• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of flow field on stability of throttled surge tanks with standpipe*

    2013-06-01 12:29:57ANJianfeng安建峰ZHANGJian張健YUXiaodong俞曉東CHENSheng陳勝
    關(guān)鍵詞:陳勝張健

    AN Jian-feng (安建峰), ZHANG Jian (張健), YU Xiao-dong (俞曉東), CHEN Sheng (陳勝)

    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China, E-mail: ajf102520@hhu.edu.cn

    Influence of flow field on stability of throttled surge tanks with standpipe*

    AN Jian-feng (安建峰), ZHANG Jian (張健), YU Xiao-dong (俞曉東), CHEN Sheng (陳勝)

    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China, E-mail: ajf102520@hhu.edu.cn

    (Received February 9, 2013, Revised March 3, 2013)

    The steady-state flow field characteristics have important effects on the stability of the throttled surge tank with the standpipe. This paper analyzes these effects on the basis of the numerical simulation of the flow field by using the Computational Fluid Dynamics (CFD) method. It is shown that the anticlockwise recirculation zone is formed in the standpipe, which affects the local head loss at the junction of the standpipe with the pipeline. The variation of the head loss coefficient at the junction is linearly related with the diameter ratio of the standpipe to the pipeline. The dimensionless recirculation flow rate is proportional to the square of the diameter ratio. Considering the effects of the recirculation zone, an empirical expression of the critical stability area is obtained. Comparing with the Thoma critical area, the area obtained by the present method is smaller, and the reduction depends on the diameter ratio and the ratio of the velocity head to the head losses in the tunnel.

    critical stability area, throttled surge tank, Computational Fluid Dynamics (CFD) simulation, turbulence model, flow field

    Introduction

    A throttled surge tank is usually used to reduce the amplitude of the pressure fluctuations by reflecting the incoming pressure waves, and to improve the regulating characteristics of a hydraulic turbine. It serves as a storage for the excess water during the period of the load reduction and provides water during the period of the load acceptance in a hydropower plant. A standpipe, which connects the tank and the tunnel in this type of the surge tank, forms a T-junction between them[1].

    In a steady state, there are almost no inflow into and outflow from the standpipe. The steady-state flow field of the throttled surge tank with the standpipe is similar to that of a sudden expansion flow[2,3]. Because of the abrupt change of direction of the boundary and the sudden expansion in the cross-sectional area at the junction, a recirculation zone forms in the standpipe, and the velocity head at the junction is not the same as that at the end of the tunnel[1]. These features of the flow field have very important effects on the size of the cross-sectional area of the throttled surge tank[4,5].

    The effect of the velocity head at the junction on the critical stability area was studied by Jaeger[4]and Anderson[5]. They came to similar conclusions that the gross head loss coefficient αin the Thoma critical stability area becomesα+k/2g(k =1-0.5, gis the gravitational acceleration), and the velocity head is favorable to the upstream throttled surge tank. Based on Gardel’s T-junction gross head loss formulas[6], Lai et al.[7,8]analyzed the effect of the momentum ex- change at the junction on the size of the cross-sec- tional area of the downstream throttled surge tank. Nevertheless, the effect of the recirculation zone on the critical stability area of a throttled surge tank were not considered in these investigations.

    The head loss coefficient corresponding to the recirculation flow rate could not be neglected in the determination of the critical stability area, even if the head losses caused by the recirculation zone are small compared with those of the tunnel. The effect of the recirculation zone on the stability of the throttled surge tank could be studied by using the Computational Fluid Dynamics (CFD) method[9]. The keyissues in using the CFD method are the turbulence model and the wall treatment. To improve the numerical accuracy, the realizable k-εmodel and the standard wall function method could be employed for the turbulent flow and the near wall flow[10-14], respectively. Using these numerical techniques, Cheng et al.[15]simulated the flow fields in T-type bifurcation and throttled surge tanks with consideration of the inflow and outflow from the standpipe. The results are in good agreement with the experiments conducted by Cai et al.[16]. These studies focused on the head losses at the junction, but not so much on the characteristics of the flow field without the inflow and outflow from the standpipe.

    The present study analyzes the stability of the throttled surge tank with the standpipe, and comes up with an empirical expression of the critical stability area of this type of the surge tank with consideration of the flow field characteristics.

