品国产美女av久久久久小说| tocl精华| 欧美激情久久久久久爽电影 | 亚洲中文日韩欧美视频| 婷婷六月久久综合丁香| 精品国产一区二区久久| 777久久人妻少妇嫩草av网站| www.999成人在线观看| 日本撒尿小便嘘嘘汇集6| 老熟妇乱子伦视频在线观看| av有码第一页| 桃色一区二区三区在线观看| 看黄色毛片网站| 国产成人欧美| 国产私拍福利视频在线观看| 中亚洲国语对白在线视频| 国产激情久久老熟女| 在线观看www视频免费| 久久久精品欧美日韩精品| 精品久久久久久成人av| 亚洲欧美激情在线| 久久中文字幕一级| 人人澡人人妻人| 亚洲aⅴ乱码一区二区在线播放 | 香蕉丝袜av| 国内久久婷婷六月综合欲色啪| 国产高清视频在线播放一区| 麻豆av在线久日| 中文字幕久久专区| 欧美av亚洲av综合av国产av| 精品熟女少妇八av免费久了| 欧美最黄视频在线播放免费| 久久精品亚洲熟妇少妇任你| 久久久久精品国产欧美久久久| 欧美乱码精品一区二区三区| 亚洲伊人色综图| 国产亚洲欧美在线一区二区| 制服诱惑二区| 黄色丝袜av网址大全| 国产欧美日韩一区二区三区在线| 色播亚洲综合网| 日日摸夜夜添夜夜添小说| 在线观看一区二区三区| 两人在一起打扑克的视频| 国产精品1区2区在线观看.| 久久久久久久午夜电影| 国产aⅴ精品一区二区三区波| 亚洲av成人不卡在线观看播放网| 国产亚洲av嫩草精品影院| 中文字幕精品免费在线观看视频| 亚洲成av片中文字幕在线观看| 国产成人欧美在线观看| 丝袜在线中文字幕| 久久精品成人免费网站| 久久精品亚洲熟妇少妇任你| 亚洲人成77777在线视频| 在线播放国产精品三级| 啦啦啦免费观看视频1| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇一区二区三区视频日本电影| 久久人妻熟女aⅴ| 国产日韩一区二区三区精品不卡| 男女下面进入的视频免费午夜 | 波多野结衣一区麻豆| 天天一区二区日本电影三级 | 欧美乱色亚洲激情| 亚洲无线在线观看| 怎么达到女性高潮| 国产一卡二卡三卡精品| 成人亚洲精品av一区二区| 日本免费一区二区三区高清不卡 | 日韩免费av在线播放| 69av精品久久久久久| 真人做人爱边吃奶动态| 一二三四社区在线视频社区8| 大码成人一级视频| 国产男靠女视频免费网站| 国产色视频综合| 不卡av一区二区三区| 天堂√8在线中文| 国产成人啪精品午夜网站| 神马国产精品三级电影在线观看 | 久久久久久久精品吃奶| 国产精品亚洲美女久久久| 国产一区二区三区综合在线观看| 久久人妻av系列| 一级a爱片免费观看的视频| 亚洲人成电影免费在线| 999久久久精品免费观看国产| 满18在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 天堂动漫精品| 精品第一国产精品| 久久天堂一区二区三区四区| 一卡2卡三卡四卡精品乱码亚洲| 男人舔女人的私密视频| 久久午夜亚洲精品久久| 亚洲熟女毛片儿| 久久人妻熟女aⅴ| 久久 成人 亚洲| 他把我摸到了高潮在线观看| 法律面前人人平等表现在哪些方面| 伊人久久大香线蕉亚洲五| 久久久久国内视频| 欧美日韩精品网址| 日日干狠狠操夜夜爽| 亚洲中文日韩欧美视频| 国产三级黄色录像| 国产99久久九九免费精品| 色综合亚洲欧美另类图片| 