• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film

    2022-02-24 08:58:22XiangxianWang王向賢JianZhang張健JiankaiZhu朱劍凱ZaoYi易早andJianliYu余建立
    Chinese Physics B 2022年2期
    關(guān)鍵詞:張健

    Xiangxian Wang(王向賢) Jian Zhang(張健) Jiankai Zhu(朱劍凱) Zao Yi(易早) and Jianli Yu(余建立)

    1School of Science,Lanzhou University of Technology,Lanzhou 730050,China2Joint Laboratory for Extreme Conditions Matter Properties,Southwest University of Science and Technology,Mianyang 621010,China3School of Electronic Engineering,Chaohu University,Chaohu 238000,China

    We propose a hybrid structure of a nano-cube array coupled with multilayer full-dielectric thin films for refractive index sensing. In this structure,discrete states generated by two-dimensional grating and continuous states generated by a photonic crystal were coupled at a specific wavelength to form two Fano resonances. The transmission spectra and electric field distributions of the structure were obtained via the finite-difference time-domain method. We obtained the optimal structural parameters after optimizing the geometrical parameters.Under the optimal parameters,the figure of merit(FOM)values of the two Fano resonances reached 1.7×104 and 3.9×103,respectively. These results indicate that the proposed structure can achieve high FOM refractive index sensing,thus offering extensive application prospects in the biological and chemical fields.

    Keywords: Fano resonance,refractive index,nano-cube array,all-dielectric film

    1. Introduction

    Owing to rapid development in fabrication technology,complex micro-nano structures have become a reality in recent years. When the size of a material enters the micro-nano scale,it creates multiple new effects in micro-nano structures,such as those of the surface local field, quantum size, and macroscopic quantum tunneling. These effects cause micronano materials to exhibit specific mechanical,thermal,optical,electrical, and magnetic properties. Studying the novel properties of micro-nano materials is vital for optical physics research;it promotes the development of micro-nano materials.Micro-nano structures are widely used in photocatalysis,[1,2]photonic crystals,[3,4]surface-enhanced Raman scattering,[5,6]and solar absorption.[7–10]In addition,optical refractive index sensors[11–16]based on micro-nano structures have garnered significant interest as they can dynamically detect the refractive index of a sample by identifying the formant drift in the spectral curve.

    Spectral curves predominantly have a symmetric Lorentz line and an asymmetric Fano line.[17–19]However, when the sensing characteristics of the sensing structure are described using Lorentz lines, the optical characteristics are relatively simple, limiting the diversity of the sensing structures.[20]In contrast to the formation mode of Lorentz resonance,Fano resonance is caused by destructive interference between the discrete states and adjacent states. It has a very high slope spectrum and strong dispersion.[21,22]Strongly constrained electric fields can enhance the interaction between light and matter significantly. In addition, Fano resonance is very sensitive to geometric parameters and medium environment. Moreover,a multiple Fano resonance structure is advantageous when compared to a single Fano resonance structure as the former provides more reliable results than the latter and can even be implemented with multispectral sensors.[23]Therefore, its parallel processing capability offers tremendous advantages in chip-level optical circuits that can be applied in sensors and other fields.[24–28]

    This study proposed a hybrid structure coupled with multilayer full-dielectric thin films and a nano-cube array that can excite two independently tunable Fano resonances. We explain the cause of Fano resonance by using analogue simulation. In other words, upon satisfying the phase-matching condition,a guided-mode resonance that provides two narrowband discrete states was generated in the two-dimensional array grating structure. A photon gap was formed in the Fabry–Pérot-like(F–P-like)cavity containing periodic photonic crystals in order to establish a continuous state. Fano resonance is produced by destructive interference between the continuous state and the discrete state at a specific wavelength. In addition, the influence of geometrical variables on resonance behavior was discussed in detail,and suitable geometrical parameters for RI sensing were obtained. Finally, an important physical parameter, FOM, was used to describe the sensing performance of the structure.

    2. Structure model and analytical method

    Figure 1(a)presents a schematic diagram of the designed hybrid structure. The upper half is a cubic nano-array struc-ture, primarily comprising a two-dimensional grating layer and a waveguide layer. For the convenience of fabrication,SiO2dielectric material was used for the two-dimensional grating layer and waveguide layer. Figure 1(b) illustrates a top view of the structure in theX–Ysection.landware the length and width of the nano-cube,respectively;PxandPyrepresent the periods in thexandydirections, respectively. The lower half was the F–P-like cavity containing photonic crystals, composed of four layers of Si and TiO2. To ensure the optimal sensing performance of the structure,the thickness of the Si and TiO2layers was maintained at 36 nm and 65 nm,respectively. The bottom layer of the structure was manufactured using SiO2. The coupling layer consisted of MgF2and had a thickness ofdc=125 nm;it was located below the waveguide layer and adjacent to the Si layer. The refractive index of the selected MgF2is 1.37, which is lower than that of SiO2in the waveguide layer of 1.45. The refractive index of the analyte is also lower than that of the waveguide layer.Therefore, diffraction waves are generated in the waveguide layer when incident light passes through the cube array,resulting in total reflection. The thickness of MgF2simultaneously affects the transmission mode of incident light and the position of the formant,due to which MgF2is selected for the coupling layer.