    Fig.1 Schematic diagram of experimental setup

    Fig.2 Comparisons of computed and measured head losses for the cases of different diameter ratios Dr, where the signs of various shapes are for computed results and the curves are for measured results

    1. Model description

    1.1 Numerical model

    The flow is assumed to be steady, incompressible, isothermal, and Newtonian. The continuity equation, the momentum equation, and the equations fork andεin the realizablek-εmodel are:

    respectively, where xiare the spatial coordinates, uiare the Reynolds-averaged velocity components, giare the body force components of unit mass, ρ is the fluid density, ν is the kinematic viscosity, P is the pressure, k is the turbulent kinetic energy, ε is the turbulent dissipation rate, the turbulence Prandtl numbers for k and ε areσk=1.0 and σε=1.2, respectively, C2= 1.90, C1is the maximum value between 0.43 andis the mean rate of the rotation tensor viewed in a rotating reference frame with angular velocity ωk.

    In the numerical model, the control volume method is used together with the second order upwind scheme[17]. The SIMPLEC algorithm is used for the pressure coupling[18]. The upsteam boundary condition is set as the velocity inlet. At the downstream end, the pressure outlet is used. The Standard Wall Functions method is employed for the near-wall treatment of the turbulence flow.

    1.2 Validation of numerical model

    Figure 2 shows the local head losses between Sections 1 and 2, for the cases of different diameter ratios of the standpipe to the main duct (Dr= D3/ D1):Dr =0.597, 0.833 and 1.000. As can be seen, the computed results are in good agreement with the measured ones. The absolute error increases with the velocity, but the maximum relative error is still less than 10%. These differences may result from the measurement errors and the accuracy of the turbulence model.

    2. Flow field characteristics

    2.1 Flow patterns

    The fluid emerging from the main duct can not follow the abrupt change of direction of the boundary, consequently, the flow separates and an anticlockwiserecirculation zone is formed in the standpipe. Figure 3 illustrates parts of the numerical results. The steamlines and the velocity contour plots in this figure demonstrate that the size and the strength of the recirculation zone increase with Drand the Reynolds numbers at inlet (Re=VD1/ν,V and D1are the mean velocity and the diameter of the main duct). It can be seen in this figure that for the sameDrthe size and the strength of the recirculation zone increase withRe. For the sameRe, the size of the recirculation zone increases withDr. The detailed computed results indicate the increase in the size of the recirculation zone in the range of 60000 <Re <92000/Dr is more significant than that outside of the range.

    Fig.4 Variations of Qrwith Dr? Re for Dr=0.597, 0.833 and 1.000

    Fig.5 Variation of Qrwith Dr for Dr? Re>92000

    2.2 Recirculation flow rate

    The recirculation flow rate Qschanges with the main duct flow rate Qand the diameter of the standpipe. Figure 4 shows the variations of the dimensionless flow rate(Qr= Qs/Q)against Dr? Re . Here, Dr? Re is the dimensionless product ofDrand Re, and represents the flow condition and the geometrical property of the model. It is observed that the flow-ratioQrincreases with Dr? Rewhen0 92 000. In this case, according to Fig.5, the best fit is

    Obviously,Qris approximately proportional to the square ofDr.

    For the practical hydraulic engineering projects, the conditionDr? Re>92000is always satisfied, so Eq.(5) could be used to estimate the steady-state recirculation flow rate for throttled surge tanks with standpipe.

    Fig.6 Schematic diagram of flow patterns

    Fig.7 Variation of α0with Dr for Dr? Re>92000

    2.3 Head loss coefficients

    Based on the steamlines and the velocity contour plots in Fig.3, Figure 6 illustrates the flow patterns. The recirculation causes the dissipation of energy as heat, and consequently, the head losses between Sections uandd , Section 3 and Point a, and Section 3 and Pointb(Δhu-d,Δh3-a, and Δh3-b, where the subscripts are the location indices as shown in Fig.1). These head losses follow a square law, i.e.,Δh= αV2/2g. The coefficients corresponding to these head losses are represented by α0,α1and α2, respectively. Figure 7 shows the variation of α0withDr in the range Dr? Re>92000. It is observed from this figure thatα0is proportional to Drapproximatively, and the best fitting formulae is

    On the other hand, the piezometric pressures at Sectionsuandd are approximately equal to those at Pointsaandb , respectively. The computed results show that the following conditions As1/ AT= 8Dr/9and As2/ AT= Dr/9are always satisfied. The coefficientsα1and α2may be, therefore, obtained as illustrated in Fig.8. In this figure,α1and α2are approximately proportional toDrby using the piecewise functions. The same values ofDr at the boundary points are 0.225. Note that the condition As/ AT>0.15is always satisfied for throttled surge tanks with standpipe, that is to say, the condition of Dr>0.225always holds.

