• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Co3O4納米線的丙三醇輔助合成及其電化學(xué)性質(zhì)

    2012-12-21 06:32:52張國梁郭培志位忠斌趙修松
    物理化學(xué)學(xué)報 2012年2期
    關(guān)鍵詞:丙三醇納米線充放電

    張國梁 趙 丹 郭培志,* 位忠斌 趙修松,2

    (1青島大學(xué)化學(xué)化工與環(huán)境學(xué)院,纖維新材料與現(xiàn)代紡織國家重點實驗室培育基地,山東青島266071; 2School of Chemical Engineering,The University of Queensland,St Lucia,QLD 4072,Australia)

    Co3O4納米線的丙三醇輔助合成及其電化學(xué)性質(zhì)

    張國梁1趙 丹1郭培志1,*位忠斌1趙修松1,2

    (1青島大學(xué)化學(xué)化工與環(huán)境學(xué)院,纖維新材料與現(xiàn)代紡織國家重點實驗室培育基地,山東青島266071;2School of Chemical Engineering,The University of Queensland,St Lucia,QLD 4072,Australia)

    以硝酸鈷和丙三醇為反應(yīng)物通過反應(yīng)條件的改變控制制備出Co3O4納米線.利用粉末X射線衍射(XRD),掃描電子顯微鏡(SEM)和透射電子顯微鏡(TEM)對產(chǎn)物的形貌與結(jié)構(gòu)進行了表征.實驗發(fā)現(xiàn),在低掃描速率下,Co3O4納米線電極的循環(huán)伏安(CV)曲線呈現(xiàn)出兩對氧化還原峰.恒電流充放電實驗中,氧化鈷納米線電極在1A·g-1電流密度下的電容為163 F·g-1;在1和4 A·g-1條件下,其容量隨循環(huán)次數(shù)的增加先上升后下降, 1000次充放電循環(huán)后容量保持率分別在98%和80%以上,繼續(xù)增加循環(huán)次數(shù)則容量下降比較明顯.鋰離子電池性質(zhì)測試中,氧化鈷納米線的放電容量為1124 mAh·g-1,然而放電容量隨循環(huán)次數(shù)增加下降較快.基于實驗結(jié)果,對Co3O4納米線的形成機理及其結(jié)構(gòu)與電化學(xué)性質(zhì)之間的關(guān)系進行了探討.

    電極;電容量;Co3O4;納米線;丙三醇

    1 Introduction

    When the material dimensions fall into the nanometer scale, the so-called nanostructured materials may display unique magnetic,optical,catalytic,and electrochemical properties compared with those of the corresponding bulk counterparts.1-3Many methods,including the hydrothermal synthesis,template method,thermolysis,electrochemical route,and chemical vapour deposition,and so on,have been developed to synthesize various nanomaterials with controlled morphologies and architectures,such as nanocrystals,nanorods,nanowires,nanobelts, complex and hierarchical assemblages.3-9For instance,metal nanocrystals that display excellent electrocatalytic properties have been synthesized using an effective electrodeposition method.3

    With the critical demand of advanced functional nanomaterials for electrochemical energy conversion and storage,nanostructures of transition metal oxides have received increasing interest due to their easy synthesis,excellent properties,and non-expensive nature.Among the inorganic oxide nanomaterials synthesized,cobalt oxide nanomaterials have been prepared due to their important applications in gas sensors,catalysts,supercapacitor,and lithium-ion batteries.10-21For example,Co3O4nanotubes that were synthesized using anodic aluminum oxide membranes as the templates showed high discharge capacity and superior cycling reversibility as well as excellent sensitivity to hydrogen and alcohol.10Mesoporous cobalt oxide aerogels displayed excellent supercapacitive properties with high specific capacitances and cycle stability.11Mesoporous Co3O4nanowire arrays can be used as anodes in lithium-ion batteries which show high capacity and rate capability.15In the solutionbased synthesis of nanostructured materials,various liquids,including water,alcohol,ethylene glycol,and glycerol have usually been used as the solvent.1,4-6,22-25In this paper,however, glycerol has been selected as the reagent to synthesize Co3O4nanostructures22-24because hydroxyl groups in the molecules can react with metal ions.It is found that the molar ratio of Co(NO3)2to glycerol in the synthesis system plays an important role in the formation of desired products.The electrochemical properties of the samples are characterized by cyclic voltammetry(CV),galvanic charge-discharge,and cycling experiments either in three-electrode systems and lithium-ion batteries.

    2 Experimental

    Alcohols(≥99.7%),Co(NO3)2·6H2O(≥99.0%),glycerol(≥99.0%),and KOH(≥85.0%)were purchased from Sinopharm Chemical Reagent Company.Acetylene black(99.99%,Strem Chemicals,USA),polytetrafluorothylene latex(PTFE,60%) and polyvinylidene fluoride(PVDF)were purchased from Sigma-Aldrich,USA.Double distilled water was used in all the experiments.In a typical synthesis,aqueous Co(NO3)2solution (0.2 mol·L-1,15 mL)was dropped into aqueous glycerol solution(0.6 mol·L-1,15 mL)under stirring.The mixed solution was then transferred to a 40 mL teflon-lined autoclave.Hydrothermal process was carried out in an oven at 200°C for 24 h. The solid was collected and washed thoroughly with distilled water and ethanol each,and then dried in an oven at 60°C for 6 h.Co3O4nanowires were obtained after calcination of the collected solid in a tube furnace at 500°C for 2 h in air.

