• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observation of the induced pressure in a hybrid micro/nano-channel*

    2013-06-01 12:29:57KONGGaopan孔高攀ZHENGXu鄭旭SILBERLIZhanhua李戰(zhàn)華

    KONG Gao-pan (孔高攀), ZHENG Xu (鄭旭), SILBER-LI Zhan-hua (李戰(zhàn)華)

    The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China, E-mail: kun88d@gmail.com

    XU Zheng (徐征)

    Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian, China

    Observation of the induced pressure in a hybrid micro/nano-channel*

    KONG Gao-pan (孔高攀), ZHENG Xu (鄭旭), SILBER-LI Zhan-hua (李戰(zhàn)華)

    The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China, E-mail: kun88d@gmail.com

    XU Zheng (徐征)

    Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian, China

    (Received June 24, 2012, Revised September 29, 2012)

    This paper studies the flow characteristics in micro/nano-channels subjected to an applied electric field. The nano-channel flow was observed by means of the fluorescence Calcein. A Fluorescence Concentration Gradient Interface (FCGI) was observed across the nano-channel array. The front of the FCGI was shown to have an analogous parabolic shape. The propagation of this interface reflects indirectly the induced pressure at the micro/nano-channel junction, where the enrichment-depletion processes are known to take place. This induced pressure was predicted by numerical simulations, and this paper gives the first experimental evidence.

    micro/nano-channel, induced pressure, ion enrichment/depletion

    Introduction

    With the rapid development of the micro- and nano-fabrication technology, many nano-fluidic devices were developed with wide applications in laboratories. It is noted that when the characteristic length of the microfluidics channels is reduced to the same order as the Debye length, the ion selection process becomes more efficient due to the overlapping Electric Double Layers (EDL). One kind of these devices, a hybrid micro/nano-channel, was used to improve the trace element detection and its sensitivity. Wang et al.[1]and Kim et al.[2]observed the protein concentration enrichment (of up to a factor of 106) with this kind of system. Recently, Kim et al.[3]developed a new and efficient device for the direct seawater desalination. The physical mechanism of these devices is as follows.

    Basically, the velocity profile of the electro-kinetic flow driven only by an applied electric potential should be shaped as a “plug”. But, Kim et al.[4]observed fast moving vortices in the depletion zone at the positively charged end of the nano-channel array in their hybrid micro/nano-channel chip. They noticed that the front of the depletion zone in the microchannel was like “meniscus” as driven by pressure. This parabolic concentration front in the microchannel was also observed and studied by Yu and Silber-Li[5]. These experimental results indicate that there is an induced pressure in the pure electro-kinetic flow. Jin et al.[6]presented a numerical model based on the Navier-Stokes equation and the Nernst-Planck equation to simulate the flow in a hybrid micro/nano-channel and found that an induced pressure did exist across the micro/nano-channel junction. The associated vortex flow and the induced pressure in the micro/ nano-channel junction were studied by several authors[7-9]. The vortex flows were visualized experimentally, but without the induced pressure distribution being observed in the nanochannel. It is extremely difficult to directly measure the induced pressure distribution in the micro/nano-channel. The present study focuses on the direct observation of this induced pre-ssure field, especially, in the nano-channel.

    The propagation of the fluorescence in an array of nano-channels was observed in the present experiments. The observation results, as shown in Section 2, indicate that the propagation lengths in each channel of the nano array are different and an analogous parabolic front is established across the entire array. It is demonstrated that the induced pressure distribution at the micro/nano-channel junction drives the fluorescence propagation passing through the nanoarray. In Section 3, two hypotheses are proposed for analyzing the induced pressure based on the Navier-Stokes (N-S) equation and the Nernst-Planck equation, accompanying with the results of a transient 2-D numerical simulation. The last section is the conclusion.

    1. Experimental apparatus and methods

    1.1 Experimental setup

    The experiments were performed on a fluorescent inverted microscope (Olympus IX71), equipped with a 10×/NA=0.3objective lens. An electronmultiplying charge coupling device (EMCCD, DV885) was used to record the images. A voltage source (HV1005) was used to apply the electric potential.

    Fig.1(a) A photo of the glass chip

    Fig.1(b) Schematic diagram of the microchannel with a nanochannel array

    1.2 Chip fabrication

    A glass chip employed in the present experiment is shown in Fig.1(a). A schematic diagram of the nano-channel array connected with two micro-channel reservoirs is shown in Fig.1(b), where A-B and C-D are marked. The nominal size of the micro-channel is 40 μm×10 μm×0.02 m and that of each nano-channel is 4 μm×100 nm×200 μm (width×depth×length). The nano-channel bundle consists of 20 channels placed side by side in a linear array with a total width of 120 μm. The entire glass chip is produced by the Dalian University of Technology. (see Xu et al.[10]for details).

    1.3 Reagents

    The sodium borate buffer solution was prepared by using Di-water (Millipore company) at a concentration of 0.1 mM and a pH value of 9.2.