    Fig. 1. Schematic diagram of the sensing structure. (a) Three-dimensional structure. (b)Top view of the structure in the X–Y section. Px and Py are the periods in two directions, whereas w and l are the width and length of the nano-cube,respectively.

    The preparation process of the micro-nano structure is as follows. The quartz substrate is first ultrasonically cleaned using acetone,isopropanol,and deionized water. Subsequently,four layers of 36 nm Si film and 65 nm TiO2film are deposited on the quartz substrate using the electron beam evaporation method. A 125 nm MgF2film and a 90 nm SiO2film are then deposited on the Si film through electron beam evaporation.Following this, a layer of photoresists is spin-coated on the SiO2film using pre-baking, exposure, development, hardening and other steps. A cubic aperture array with a length of 330 nm and a width of 280 nm is formed on the photoresist layer, and a layer of 100 nm SiO2film is deposited via electron beam evaporation. Lastly, the lift-off process is used to obtain the complete structure.

    Fano resonance requires a dark mode that provides a discrete state and a light mode that provides a continuous state.First,the formation of discrete states is discussed.The diffraction condition of the grating can be expressed as[29]

    wherePrepresents the period of the SiO2cubes,nrepresents the refractive index of the waveguide layer,θmrepresents the diffraction angle,θiis the incident angle,andλ0represents the wavelength in the vacuum. A part of the light incident on the surface of the grating is transmitted directly due to the diffraction effect of the grating, and moiety light is propagated in the waveguide layer. Some of the light trapped in the waveguide layer is diffracted outwards and destructively interferes with the transmitted part of the beam,creating a guided-mode resonance.[29–32]The guided mode resonance condition can be expressed as

    whereφ1andφ2represent the phase differences caused by the total reflection between the waveguide layer and the coupling layer interface and sensing interface, respectively. This ensures that most of the light is confined to the waveguide layer.Figure 3 illustrates the electric field distribution of the guided mode resonance,and it can be observed that the energy of the electric field is concentrated in the waveguide and coupling layers. Consequently, the energy of the transmitted light reduces drastically, forming a narrow-band discrete state in the transmission spectrum that provided a discrete state for the formation of Fano resonance,as shown in Fig.2(a).

    Fig.2. Transmission spectrum of structures. (a)Discrete state spectral lines of two-dimensional gratings. (b)Continuous state spectral lines of the F–Plike cavity.

    Fig. 3. The electrical field intensity profile at the X–Z plane for the guided mode resonance at (a) 646 nm and (b) 731 nm. The electrical field intensity profile at X–Y plane for the guided mode resonance at(c)646 nm and(d)731 nm.

    Fig.4. The spectral curve of Fano resonance.

    Next, the formation of a continuous state is discussed.When the incident light propagated in the waveguide layer,part of the light passed through the waveguide layer and entered the F–P-like cavity. According to the structural characteristics of the F–P-like cavity, total reflection will occur in the cavity. However, photon localization will occur when the light wave propagates to the periodic photonic crystal,forming a photon gap.[33]Therefore, a wider frequency band was obtained,providing a continuous state for the formation of Fano resonance,as demonstrated in Fig.2(b).

    Consequently, the Fano resonance in the transmission spectrum of the entire structure was formed due to the interference of the narrow-band discrete state and wide-band continuous state. Figure 4 illustrates the transmission spectrum,denoted by the solid black line. Evidently, two Fano resonances with asymmetrical ultra-sharp line shapes occurred in this structure,represented as Fano 1 and Fano 2,respectively.

    We also calculated the electric field distribution at resonance wavelengths under the two Fano resonances. Figures 5(a)and 5(b)respectively show the electric field distributions of Fano 1 and Fano 2 in theX–Zplane along the grating center.Most of the energy was concentrated at the top and surrounding area of the grating. Figures 5(c)and 5(d),depicting the electric field distribution in theY–Zplane,indicate that almost all the energy was concentrated in the waveguide layer and grating. In addition,according to Figs.5(e)and 5(f),there was a large amount of electric field energy on the surface of the waveguide layer. Therefore, the surface electric field in the sensing area could be enhanced to determine the sensing characteristics of the sample to be tested.

    Fig.5. Electric field distribution at the resonance wavelengths of(a),(c),(e)654 nm(Fano 1)and(b),(d),(f)671 nm(Fano 2).