    Fig.8 Variation of α1and α2with Dr for Dr? Re> 92 000

    3. Critical stability area

    With Thoma’s assumption and considering the head loss for the recirculation zone, the dynamic equation of the fluid in the tunnel is

    where L is the length of the tunnel,ATis the average cross-sectional area of the tunnel,Qis the discharge of the tunnel,Qs1is the recirculation flow rate upstream as shown in Fig.6,Zis the water level in the surge tank above the reservoir level (positive upward), αu= α + k / 2g, α is the head loss coefficient of the tunnel,α= α/2gA2,

    s11 s1 α= α/2gA2, and g is the gravitational

    s22 s2 acceleration.

    The continuity equation for the junction of the tunnel and the standpipe is

    where Qtis the turbine flow,Qs2is the recirculation flow rate downstream as shown in Fig.6, and F is the horizontal cross-sectional area of the tank.

    By assuming the constant efficiency of the turbine, the constant hydraulic power equation therefore takes the form

    where H0is the static head,αdis the head loss factor in the penstock, and the subscript “0” represents the steady-state value.

    For the head losses at the junction of the tunnel and the standpipe, the following equation can be used

    By rewriting Eqs.(7)-(10) in terms of small deviations,Δz,ΔQ,ΔQt, from the steady-state values, and neglecting terms of second and higher orders, the second-order differential equation forΔz is obtained. If the coefficient of the term d/(Δz)/dt in this equation is equal to zero, the oscillations are in a stable state. The resulting expression for the criticalstability area of the surge tank is consequently obtai- ned as follows

    where the first fraction term is the Thoma critical sta-bility area,hw0is the head losses of the tunnel in the steady state, and hwm0is the head losses of penstocks in the steady state.

    Substitution ofAs1/ AT=8 Dr /9,As2/ AT= Dr /9, and computed results of α1and α2into the termαs2/(αs1- αs2)of Eq.(11), we have

    The term 1/2 gA2αof Eq.(13) is the ratio of the velocity head to the head losses in the tunnel. The comparison of this equation with the Thoma critical stability area indicates the critical stability area is re- duced. This reduction in the tank area is favorable to the economy of the construction. In general, the adva- ntage of this reduction is more significant for the low- head power plants.

    4. Conclusion

    In this study, the stability of the throttled surge tanks with standpipe is analyzed with consideration of the effects of the flow field characteristics in the steady state. The critical stability area is derived on the basis of the numerical results. The critical area presented in this study is smaller than the Thoma’s one, and is influenced by the diameter ratio and the ratio of the velocity head to the head losses in the tunnel. This reduction in the tank area is favorable to the economy of construction. In addition, the computed results show that there is an anticlockwise recirculation zone in the standpipe due to the abrupt change of direction of the boundary. The variation of the head loss coefficient at the junction is linearly related with the diameter ratio of the standpipe to the pipeline. The dimensionless recirculation flow rate is proportional to the square of the diameter ratio. The simulation results of the CFD could be used to calculate the critical stability area of the downstream throttled surge tanks with standpipe.

    [1] CHAUDHRY M. H. Applied hydraulic transients[M]. 2th Edition, New York: Van Nostrand Reinhold, 1987, 333-376.

    [2] CASARSA L., GIANNATTASIO P. Three-dimensional features of the turbulent flow through a planar sudden expansion[J]. Physics of Fluids, 2008, 20(1): 1-15

    [3] ROY V., MAJUMDER S. and SANYAL D. Analysis of the turbulent fluid flow in an axi-symmetric sudden expansion[J]. International Journal of Engineering Science and Technology, 2010, 2(6): 1569-1574

    [4] JAEGER C. A review of surge-tank stability criteria[J]. Journal of Basic Engineering, 1960, 82(4): 765-775.

    [5] ANDERSON A. Surge shaft stability with pumped-storage schemes[J]. Journal of Hydraulic Engineering, ASCE, 1985, 110(6): 687-706.

    [6] GARDEL A. Pressure drops in flows through T-shaped fittings[J]. Bulletin Technique De La Suisse Romande, 1957, 83(9): 123-130.

    [7] LAI Xu, YANG Jian-dong and CHEN Jian-zhi. Effects of velocity and momentum exchange on critical stable sectional area of downstream throttled surge tank[J]. Journal of Energy Engineering, 2003, 129(3): 96-106. [8] LAI Xu, YANG Jian-dong and CHEN Jian-zhi. Critical stable sectional area of downstream throttled surge tank[C]. 4th ASME/JSME Joint Fluids Summer Engineering Conference. Honolulu, Hawaii, USA, 2003, 2885-2890.

    [9] FERZIGER J. H., PERIC M. Computational methods for fluid dynamics[M]. 3th Edition, New York: Springer-Verlag, 2002.

    [10] WILCOX D. C. Turbulence modeling for CFD[M]. 3th Edition, San Diego, USA: DCW Industries, Inc., 2006.