    Two portions of this fluid were prepared. The fluorescence Calcein (an analytical reagent) was diluted into one portion of this solution at a mass concentration of 10 μM and filled into the A-B micro-channel at the beginning of the experiment. The other portion was filled into the C-D micro-channel. Compared with other experiments[4], in which both microchannels were filled with the fluorescence, in our experiment, only one micro-channel is filled with the fluorescence so that the state of the flow passing through the nano-channel array can be observed.

    1.4 Experimenl procedure

    At the beginning of the experiment, one portion of the sodium borate buffer solution with the fluorescence was filled into the upper micro-channel (A-B) and another portion of the sodium borate buffer solution without the fluorescence was filled into the bottom micro-channel (C-D). Platinum wires were then put into the reservoirs to provide the electric connection. A potential difference was then applied between A-B and C-D micro-channels (see Fig.1(b)) while C-D ends were grounded. The flow fields in the two micro-channels and in the array of nano-channels were observed with the EMCCD at 21 frames/s. The images were captured in sequence with an exposure time of 20 ms and an interval of 27 ms.

    The main experiment was conducted as described above with 50 V potential drop across the two microchannels. Also, we used the potential drops of 100 V, 300 V, 500 V and a reduced buffer concentration of 0.01 mM in the tests.

    2. Experimental results

    The results of the present experiments are as follows. After an electric potential was applied to the micro-channel A-B, a depletion zone was observed to form in the A-B micro-channel (that is, at the anode of the nano-channel array) at t =1.24 s (Fig.2(a)). At t=3.91 s, the depletion zone continued to extend, while the enrichment zone developing in the C-D micro-channel (the cathode end of the nano-channel array) as shown in Fig.2(b). At this instant, a Fluorescence Concentration Gradient Interface (FCGI) appeared in the nanochannel array. Att=7.03 s, it was observed that the fluorescence solution was propagating in each nano-channels of the array from the A-B micro-channel towards the C-D micro-channel.The position of the FCGI assumes an analogous parabolic form (as shown in Fig.2(c)). At t=14.86 s, the position of FCGI was near the bottom micro-channel. In addition, the gray scale values of the fluorescence in the nano-channel were always less than those in the depletion area. While in the enrichment area (that is, at the C-D channel end of the nano-channel array), the fluorescent gray values increased with time.

    Fig.2 The FCGI evolution in the nanno-channel array with a depth of 100 nm (the image size is 800 μm ×400 μm)

    The front positions of the FCGI in each nanochannel at different moments are shown in Fig.3. They assume an analogous parabolic shape. The average propagating velocity of the FCGI calculated from Fig.3 is shown in Fig.4. The velocity in the center of the nano-channel array is found always higher than the velocities at the edges. For example at t =3.91 s the maximum velocity,vmax, is about 20 μm/s while the velocities at the edges are only in the range of 0 μm/s-5 μm/s. With the time, the maximum velocity decreases. Att =7.03 s,vmax=15 μm/s, and the corresponding velocity values at the edges of the nano-channel array are about 6 μm/s. Att=14.86 s the maximum velocity is reduced to 9 μm/s while the edge velocities are kept on the level of 5 μm/s . The velocity results indicate that the propagation of fluorescence is faster in the middle part than at the edges, however, this propagation becomes much slower as time progresses.

    Fig.3 The positions of FCGI’s front at different time corresponding to Figs.2(b)-2(d). The location of xaxis is at the middle of the nano-channel array

    Fig.4 The average velocity of the propagating FCGI and the estimated pressure at different moments

    According to the well known Poiseuille formula, the velocity in a channel is proportional to the pressure drop, which can be used to estimate the pressure drop across the nano-channel. The hypothesis involved in the Poiseuille formula will be discussed in Section 3. The Poiseuille formula takes the form

    whereV represents the average velocity of the solutions in the nano-channel, andd is the hydraulicdiameter of the nano-channel. The nano-channel length isL while ΔPdenotes the pressure drop between the two ends of the nano-channel. UsingV, as shown in Fig.4, we can calculate ΔPand display it in the same figure. Att=3.91 s, the pressure in the center of the nano-channel arrayΔPmaxis about 3 500 Pa. After 3 s, at t =7.03 s,ΔPmaxdecreases to 2 500 Pa. And att =14.86 s,ΔPmaxis further reduced to about 1 500 Pa. From Fig.4, it is seen that the center of the experimentalΔPmaxis three times higher than the pressure at the edges (which remains at the level of about 1000Pa in the experiment). These estimates provide qualitative information about the pressure distribution along the axis of the micro-channel near the micro/nano junction.