    3. Structural optimization

    We further explored the influences of geometric parameters on transmission characteristics and used refractive index sensing to determine optimal sensing characteristics for the proposed structure. According to Eqs.(1)and(2),guided mode resonance is related to grating period, waveguide refractive index and waveguide thickness. Different diffraction waves are generated when the light wave is incident on the cubic nano-array with different periods,thus affecting the generation of Fano resonance.Figure 6(a)demonstrates the changes in the spectral lines in the discrete state asPxincreased from 540 nm to 580 nm in increments of 10 nm. The first peak of the discrete state shows a redshift with the increase ofPx,while the second peak is unchanged,indicating thatPxprimarily affected the first peak. Simultaneously,the spectral line Fano 2 in the coupling state had a noticeable redshift and a downward trend in its transmittance with the increase inPx, as depicted in Fig.6(b). Remarkably,the spectral lines of Fano 1 did not change with thePxperiod. In addition, the coupling of the continuous state and first peak of the discrete state induced the formation of Fano 2, which was primarily affected by thePxperiod.This also explains the reason for the formation of Fano 2 from another aspect. ThePxperiod was selected at 560 nm as it provided the most favorable peak transmission for the two Fano resonances.

    Fig. 6. Influences of 2D grating period Px on (a) discrete spectral line, (b)Fano resonance spectral line.

    Figure 7(a) shows the variations in the spectral lines in the discrete state whenPyincreased from 590 nm to 630 nm in increments of 10 nm. The second peak of the discrete state showed a redshift phenomenon with the increase inPy.In contrast,as reflected in the spectral line of Fano resonance,Fano 1 showed a redshift with the increase inPy,and the transmission first increased and then decreased. However,Fano 2 remained almost unchanged. This indicates that the coupling of the continuous state and second peak of the discrete state caused the resonance of Fano 1, withPyperiod being the primary influencing factor. In addition, the spectral lines indicate that the sensing performance was best whenPy=610 nm.

    The coupling layer forms the mutual layer of the twodimensional grating and F–P-like cavity. The thickness of MgF2affects the transmission mode of the incident light and the position of the formant. Figure 8 illustrates the influence of the coupling layer thicknessdcon the Fano spectral curves whendcincreased from 115 nm to 135 nm in increments of 5 nm. As seen from the figure,the coupling layer was essential for the Fano effect.Although both Fano peaks showed redshift,the redshift of Fano 1 was more pronounced when compared to Fano 2.In addition,asdcincreased,the transmittance for Fano 1 decreased, whereas that for Fano 2 first increased and then decreased.Upon noting these observations,the thickness of the coupling layer was selected asdc=125 nm to obtain better sensing performance.

    Fig. 7. Influences of 2D grating period Py on (a) discrete spectral line, (b)Fano resonance spectral line.

    Fig.8. Influence of coupling layer thickness dc on transmission spectrum.

    We also explored the influence of the dimensions of cube nanoparticles on the transmittance spectra. Figures 9(a)–9(c)display the variation in transmission spectrum with the increase in grating width(w),length(l),and height(h),respectively.

    Initially,both Fano 1 and Fano 2 reported a slight redshift whenwincreased from 260 nm to 300 nm in increments of 10 nm. The transmittance intensity of Fano 1 remained unchanged;however,Fano 2 exhibited a pronounced variation in the transmittance. The Fano 1 and Fano 2 transmittance was lowest atw=270 nm and highest atw=280 nm. Therefore,optimal grating width was selected as 280 nm. Thereafter,the length of the grating changed. According to Fig.9(b),the two Fano peaks showed no displacement changes with an increase in grating length. The only noteworthy observation was the peak transmittance of Fano 2 atl=330 nm;therefore,the optimal grating length was selected as 330 nm.

    Fig. 9. Effect of grating geometry parameter on Fano resonance spectral curve. (a)Effect of grating width on Fano resonance spectral curve. (b)Effect of grating length on Fano resonance spectral curve. (c)Effect of grating height on Fano resonance spectral curve.

    The grating height was increased fromh= 80 nm toh=120 nm in increments of 10 nm. According to Fig. 9(c),both Fano peaks showed a redshift phenomenon. The transmittance of Fano 1 and Fano 2 increased first and then decreased, but the change of Fano 2 was more prominent than that of Fano 1. In addition,Fano 2 had the best transmittance whenh=100 nm. Consequently, the optimal grating height was selected as 100 nm.

    4. Sensing performance of the structure

    The abovementioned observations indicate that changing the geometric parameters of the structure can effectively tune the resonance wavelength and spectrum line shape of the Fano resonance.Accordingly,the optimum geometric parameters of the hybrid structure to be used for refractive index(RI)sensing werePx=560 nm,Py=610 nm,dc=125 nm,w=280 nm,l=330 nm,andh=100 nm.

