• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulations for the Load Characteristics of Internal Solitary Waves on a Vertical Cylinder

    2017-10-11 05:33:16WANGXuLINZhongyiYOUYunxiangYURui
    船舶力學 2017年9期
    關鍵詞:上海交通大學粘性海事局

    WANG Xu,LIN Zhong-yi,YOU Yun-xiang,YU Rui

    (1.State Key Laboratory of Ocean Engineering,Shanghai Jiaotong University,Shanghai 200240,China;2.CAS Key Laboratory for Mechanics in Fluid Solid Coupling Systems,Institute of Mechanics,Beijing 100190,China;3.School of Jiaxing Nanyang Profession and Technology,Jiaxing 314003,China;4.Jiangsu Local Maritime Safety Administration,Nanjing 210004,China)

    Numerical Simulations for the Load Characteristics of Internal Solitary Waves on a Vertical Cylinder

    WANG Xu1,2,LIN Zhong-yi3,YOU Yun-xiang1,YU Rui4

    (1.State Key Laboratory of Ocean Engineering,Shanghai Jiaotong University,Shanghai 200240,China;2.CAS Key Laboratory for Mechanics in Fluid Solid Coupling Systems,Institute of Mechanics,Beijing 100190,China;3.School of Jiaxing Nanyang Profession and Technology,Jiaxing 314003,China;4.Jiangsu Local Maritime Safety Administration,Nanjing 210004,China)

    Abstract:According to the applicability conditions for three types of internal solitary wave theories including KdV,eKdV and MCC,a numerical method based on the Navier-Stokes equations in a twolayer fluid was presented to simulate the strongly nonlinear interaction between internal solitary waves and the vertical cylinder,where the velocity-inlet boundary is applied by using of the depth-averaged velocities in the upper-and lower-layer fluids induced by the internal solitary wave.Numerical results show that the waveform and amplitude of the internal solitary waves are in good agreement with the experimental and theoretical results.The horizontal and vertical forces,as well as torques on the vertical cylinder obtained from the numerical method also agree well with experimental results.Besides,the numerical results indicate that the horizontal and vertical forces on the vertical cylinder due to internal solitary waves can be divided into three components,including the wave and viscous pressure-difference forces,as well as the frictional force,where the fractional force is not significant and can be neglected;for the horizontal force,the orders of the magnitudes between the wave and viscous pressure-difference forces are the same,which shows that the effect of the fluid viscosity is significant;for the vertical force,the component of the viscous pressure-difference force is not significant so that the effect of the fluid viscosity can also be neglected.Moreover,the effects of the vertical cylinder on the waveform and flow field induced by the internal solitary wave are small.Therefore,it is feasible to calculate the horizontal and vertical forces on the vertical cylinder due to internal solitary waves by the Morison and Froude-Krylov formulas respectively.

    Key words:two-layer fluid;internal solitary waves;numerical simulation;load characteristics

    0 Introduction

    As a compliant floating structure,Spar platform is well suited for deep water applicationslike drilling,production,processing,storage and off-loading of ocean deposits[1].In practical applications,ocean conditions have great impacts on the safety of Spar,therefore it is necessary to consider hydrodynamic characteristics of the Spar platform under various ocean conditions.

    A large number of observations showed that internal solitary waves occur frequently and exist widely in the South China Sea[2],which has resulted in severe impact on the operation of ocean engineering structures[3].With the further exploitation of the oil and gas in South China Sea,internal solitary waves have become one fundamental environmental factor which must be considered.

    Nonlinearity and dispersion are two fundamental mechanisms of gravity wave propagation in fluids.As a general rule,it is well known that nonlinearity tends to steepen a given waveform during the course of its evolution,while dispersion has the opposite effect and tends to flatten steep free-surface gradients[4].According to the relative importance of nonlinear and dispersion,internal solitary waves can be generally described as KdV(Korteweg-de Vries)theory,eKdV(extended KdV)theory,MCC(Miyata-Choi-Camassa)theory and others[5-6].In order to quantitatively distinguish the above three theories,Huang[7]summarized the applicability conditions for former three different internal solitary wave models based on a large number of experiments.

    Since the vertical cylinder is the main structure form of the spar platform,it has great importance for both theoretical research and engineering application to study the load characteristics of internal solitary waves on it.Although the load and motion response characteristics of deepwater floating structures due to internal solitary waves have been studied preliminarily by far[8-9],most of hydrodynamic mechanism are not yet clear,including the formation mechanism of various load components,the influence mechanism of viscosity factor on internal solitary wave loads,and the applicability of calculating loads of the floating structure by Morison formulas.The CFD(Computational Fluid Dynamics)simulation provides an effective way to deeply analyze the questions mentioned above.However,the previous simulated waveform and amplitude are often unable to be controlled in varying degrees due to the lack of considering the applicability conditions for solitary wave theories[10-11].Thus one of the key problems is how to select an appropriate internal solitary wave theory as the basis for numerical wave-making in the process of studying the strong nonlinear interaction characteristics between floating structures and internal solitary waves by using the CFD method.

    At the present study we aim to determine the formation mechanism of various load components on the vertical cylinder due to internal solitary waves,as well as the influence mechanism of the vertical cylinder on the waveform and flow field characteristics.The paper is organized as follows:Chap.1 describes the numerical models to be used in this study on the base of considering the applicability conditions for internal solitary wave theories.Chap.2 contains the numerical results,including wave properties such as shape and amplitude,and internal solitary wave loads on the vertical cylinder,in addition,the comparisons between numerical results and experimental results are presented.Finally,some conclusions are given in Chap.3.

    1 Numerical methods

    The present numerical method adopts Navier-Stokes equations to simulate the strongly nonlinear interaction of internal solitary waves with the vertical cylinder,where the velocityinlet boundary uses the depth-averaged velocities of the upper-and lower-layer fluids induced by internal solitary waves.