    [11] SAMY M. E., MOFREH H. H. A comparative study of turbulence models performance for separating flow in a planar asymmetric diffuser[J]. Computers and Fluids, 2011, 44(1): 248-257.

    [12] SAQR K. M., WAHID M. A. Comparison of four eddyviscosity turbulence models in the eddy dissipation modeling of turbulent diffusion flames[J]. International Journal of Applied Mathematics and Mechanics, 2011, 7(19): 1-18.

    [13] NICHOLS R. H., NELSON C. C. Wall function boundary condition including heat transfer and compressibility[J]. AIAA Journal, 2004, 42(6): 1107-1114.

    [14] CRAFT T. J., GANT S. E., IACOVIDES H. and LAUNDER B. E. Development and application of a new wall function for complex turbulent flows[C]. European Congress on Computational Methods in Applied Sciences and Engineering. Swansea, Wales, UK, 2001.

    [15] CHENG Yong-guang, YANG Jian-dong. Hydraulic resistance coefficient determination of throttled surge tanks by means of computational fluid dynamics[J]. Journal of Hydraulic Engineering, 2005, 36(7): 792-797 (in Chinese).

    [16] CAI Fu-lin, HU Ming and CAO Qing. Coefficients of head losses of throttled surge tanks with long linking pipe[J]. International Journal of Hydroelectric Energy, 2001, 19(4): 40-42.

    [17] HUA Zu-lin, XING Ling-hang and GU Li. Application of a modified quick scheme to depth-averaged k-ε turbulence model based on unstructured grids[J].

    10.1016/S1001-6058(13)60366-2

    * Project supported by the National Natural Science Foundation of China (Grant No. 51079050) the Doctoral Innovation Foundation in Jiangsu Province (Grant No. 2017-B0803338).