    These structural parameters could determine the sensing performance of the hybrid structure. Sensitivity (S) and figure of merit(FOM).[34,35]are essential parameters for sensors.They are calculated as follows:S=Δλ/Δn, where Δnrepresents the refractive index variation in the surrounding environment and Δλis the wavelength shift caused by the refractive index change;FOM=ΔT/(ΔnT),whereTis the transmission of the structure and ΔT/Δndenotes the transmission change at a fixed wavelength induced by a refractive index change.Figure 10(a)shows the changes in resonance wavelength corresponding to the analyte RI from 1.00 to 1.10 in incremental steps of 0.02. According to the figure, a slight increase in the refractive index led to a significant redshift in the entire spectrum. The above properties are described in detail in Fig. 10(b), which demonstrates the relationship between the resonance wavelength and analyte RI. Using the abovementioned formula,the sensitivity of Fano 1 and Fano 2 were calculated as 234.7 nm/RIU and 111.4 nm/RIU,respectively.Figure 10(c)presents the FOM curve.There is a maximum at each dip of the transmission spectrum. At refractive index 1.01,the values of FOM at 654 nm and 671 nm were 1.7×104and 3.9×103, respectively. The structure designed in this study can generate two mutually independent tunable Fano peaks,which can be used as a self-reference in sensing applications,unlike the subwavelength dielectric grating coupled photonic crystal structure proposed in reference[20]that can generate an ultra-high FOM value. Moreover, the proposed sensor structure is advantageous in terms of the maximum FOM value when compared to the sensing structures reported in previous studies.[24–28]Therefore, the proposed system is suitable for sensor applications. The resonance quality factorQ-factor is also a key parameter that affects the sensing performance. TheQ-factor of the resonances can be defined as the ratio between the wavelength of each resonance peak,λ,and the full-width at half-maximum(FWHM),i.e.Q=λ/FWHM. For the Fano resonances with asymmetric line shapes, the FWHM can be considered as the full width between the peak and the trough of each Fano resonance peak.[36]This study discusses the quality factors of two Fano resonances separately, as shown inFig.10(d). TheQ-factor of Fano 1 increases with the increase in the refractive index, and the maximumQ-factor can reach the value of 10592. TheQ-factor of Fano 2 also increases,but not as drastically as that of Fano 1. The maximumQ-factor of Fano 2 is 5374. TheQ-factor of the proposed structure is significantly improved when compared to those of previous studies.[36–39]Therefore,the proposed structure has good sensing performance and can be used as a gas sensor.

    Fig.10. (a)Transmission spectrum of the structure when the analyte RI varies from 1.0 to 1.1 in incremental intervals of 0.02. (b)The relationship between the resonance wavelength of Fano 1 and Fano 2 with analyte n. (c)FOM of Fano 1 and Fano 2. (d)Q-factor of Fano 1 and Fano 2.

    5. Conclusion

    We proposed a micro-nano-structure coupled with multilayer full-dielectric thin films and a nano-cube array that can excite two independently tunable Fano resonances to study gas sensors. Fano 1 and Fano 2 formant peaks were generated by coupling the discrete and continuous states at a particular wavelength. The effects of the structure parameters on the two Fano resonance spectra were analyzed by using numerical simulation,and the optimal structure parameters were obtained. The refractive index of the sample was dynamically detected at optimal structure parametersPx=560 nm,Py=610 nm,dc=125 nm,w=280 nm,l=330 nm, andh=100 nm. The FOM values of Fano 1 and Fano 2 were 1.7×104and 3.9×103,respectively. These results show that the proposed structure can achieve refractive index sensing with high FOM and has broad application prospects in biology and chemistry.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant No.61865008)and the Hong Liu First-Class Disciplines Development Program of Lanzhou University of Technology.