    1.1 Governing equations

    For an incompressible fluid of density ρi,the velocity componentsu,v,()w in Cartesian coordinates Oxyz and the pressure Pisatisfy the continuity equation and Navier-Stokes equations:

    where g is gravitational acceleration and subscripts with respect to space and time represent partial differentiation.In the equations,stands for the upper(lower)layer fluid.

    The boundary conditions at the interfaceare the continuity of normal velocity and pressure:

    where ζ is the displacement of the interface.The top and bottom of calculation domain are required to satisfy the following boundary conditions:

    The calculation domain is shown in Fig.1,which consists of two parts:the wave propagation and absorption zones.Internal solitary waves are aroused by using velocity-inlet method,the depth-averaged velocities induced by internal solitary waves on the inlet boundary is defined as

    where c denotes wave phase velocity,is inlet velocity for the upper(lower)fluid at the inlet boundary.

    Fig.1 Sketch of numerical flume for the internal solitary waves

    The VOF(volume of fluid)method is employed for tracking the two-layer fluid interface during the generating and propagating of internal solitary waves.Meanwhile,sponge layer technique is applied to dissipate internal solitary waves at the tail of numerical flume,which is realized by adding a source termto the momentum equation(2).The attenuation coefficient)is determined according to Ref.[12].

    The horizontal forces Fxand vertical forceson the vertical cylinder consist of two parts,the pressure-difference force and the frictional force.

    where S is the wetted surface area of the vertical cylinder,nx,ny,nzare the unit external normal vector of surface.In the formulas,the first term represents the frictional force and the second one represents the pressure-difference force.

    The torque Myon the vertical cylinder is defined as follows:

    According to the applicability conditions for three types of internal solitary wave theories including KdV,eKdV and MCC[7],the inlet velocity is determined as follows:

    For a given internal solitary wave,the nonlinear parameter ε and dispersion parameter μ for the three types of internal solitary wave theories are calculated respectively.The KdV model is selected to calculated the velocity of inlet boundary for ε≤μ and μ< μ0,the eKdV model is selected foras well as the MCC model is selected forμ0(where μ0denotes the critical dispersion parameter summarized by laboratory experiments).

    2 Numerical results and discussions

    The paper carried out a series of experiments for the load characteristics of the vertical cylinder due to internal solitary waves in the large-scale density stratified tank.In order to compare with experimental results,the principal dimension of the numerical flume,upper(lower)layer fluid density,and the depth ratio are consistent with experimental conditions,namely,the length of the numerical flume is 30 m,the depth is 1 m,the diameter of the vertical cylinder D is 0.15 m,the draft of the vertical cylinder d is 0.535 m,the upper layer fluid density ρ1is 998 kg/m3,the lower layer fluid density ρ2is 1 025 kg/m3,and three kinds of depth ratio including h1:h2=1:9,2:8,3:7 are considered.

    2.1 Numerical simulations for internal solitary waves

    In order to analyze the influence of the viscosity on the generation and propagation for internal solitary waves,two different types of numerical models are simulated,including the N-S and Euler simulations.The waveform results for two different methods are shown in Fig.2 when h1:h2=3:7 and ad/h=0.101(Where addenotes the designed amplitude for internal solitary waves,and h=h1+h2).Results indicate that the waveforms generated by the two numerical methods remain stable and the decay of the amplitudes is weak during the propagation of the internal solitary wave,the relative error between the simulated and designed amplitudes is within 5%.Therefore,the two methods to numerically generate internal solitary waves are feasible.Hereinafter,all cases are simulated by N-S model unless special declare.

    Fig.2 The numerical results for the internal solitary wave waveforms when h1:h2=3:7 and ad/h=0.101

    Fig.3 shows the comparisons for internal solitary wave waveforms with theoretical and experimental results under three different cases.According to the applicability conditions for three types of internal solitary wave theories[7],Case A(h1:h2=3:7 and ad/h=0.101)appears weak nonlinear and weak dispersion,the eKdV theory is selected to calculate the velocity of inlet boundary,Case B(h1:h2=2:8 and ad/h=0.052)appears moderate nonlinear and weak dispersion,the KdV theory is selected to calculate the velocity of inlet boundary,Case C(h1:h2=1:9 and ad/h=0.086)appears strong nonlinear and weak dispersion,the MCC theory is selected to calculate the velocity of inlet boundary.Results show that the waveforms are in good agreement with the experimental and theoretical results,which means that the waveform is accurate and controllable for the present numerical method.

    Fig.3 Comparisons for internal solitary wave waveforms with theoretical and experimental ones

    The numerical results of wave amplitudes for the internal solitary waves are shown in Fig.4,where Symbol‘О’ represents the simulated amplitude,and the dotted line represents the designed amplitude.Results show the simulated amplitudes have good agreement with the designed amplitude,and the maximum error is within 5%.

    Fig.4 The numerical results of wave amplitudes for the internal solitary waves

    2.2 Load characteristics on the vertical cylinder

    In order to conveniently explain,the expressionare defined as the dimensionless horizontal and vertical forces,as well as torquesrespectively on the vertical cylinder due to internal solitary waves.Results of numerical and experimental amplitudes for dimensionless loads are shown in Fig.5.Results show that the numerical simulated amplitudes for the horizontal and vertical forces,as well as torques are in good agreement with experimental ones,and the maximum error is within 10%.

    Fig.5 Results of numerical and experimental amplitudes for dimensionless loads

    Fig.6 shows that the time variation characteristics for dimensionless loads for Case A.Results show that the simulated time-variation loads are in good agreement with experimentalresults,which means that it is reasonable and feasible to calculate the loads on the vertical cylinder based on the present numerical method.