    Biography: AN Jian-feng (1981-), Male, Ph. D. Candidate

    ZHANG Jian,

    E-mail: jzhang@hhu.edu.cn

    猜你喜歡
    陳勝張健
    燕雀焉知鴻鵠之志
    Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
    張健書法作品
    廣告大觀(2020年3期)2020-10-20 12:34:00
    張健書法作品
    青年生活(2020年23期)2020-08-04 10:27:43
    鴻鵠之志
    Transient air-water flow patterns in the vent tube in hydropower tailrace system simulated by 1-D-3-D coupling method *
    張健的傳銷邪教
    “勾股定理”之我見
    陳勝起義
    會(huì)說話的樹
    久久久精品欧美日韩精品| 亚洲午夜理论影院| 国产乱人视频| 国产国拍精品亚洲av在线观看| 69人妻影院| 欧美xxxx性猛交bbbb| 国产aⅴ精品一区二区三区波| 日韩国内少妇激情av| 97碰自拍视频| 女生性感内裤真人,穿戴方法视频| 午夜福利视频1000在线观看| 男女那种视频在线观看| 永久网站在线| 亚洲av.av天堂| 亚洲精品影视一区二区三区av| 国产单亲对白刺激| 韩国av一区二区三区四区| ponron亚洲| 国产私拍福利视频在线观看| 亚洲最大成人手机在线| 天堂影院成人在线观看| 精品一区二区三区视频在线观看免费| 搡女人真爽免费视频火全软件 | 亚洲国产精品sss在线观看| 国产免费一级a男人的天堂| 18禁黄网站禁片免费观看直播| 深爱激情五月婷婷| 亚洲第一欧美日韩一区二区三区| 网址你懂的国产日韩在线| 亚洲成人中文字幕在线播放| 欧美zozozo另类| 成年女人毛片免费观看观看9| 99久久99久久久精品蜜桃| 亚洲专区中文字幕在线| 久久久精品欧美日韩精品| x7x7x7水蜜桃| 亚洲一区二区三区不卡视频| 中文字幕人成人乱码亚洲影| 中亚洲国语对白在线视频| 色综合欧美亚洲国产小说| 欧美+日韩+精品| av中文乱码字幕在线| 淫秽高清视频在线观看| 亚洲第一欧美日韩一区二区三区| 国产精品1区2区在线观看.| 国产不卡一卡二| 一区二区三区四区激情视频 | 97超视频在线观看视频| 最近在线观看免费完整版| 久久久久久久亚洲中文字幕 | aaaaa片日本免费| 久久久久久久久中文| 久久热精品热| 听说在线观看完整版免费高清| 在线免费观看不下载黄p国产 | 12—13女人毛片做爰片一| 搡女人真爽免费视频火全软件 | 久久99热这里只有精品18| 免费人成视频x8x8入口观看| 亚洲精品乱码久久久v下载方式| h日本视频在线播放| 久久精品夜夜夜夜夜久久蜜豆| 欧美激情在线99| 欧美成人免费av一区二区三区| 伊人久久精品亚洲午夜| 久久精品夜夜夜夜夜久久蜜豆| 99久久无色码亚洲精品果冻| 级片在线观看| 1000部很黄的大片| 最近视频中文字幕2019在线8| 国产人妻一区二区三区在| 天堂网av新在线| 人妻夜夜爽99麻豆av| 一二三四社区在线视频社区8| 在现免费观看毛片| a级一级毛片免费在线观看| 久久热精品热| 日本a在线网址| 精品日产1卡2卡| 亚洲国产精品合色在线| 色吧在线观看| 国产精华一区二区三区| 免费人成在线观看视频色| 国内少妇人妻偷人精品xxx网站| 国产一区二区在线av高清观看| 毛片女人毛片| 免费av观看视频| 久久人人精品亚洲av| 观看美女的网站| 精品日产1卡2卡| 婷婷精品国产亚洲av| www.色视频.com| 中国美女看黄片| 观看免费一级毛片| 国产乱人视频| 美女xxoo啪啪120秒动态图 | 国产成人福利小说| 成年女人毛片免费观看观看9| 日韩精品中文字幕看吧| 99热只有精品国产| 午夜激情福利司机影院| 成人高潮视频无遮挡免费网站| 久久精品久久久久久噜噜老黄 | 尤物成人国产欧美一区二区三区| 久久久久久九九精品二区国产| 丰满乱子伦码专区| 色av中文字幕| 亚洲人成网站在线播放欧美日韩| 88av欧美| 午夜激情欧美在线| 成年版毛片免费区| 亚洲av.av天堂| 久9热在线精品视频| 赤兔流量卡办理| 国产三级在线视频| 一区二区三区免费毛片| 日日夜夜操网爽| 久久欧美精品欧美久久欧美| 欧美成人a在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲欧美日韩卡通动漫| 