中文字幕色久视频| 亚洲少妇的诱惑av| 久久久精品国产亚洲av高清涩受| 丝袜在线中文字幕| 久久午夜亚洲精品久久| 日本黄色视频三级网站网址| 十八禁人妻一区二区| 超碰成人久久| 日本免费a在线| 一级毛片高清免费大全| 黄色视频不卡| 精品久久久久久久久久免费视频| 黄片小视频在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 自线自在国产av| 亚洲成av人片免费观看| 亚洲中文字幕日韩| 一区二区三区精品91| 免费无遮挡裸体视频| 黄色视频,在线免费观看| 日日夜夜操网爽| 午夜免费观看网址| 精品午夜福利视频在线观看一区| 无遮挡黄片免费观看| 国产成人av教育| 国产一级毛片七仙女欲春2 | 国产99久久九九免费精品| 国产91精品成人一区二区三区| 成熟少妇高潮喷水视频| 精品国产一区二区三区四区第35| 国产单亲对白刺激| 涩涩av久久男人的天堂| 精品无人区乱码1区二区| 国产亚洲精品久久久久久毛片| 亚洲av熟女| 欧美乱色亚洲激情| 一夜夜www| 国产熟女xx| 色综合站精品国产| 国产成人免费无遮挡视频| 久久婷婷人人爽人人干人人爱 | 国产精品一区二区三区四区久久 | 热re99久久国产66热| 长腿黑丝高跟| 国产激情欧美一区二区| 他把我摸到了高潮在线观看| 久久久久精品国产欧美久久久| av在线播放免费不卡| 女人被狂操c到高潮| 国产精品久久久久久亚洲av鲁大| 很黄的视频免费| 国产欧美日韩一区二区三区在线| 女警被强在线播放| 大型黄色视频在线免费观看| 精品国产一区二区久久| 亚洲伊人色综图| bbb黄色大片| 侵犯人妻中文字幕一二三四区| 人成视频在线观看免费观看| 色老头精品视频在线观看| 欧美日韩亚洲综合一区二区三区_| 久久 成人 亚洲| 国产欧美日韩精品亚洲av| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久人人做人人爽| 免费久久久久久久精品成人欧美视频| 一区二区日韩欧美中文字幕| 国内久久婷婷六月综合欲色啪| 亚洲国产精品999在线| 国产亚洲欧美98| 日韩精品青青久久久久久| 电影成人av| 可以在线观看毛片的网站| 亚洲久久久国产精品| 成人三级做爰电影| 国产欧美日韩一区二区三区在线| 欧美色视频一区免费| 欧美日韩黄片免| 国产精华一区二区三区| 亚洲一区二区三区色噜噜| 给我免费播放毛片高清在线观看| 又紧又爽又黄一区二区| 欧美成人一区二区免费高清观看 | 久久天躁狠狠躁夜夜2o2o| 日韩欧美在线二视频| 中文字幕人妻熟女乱码| 久久精品亚洲精品国产色婷小说| 亚洲国产精品sss在线观看| 久久性视频一级片| 国产精品亚洲美女久久久| 在线观看免费视频网站a站| 青草久久国产| 黄色毛片三级朝国网站| 亚洲片人在线观看| 可以在线观看的亚洲视频| 免费无遮挡裸体视频| 国产亚洲欧美在线一区二区| 亚洲国产精品久久男人天堂| 此物有八面人人有两片| 久久久久国内视频| 无限看片的www在线观看| 一二三四社区在线视频社区8| 亚洲av电影不卡..