    3. Discussions

    (1) Ion transportation

    Figures. 2(a)-2(d) show that the FCGI is formed as the depletion region is developed at the micro/ nano-channel junction, and extended along the microchannel. The flux of the ions in the nano array is determined from the Nernst-Planck equation

    (2) Bulk fluid transportation

    The fluid flow is governed by the N-S equation. In the micro/nano-scale, the Reynolds number is low enough, the N-S equation can be simplified as the Stokes equation

    where ρe?Ψdenotes the electrostatic body force term,ρe=F( z+c++ z-c-)is the net charge density of ions,μdenotes the dynamic viscosity of the fluid, μ?2Vrepresents the viscous term. It is clear that the velocity of the fluid is influenced by the pressure, the electrical field and the viscosity. As stated above, the electro-migrationVeis nearly the same in each nanochannel, and has little contribution to the parabolicvelocity distribution in the nano array. Therefore, the second hypothesis proposed here is that the pressure gradient term,ΔP, plays the dominant role in the formation of the analogous parabolic FCGI.

    The estimated pressure is not quite accurate due to the fact that the average velocity value is obtained from experiments, with the effects of the ion diffusion and the electric potential being neglected as just noted. However, these results represent the experimental evidence of the pressure distribution in the micro/nanochannel flows, which has not been noted before. This observation provides some further basic information to understand these complex flows.

    A basic numerical model is tested by a simple verification. It can not fully simulate all the experimental details, but it can help us catch the mechanism in the system.

    Fig.5 The calculated pressure distribution along x?axis of the micro-channel in the micro/nano-channel junction. The inset is the computation area of the numerical study, both x and y are normalized by the width of micro-channel

    Fig.6 The potential distribution along the x?axis of the microchannel near the micro/nano-channel junction. Bothx and yare normalized by the width of micro-channel

    In the numerical simulation, three nano-channels are arranged at x?=-0.3, 0 and 0.3, respectively, to represent the nano array (see the inset graph in Fig.5). Their inlets are all located aty?=0.3, and the outlets are aty?= -0.3. The junction of the micro/nanochannel is thus betweenx?= ±0.3. Figure 6 shows the computed electrical potential distribution along the x?axis of the micro-channel. The curve of voltages is found to be approximately flat fromx?= -0.3to x?=0.3, corresponding to the inlet of the nano-channel array aty?=0.3. This result confirms the above hypotheses that the?Ψis nearly constant along x direction. Hence the electric field could not induce the analogous parabolic FCGI observed in the experiments (see Fig.2(a)-2(d)).

    Figure 5 shows the pressures along thex?direction of the micro-channel near the micro/nano-channel junction. The pressure distribution in the depletion zone near the junction between x?= ±0.3at y?=0.3is in an analogous parabola profile (solid line), and in the enrichment zone aty?= -0.3it is nearly linear (dotted line). This result is in accordance with the experimental pressure distribution discussed above.

    These simulations confirm the existence of an induced pressure distribution in the micro/nano-channel junction and this pressure field is responsible for the formation of an analogous parabolic FCGI in the nano-channel array observed in the experiments.

    4. Conclusions

    In this study, the propagation of the fluorescence concentration in a hybrid micro/nano-channel under external electric field was observed. The main results can be summarized as follows:

    (1) A FCGI was observed across the nano-channel array (20 nano-channels, each of 4 μm×100 nm× 200 μm (width×depth×length). The FCGI front was shown to have an analogous parabolic shape. The average propagation velocity distributions were obtained from images at different moments.

    (2) Based on the Nernst-Planck equation, it is shown that the ion diffusion effect can be neglected as compared with the effects of the electromigration and the fluid convection. Two hypotheses are introduced: (a) the electric potential is uniform and thus the potential gradient can be considered as constant in the junction, and (b) in the N-S equation, only the pressure gradient is responsible for this FCGI. Based on these two hypotheses, the distribution of the induced pressure at the micro/nano junction is evaluated.

    (3) A basic 2-D numerical model was used to simulate the flow in a hybrid micro-channel with nano array composed of three nano-channels. The numerical results show the similar distribution of the induced pressure in the micro/nano-channel junction. Also from the electrical potential along the x?direction, it is shown that the values at the inlets of the nano-channels are nearly uniform.

    Acknowledgment

    The authors wish to thank Professor Trevor Moulden for fruitful discussions.

    [1] WANG Y.-C., STEVENS A. L. and HAN J. Millionfold preconcentration of proteins and peptides by nanofluidic filter[J]. Analytical Chemistry, 2005, 77(14): 4293-4299.

    [2] KIM S. M., BURNS M. A. and HASSELBRINK E. F. Electrokinetic protein preconcentration using a simple glass/poly (dimethylsiloxane) microfluidic chip[J]. Analytical Chemistry, 2006, 78(14): 4779-4785.

    [3] KIM S. J., KO S. H. and KANG K. H. et al. Direct seawater desalination by ion concentration polarization[J]. Nature Nanotechnology, 2010, 5(4): 297-301.