日本一本二区三区精品| 亚洲精品在线观看二区| 亚洲精品影视一区二区三区av| 国产高清三级在线| 国产午夜精品久久久久久一区二区三区 | 亚洲色图av天堂| 国产欧美日韩一区二区三| 午夜福利视频1000在线观看| 日日摸夜夜添夜夜添av毛片 | 日本免费a在线| 免费黄网站久久成人精品 | 欧美色欧美亚洲另类二区| 国产免费男女视频| 欧美黑人欧美精品刺激| 色视频www国产| 又黄又爽又免费观看的视频| 天堂动漫精品| 久久精品国产99精品国产亚洲性色| 国产乱人伦免费视频| 久久中文看片网| 久久久国产成人免费| 9191精品国产免费久久| 久久久久久久久大av| 国产精品嫩草影院av在线观看 | 伦理电影大哥的女人| 美女黄网站色视频| 久久久国产成人精品二区| h日本视频在线播放| 免费高清视频大片| 很黄的视频免费| 黄色配什么色好看| www.999成人在线观看| 午夜激情欧美在线| 日韩精品中文字幕看吧| 亚洲国产欧美人成| 丰满人妻熟妇乱又伦精品不卡| 色哟哟哟哟哟哟| 最近视频中文字幕2019在线8| 一卡2卡三卡四卡精品乱码亚洲| 99视频精品全部免费 在线| 成年女人永久免费观看视频| 91麻豆av在线| 成年女人看的毛片在线观看| 最近中文字幕高清免费大全6 | 国产亚洲精品综合一区在线观看| 欧美午夜高清在线| 国内精品久久久久久久电影| 国产乱人伦免费视频| АⅤ资源中文在线天堂| 亚洲人成网站在线播| 国产午夜福利久久久久久| 综合色av麻豆| 国产色爽女视频免费观看| 亚洲 国产 在线| 99国产精品一区二区蜜桃av| 亚洲在线自拍视频| 午夜福利欧美成人| 亚洲人与动物交配视频| 免费看光身美女| 国产91精品成人一区二区三区| 国产麻豆成人av免费视频| 欧美日韩瑟瑟在线播放| 国产一区二区激情短视频| 91麻豆av在线| 男人舔奶头视频| 色播亚洲综合网| 国内精品久久久久精免费| 2021天堂中文幕一二区在线观| 日本 欧美在线| 夜夜躁狠狠躁天天躁| 国产三级在线视频| 午夜精品久久久久久毛片777| 老司机深夜福利视频在线观看| 免费电影在线观看免费观看| 日韩有码中文字幕| 在线观看免费视频日本深夜| 免费观看人在逋| 又黄又爽又刺激的免费视频.| av天堂在线播放| 国产精品久久视频播放| 国产免费男女视频| 丰满乱子伦码专区| 精品一区二区三区av网在线观看| 男女下面进入的视频免费午夜| 麻豆成人午夜福利视频| 国产精品98久久久久久宅男小说| 亚洲最大成人av| 日本三级黄在线观看| 悠悠久久av| 欧美激情在线99| 窝窝影院91人妻| 精品久久久久久久久亚洲 | 看片在线看免费视频| 日韩精品青青久久久久久| 99久久无色码亚洲精品果冻| 麻豆一二三区av精品| www日本黄色视频网| 毛片女人毛片| 黄色日韩在线| 天美传媒精品一区二区| 丁香六月欧美| 搡女人真爽免费视频火全软件 | 亚洲最大成人av| 天堂影院成人在线观看| 一级a爱片免费观看的视频| 国产精品嫩草影院av在线观看 | 国产一区二区三区视频了| 天美传媒精品一区二区| 日韩欧美在线乱码| 久久中文看片网| 国产成人欧美在线观看| 大型黄色视频在线免费观看| 亚洲五月婷婷丁香| 看十八女毛片水多多多| 欧美日韩乱码在线| 午夜免费男女啪啪视频观看 | 亚洲国产精品999在线| 青草久久国产| 欧美日韩综合久久久久久 | 中国美女看黄片| 久久久久免费精品人妻一区二区| 精品久久久久久久久av| 精品一区二区三区av网在线观看| 他把我摸到了高潮在线观看| 精品久久久久久成人av| 丁香欧美五月| aaaaa片日本免费| 久久精品91蜜桃| 亚洲av第一区精品v没综合| 欧美最黄视频在线播放免费| 精品乱码久久久久久99久播| 亚洲精品乱码久久久v下载方式| 久久久久亚洲av毛片大全| 亚洲欧美清纯卡通| 免费无遮挡裸体视频| 欧美性猛交黑人性爽| 亚洲天堂国产精品一区在线| 婷婷六月久久综合丁香| 色av中文字幕| 搡老岳熟女国产| 热99re8久久精品国产| 国产老妇女一区| 一个人免费在线观看电影| 成人一区二区视频在线观看| 深夜精品福利| 精品人妻一区二区三区麻豆 | 国产精品乱码一区二三区的特点| 最近视频中文字幕2019在线8| 亚洲av成人精品一区久久| 国产一区二区在线观看日韩| 免费看日本二区| 成人国产一区最新在线观看| 别揉我奶头~嗯~啊~动态视频| 精品不卡国产一区二区三区| 老鸭窝网址在线观看| 91在线观看av| 90打野战视频偷拍视频| 欧美最黄视频在线播放免费| 一二三四社区在线视频社区8| 丰满人妻熟妇乱又伦精品不卡| 91av网一区二区| 国产中年淑女户外野战色| 久久精品91蜜桃| 男女视频在线观看网站免费| 人妻制服诱惑在线中文字幕| 亚洲av一区综合| 国产欧美日韩精品一区二区| 99在线人妻在线中文字幕| 久久伊人香网站| 色在线成人网| 97超级碰碰碰精品色视频在线观看| 亚洲一区二区三区色噜噜| 中国美女看黄片| 人妻制服诱惑在线中文字幕| 91在线精品国自产拍蜜月| 18+在线观看网站| 国产av不卡久久| 久久人妻av系列| 久久亚洲精品不卡| 亚洲av电影不卡..