    Fig.6 The time-variation characteristics for dimensionless loads for Case A

    From the formulas(8)and(9),it can be seen that the pressure-difference and frictional forces are two components for horizontal and vertical forces due to internal solitary waves.The time-variation characteristics for wave pressure-difference and viscous pressure-difference forces for Case A are shown in Fig.7.The results indicate that frictional forceis not significant comparing with the pressure-difference forceand hence can be neglected,the main component of horizontal and vertical forces is pressure-difference force.

    Fig.7 The time-variation characteristics for pressure-difference and frictional forces for Case A

    Fig.8 The time-variation characteristics for wave and viscous pressure-difference forces for Case A

    Furthermore,the pressure-difference force can be divided into two components,including the wave pressure-difference forceand the viscous pressure-difference forceThe wave pressure-difference force is associated with the fluctuation of water parcel,which can be calculated by the Euler simulation,while the viscous pressure-difference force is associated with the viscosity effect of fluid,which can be calculated by the N-S simulation.The time-variation characteristics for wave and viscous pressure-difference forces due to internal solitary waves for Case A are shown in Fig.8.For the horizontal force,the orders of the magnitudes between the wave and viscous pressure-difference forces are the same,which means that the effect of the fluid viscosity is significant.For the vertical force,the component of the viscous pressure-difference force is not significant,which indicates that the effect of the fluid viscosity can be neglected.

    2.3 Influence of the cylinder on internal solitary waves

    The influence of the vertical cylinder on the internal solitary wave waveform for Case A is shown in Fig.9,where the axis of the vertical cylinder is in front of the wave trough when t=46 s and t=58 s,the axis is located near the wave trough when t=60 s,and the axis is behind the wave trough when t=62 s and t=74 s.Results show that some disturbances of the wave surface happen near the cylinder during the propagation of internal solitary waves,especially,the disturbances of the wave surface are most evident when the internal solitary wave passes right through the axis of the cylinder.Nevertheless,the disturbances are not significant comparing to the amplitude of the internal solitary wave,and hence can be neglected.

    Fig.9 The effect of the cylinder on the internal solitary wave waveform for Case A

    Fig.10 The flow field characteristics induced by the internal solitary wave when t=60 s for Case A

    The flow field characteristics due to the internal solitary waves when t=60 s for Case A are shown in Fig.10.In the propagation process,the internal solitary wave is going in the same direction as the upper fluid,but contrary to the lower fluid.Hence,the shear flow is formed near the interface of the upper and lower fluid.The vertical flow induced by the internal solitary wave also exists,which descends and climbs at the front and rear of the wave trough respectively.In addition,it can be seen from the Fig.10 that the decay rate of the vertical distribution of the horizontal velocity induced by the internal solitary wave is small in different positions.

    Fig.11 The effects of the vertical cylinder on flow field due to the internal solitary waves for Case A

    The effect of the cylinder on the flow field due to the internal solitary wave for Case A is shown in Fig.11.During wave propagation,a pair of opposite trailing vortex forms at the tail of the cylinder due to the detour flow of the vertical cylinder on the induced flow field.The induced horizontal velocity move from left to right when z/h=0.1 and z/h=-0.05,so the trailing vortex is on the right side of the vertical cylinder.Instead,the induced horizontal velocity move from right to left when z/h=-0.12,thus the trailing vortex is on the left side of the vertical cylinder.

    The vortex-induced vibration is a common physical phenomenon in ocean engineering,which is caused by periodic trailing vortex behind the vertical cylinder.Due to the existence of the trailing vortex at the rear of the vertical cylinder,it is necessary to study the effect of trailing vortex on the vertical cylinder.The Fig.12 shows that the dimensionless lifton the vertical cylinder due to the trailing vortex is not significant and can be neglected.

    Fig.12 The time-variation characteristics of the dimensionless lift force for Case A

    For the interaction between the vertical cylinder and surface gravity waves,the character number β=D/λ is usually defined to describe the relative size of the wavelength and the vertical cylinder’s diameter.The diffraction effect of the surface wave can be neglected when β<0.15,therefore,it is feasible that the horizontal and vertical forces on the vertical cylinder due to surface gravity waves can be calculated by the Morison and Froude-Krylov formulas respectively.At the real ocean circumstance,the characteristic wavelength of internal solitary waves can reach several hundreds meters,even thousands of meters,while the diameter of the vertical cylinder is within 40 m in general,hence,the characteristic number β is far lower than 0.15.According to the pervious discussion,the influence of the vertical cylinder on the waveform and the flow field induce by the internal solitary wave can be neglected.Hence,a simplified method for calculating the loads on the vertical cylinder due to internal solitary waves can be presented as follows:the horizontal force is calculated by the Morison formulas and the vertical force is calculated by the Froude-Krylov formulas respectively.Then we will verify the rationality of this simplified method using the numerical method combined with experimental results.

    We denote U1and W1as horizontal and vertical instantaneous velocities of water particles induced by internal solitary waves when ζ< z<h1,U2and W2as horizontal and vertical instantaneous velocities of water particles induced by internal solitary waves when-h2< z< ζ,where Uiand Wiare defined as follows[13]:

    Combined with the formulas(11)and(12),the Morison formulas for calculating the horizontal force on vertical cylinder due to internal solitary waves can be written as follows:

    where Cmis the coefficient of the inertia force,Cdis the coefficient of the drag force,Vnis the normal velocity vector of water parcels,andis the normal acceleration vector of water parcels.

    Based on a series of experiments,Huang[7]summarized a solution for two coefficients in the Morison formula:

    where Re=UmaxD/ν is the Reynolds number,Umaxis maximum velocity of water parcel due to internal solitary waves,ν is the coefficient of the kinematical viscosity.