    [4] KIM S., WANG Y.-C. and LEE J. H. et al. Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel[J]. Physical Review Letters, 2007, 99(4): 044501.

    [5] YU Q., SILBER-LI Z. Measurements of the ion-depletion zone evolution in a micro/nano-channel[J]. Microfluid Nanofluid, 2011, 11(5): 623-631.

    [6] JIN X., JOSEPH S. and GATIMU E. N. et al. Induced electrokinetic transport in micro-nanofluidic interconnect devices[J]. Langmuir, 2007, 23(26): 13209-13222.

    [7] KUO T.-C., CANNON D. M. and SHANNON M. A. et al. Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates[J]. Sensors and Actuators A: Physical, 2003, 102(3): 223-233.

    [8] CHANG H.-C., YOSSIFON G. Understanding electrokinetics at the nanoscale: A perspective[J]. Biomicrofl uidics, 2009, 3(1): 12001.

    [9] SILBER-LI Z., KONG G. and YU Q. et al. Observation of vorticity generation in micro/nano-channel flows subject to an electric field[C]. Proceedings of the 11th Asian Symposium on Visualization. Niigata, Japan, 2011.

    [10] XU Z., WEN J.-K. and LIU C. et al. Research on forming and application of U-form glass micro-nanofluidic chip with long nanochannels[J]. Microfluid Nanofluid, 2009, 7(3): 423-429.

    [11] BAO F.-B., LIN J.-Z. Linear stability analysis for various forms of one-dimensional Burnett equations[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2005, 6(3): 295-303.

    [12] BAO F., LIN J. Burnett simulation of gas flow and heat transfer in micro Poiseuille flow[J]. International Journal of Heat and Mass Transfer, 2008, 51(15-16): 4139-4144.

    [13] BOCQUET L., CHARLAIX E. Nano fl uidics, from bulk to interface[J]. Chemical Society Reviews, 2010, 39(3): 1073-1095.

    [14] KIRBY B. Micro- and nanoscale fluid mechanics: Transport in microfluidic devices[M] Cambridge, UK: Cambridge University Press, 2010.

    [15] KIM S. J., LI L. D. and HAN J. Amplified electrokinetic response by concentration polarization near nanofluidic channel[J]. Langmuir, 2009, 25(13): 7759-7765.

    [16] ZANGLE T. A., MANI A. and SANTIAGO J. G. On the propagation of concentration polarization from microchannel-nanochannel interfaces. Part II: Numerical and experimental study[J]. Langmuir, 2009, 25(6): 3909-3916.

    10.1016/S1001-6058(13)60363-7

    * Project supported by the Chinese Academy of Sciences Research and Development Program of China (Grant No. KJCX2-YW-H18), the National Natural Science Foundation of China (Grant No. 10872203) and the National Key Basic Research Development Program of China(973 Program, Grant No. 2007CB714501).