在线观看| 悠悠久久av| 老鸭窝网址在线观看| 男男h啪啪无遮挡| 国产精品久久久人人做人人爽| 免费不卡黄色视频| 久久久久久免费高清国产稀缺| 免费女性裸体啪啪无遮挡网站| 99精品在免费线老司机午夜| 一区福利在线观看| 国产激情久久老熟女| 日韩欧美一区视频在线观看| 国产aⅴ精品一区二区三区波| 午夜福利,免费看| 国产在线精品亚洲第一网站| 国产一区二区三区综合在线观看| 色综合婷婷激情| 叶爱在线成人免费视频播放| 欧美激情久久久久久爽电影 | 欧美日韩瑟瑟在线播放| 18美女黄网站色大片免费观看| 又紧又爽又黄一区二区| 波多野结衣一区麻豆| 欧美一区二区精品小视频在线| 国产极品粉嫩免费观看在线| 村上凉子中文字幕在线| www.精华液| 国产一卡二卡三卡精品| 亚洲色图综合在线观看| 国产一区二区三区在线臀色熟女| 久久精品亚洲熟妇少妇任你| 久久久久久久久久久久大奶| 精品国产亚洲在线| 国产成人av教育| 91成人精品电影| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品久久成人aⅴ小说| www.熟女人妻精品国产| 天堂动漫精品| 黑人操中国人逼视频| 男女之事视频高清在线观看| 国语自产精品视频在线第100页| 这个男人来自地球电影免费观看| 12—13女人毛片做爰片一| 美女 人体艺术 gogo| 久久人人精品亚洲av| 成年女人毛片免费观看观看9| 久久狼人影院| 久久国产精品人妻蜜桃| 色综合站精品国产| 超碰成人久久| 日韩大码丰满熟妇| 精品电影一区二区在线| 亚洲免费av在线视频| 99re在线观看精品视频| 国产片内射在线| www.999成人在线观看| 一区二区三区国产精品乱码| 一夜夜www| 一二三四在线观看免费中文在| 黄片大片在线免费观看| 天天躁夜夜躁狠狠躁躁| 女人被狂操c到高潮| 久久亚洲精品不卡| 怎么达到女性高潮| 欧美日韩亚洲综合一区二区三区_| 国产亚洲精品久久久久5区| 成人永久免费在线观看视频| 啪啪无遮挡十八禁网站| 亚洲一区二区三区色噜噜| 午夜老司机福利片| 国产又色又爽无遮挡免费看| 精品第一国产精品| 国产精品爽爽va在线观看网站 | 精品国产亚洲在线| 精品无人区乱码1区二区| 亚洲第一av免费看| xxx96com| 成在线人永久免费视频| 777久久人妻少妇嫩草av网站| 禁无遮挡网站| av天堂在线播放| 欧美一级毛片孕妇| 亚洲男人天堂网一区| 男男h啪啪无遮挡| 精品免费久久久久久久清纯| 亚洲成人免费电影在线观看| 久久这里只有精品19| 亚洲国产精品999在线| 在线播放国产精品三级| 国产三级黄色录像| 亚洲国产精品合色在线| 久久午夜亚洲精品久久| 久久人人精品亚洲av| 日韩欧美在线二视频| 中文字幕人妻丝袜一区二区| 搡老熟女国产l中国老女人| 欧美在线一区亚洲| 每晚都被弄得嗷嗷叫到高潮| 少妇的丰满在线观看| 久久婷婷人人爽人人干人人爱 | 精品免费久久久久久久清纯| 亚洲成人免费电影在线观看| 亚洲欧美激情综合另类| 在线观看一区二区三区| 久久青草综合色| 久久人妻福利社区极品人妻图片| 国产精品1区2区在线观看.| 男人操女人黄网站| 成人三级黄色视频| 国产aⅴ精品一区二区三区波| 久久久久久久午夜电影| 9热在线视频观看99| 欧美色视频一区免费| 午夜福利18| 国产精品永久免费网站| 亚洲中文av在线| 久久精品亚洲熟妇少妇任你| 欧美成狂野欧美在线观看| 涩涩av久久男人的天堂| 制服人妻中文乱码| 国产av精品麻豆| 变态另类成人亚洲欧美熟女 | 中文字幕人成人乱码亚洲影| 9色porny在线观看| 91av网站免费观看| 