    猜你喜歡
    張健
    秋峪
    Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
    張健書(shū)法作品
    廣告大觀(2020年3期)2020-10-20 12:34:00
    張健書(shū)法作品
    青年生活(2020年23期)2020-08-04 10:27:43
    張健書(shū)法作品集
    青年生活(2019年14期)2019-10-21 02:04:56
    Transient air-water flow patterns in the vent tube in hydropower tailrace system simulated by 1-D-3-D coupling method *
    張健的傳銷邪教
    “勾股定理”之我見(jiàn)
    張?。禾剿骱厢t(yī)改惠民模式
    “意義”的問(wèn)題所在
    亚洲va日本ⅴa欧美va伊人久久| 久久九九热精品免费| 国产麻豆69| 久久青草综合色| 精品国产亚洲在线| 亚洲久久久国产精品| 亚洲av国产av综合av卡| 久久人妻av系列| 麻豆成人av在线观看| 日韩 欧美 亚洲 中文字幕| 免费观看人在逋| 性少妇av在线| 免费在线观看视频国产中文字幕亚洲| 国产又色又爽无遮挡免费看| 在线看a的网站| 一本色道久久久久久精品综合| 亚洲午夜理论影院| 亚洲 国产 在线| 久久久水蜜桃国产精品网| 成人手机av| 欧美大码av| 一二三四在线观看免费中文在| 日韩视频在线欧美| 亚洲精华国产精华精| 亚洲精品国产一区二区精华液| 久久精品亚洲熟妇少妇任你| 久热这里只有精品99| 精品福利永久在线观看| 制服人妻中文乱码| 丰满饥渴人妻一区二区三| 久久天堂一区二区三区四区| 国产成人影院久久av| 久久久久精品国产欧美久久久| 国产精品99久久99久久久不卡| 国产精品香港三级国产av潘金莲| 丝袜人妻中文字幕| 高潮久久久久久久久久久不卡| 动漫黄色视频在线观看| 国产三级黄色录像| 十分钟在线观看高清视频www| 丰满少妇做爰视频| 久久狼人影院| 欧美日韩成人在线一区二区| 欧美久久黑人一区二区| 男人舔女人的私密视频| 女人久久www免费人成看片| 亚洲人成电影免费在线| 美国免费a级毛片| 91成人精品电影| 久久人妻福利社区极品人妻图片| www.精华液| 老司机在亚洲福利影院| 免费在线观看完整版高清| 桃红色精品国产亚洲av| 91老司机精品| 日韩制服丝袜自拍偷拍| 亚洲av日韩在线播放| 欧美成人免费av一区二区三区 | 日韩免费高清中文字幕av| 男女午夜视频在线观看| 久久99一区二区三区| 午夜激情久久久久久久| 在线 av 中文字幕| 1024香蕉在线观看| 中文欧美无线码| 在线av久久热| 亚洲精品一卡2卡三卡4卡5卡| 久久久精品免费免费高清| 国产精品 国内视频| 色尼玛亚洲综合影院| 又紧又爽又黄一区二区| 日韩视频在线欧美| 老司机影院毛片| 亚洲一码二码三码区别大吗| 精品一区二区三区四区五区乱码| 欧美精品av麻豆av| 下体分泌物呈黄色| 久久国产精品男人的天堂亚洲| 久久人妻福利社区极品人妻图片| 99久久精品国产亚洲精品| 黑人操中国人逼视频| 99国产极品粉嫩在线观看| 成人免费观看视频高清| 国产欧美日韩综合在线一区二区| 丁香六月欧美| 狠狠精品人妻久久久久久综合| 黄色视频不卡| 在线观看免费午夜福利视频| 亚洲精品av麻豆狂野| 亚洲国产成人一精品久久久| 国产欧美亚洲国产| 精品熟女少妇八av免费久了| 中文字幕av电影在线播放| 午夜视频精品福利| 精品人妻熟女毛片av久久网站| 国产精品.久久久| 精品久久久久久久毛片微露脸| 老鸭窝网址在线观看| www.熟女人妻精品国产| 日韩免费av在线播放| 老司机影院毛片| 久久精品国产99精品国产亚洲性色 | 色老头精品视频在线观看| 人妻 亚洲 视频| 亚洲人成电影观看| 国产av国产精品国产| 日韩欧美国产一区二区入口| 亚洲欧美一区二区三区黑人| 国产精品一区二区免费欧美| 中文字幕制服av| 亚洲性夜色夜夜综合| 久久久久视频综合| 国产精品99久久99久久久不卡| 欧美老熟妇乱子伦牲交| 热99re8久久精品国产| 日韩免费高清中文字幕av| 久久狼人影院| 欧美人与性动交α欧美精品济南到| 一区二区三区国产精品乱码| 美女午夜性视频免费| 午夜福利在线观看吧| 精品一区二区三区av网在线观看 | 高清毛片免费观看视频网站 | 别揉我奶头~嗯~啊~动态视频| 亚洲中文日韩欧美视频| 