    Biography: KONG Gao-pan (1982-), Male, Master

    Corresponding auther: SILBER-LI Zhan-hua,

    E-mail: lili@imech.ac.cn

    亚洲成人中文字幕在线播放| 国产视频内射| 舔av片在线| 女生性感内裤真人,穿戴方法视频| 亚洲国产欧洲综合997久久,| 国产一区二区在线av高清观看| 乱人视频在线观看| 极品教师在线免费播放| 最近视频中文字幕2019在线8| 国产精品嫩草影院av在线观看 | 国产高清视频在线播放一区| 日韩免费av在线播放| 婷婷精品国产亚洲av在线| 国产视频一区二区在线看| 欧美又色又爽又黄视频| 999久久久精品免费观看国产| 91久久精品电影网| 色哟哟哟哟哟哟| 亚洲午夜理论影院| 无限看片的www在线观看| 老司机深夜福利视频在线观看| 欧美不卡视频在线免费观看| 小说图片视频综合网站| 日韩欧美 国产精品| 久久精品国产清高在天天线| 亚洲av免费高清在线观看| 制服人妻中文乱码| 国产亚洲精品av在线| 国产精品99久久99久久久不卡| 精品福利观看| 国产av一区在线观看免费| 国产精品 欧美亚洲| 天堂影院成人在线观看| av专区在线播放| 国产伦一二天堂av在线观看| 国产成+人综合+亚洲专区| 麻豆一二三区av精品| 国产探花极品一区二区| 国产精品久久久久久久电影 | 免费大片18禁| 最后的刺客免费高清国语| 亚洲av第一区精品v没综合| ponron亚洲| 日本与韩国留学比较| 五月伊人婷婷丁香| 午夜福利免费观看在线| 欧美在线一区亚洲| 午夜精品久久久久久毛片777| av黄色大香蕉| 欧美高清成人免费视频www| 在线观看免费视频日本深夜| 国产不卡一卡二| 国产精品精品国产色婷婷| 给我免费播放毛片高清在线观看| 国产精品久久电影中文字幕| 欧美最黄视频在线播放免费| 国产成+人综合+亚洲专区| 亚洲成人免费电影在线观看| 久久欧美精品欧美久久欧美| 精品国产三级普通话版| 国产精品一区二区三区四区久久| 我要搜黄色片| 99国产精品一区二区蜜桃av| 神马国产精品三级电影在线观看| 国产精品av视频在线免费观看| 亚洲精品国产精品久久久不卡| 俄罗斯特黄特色一大片| 欧美成人a在线观看| 最近在线观看免费完整版| 久久久国产成人精品二区| 俺也久久电影网| 午夜免费成人在线视频| 97碰自拍视频| 午夜福利在线观看免费完整高清在 | 国产私拍福利视频在线观看| 91久久精品电影网| 男人舔奶头视频| eeuss影院久久| 一二三四社区在线视频社区8| 最近视频中文字幕2019在线8| 国产亚洲精品久久久com| 桃色一区二区三区在线观看| 熟女少妇亚洲综合色aaa.| 免费在线观看日本一区| 午夜日韩欧美国产| 国产精品99久久99久久久不卡| 色哟哟哟哟哟哟| 精华霜和精华液先用哪个| 深夜精品福利| 淫秽高清视频在线观看| 久久久久国内视频| 久久精品91无色码中文字幕| 国产中年淑女户外野战色| 中文字幕人妻熟人妻熟丝袜美 | 高清日韩中文字幕在线| 观看美女的网站| 国产免费av片在线观看野外av| 男女下面进入的视频免费午夜| 国产亚洲欧美在线一区二区| 色精品久久人妻99蜜桃| 性欧美人与动物交配| 日本三级黄在线观看| 国产在线精品亚洲第一网站| 国产探花极品一区二区| 欧美一区二区精品小视频在线| 搡老岳熟女国产| 国产黄a三级三级三级人| 母亲3免费完整高清在线观看| 午夜精品久久久久久毛片777| 麻豆一二三区av精品| av天堂在线播放| 免费看美女性在线毛片视频| 国产成人啪精品午夜网站| 黄色日韩在线| 五月伊人婷婷丁香| 九九热线精品视视频播放| 国产精品久久久久久人妻精品电影| 欧美在线一区亚洲| 国产成人欧美在线观看| 国产成+人综合+亚洲专区| 亚洲电影在线观看av| 草草在线视频免费看| 我要搜黄色片| 久9热在线精品视频| 精品一区二区三区av网在线观看| 国产黄片美女视频| 又粗又爽又猛毛片免费看| 久久亚洲精品不卡| 狠狠狠狠99中文字幕| 99久久精品国产亚洲精品| 内射极品少妇av片p| 一a级毛片在线观看| 十八禁人妻一区二区| 怎么达到女性高潮| 久久人人精品亚洲av| 亚洲黑人精品在线| 国产精品电影一区二区三区| av国产免费在线观看| 最近最新免费中文字幕在线| 国产探花在线观看一区二区| 亚洲精品在线观看二区| 国产精品久久视频播放| 小蜜桃在线观看免费完整版高清| avwww免费| 18禁裸乳无遮挡免费网站照片| 