    The Froude-Krylov formulas for calculating the vertical forces on vertical cylinder due to internal solitary waves can be described as follows:

    According the Bernoulli equation,the dynamic pressure P induced by internal solitary waves can be calculated as

    Results based on the simplified method for amplitudes for dimensionless loads are shown in Fig.13.It can be seen that the load amplitudes based on the simplified method are in good agreement with the numerical results,and the maximum error is within 8%.Hence,it is feasible to calculate the loads on vertical cylinder due to internal solitary waves by using the simplified method.

    Fig.13 Results based on the simplified method for amplitudes for dimensionless loads due to internal solitary waves

    3 Conclusions

    According to the applicability conditions for three types of internal solitary wave theories,including KdV,eKdV and MCC,a numerical method based on the Navier-Stokes equation in a two-layer fluid is presented to simulate the strongly nonlinear interaction of internal solitary waves with a vertical cylinder,where the velocity-inlet boundary is applied by using of the depth-averaged velocities in the upper-and lower-layer fluids induced by the internal solitary wave.The conclusions can be summarized as follows:

    (1)The waveform and amplitude of the internal solitary wave based on the present numerical method are in good agreement with the experimental and theoretical results.Also,numerical results for the horizontal and vertical forces,as well as torques on the vertical cylinder due to the internal solitary wave have a good agreement with experimental results.Hence,it is feasible to simulate the strongly nonlinear interaction of internal solitary waves with a vertical cylinder by using the present numerical method.

    (2)The horizontal and vertical forces on the vertical cylinder due to internal solitary wavescan be divided into three components,including the wave and viscous pressure-difference forces,as well as the frictional force,where the frictional force is not significant and can be negligible;for the horizontal force,the orders of the magnitudes between the wave and viscous pressure-difference forces are the same,which means that the effect of the fluid viscosity is significant;for the vertical force,the component of the viscous pressure-difference force is not significant,which means that the effect of the fluid viscosity can be neglected.

    (3)The effects of the vertical cylinder on the waveform and flow field induced by the internal solitary wave are small.Therefore,it is feasible to calculate the horizontal and vertical forces on the vertical cylinder due to internal solitary waves by the Morison and Froude-Krylov formulas respectively.

    [1]Jameel M,Ahmad S,Islam M K A B M S.Fully coupled nonlinear dynamic response of spar platform under random loads[C]//The Twenty-second International Offshore and Polar Engineering Conference.International Society of Offshore and Polar Engineers,2012:1004-1011.

    [2]Cai S,Xie J,He J.An overview of internal solitary waves in the South China Sea[J].Surveys in Geophysics,2012,33(5):927-943.

    [3]Bole J B,Ebbesmeyer C C,Romea R D.Soliton currents in the South China Sea:Measurements and theoretical modeling[C]//The 16th Offshore Technology Conference.Houston,1994:367-376.

    [4]Choi W,Camassa R.Fully nonlinear internal waves in a two-fluid system[J].J Fluid Mech.,1999,396:1-36.

    [5]Helfrich K R,Melville W K.Long nonlinear internal waves[J].Ann.Rev.Fluid Mech.,2006,38:395-425.

    [6]Choi W,Camassa R.Weakly nonlinear internal waves in a two-fluid system[J].J Fluid Mech.,1996,313:83-103.

    [7]Huang Wenhao,You Yunxiang,Wang Xu,et al.Wave-making experiments and theoretical models for internal solitary waves in a two-layer fluid of finite depth[J].Acta Phys.Sin.,2013,62(8),084705:1-14.(in Chinese)

    [8]Cai Shuqun,Xu Jiexin,Chen Zhiwu,et al.The effect of a seasonal stratification variation on the load exerted by internal solitary waves on a cylindrical pile[J].Acta Oceanologica Sinica,2014,33(7):21-26.

    [9]Xie J S,Jiang Y J,et al.Strongly nonlinear internal solution load on a small vertical cylinder in two-layer fluids[J].Applied Mathematical Modelling,2010,34(8):2089-2101.

    [10]Li Xiaomin,Zhang Lin,Guo Haiyan,et al.Comparison of numerical wave-generating methods for internal solitary waves with theoretical and experimental results[J].Oceanologia Et Limnologia Sinica,2016,47(5):898-905.(in Chinese)

    [11]Miao Desheng,Guo Haiyan,Zhao Jing,et al.Study of numerical simulation method of internal solitary waves[J].Journal of Ocean University of China,2016,46(10):123-128.(in Chinese)

    [12]Han Peng.The study of damping absorber for irregular waves based on VOF method[D].Dalian:Dalian University of Technology,2008:38-47.(in Chinese)

    [13]Camassa R,Choi W,Michallet H,et al.On the realm of validity of strongly nonlinear asymptotic approximations for internal waves[J].J Fluid Mech.,2006,549:1-23.

    直立圓柱體內(nèi)孤立波載荷特性數(shù)值模擬

    王 旭1,2, 林忠義3, 尤云祥1, 於 銳4
    (1.上海交通大學 海洋工程國家重點實驗室,上海200240;2.中國科學院 力學研究所 流固耦合系統(tǒng)力學重點實驗室,北京100190;3.嘉興南洋職業(yè)技術學院,浙江 嘉興314003;4.江蘇省地方海事局,南京 210004)

    以三類內(nèi)孤立波理論(KdV、eKdV和MCC)的適用性條件為依據(jù),將內(nèi)孤立波誘導上下層深度平均水平速度作為入口條件,采用Navier-Stokes方程為流場控制方程,建立了兩層流體中內(nèi)孤立波對直立圓柱體強非線性作用的數(shù)值模擬方法。結果表明,數(shù)值模擬所得內(nèi)孤立波波形及其振幅與相應理論和實驗結果一致,并且直立圓柱體內(nèi)孤立波水平力、垂向力及其力矩數(shù)值模擬結果與實驗結果吻合。直立圓柱體內(nèi)孤立波載荷由波浪壓差力、粘性壓差力和摩擦力構成,其中摩擦力很小,可以忽略;對于水平力,其波浪壓差力與粘性壓差力量級相當,流體粘性的影響顯著;對于垂向力,粘性壓差力很小,流體粘性影響可以忽略。此外,直立圓柱體對內(nèi)孤立波的波形及其誘導流場的影響很小,因此采用Morison公式和傅汝德—克雷洛夫力分別計算其內(nèi)孤立波水平力和垂向力是可行的。