日韩精品免费视频一区二区三区| 亚洲熟女精品中文字幕| av不卡在线播放| av视频免费观看在线观看| 欧美精品一区二区免费开放| 成人永久免费在线观看视频 | 亚洲 欧美一区二区三区| av天堂在线播放| 国产成人精品无人区| 国产精品一区二区在线不卡| 国产高清视频在线播放一区| 久久人妻熟女aⅴ| 高清在线国产一区| 欧美 日韩 精品 国产| 大陆偷拍与自拍| 亚洲精品国产一区二区精华液| 亚洲三区欧美一区| 日韩欧美免费精品| 国产高清videossex| 国产成人欧美| 男女下面插进去视频免费观看| 最近最新中文字幕大全电影3 | 国产xxxxx性猛交| 18在线观看网站| 日日爽夜夜爽网站| 一区二区日韩欧美中文字幕| 三级毛片av免费| 五月天丁香电影| 黄片小视频在线播放| bbb黄色大片| 99国产精品一区二区三区| 国产欧美日韩一区二区三| av福利片在线| 国产精品99久久99久久久不卡| 国产精品二区激情视频| 少妇的丰满在线观看| 一级黄色大片毛片| 99国产综合亚洲精品| 黑人猛操日本美女一级片| 老司机靠b影院| 国内毛片毛片毛片毛片毛片| 午夜免费鲁丝| 精品一品国产午夜福利视频| 热99re8久久精品国产| 成年人午夜在线观看视频| 99精品欧美一区二区三区四区| 亚洲伊人久久精品综合| 精品一区二区三区视频在线观看免费 | 国产亚洲精品一区二区www | 国产成人影院久久av| 少妇猛男粗大的猛烈进出视频| 亚洲美女黄片视频| 午夜精品久久久久久毛片777| 亚洲自偷自拍图片 自拍| 91麻豆精品激情在线观看国产 | 在线观看免费日韩欧美大片| 欧美性长视频在线观看| 亚洲精品粉嫩美女一区| av网站在线播放免费| 久久婷婷成人综合色麻豆| 中文字幕人妻丝袜制服| 中文字幕av电影在线播放| 国产真人三级小视频在线观看| 中文欧美无线码| 美国免费a级毛片| 蜜桃在线观看..| 亚洲国产av新网站| 亚洲精品在线美女| 久久久久久久久久久久大奶| 香蕉久久夜色| 国产三级黄色录像| 久久影院123| 搡老岳熟女国产| 男女边摸边吃奶| 热re99久久国产66热| 久久亚洲精品不卡| 久久久久久亚洲精品国产蜜桃av| 成人av一区二区三区在线看| 69av精品久久久久久 | 黄频高清免费视频| 午夜福利视频精品| 欧美老熟妇乱子伦牲交| 久久久久视频综合| 丝瓜视频免费看黄片| 男女边摸边吃奶| 国产成人精品久久二区二区免费| 一进一出好大好爽视频| 18禁裸乳无遮挡动漫免费视频| 妹子高潮喷水视频| av超薄肉色丝袜交足视频| 亚洲中文日韩欧美视频| 亚洲久久久国产精品| 777米奇影视久久| 欧美 日韩 精品 国产| 国产免费福利视频在线观看| 一区二区三区国产精品乱码| 天堂动漫精品| 丰满人妻熟妇乱又伦精品不卡| 久久人人97超碰香蕉20202| 久久亚洲真实| 亚洲精品av麻豆狂野| 免费黄频网站在线观看国产| 香蕉丝袜av| 久久久精品国产亚洲av高清涩受| 9色porny在线观看| 超碰成人久久| 久久狼人影院| 中文字幕另类日韩欧美亚洲嫩草| 国产成人免费观看mmmm| 一本久久精品| 午夜福利欧美成人| 老鸭窝网址在线观看| 黄色丝袜av网址大全| 亚洲中文字幕日韩| 中文字幕人妻丝袜一区二区| 久久久国产成人免费| 色综合婷婷激情| 一个人免费看片子| 亚洲精品中文字幕一二三四区 | 日本欧美视频一区| 母亲3免费完整高清在线观看| av天堂久久9| 免费在线观看影片大全网站| 99riav亚洲国产免费| 夜夜骑夜夜射夜夜干| 亚洲精品美女久久av网站| 法律面前人人平等表现在哪些方面| 成人国产一区最新在线观看| 免费人妻精品一区二区三区视频| 国产精品98久久久久久宅男小说| 久久99一区二区三区| 一区二区三区国产精品乱码| 99在线人妻在线中文字幕 | 久久国产精品影院| 免费女性裸体啪啪无遮挡网站| 日本av手机在线免费观看| 亚洲精品久久成人aⅴ小说| 菩萨蛮人人尽说江南好唐韦庄| 亚洲三区欧美一区| 中国美女看黄片| 欧美 亚洲 国产 日韩一| 亚洲精品国产精品久久久不卡| 在线播放国产精品三级| 99re在线观看精品视频| 国产麻豆69| 另类精品久久| 国产成人影院久久av| 欧美精品啪啪一区二区三区| 日韩欧美免费精品| 精品国产国语对白av| 亚洲av美国av| 久久影院123| 午夜福利欧美成人| 久久久久国产一级毛片高清牌| 好男人电影高清在线观看| 国产精品偷伦视频观看了| 一边摸一边抽搐一进一出视频| 午夜福利在线免费观看网站| 啦啦啦中文免费视频观看日本| 国产免费av片在线观看野外av| 国产成人欧美在线观看 | 露出奶头的视频| 黄色a级毛片大全视频| 人妻 