午夜精品一区二区三区免费看| 男人舔奶头视频| 亚洲七黄色美女视频| 午夜久久久久精精品| 12—13女人毛片做爰片一| 最近视频中文字幕2019在线8| 成熟少妇高潮喷水视频| 国产高潮美女av| 听说在线观看完整版免费高清| 99久国产av精品| 麻豆成人av在线观看| 哪里可以看免费的av片| 91麻豆av在线| 在线观看av片永久免费下载| 观看美女的网站| 精品久久久久久久久久久久久| 人妻夜夜爽99麻豆av| 中文字幕熟女人妻在线| 在线播放国产精品三级| 日本免费一区二区三区高清不卡| www.999成人在线观看| 麻豆国产av国片精品| av黄色大香蕉| 欧美日韩福利视频一区二区| 三级毛片av免费| 色综合婷婷激情| 午夜免费成人在线视频| 久久久精品欧美日韩精品| 男插女下体视频免费在线播放| 欧美大码av| 精品国产亚洲在线| 精品国产三级普通话版| 久久亚洲真实| svipshipincom国产片| av福利片在线观看| 欧美av亚洲av综合av国产av| 极品教师在线免费播放| 特大巨黑吊av在线直播| 久久国产精品影院| 十八禁网站免费在线| 非洲黑人性xxxx精品又粗又长| 两性午夜刺激爽爽歪歪视频在线观看| www日本黄色视频网| 18禁美女被吸乳视频| 国产v大片淫在线免费观看| 午夜精品一区二区三区免费看| 国产老妇女一区| 九九久久精品国产亚洲av麻豆| 日本a在线网址| 久久精品国产99精品国产亚洲性色| 人人妻人人看人人澡| 亚洲专区中文字幕在线| 亚洲欧美日韩卡通动漫| 少妇的逼水好多| avwww免费| 可以在线观看的亚洲视频| 在线十欧美十亚洲十日本专区| 日韩欧美三级三区| 精品99又大又爽又粗少妇毛片 | 欧美一级a爱片免费观看看| 午夜影院日韩av| 欧美在线一区亚洲| 精品人妻一区二区三区麻豆 | 黄色成人免费大全| 亚洲乱码一区二区免费版| www.www免费av| 日韩欧美在线乱码| 久久亚洲精品不卡| 两个人视频免费观看高清| 亚洲一区高清亚洲精品| 国产高潮美女av| 欧美zozozo另类| 看免费av毛片| a级毛片a级免费在线| 青草久久国产| 一本精品99久久精品77| 亚洲人成网站在线播放欧美日韩| 男女做爰动态图高潮gif福利片| 18禁裸乳无遮挡免费网站照片| 久久久精品大字幕| 成人av一区二区三区在线看| 国产三级黄色录像| 国产淫片久久久久久久久 | 免费看日本二区| 欧美+日韩+精品| 精品久久久久久,| 舔av片在线| 色综合欧美亚洲国产小说| 国产免费一级a男人的天堂| 一夜夜www| 中文字幕久久专区| www.色视频.com| 国产日本99.免费观看| 国产视频一区二区在线看| 少妇裸体淫交视频免费看高清| 高潮久久久久久久久久久不卡| 亚洲成人中文字幕在线播放| 亚洲成a人片在线一区二区| 亚洲人成网站在线播放欧美日韩| 啪啪无遮挡十八禁网站| 欧美乱色亚洲激情| 亚洲av日韩精品久久久久久密| 亚洲第一电影网av| www日本黄色视频网| 亚洲人与动物交配视频| 国内精品美女久久久久久| 国产高清有码在线观看视频| 亚洲国产日韩欧美精品在线观看 | 高潮久久久久久久久久久不卡| 亚洲欧美日韩卡通动漫| 欧美国产日韩亚洲一区| 色在线成人网| 男女视频在线观看网站免费| 最近最新中文字幕大全电影3| 日韩精品青青久久久久久| 九九热线精品视视频播放| 亚洲精品乱码久久久v下载方式 | 高清毛片免费观看视频网站| 久久精品国产综合久久久| 久久中文看片网| 中出人妻视频一区二区| 午夜免费成人在线视频| 亚洲人与动物交配视频| 中文亚洲av片在线观看爽| 日韩欧美免费精品| 久久久久久久久中文| 国产91精品成人一区二区三区| 国产单亲对白刺激| 婷婷精品国产亚洲av在线| 一本一本综合久久| 国产亚洲精品久久久久久毛片| 欧美日韩乱码在线| 香蕉久久夜色| 亚洲性夜色夜夜综合| 看免费av毛片| 天堂动漫精品| 黑人欧美特级aaaaaa片| 国产三级在线视频| 嫩草影院入口| 国产aⅴ精品一区二区三区波| 国产极品精品免费视频能看的| www.999成人在线观看| bbb黄色大片| 国产伦在线观看视频一区| 亚洲片人在线观看| 久久精品91无色码中文字幕| 99精品在免费线老司机午夜| 午夜福利在线在线| 日日干狠狠操夜夜爽| 亚洲在线自拍视频| 久久中文看片网| 亚洲第一欧美日韩一区二区三区| 久久欧美精品欧美久久欧美| 无人区码免费观看不卡| 一进一出抽搐gif免费好疼| 嫁个100分男人电影在线观看| 天天一区二区日本电影三级| 搡老妇女老女人老熟妇| 国产伦在线观看视频一区| 久久精品综合一区二区三区| 天堂网av新在线| 久久久久久久久大av| 婷婷丁香在线五月| 欧美在线黄色| 亚洲欧美精品综合久久99| 亚洲精品一区av在线观看| 熟女人妻精品中文字幕| 日本成人三级电影网站| 欧美性猛交╳xxx乱大交人| 制服人妻中文乱码| 国产免费一级a男人的天堂| or卡值多少钱| 熟女少妇亚洲综合色aaa.