女同久久另类99精品国产91| 免费在线观看亚洲国产| 精品国产美女av久久久久小说| 91精品国产国语对白视频| 性色av乱码一区二区三区2| 成人特级黄色片久久久久久久| 老司机午夜十八禁免费视频| 他把我摸到了高潮在线观看| 精品卡一卡二卡四卡免费| 9色porny在线观看| 国产精品精品国产色婷婷| 亚洲欧美精品综合一区二区三区| 国产精品美女特级片免费视频播放器 | 黄片大片在线免费观看| 亚洲少妇的诱惑av| 久久人妻av系列| 久久中文字幕人妻熟女| 夜夜看夜夜爽夜夜摸| 极品人妻少妇av视频| 亚洲精品久久成人aⅴ小说| 可以在线观看毛片的网站| 满18在线观看网站| 纯流量卡能插随身wifi吗| 亚洲av电影不卡..在线观看| 久久久水蜜桃国产精品网| 免费在线观看视频国产中文字幕亚洲| 黄片大片在线免费观看| 精品久久久久久,| 久久人人爽av亚洲精品天堂| 丝袜美腿诱惑在线| 成人特级黄色片久久久久久久| 夜夜夜夜夜久久久久| 久久精品国产亚洲av香蕉五月| 真人做人爱边吃奶动态| 国产精品久久视频播放| 人人妻,人人澡人人爽秒播| 伦理电影免费视频| 免费高清在线观看日韩| 亚洲人成网站在线播放欧美日韩| 亚洲免费av在线视频| 99热只有精品国产| 日韩国内少妇激情av| 男人操女人黄网站| avwww免费| 丁香六月欧美| 最近最新免费中文字幕在线| 自线自在国产av| 国产av一区在线观看免费| 天天添夜夜摸| 激情视频va一区二区三区| 狂野欧美激情性xxxx| 一二三四社区在线视频社区8| 欧美日韩瑟瑟在线播放| 可以在线观看的亚洲视频| 久久精品国产亚洲av香蕉五月| 色综合婷婷激情| 十八禁人妻一区二区| 亚洲美女黄片视频| 中文字幕久久专区| 老鸭窝网址在线观看| 亚洲伊人色综图| 久久人妻av系列| 18禁美女被吸乳视频| 麻豆久久精品国产亚洲av| 校园春色视频在线观看| 久久久久久国产a免费观看| 一级a爱视频在线免费观看| 免费在线观看亚洲国产| 人人妻人人爽人人添夜夜欢视频| 久久久久国产精品人妻aⅴ院| 国产精品美女特级片免费视频播放器 | 精品无人区乱码1区二区| 国产私拍福利视频在线观看| 欧美 亚洲 国产 日韩一| 真人一进一出gif抽搐免费| 啦啦啦免费观看视频1| 国产精品野战在线观看| 又大又爽又粗| www.自偷自拍.com| 成人18禁高潮啪啪吃奶动态图| 18禁美女被吸乳视频| 午夜精品国产一区二区电影| 黄色丝袜av网址大全| 免费观看人在逋| 一进一出抽搐gif免费好疼| www.熟女人妻精品国产| 制服丝袜大香蕉在线| 纯流量卡能插随身wifi吗| 久久久久精品国产欧美久久久| 91av网站免费观看| 女人被躁到高潮嗷嗷叫费观| 国内久久婷婷六月综合欲色啪| 香蕉丝袜av| 国产高清视频在线播放一区| 久久久久精品国产欧美久久久| 日本免费a在线| 日本免费一区二区三区高清不卡 | 国产成人精品在线电影| 在线观看www视频免费| 亚洲男人的天堂狠狠| 俄罗斯特黄特色一大片| 麻豆久久精品国产亚洲av| 色尼玛亚洲综合影院| 午夜亚洲福利在线播放| 国产欧美日韩一区二区三区在线| 中文字幕最新亚洲高清| 51午夜福利影视在线观看| 午夜福利高清视频| 最新美女视频免费是黄的| 男女下面插进去视频免费观看| 久久欧美精品欧美久久欧美| 欧美久久黑人一区二区| 国产精品久久久久久人妻精品电影| 免费看a级黄色片|