    兩層流體;內(nèi)孤立波;數(shù)值模擬;載荷特性

    P751

    A

    國家自然科學基金資助項目(11372184,11602274,11232012,11572332);高等學校博士點基金資助項目(20110073130003)

    王 旭(1985-),男,上海交通大學博士研究生;林忠義(1959-),男,嘉興南洋職業(yè)技術學院副教授;尤云祥(1963-),男,上海交通大學教授,博士生導師;於 銳(1984-),男,江蘇省地方海事局工程師。

    10.3969/j.issn.1007-7294.2017.09.003

    Article ID: 1007-7294(2017)09-1071-15

    Received date:2017-06-10

    Foundation item:Supported by the National Natural Science Foundation of China(11372184,11602274,11232012,11572332);The Specialized Research Foundation for the Doctoral Program of Higher Education of China(20110073130003)

    Biography:WANG Xu(1985-),male,Ph.D.student of Shanghai Jiao Tong University;LIN Zhong-yi(1959-),male,professor,School of Jiaxing Nanyang Profession and Technology;YOU Yun-xiang(1963-),male,professor/tutor,corresponding author,E-mail:youyx@sjtu.edu.cn.

    猜你喜歡
    上海交通大學粘性海事局
    上海交通大學
    電氣自動化(2022年2期)2023-01-07 03:51:56
    一類具有粘性項的擬線性拋物型方程組
    交通運輸部海事局“新一代衛(wèi)星AIS驗證載荷”成功發(fā)射
    水上消防(2022年2期)2022-07-22 08:45:00
    交通運輸部海事局公布第二批可在線辦理的電子證照清單
    水上消防(2022年1期)2022-06-16 08:07:28
    中方將在渤海執(zhí)行軍事任務
    帶粘性的波動方程組解的逐點估計
    上海交通大學參加機器人比賽
    實地考察強交流
    珠江水運(2018年21期)2018-12-20 23:17:38
    粘性非等熵流體方程平衡解的穩(wěn)定性
    家庭醫(yī)生增強基層首診粘性
    在线观看人妻少妇| 国产精品.久久久| 欧美人与善性xxx| 日韩,欧美,国产一区二区三区| 十八禁网站网址无遮挡| 性高湖久久久久久久久免费观看| 99国产综合亚洲精品| 欧美激情高清一区二区三区| 国产亚洲精品久久久久5区| 精品人妻熟女毛片av久久网站| 九草在线视频观看| 中文字幕另类日韩欧美亚洲嫩草| 久久久亚洲精品成人影院| 中文欧美无线码| 人人妻人人澡人人看| 啦啦啦在线观看免费高清www| 成人影院久久| 少妇猛男粗大的猛烈进出视频| 欧美 亚洲 国产 日韩一| 亚洲专区国产一区二区| 日韩 欧美 亚洲 中文字幕| 岛国毛片在线播放| 亚洲欧洲国产日韩| 国语对白做爰xxxⅹ性视频网站| 一区二区三区激情视频| 亚洲久久久国产精品| 日韩一本色道免费dvd| 国产男女内射视频| a 毛片基地| 精品国产一区二区三区四区第35| 满18在线观看网站| 欧美另类一区| 亚洲国产精品成人久久小说| 午夜福利乱码中文字幕| 国产黄频视频在线观看| 亚洲精品av麻豆狂野| 悠悠久久av| 91精品三级在线观看| 91国产中文字幕| 久久午夜综合久久蜜桃| 悠悠久久av| 国产在线视频一区二区| 欧美人与性动交α欧美精品济南到| 久久久久久久久免费视频了| 狠狠精品人妻久久久久久综合| 国产在线视频一区二区| 久久精品久久久久久噜噜老黄| 亚洲,一卡二卡三卡| 老汉色∧v一级毛片| 亚洲,欧美,日韩| 国产黄频视频在线观看| 91精品国产国语对白视频| 男人舔女人的私密视频| 国产成人精品在线电影| 在线观看免费午夜福利视频| 91精品国产国语对白视频| 国产欧美日韩一区二区三区在线| 秋霞在线观看毛片| 欧美在线黄色| 最新的欧美精品一区二区| 成人影院久久| 亚洲成人免费电影在线观看 | 久久久精品国产亚洲av高清涩受| 女人爽到高潮嗷嗷叫在线视频| 黑人巨大精品欧美一区二区蜜桃| 久久中文字幕一级| 午夜久久久在线观看| a 毛片基地| 午夜福利一区二区在线看| 色精品久久人妻99蜜桃| 人人妻人人添人人爽欧美一区卜| 啦啦啦啦在线视频资源| 亚洲成色77777| 老司机午夜十八禁免费视频| 高清欧美精品videossex| 涩涩av久久男人的天堂| 亚洲av日韩在线播放| av网站在线播放免费| a 毛片基地| 