| 夜夜看夜夜爽夜夜摸| 国产精品日韩av在线免费观看| 蜜桃亚洲精品一区二区三区| 波野结衣二区三区在线 | 桃色一区二区三区在线观看| 国产精品99久久99久久久不卡| 欧美日韩中文字幕国产精品一区二区三区| 午夜激情福利司机影院| 成年版毛片免费区| 亚洲精品色激情综合| 首页视频小说图片口味搜索| 在线a可以看的网站| 露出奶头的视频| 在线播放国产精品三级| 久久精品91蜜桃| 观看美女的网站| 国产在视频线在精品| 人人妻,人人澡人人爽秒播| 日韩欧美三级三区| 女生性感内裤真人,穿戴方法视频| 中出人妻视频一区二区| 伊人久久大香线蕉亚洲五| 久久精品91无色码中文字幕| 欧美高清成人免费视频www| www.色视频.com| 18禁在线播放成人免费| 99在线视频只有这里精品首页| 国产精品国产高清国产av| 长腿黑丝高跟| 日本三级黄在线观看| 国内少妇人妻偷人精品xxx网站| 免费大片18禁| 精品人妻一区二区三区麻豆 | 欧美日韩国产亚洲二区| ponron亚洲| 日本五十路高清| 久久性视频一级片| 99热这里只有精品一区| 三级男女做爰猛烈吃奶摸视频| 淫秽高清视频在线观看| 国产91精品成人一区二区三区| av女优亚洲男人天堂| 变态另类成人亚洲欧美熟女| 女人高潮潮喷娇喘18禁视频| 高清毛片免费观看视频网站| 欧美精品啪啪一区二区三区| 国产一区在线观看成人免费| 国产黄色小视频在线观看| 成人一区二区视频在线观看| 亚洲美女黄片视频| 欧美成狂野欧美在线观看| 99精品在免费线老司机午夜| 国产午夜精品久久久久久一区二区三区 | 欧美日韩综合久久久久久 | 在线播放国产精品三级| 国产精品久久久久久亚洲av鲁大| 一边摸一边抽搐一进一小说| 在线观看舔阴道视频| 日本精品一区二区三区蜜桃| 国产精品亚洲av一区麻豆| 国内精品美女久久久久久| 免费看美女性在线毛片视频| 最近最新中文字幕大全电影3| 在线国产一区二区在线| 香蕉久久夜色| 亚洲国产高清在线一区二区三| 51午夜福利影视在线观看| 欧美中文综合在线视频| 亚洲一区二区三区色噜噜| 日韩欧美免费精品| 在线观看日韩欧美| 欧美日韩国产亚洲二区| 婷婷精品国产亚洲av在线| 99国产精品一区二区蜜桃av| 给我免费播放毛片高清在线观看| www日本在线高清视频| 丰满的人妻完整版| 欧美丝袜亚洲另类 | 午夜a级毛片| tocl精华| 变态另类成人亚洲欧美熟女| 亚洲av免费在线观看| 蜜桃久久精品国产亚洲av| 欧美激情久久久久久爽电影| 18禁黄网站禁片免费观看直播| 非洲黑人性xxxx精品又粗又长| 国产一级毛片七仙女欲春2| 亚洲av熟女| 欧美日本视频| 在线免费观看的www视频| 亚洲第一欧美日韩一区二区三区| 日本熟妇午夜| 精品久久久久久久毛片微露脸| 99热这里只有是精品50| 国产男靠女视频免费网站| 久99久视频精品免费| 欧美日韩瑟瑟在线播放| 一进一出好大好爽视频| 亚洲成a人片在线一区二区| 成人永久免费在线观看视频| 亚洲无线在线观看| 亚洲av不卡在线观看| 一区二区三区高清视频在线| 午夜福利免费观看在线| 久久久精品大字幕| 国产爱豆传媒在线观看| 青草久久国产| 成人国产综合亚洲| 国产一区二区在线av高清观看| 两人在一起打扑克的视频| 久久久久免费精品人妻一区二区| 国产黄a三级三级三级人| 欧美日韩亚洲国产一区二区在线观看| 一区二区三区高清视频在线| 禁无遮挡网站| 亚洲国产精品合色在线| 久久久久久久午夜电影| 精品久久久久久久久久免费视频| 国产精品香港三级国产av潘金莲| 久久久久性生活片| 天天一区二区日本电影三级| 久久久精品欧美日韩精品| 脱女人内裤的视频| 最新中文字幕久久久久| 色综合婷婷激情| 99国产精品一区二区三区| 看片在线看免费视频| 国产精品久久久人人做人人爽| 给我免费播放毛片高清在线观看| 久久久久久国产a免费观看| av视频在线观看入口| 久久久久精品国产欧美久久久| 国产av在哪里看| 国产97色在线日韩免费| 亚洲成人精品中文字幕电影| 国产日本99.