亚洲 视频| 狂野欧美激情性xxxx| 国产深夜福利视频在线观看| 一进一出抽搐动态| 久久久久久久国产电影| 美女主播在线视频| 丝袜在线中文字幕| 一区在线观看完整版| 少妇 在线观看| 51午夜福利影视在线观看| 亚洲国产欧美网| 十八禁网站网址无遮挡| 高潮久久久久久久久久久不卡| 热99久久久久精品小说推荐| 午夜激情久久久久久久| 99re在线观看精品视频| 色综合欧美亚洲国产小说| 午夜免费成人在线视频| 亚洲伊人久久精品综合| 国产精品影院久久| 视频区图区小说| 999精品在线视频| 汤姆久久久久久久影院中文字幕| 精品少妇一区二区三区视频日本电影| 一级,二级,三级黄色视频| 五月天丁香电影| 国产有黄有色有爽视频| 无限看片的www在线观看| 90打野战视频偷拍视频| 国产1区2区3区精品| 91精品三级在线观看| av天堂久久9| 久久久精品免费免费高清| 精品午夜福利视频在线观看一区 | 99精品久久久久人妻精品| 在线观看www视频免费| 中国美女看黄片| 国产精品久久久久久精品电影小说| 欧美日韩亚洲综合一区二区三区_| 成人精品一区二区免费| 精品久久久久久久毛片微露脸| 国精品久久久久久国模美| 天堂动漫精品| 免费在线观看日本一区| 99精品欧美一区二区三区四区| 国产高清国产精品国产三级| 欧美激情 高清一区二区三区| 免费av中文字幕在线| 日韩精品免费视频一区二区三区| 欧美另类亚洲清纯唯美| 久久精品aⅴ一区二区三区四区| 中文字幕色久视频| 99re在线观看精品视频| 国产精品免费大片| 考比视频在线观看| 一本—道久久a久久精品蜜桃钙片| 不卡一级毛片| 俄罗斯特黄特色一大片| 国产人伦9x9x在线观看| videos熟女内射| 在线看a的网站| 日韩中文字幕视频在线看片| 老司机靠b影院| 国产福利在线免费观看视频| 国产日韩一区二区三区精品不卡| 亚洲精品在线观看二区| 久久久久久久精品吃奶| 啦啦啦中文免费视频观看日本| 国产xxxxx性猛交| tocl精华| 色婷婷久久久亚洲欧美| 日韩三级视频一区二区三区| 久久久国产一区二区| 国产高清视频在线播放一区| 纵有疾风起免费观看全集完整版| h视频一区二区三区| 欧美人与性动交α欧美精品济南到| 麻豆乱淫一区二区| tocl精华| 男人舔女人的私密视频| 免费不卡黄色视频| 丁香欧美五月| √禁漫天堂资源中文www| 国产又色又爽无遮挡免费看| 色尼玛亚洲综合影院| 国产免费av片在线观看野外av| 色尼玛亚洲综合影院| 欧美变态另类bdsm刘玥| 丰满迷人的少妇在线观看| 亚洲第一青青草原| 久久青草综合色| 亚洲精品国产精品久久久不卡| 日日摸夜夜添夜夜添小说| 五月开心婷婷网| 男男h啪啪无遮挡| 成人免费观看视频高清| 欧美乱码精品一区二区三区| 久久精品国产亚洲av高清一级| 五月天丁香电影| 交换朋友夫妻互换小说| 一级a爱视频在线免费观看| 一级,二级,三级黄色视频| 久热爱精品视频在线9| 又大又爽又粗| 悠悠久久av| 免费在线观看黄色视频的| 成人国产一区最新在线观看| 国产精品亚洲av一区麻豆| 天天影视国产精品| 多毛熟女@视频| 国产精品久久久人人做人人爽| 中文字幕最新亚洲高清| 日本黄色日本黄色录像| 9191精品国产免费久久| 国产伦人伦偷精品视频| 国产精品一区二区精品视频观看| 国产精品偷伦视频观看了| 蜜桃国产av成人99| 国产麻豆69| 午夜福利视频在线观看免费| 午夜久久久在线观看| 国产欧美日韩一区二区三| 黑人欧美特级aaaaaa片| 19禁男女啪啪无遮挡网站| 美女福利国产在线| 国产伦人伦偷精品视频| 国产精品1区2区在线观看. | 国产麻豆69| 色在线成人网| 夫妻午夜视频| 亚洲久久久国产精品| 日日摸夜夜添夜夜添小说| 国产男女超爽视频在线观看| 岛国在线观看网站| 欧美亚洲 丝袜 人妻 在线| 另类精品久久| 久久这里只有精品19| 一个人免费看片子| 久久久精品94久久精品| 十八禁网站网址无遮挡| 丰满少妇做爰视频| 满18在线观看网站| 亚洲中文字幕日韩| 人人妻人人澡人人看| 丁香六月天网| 亚洲国产中文字幕在线视频| 亚洲av美国av| 精品卡一卡二卡四卡免费| 免费观看av网站的网址| 国产精品1区2区在线观看. | 久久精品国产99精品国产亚洲性色 | 香蕉丝袜av| a级毛片黄视频| 日韩大码丰满熟妇| 男人舔女人的私密视频| 91麻豆av在线| 亚洲,欧美精品.