成人午夜精彩视频在线观看| 成年人黄色毛片网站| 久久久久久久精品精品| 精品人妻1区二区| 欧美日韩综合久久久久久| 亚洲av男天堂| 又紧又爽又黄一区二区| 成年人免费黄色播放视频| 免费观看a级毛片全部| 高清不卡的av网站| 国产日韩欧美在线精品| 免费人妻精品一区二区三区视频| 中文字幕av电影在线播放| 91字幕亚洲| 大陆偷拍与自拍| 狂野欧美激情性xxxx| 无限看片的www在线观看| 一个人免费看片子| 视频在线观看一区二区三区| 看免费av毛片| 在线观看人妻少妇| 大型av网站在线播放| 国产精品三级大全| 欧美亚洲日本最大视频资源| 国产欧美日韩一区二区三 | 亚洲图色成人| 久久中文字幕一级| 丰满人妻熟妇乱又伦精品不卡| 麻豆乱淫一区二区| www.999成人在线观看| 欧美日韩一级在线毛片| 不卡av一区二区三区| 国产野战对白在线观看| 国产免费现黄频在线看| 亚洲精品自拍成人| 操出白浆在线播放| 人人妻人人添人人爽欧美一区卜| 一边摸一边抽搐一进一出视频| 久久人人97超碰香蕉20202| 国产午夜精品一二区理论片| 最近中文字幕2019免费版| 欧美精品一区二区免费开放| 七月丁香在线播放| 国精品久久久久久国模美| a 毛片基地| av在线app专区| 亚洲精品美女久久久久99蜜臀 | netflix在线观看网站| 久久久精品区二区三区| 久久精品aⅴ一区二区三区四区| 亚洲av电影在线进入| 青草久久国产| 亚洲综合色网址| 好男人视频免费观看在线| 日韩一区二区三区影片| 午夜免费成人在线视频| 深夜精品福利| 国产精品 国内视频| 一本—道久久a久久精品蜜桃钙片| 免费在线观看日本一区| 亚洲精品第二区| 国产真人三级小视频在线观看| 午夜福利免费观看在线| 香蕉国产在线看| 国产高清videossex| 成年人午夜在线观看视频| 涩涩av久久男人的天堂| 久久女婷五月综合色啪小说| 亚洲五月婷婷丁香| 成人影院久久| 中文乱码字字幕精品一区二区三区| 自线自在国产av| 亚洲av美国av| 一级片免费观看大全| 两人在一起打扑克的视频| 欧美久久黑人一区二区| 欧美日韩精品网址| 国产在线观看jvid| 黄色一级大片看看| 男女边摸边吃奶| 一级片'在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产成人一精品久久久| 亚洲国产精品999| 天天躁夜夜躁狠狠久久av| 美女扒开内裤让男人捅视频| 亚洲精品中文字幕在线视频| 国产免费福利视频在线观看| 啦啦啦在线免费观看视频4| av天堂在线播放| 国产成人精品无人区| 亚洲精品国产色婷婷电影| 晚上一个人看的免费电影| 色网站视频免费| 亚洲综合色网址| 在线观看www视频免费| 性高湖久久久久久久久免费观看| 国产激情久久老熟女| 免费在线观看影片大全网站 | 国产成人av激情在线播放| 天天躁夜夜躁狠狠躁躁| 中国美女看黄片| 国产成人免费无遮挡视频| 午夜福利视频在线观看免费| 大话2 男鬼变身卡| 一级毛片 在线播放| av在线播放精品| 亚洲男人天堂网一区| 免费观看人在逋| 色婷婷av一区二区三区视频| 大码成人一级视频| 亚洲情色 制服丝袜| 国产99久久九九免费精品| 精品高清国产在线一区| 久久久久久人人人人人| 高清视频免费观看一区二区| 电影成人av| 成人国语在线视频| 青青草视频在线视频观看| 国产精品99久久99久久久不卡| tube8黄色片| 国产免费现黄频在线看| 后天国语完整版免费观看| 久久久久精品国产欧美久久久 | 亚洲国产欧美在线一区| 国产精品久久久久成人av| 99久久人妻综合| 国产欧美亚洲国产| 免费观看a级毛片全部| 亚洲国产精品一区三区| 亚洲五月色婷婷综合| 亚洲,欧美,日韩| 亚洲熟女精品中文字幕| 日本av手机在线免费观看| 日韩一区二区三区影片| 精品视频人人做人人爽| 国产成人精品无人区| 色综合欧美亚洲国产小说| 91九色精品人成在线观看| 亚洲国产欧美日韩在线播放| 在线天堂中文资源库| 大话2 男鬼变身卡| 99九九在线精品视频| 18禁观看日本| 国产在线免费精品| 日韩av在线免费看完整版不卡| 最黄视频免费看| 国产成人免费无遮挡视频| 男人舔女人的私密视频| 国产精品一区二区在线观看99| 操出白浆在线播放| 最新在线观看一区二区三区 | 91九色精品人成在线观看| 国产一区亚洲一区在线观看| 成人影院久久| 一边亲一边摸免费视频| 一本大道久久a久久精品| 亚洲国产精品国产精品| 99re6热这里在线精品视频| 一级,二级,三级黄色视频| 国产高清国产精品国产三级| 亚洲精品中文字幕在线视频| 久久av网站| 国产精品偷伦视频观看了| 制服人妻中文乱码| 一区二区三区激情视频| 欧美黄色片欧美黄色片| 免费看十八禁软件| 黑人猛操日本美女一级片| 手机成人av网站| 午夜免费观看性视频| 欧美日韩亚洲综合一区二区三区_| 亚洲av男天堂| 欧美性长视频在线观看| 久久天堂一区二区三区四区| 婷婷色综合大香蕉| 国产一区二区 视频在线| 黄色 视频免费看| 久久精品国产亚洲av涩爱| 男女边摸边吃奶| 91老司机精品| 国产成人欧美| 国产欧美日韩一区二区三 | 一区福利在线观看| cao死你这个sao货| 免费久久久久久久精品成人欧美视频| 午夜福利视频精品| 亚洲第一av免费看| 蜜桃在线观看..