在线观看| 亚洲成人中文字幕在线播放| 中出人妻视频一区二区| 亚洲成人精品中文字幕电影| 亚洲一区高清亚洲精品| 国产男靠女视频免费网站| 精品一区二区三区视频在线| av在线蜜桃| 久久久久九九精品影院| 亚洲中文字幕日韩| 桃红色精品国产亚洲av| 女同久久另类99精品国产91| 97热精品久久久久久| 婷婷亚洲欧美| 国产精品久久久久久人妻精品电影| 韩国av一区二区三区四区| 亚洲国产欧美人成| 亚洲av中文字字幕乱码综合| 亚洲av日韩精品久久久久久密| 亚洲在线自拍视频| 欧美精品国产亚洲| 脱女人内裤的视频| 99在线人妻在线中文字幕| 99久久成人亚洲精品观看| 国产精品久久久久久亚洲av鲁大| 91在线精品国自产拍蜜月| 精品久久久久久成人av| 大型黄色视频在线免费观看| 亚洲人与动物交配视频| 男人舔奶头视频| 久99久视频精品免费| 国内精品美女久久久久久| 在线观看午夜福利视频| 一级黄色大片毛片| 一边摸一边抽搐一进一小说| 成年版毛片免费区| 亚洲五月天丁香| 757午夜福利合集在线观看| 黄色视频,在线免费观看| 亚洲中文日韩欧美视频| 最近视频中文字幕2019在线8| 赤兔流量卡办理| 国产精品三级大全| 午夜视频国产福利| 噜噜噜噜噜久久久久久91| 成人欧美大片| 90打野战视频偷拍视频| 搡老熟女国产l中国老女人| 噜噜噜噜噜久久久久久91| 波多野结衣巨乳人妻| 色哟哟·www| 免费在线观看日本一区| 成年女人永久免费观看视频| 免费av观看视频| 露出奶头的视频| 国产精品野战在线观看| 国产亚洲欧美在线一区二区| 日韩欧美在线乱码| 免费大片18禁| 亚洲国产精品合色在线| 日本 欧美在线| 好男人电影高清在线观看| 午夜精品久久久久久毛片777| 三级国产精品欧美在线观看| 精品人妻熟女av久视频| 男人舔奶头视频| 国产人妻一区二区三区在| 99视频精品全部免费 在线| 亚洲性夜色夜夜综合| 国产在线精品亚洲第一网站| 欧美黑人欧美精品刺激| 可以在线观看毛片的网站| 免费高清视频大片| 成人精品一区二区免费| 偷拍熟女少妇极品色| 亚洲成av人片在线播放无| 亚洲最大成人av| netflix在线观看网站| 少妇的逼好多水| 国内精品久久久久精免费| 长腿黑丝高跟| 小蜜桃在线观看免费完整版高清| 深爱激情五月婷婷| 欧美激情久久久久久爽电影| 精品久久久久久久末码| 一区二区三区激情视频| 国产淫片久久久久久久久 | a在线观看视频网站| 国产亚洲精品久久久久久毛片| 成人无遮挡网站| 小说图片视频综合网站| 日韩亚洲欧美综合| 此物有八面人人有两片| 国产单亲对白刺激| 草草在线视频免费看| 99久久成人亚洲精品观看| 我的女老师完整版在线观看| 中文字幕久久专区| 我要看日韩黄色一级片| 又黄又爽又免费观看的视频| 中国美女看黄片| 夜夜看夜夜爽夜夜摸| 欧美成狂野欧美在线观看| 三级国产精品欧美在线观看| 少妇人妻精品综合一区二区 | 精品一区二区三区视频在线| 亚洲av成人不卡在线观看播放网| 欧美中文日本在线观看视频| 久久这里只有精品中国| 国产aⅴ精品一区二区三区波| 亚洲精品色激情综合| 啦啦啦观看免费观看视频高清| 天堂√8在线中文| 国产伦精品一区二区三区四那| 一个人免费在线观看的高清视频| 欧美+日韩+精品| 亚洲欧美日韩卡通动漫| 九九在线视频观看精品| 日韩亚洲欧美综合| av天堂在线播放| 蜜桃亚洲精品一区二区三区| 久久99热这里只有精品18| 真实男女啪啪啪动态图| 精品久久国产蜜桃| 亚洲午夜理论影院| 亚洲aⅴ乱码一区二区在线播放| 99久久九九国产精品国产免费| 99久久无色码亚洲精品果冻| 天天躁日日操中文字幕| 国产熟女xx| 欧美成人性av电影在线观看| 在线a可以看的网站| 嫁个100分男人电影在线观看| 不卡一级毛片| 非洲黑人性xxxx精品又粗又长| 最好的美女福利视频网| 亚洲美女搞黄在线观看 | 色噜噜av男人的天堂激情| 黄色丝袜av网址大全| 深夜精品福利| netflix在线观看网站| а√天堂www在线а√下载| 亚洲av二区三区四区| 男人的好看免费观看在线视频| 麻豆久久精品国产亚洲av| 能在线免费观看的黄片| 久久国产乱子免费精品| 中文在线观看免费www的网站| 亚洲av免费在线观看| 真人做人爱边吃奶动态| 免费观看人在逋| 