免费观看| 欧美三级亚洲精品| 黄片大片在线免费观看| 精品不卡国产一区二区三区| 超碰av人人做人人爽久久 | 久久久久精品国产欧美久久久| eeuss影院久久| 久久久国产成人精品二区| 久久欧美精品欧美久久欧美| 老司机午夜十八禁免费视频| ponron亚洲| 真人一进一出gif抽搐免费| 夜夜看夜夜爽夜夜摸| 午夜免费激情av| 亚洲精品一卡2卡三卡4卡5卡| 丝袜美腿在线中文| 久久精品亚洲精品国产色婷小说| 亚洲,欧美精品.| 国产成人av激情在线播放| 少妇的逼好多水| 一级毛片女人18水好多| 在线免费观看的www视频| av黄色大香蕉| 无遮挡黄片免费观看| 长腿黑丝高跟| 欧美大码av| 国产私拍福利视频在线观看| 蜜桃久久精品国产亚洲av| 欧美午夜高清在线| 欧美色欧美亚洲另类二区| 久久久久亚洲av毛片大全| 老司机午夜十八禁免费视频| 好男人电影高清在线观看| 亚洲人成电影免费在线| 色哟哟哟哟哟哟| 免费人成视频x8x8入口观看| 精品久久久久久久久久免费视频| 亚洲一区二区三区色噜噜| 欧美成人一区二区免费高清观看| 99精品在免费线老司机午夜| 欧美一区二区国产精品久久精品| 9191精品国产免费久久| 免费大片18禁| 日韩国内少妇激情av| 最近最新免费中文字幕在线| 免费av不卡在线播放| 一夜夜www| 欧美日韩瑟瑟在线播放| 亚洲精品久久国产高清桃花| 小说图片视频综合网站| 亚洲aⅴ乱码一区二区在线播放| 成年版毛片免费区| 久久久国产精品麻豆| 亚洲中文日韩欧美视频| 欧美性猛交╳xxx乱大交人| 真实男女啪啪啪动态图| 一进一出好大好爽视频| 老司机午夜福利在线观看视频| www日本黄色视频网| 欧洲精品卡2卡3卡4卡5卡区| 亚洲自拍偷在线| 老司机午夜福利在线观看视频| 亚洲自拍偷在线| 无人区码免费观看不卡| 精品久久久久久久人妻蜜臀av| 老汉色av国产亚洲站长工具| 欧美一级a爱片免费观看看| 久久久久久久久大av| xxx96com| 久久精品国产清高在天天线| 色尼玛亚洲综合影院| 3wmmmm亚洲av在线观看| 亚洲人成伊人成综合网2020| 好男人电影高清在线观看| e午夜精品久久久久久久| ponron亚洲| 国产美女午夜福利| 国产精品久久久久久亚洲av鲁大| 午夜福利视频1000在线观看| 亚洲精品亚洲一区二区| 久久久国产成人精品二区| 热99在线观看视频| 蜜桃久久精品国产亚洲av| 午夜免费观看网址| 淫妇啪啪啪对白视频| 亚洲欧美日韩无卡精品| 精品日产1卡2卡| 成人av一区二区三区在线看| 操出白浆在线播放| 日韩成人在线观看一区二区三区| 成熟少妇高潮喷水视频| 国产精品,欧美在线| 国产精品一区二区免费欧美| 国产黄a三级三级三级人| 久久精品国产综合久久久| 久久6这里有精品| 日本成人三级电影网站| 久久精品91无色码中文字幕| 亚洲中文字幕一区二区三区有码在线看| 给我免费播放毛片高清在线观看| 国产99白浆流出| 国产麻豆成人av免费视频| 人人妻人人澡欧美一区二区| 99热这里只有精品一区| 国产蜜桃级精品一区二区三区| 国产精品永久免费网站| 久久精品影院6| 欧美日本视频| av视频在线观看入口| 女同久久另类99精品国产91| tocl精华| 在线观看av片永久免费下载| 午夜精品久久久久久毛片777| 一区二区三区高清视频在线| 老司机午夜十八禁免费视频| 国产成人系列免费观看| 熟女少妇亚洲综合色aaa.| 亚洲精品色激情综合| 看片在线看免费视频| 亚洲av一区综合| 欧美乱码精品一区二区三区| 观看美女的网站| 久久国产精品影院| 在线免费观看的www视频| 草草在线视频免费看| 亚洲天堂国产精品一区在线| 国产成年人精品一区二区| 日日摸夜夜添夜夜添小说| 国产精品日韩av在线免费观看| 搡老熟女国产l中国老女人| 精品免费久久久久久久清纯| 免费无遮挡裸体视频| 一本久久中文字幕| 国产乱人视频| 女人被狂操c到高潮| 婷婷六月久久综合丁香| 国产精品一区二区免费欧美| 久久久国产精品麻豆| 成人高潮视频无遮挡免费网站| 午夜免费激情av| 男女午夜视频在线观看| 色尼玛亚洲综合影院| 久久精品影院6| 可以在线观看毛片的网站| 亚洲av熟女| 久久久久亚洲av毛片大全| 亚洲在线观看片| 国产精品 国内视频| 国产午夜精品久久久久久一区二区三区 | 欧美国产日韩亚洲一区| 免费大片18禁| ponron亚洲| 国产又黄又爽又无遮挡在线| 午夜亚洲福利在线播放| 亚洲专区中文字幕在线| 真实男女啪啪啪动态图| 丝袜美腿在线中文| 亚洲av成人不卡在线观看播放网| 精品久久久久久久久久免费视频| 一个人观看的视频www高清免费观看| 99国产极品粉嫩在线观看| 久久久久久久亚洲中文字幕 |