| a级毛片在线看网站| 日本猛色少妇xxxxx猛交久久| 亚洲精品第二区| 久久av网站| 成人黄色视频免费在线看| 热re99久久国产66热| 成年动漫av网址| 久久精品久久久久久噜噜老黄| 亚洲成人手机| h视频一区二区三区| a级毛片在线看网站| www.精华液| 亚洲国产精品国产精品| 少妇裸体淫交视频免费看高清 | 曰老女人黄片| 久久久欧美国产精品| 久久久久久久久久久久大奶| 黑人猛操日本美女一级片| 亚洲专区国产一区二区| 亚洲av美国av| 亚洲精品久久久久久婷婷小说| 丰满迷人的少妇在线观看| 国产爽快片一区二区三区| 久久久欧美国产精品| 只有这里有精品99| 亚洲 欧美一区二区三区| 99久久人妻综合| 电影成人av| 国产人伦9x9x在线观看| 少妇粗大呻吟视频| videosex国产| 日韩av免费高清视频| 丰满饥渴人妻一区二区三| 岛国毛片在线播放| 亚洲国产中文字幕在线视频| a 毛片基地| 在线天堂中文资源库| 色婷婷久久久亚洲欧美| 国产又色又爽无遮挡免| 亚洲天堂av无毛| 国产成人a∨麻豆精品| 欧美av亚洲av综合av国产av| 看免费成人av毛片| √禁漫天堂资源中文www| 九色亚洲精品在线播放| 十八禁网站网址无遮挡| 日韩一卡2卡3卡4卡2021年| 在现免费观看毛片| 少妇被粗大的猛进出69影院| 成人手机av| 久久精品国产综合久久久| 欧美黑人精品巨大| 制服诱惑二区| 高清不卡的av网站| 国产亚洲精品第一综合不卡| 亚洲九九香蕉| 精品一区二区三区av网在线观看 | 久久人妻福利社区极品人妻图片 | 亚洲国产精品999| 亚洲欧美成人综合另类久久久| 女人爽到高潮嗷嗷叫在线视频| 亚洲专区中文字幕在线| 又大又爽又粗| 少妇猛男粗大的猛烈进出视频| 亚洲图色成人| 天堂中文最新版在线下载| 国产一区二区 视频在线| 嫩草影视91久久| 亚洲九九香蕉| 日本vs欧美在线观看视频| 黄网站色视频无遮挡免费观看| 人人妻人人爽人人添夜夜欢视频| 亚洲av男天堂| 亚洲国产精品成人久久小说| 一区福利在线观看| 免费在线观看黄色视频的| 最近手机中文字幕大全| 女人高潮潮喷娇喘18禁视频| 久久国产精品大桥未久av| √禁漫天堂资源中文www| 97人妻天天添夜夜摸| 国产成人一区二区在线| 亚洲激情五月婷婷啪啪| 精品欧美一区二区三区在线| 一二三四在线观看免费中文在| 亚洲国产日韩一区二区| 欧美人与性动交α欧美精品济南到| 一级毛片我不卡| 91字幕亚洲| 人人妻人人澡人人爽人人夜夜| 一本色道久久久久久精品综合| 黄色视频在线播放观看不卡| 午夜福利,免费看| 国产精品一国产av| 色播在线永久视频| 国产又色又爽无遮挡免| 制服诱惑二区| 50天的宝宝边吃奶边哭怎么回事| 热re99久久精品国产66热6| 亚洲人成77777在线视频| 久9热在线精品视频| 欧美大码av| 亚洲精品中文字幕在线视频| 天天添夜夜摸| 又粗又硬又长又爽又黄的视频| 亚洲五月色婷婷综合| 亚洲精品久久成人aⅴ小说| 亚洲精品久久久久久婷婷小说| 精品欧美一区二区三区在线| 下体分泌物呈黄色| h视频一区二区三区| 亚洲av电影在线进入| 日韩制服骚丝袜av| 高清不卡的av网站| 十八禁高潮呻吟视频| 老司机影院毛片| 国产麻豆69| av国产精品久久久久影院| 激情视频va一区二区三区| av欧美777| 人成视频在线观看免费观看| 国产一区二区 视频在线| 热99国产精品久久久久久7| 少妇被粗大的猛进出69影院| 久久天躁狠狠躁夜夜2o2o | 丝袜喷水一区| 国产在线视频一区二区| 麻豆国产av国片精品| 国产片内射在线| 热re99久久精品国产66热6| 亚洲精品美女久久av网站| 少妇人妻 视频| 一区二区三区乱码不卡18| 国产亚洲av片在线观看秒播厂| 亚洲av欧美aⅴ国产| 国产免费视频播放在线视频| 久久久精品免费免费高清| 欧美日韩福利视频一区二区| 我要看黄色一级片免费的| 午夜福利乱码中文字幕| 纵有疾风起免费观看全集完整版| 黑人欧美特级aaaaaa片| 国产在线观看jvid| 久久天躁狠狠躁夜夜2o2o | 精品久久久久久久毛片微露脸 | 视频区图区小说| 水蜜桃什么品种好| 国产成人精品在线电影| 成人黄色视频免费在线看| 亚洲精品在线美女| 国产在线视频一区二区| 美女主播在线视频| 水蜜桃什么品种好| 久久久欧美国产精品| 国产成人91sexporn| 国产精品99久久99久久久不卡| 精品国产一区二区三区久久久樱花| 青青草视频在线视频观看| 亚洲成人免费av在线播放| 亚洲激情五月婷婷啪啪| 热re99久久国产66热| 久久精品aⅴ一区二区三区四区| 日韩人妻精品一区2区三区| 亚洲自偷自拍图片 自拍| 成年人免费黄色播放视频| 国产精品亚洲av一区麻豆| 亚洲三区欧美一区| 国产成人精品久久久久久| 一级毛片女人18水好多 | 黑人巨大精品欧美一区二区蜜桃| 90打野战视频偷拍视频| 69精品国产乱码久久久| 欧美日韩国产mv在线观看视频| 