网址你懂的国产日韩在线| 国产精华一区二区三区| 国产精品影院久久| 久久精品影院6| 直男gayav资源| 99精品久久久久人妻精品| 久久热精品热| 婷婷丁香在线五月| 久久久成人免费电影| 久久久久久久亚洲中文字幕 | 又黄又爽又免费观看的视频| 男人的好看免费观看在线视频| 久久久久久九九精品二区国产| 日本黄色片子视频| 日韩欧美一区二区三区在线观看| 啦啦啦观看免费观看视频高清| 亚洲最大成人av| 欧美激情久久久久久爽电影| 午夜精品在线福利| 色在线成人网| 亚洲天堂国产精品一区在线| a级毛片免费高清观看在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 欧美xxxx黑人xx丫x性爽| 每晚都被弄得嗷嗷叫到高潮| 美女高潮的动态| 久久99热这里只有精品18| 免费人成在线观看视频色| 日韩欧美免费精品| 一级黄色大片毛片| bbb黄色大片| 精品人妻视频免费看| 亚洲精品乱码久久久v下载方式| www.999成人在线观看| 搡老熟女国产l中国老女人| 老鸭窝网址在线观看| 两个人的视频大全免费| 国产精品亚洲av一区麻豆| 国产主播在线观看一区二区| 精品一区二区三区av网在线观看| 欧美性感艳星| 小说图片视频综合网站| 国产中年淑女户外野战色| avwww免费| 精品国内亚洲2022精品成人| 欧美日韩乱码在线| 久久精品91蜜桃| 99久久精品国产亚洲精品| 久久精品久久久久久噜噜老黄 | 成人av一区二区三区在线看| 欧美3d第一页| 欧美黄色片欧美黄色片| 91狼人影院| 中国美女看黄片| 久久精品人妻少妇| 内地一区二区视频在线| 久久精品影院6| 欧美绝顶高潮抽搐喷水| 久久九九热精品免费| 日本与韩国留学比较| 级片在线观看| 国产精品精品国产色婷婷| 在线观看66精品国产| 三级毛片av免费| 色噜噜av男人的天堂激情| 怎么达到女性高潮| 天美传媒精品一区二区| 永久网站在线| 国产v大片淫在线免费观看| 日本精品一区二区三区蜜桃| 欧美日韩国产亚洲二区| 十八禁人妻一区二区| 日本五十路高清| 日本在线视频免费播放| 淫秽高清视频在线观看| 久久国产精品影院| 欧美色欧美亚洲另类二区| 一进一出好大好爽视频| 午夜日韩欧美国产| 最后的刺客免费高清国语| 99国产极品粉嫩在线观看| 精品久久久久久久久久久久久| a级毛片a级免费在线| 精品福利观看| 久久九九热精品免费| 日韩欧美 国产精品| 国产麻豆成人av免费视频| 亚洲经典国产精华液单 | 观看美女的网站| 内射极品少妇av片p| 日日干狠狠操夜夜爽| 国产精品国产高清国产av| 女人十人毛片免费观看3o分钟| 亚洲av五月六月丁香网| 最近最新免费中文字幕在线| 国产一级毛片七仙女欲春2| 老司机午夜十八禁免费视频| 亚洲国产精品sss在线观看| 丰满人妻熟妇乱又伦精品不卡| 欧美bdsm另类| 国产高清三级在线| a级毛片a级免费在线| 人妻制服诱惑在线中文字幕| 十八禁人妻一区二区| 国产爱豆传媒在线观看| 99久久精品国产亚洲精品| 精品久久久久久,| 精品午夜福利视频在线观看一区| 久久亚洲精品不卡| av在线老鸭窝| 国产国拍精品亚洲av在线观看| 日韩欧美在线乱码| 亚洲黑人精品在线| 成人特级黄色片久久久久久久| 一进一出抽搐动态| 国产三级在线视频| 精品99又大又爽又粗少妇毛片 | 麻豆国产97在线/欧美| 蜜桃久久精品国产亚洲av| 一进一出好大好爽视频| 窝窝影院91人妻| 欧美成人a在线观看| 99国产极品粉嫩在线观看| 国产色爽女视频免费观看| 91在线精品国自产拍蜜月| 午夜福利高清视频| 别揉我奶头 嗯啊视频| a级毛片a级免费在线| 亚洲中文字幕日韩| 特大巨黑吊av在线直播| 成人特级av手机在线观看| 女同久久另类99精品国产91| 久久精品国产99精品国产亚洲性色| 少妇的逼好多水| 变态另类成人亚洲欧美熟女| 成人鲁丝片一二三区免费| 国产高清视频在线观看网站| 久久久久国产精品人妻aⅴ院| 成人性生交大片免费视频hd| 免费av毛片视频| 99国产精品一区二区三区| 亚洲人成电影免费在线| 香蕉av资源在线| 内射极品少妇av片p| 久99久视频精品免费| 香蕉av资源在线| 亚洲最大成人中文| 日韩 亚洲 欧美在线| 国产精品,欧美在线| 成人高潮视频无遮挡免费网站| 国产麻豆成人av免费视频| 美女黄网站色视频| 日韩精品中文字幕看吧| 久久久久性生活片| 国产欧美日韩精品亚洲av| 在线观看66精品国产| 老司机午夜福利在线观看视频| 国产一区二区亚洲精品在线观看| 在线观看免费视频日本深夜| 婷婷丁香在线五月| 国产一区二区三区在线臀色熟女| 动漫黄色视频在线观看| 内地一区二区视频在线| 日韩欧美免费精品|