| 日日爽夜夜爽网站| 性色av乱码一区二区三区2| 激情在线观看视频在线高清 | 国产精品一区二区免费欧美| 人人妻人人澡人人爽人人夜夜| 国产精品久久久久成人av| 亚洲国产欧美一区二区综合| 黄色 视频免费看| 亚洲伊人久久精品综合| av欧美777| 亚洲情色 制服丝袜| 视频区欧美日本亚洲| 免费在线观看视频国产中文字幕亚洲| 一边摸一边抽搐一进一小说 | 黄色视频不卡| 又黄又粗又硬又大视频| 99riav亚洲国产免费| 久久久久久人人人人人| 日韩中文字幕视频在线看片| 宅男免费午夜| 精品卡一卡二卡四卡免费| 最近最新中文字幕大全免费视频| 精品国产亚洲在线| 99久久精品国产亚洲精品| av在线播放免费不卡| 国产在线精品亚洲第一网站| 天天添夜夜摸| 亚洲专区国产一区二区| 99热国产这里只有精品6| 国产一区二区 视频在线| 国产伦理片在线播放av一区| 亚洲午夜理论影院| av超薄肉色丝袜交足视频| 999精品在线视频| av片东京热男人的天堂| 另类亚洲欧美激情| 午夜福利视频精品| 亚洲黑人精品在线| 999精品在线视频| 两人在一起打扑克的视频| 精品人妻在线不人妻| 脱女人内裤的视频| 51午夜福利影视在线观看| 国产日韩欧美视频二区| 精品久久久久久电影网| 日韩欧美一区视频在线观看| 中文字幕av电影在线播放| 精品免费久久久久久久清纯 | 亚洲,欧美精品.| 色综合婷婷激情| 啪啪无遮挡十八禁网站| 中文字幕制服av| 91麻豆av在线| 欧美黑人欧美精品刺激| 久久精品亚洲精品国产色婷小说| 欧美日韩成人在线一区二区| 女人高潮潮喷娇喘18禁视频| 亚洲精品国产色婷婷电影| 国产精品.久久久| 岛国在线观看网站| 69精品国产乱码久久久| 国产真人三级小视频在线观看| 国产一区二区 视频在线| 国产精品自产拍在线观看55亚洲 | 热99久久久久精品小说推荐| 色综合婷婷激情| 电影成人av| 日韩免费av在线播放| av网站在线播放免费| 精品少妇黑人巨大在线播放| 亚洲va日本ⅴa欧美va伊人久久| 久久性视频一级片| tube8黄色片| 9色porny在线观看| 中文字幕人妻丝袜制服| 热re99久久精品国产66热6| 免费不卡黄色视频| 亚洲精品一二三| 精品卡一卡二卡四卡免费| 色精品久久人妻99蜜桃| 99久久人妻综合| 国产片内射在线| 一个人免费在线观看的高清视频| 一级黄色大片毛片| 精品久久久久久电影网| 国产一卡二卡三卡精品| 黑人操中国人逼视频| 久久人妻熟女aⅴ| 老司机在亚洲福利影院| av超薄肉色丝袜交足视频| 水蜜桃什么品种好| 亚洲五月婷婷丁香| 国产成人欧美| bbb黄色大片| 色在线成人网| 男女高潮啪啪啪动态图| 99re6热这里在线精品视频| 黄色毛片三级朝国网站| 国产男女超爽视频在线观看| 99国产精品一区二区三区| 久久亚洲真实| 中文亚洲av片在线观看爽 | 国产主播在线观看一区二区| 精品一区二区三区四区五区乱码| 伊人久久大香线蕉亚洲五| 99热国产这里只有精品6| 嫩草影视91久久| 亚洲伊人久久精品综合| 91成人精品电影| 一级片'在线观看视频| 久久精品aⅴ一区二区三区四区| 成人影院久久| 啦啦啦 在线观看视频| 亚洲av片天天在线观看| 国产有黄有色有爽视频| 亚洲一区中文字幕在线| 亚洲一区二区三区欧美精品| 久久久久久免费高清国产稀缺| 99香蕉大伊视频| 女人高潮潮喷娇喘18禁视频| 亚洲免费av在线视频| 精品国产一区二区三区四区第35| 男女高潮啪啪啪动态图| 亚洲久久久国产精品| 热re99久久国产66热| 狠狠婷婷综合久久久久久88av| a级毛片黄视频| 亚洲人成电影观看| 久久久久久人人人人人| 成人国产av品久久久| 国产色视频综合| 极品少妇高潮喷水抽搐| 淫妇啪啪啪对白视频| 国产成人精品久久二区二区91| 亚洲专区中文字幕在线| 欧美精品av麻豆av| 男女之事视频高清在线观看| 在线亚洲精品国产二区图片欧美| 高清在线国产一区| 少妇裸体淫交视频免费看高清 | 午夜免费鲁丝| 欧美精品一区二区大全| 嫩草影视91久久| 国产一区二区 视频在线| 男女免费视频国产| 欧美+亚洲+日韩+国产| 成人18禁高潮啪啪吃奶动态图| 18禁美女被吸乳视频| 亚洲全国av大片| 国产aⅴ精品一区二区三区波| 亚洲av第一区精品v没综合| 午夜精品国产一区二区电影| 亚洲免费av在线视频| 亚洲,欧美精品.| 五月天丁香电影| 国产麻豆69| 亚洲久久久国产精品| 水蜜桃什么品种好| 久久久久久亚洲精品国产蜜桃av| 国产一区二区三区综合在线观看| 一二三四在线观看免费中文在| 国产精品亚洲av一区麻豆| 国产在线免费精品| 国产亚洲av高清不卡| 91麻豆av在线| 国产精品一区二区在线观看99| 国产无遮挡羞羞视频在线观看| 国产亚洲午夜精品一区二区久久| 国内毛片毛片毛片毛片毛片| 久久久久久人人人人人|