国产午夜精品一二区理论片| 国产麻豆69| 久久人人爽人人片av| 国产精品一区二区在线观看99| 中文精品一卡2卡3卡4更新| 国产高清视频在线播放一区 | 亚洲欧美精品自产自拍| 黄色a级毛片大全视频| 国产日韩欧美亚洲二区| 欧美亚洲 丝袜 人妻 在线| 日日摸夜夜添夜夜爱| 波多野结衣av一区二区av| 在线看a的网站| svipshipincom国产片| 少妇 在线观看| 亚洲第一青青草原| 国产精品欧美亚洲77777| 亚洲中文字幕日韩| 久久精品成人免费网站| 老司机在亚洲福利影院| 欧美日韩综合久久久久久| 亚洲欧美激情在线| 成年人免费黄色播放视频| 国产精品一区二区在线不卡| 欧美av亚洲av综合av国产av| 国产国语露脸激情在线看| 在线观看www视频免费| 老鸭窝网址在线观看| 日韩免费高清中文字幕av| 国产精品九九99| 精品一区二区三区av网在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利视频在线观看免费| 欧美中文综合在线视频| 99国产精品免费福利视频| 亚洲av片天天在线观看| 最近最新中文字幕大全免费视频 | 一区二区av电影网| 国产精品久久久av美女十八| 久久ye,这里只有精品| 国产欧美亚洲国产| 老司机深夜福利视频在线观看 | 青青草视频在线视频观看| 亚洲av日韩精品久久久久久密 | 大香蕉久久网| 久久精品亚洲熟妇少妇任你| 欧美精品一区二区免费开放| 亚洲国产精品国产精品| 男女边吃奶边做爰视频| 成年人免费黄色播放视频| av电影中文网址| 男的添女的下面高潮视频| 黄色 视频免费看| e午夜精品久久久久久久| h视频一区二区三区| 免费在线观看日本一区| 国产伦人伦偷精品视频| 性色av一级| 一区二区av电影网| 成年动漫av网址| 看免费av毛片| 国产有黄有色有爽视频| 亚洲五月色婷婷综合| 亚洲av成人精品一二三区| 欧美97在线视频| 久久毛片免费看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 成人免费观看视频高清| 美女国产高潮福利片在线看| 久9热在线精品视频| 久久久国产欧美日韩av| av一本久久久久| 久久精品人人爽人人爽视色| 一边摸一边抽搐一进一出视频| 免费人妻精品一区二区三区视频| 丁香六月天网| 中文字幕最新亚洲高清| 国产av精品麻豆| 国产黄色视频一区二区在线观看| 亚洲人成电影免费在线| h视频一区二区三区| 脱女人内裤的视频| 亚洲av日韩在线播放| 妹子高潮喷水视频| 在线av久久热| 亚洲,欧美,日韩| 咕卡用的链子| 亚洲五月婷婷丁香| 涩涩av久久男人的天堂| 在线观看国产h片| 久久精品人人爽人人爽视色| 午夜激情av网站| 99热国产这里只有精品6| 精品一区二区三卡| 日日摸夜夜添夜夜爱| 大型av网站在线播放| 欧美亚洲日本最大视频资源| 色综合欧美亚洲国产小说| 亚洲精品美女久久久久99蜜臀 | 欧美成狂野欧美在线观看| 精品亚洲成国产av| 丰满迷人的少妇在线观看| 精品国产一区二区三区久久久樱花| 国产亚洲av高清不卡| 久久这里只有精品19| 亚洲人成网站在线观看播放| 久久 成人 亚洲| 国产女主播在线喷水免费视频网站| 久久久久久久大尺度免费视频| 精品国产一区二区三区久久久樱花| 国产精品99久久99久久久不卡| 国产成人av教育| 一区二区日韩欧美中文字幕| 亚洲成人手机| 久久精品成人免费网站| 十八禁高潮呻吟视频| 久久国产精品人妻蜜桃| 香蕉丝袜av| 韩国高清视频一区二区三区| 精品欧美一区二区三区在线| 十八禁网站网址无遮挡| 下体分泌物呈黄色| 18禁黄网站禁片午夜丰满| 日韩欧美一区视频在线观看| 亚洲国产欧美网| 18在线观看网站| 精品人妻一区二区三区麻豆| 青青草视频在线视频观看| 性色av乱码一区二区三区2| 美女视频免费永久观看网站| 91麻豆av在线| 日韩熟女老妇一区二区性免费视频| 777久久人妻少妇嫩草av网站| 精品一区二区三区四区五区乱码 | 首页视频小说图片口味搜索 | 夜夜骑夜夜射夜夜干| 久久精品亚洲av国产电影网| 国产xxxxx性猛交| 国产av国产精品国产| 伊人亚洲综合成人网| 乱人伦中国视频| 久久久久精品国产欧美久久久 | 免费看十八禁软件| 国产日韩欧美亚洲二区| 高潮久久久久久久久久久不卡| 国产成人精品久久久久久| 久久久久久久大尺度免费视频| 黑人猛操日本美女一级片| 国产成人精品在线电影| 精品国产超薄肉色丝袜足j| 成年女人毛片免费观看观看9 | 中国国产av一级| 黄频高清免费视频| 欧美 日韩 精品 国产| 男女国产视频网站| 欧美日韩亚洲综合一区二区三区_| 美女视频免费永久观看网站| 国产男女内射视频| 国产成人精品在线电影| 另类精品久久| 日韩av免费高清视频| 欧美日韩综合久久久久久| 亚洲av综合色区一区| 欧美中文综合在线视频| 国产高清不卡午夜福利| 啦啦啦啦在线视频资源| www.精华液| 国产av精品麻豆| 欧美 日韩 精品 国产| 多毛熟女@视频| 少妇裸体淫交视频免费看高清 | 日韩 欧美 亚洲 中文字幕| 美女福利国产在线| 大香蕉久久成人网|