    X-ray diffraction(XRD)patterns were recorded on a Bruker D8 Advance X-ray diffractometer(German)equipped with graphite monochromatized Cu Kαradiation(λ=0.15418 nm) from 10°to 80°(2θ)using a solid detector.Scanning electron microscopy(SEM)images were taken with a JSM-6390LV scanning electron microscope(Japan)operated at 20 kV.Transmission electron microscopy(TEM)images were obtained with a JEM-2000EX transmission electron microscope(Japan) operated at 160 kV.Electrochemical measurements were performed on a CHI760C electrochemical workstation using a three-electrode cell with platinum wire as counter electrode and Hg/HgO electrode as reference electrode in aqueous KOH (3 mol·L-1)solutions.Electrodes for electrochemical studies were prepared by mixing Co3O4samples with acetylene carbon black and PTFE in a mass ratio of 75:20:5 and was blended to achieve a homogeneous mixture.The resulting slurry was then pressed onto a nickel foam grid(1 cm×1 cm)at 1.5×107Pa. The typical mass load of each electrode material was about 5 mg.Before measurements,the working electrodes were dipped into KOH(3 mol·L-1)solutions overnight.

    The performance of Co3O4nanowires as the cathode was also evaluated by a fastener cell with a lithium metal anode.To prepare positive electrodes,a homogeneous mixture of 75% (w)Co3O4with 20%(w)acetylene black and 5%(w)PVDF was cast onto an Al foil.After placed in a vacuum oven at 120°C for 12 h,fastener cells were assembled in an argon filled glove box.The assembled cells consisted of Co3O4based composites fabricated onto Al foil,Li metal foil as the negative electrode,and Celgard 2400 separator saturated with a 1 mol· L-1LiPF6electrolytic solution in 1:1 volume ratio of ethylene carbonate to dimethyl carbonate.The galvanostatic charge/discharge experiment was performed between 3.0 and 0.1 V.

    3 Results and discussion

    Fig.1 shows the XRD patterns of the as-made samples.As depicted in Fig.1a,the XRD pattern of the hydrothermal precipitate can be mainly indexed to Co(OH)2phase(JCPDS No. 03-0913).If the precipitate is undergone heat treated in air,the corresponding XRD pattern(Fig.1b)can be well indexed to the pure cubic Co3O4phase(JCPDS No.74-2120).Furthermore, the peaks in Fig.1b are very sharp,indicating the existence of well crystalline Co3O4phase in the calcinated sample.

    Fig.1 XRD patterns of the hydrothermal precipitate(a)and the calcinated sample(b)prepared from the systems with the Co2+/ glycerol molar ratio of 1:3 in the raw materials

    The morphology and structure of the as-made samples have been characterized by SEM and TEM,as shown in Fig.2.It can be seen from Fig.2a that needle-like nanowires of Co(OH)2are obtained with the length scales more than 10 μm.TEM image of sample Co(OH)2further confirms the formation of nearly uniform wire-like nanostructures with the width of about 20 nm(Fig.2b).The inset in Fig.2b shows the selected area electron diffraction(SAED)pattern of a single Co(OH)2nanowire, indicating the polycrystalline nature of the nanowires.Clearly, wire-like nanostructures are maintained for sample Co3O4(Fig.2c)after the heat treatments of sample Co(OH)2.As can be verified by the TEM image(Fig.2d),the contour of sample Co3O4is similar to that of the precursor,which exhibits the formation of moniliform nanowires with nanoparticle decorated. The average size of Co3O4nanoparticles is about 20 nm.The SAED pattern of the sample shown in the inset of Fig.2d approves that Co3O4nanowires are not single crystalline.

    In order to study the formation mechanism of sample Co(OH)2,the intermediates obtained from early stages of the hydrothermal process were investigated by SEM.It should be pointed out that no product can be obtained when the reaction time is less than 120 min.As depicted in Fig.3a,wire-like nanostructures as well as spherical aggregates are formed if the reaction time was 140 min.When the synthesis time prolonged to 160 min,disperse nanowires or bundles of nanowires can be observed except the existence of few particles as depicted in Fig.3b.With the time further up to 3 h,pure nanowire structures can be gained(Fig.3c).Finally,uniform nanowires are obtained with the reaction time extended to 24 h(Fig.2a).

    It is interesting to find that no product can be obtained when glycerol was not involved in the synthesis systems at similar conditions.This indicates that Co2+ions and glycerol are indeed reacted in the hydrothermal synthesis conditions.21Our results confirm that the molar ratio between Co2+and glycerol play a key role in the formation of cobalt hydroxide.21These can be verified by the XRD and SEM results of the samples prepared with different Co2+/glycerol molar ratios of the reactants. As depicted in Fig.4a,mainly cubic phase of Co3O4(JCPDS No.74-2120)can be obtained when the Co2+/glycerol molar ratio is 1:1.Furthermore,a weak peak at 2θ of 32.5°appeared, ascribed to the(100)peak of Co(OH)2(JCPDF No.74-1057), indicating the existence of a small amount of Co(OH)2in the sample.If the Co2+/glycerol molar ratio changes to 1:1.2,besides Co3O4phase,as derived from Fig.4b,two peaks at 14.7° and 17.1°attributed to the(100)and(101)peaks of β-Co(OH)2(JCPDS No.45-0031),respectively,and one peak at 23.9°attributed to the(001)peak of Co(OH)2(JCPDS No.03-0913) are observed.With the Co2+/glycerol molar ratio increased to 1: 1.5,main β-Co(OH)2and Co(OH)2phases are gained concomitant a small amount of cubic Co3O4phase(Fig.4c).When the molar ratios are further up to 1:2,as shown in Fig.4d,the diffraction peaks of the sample are similar to those shown in Fig.1a and Co(OH)2phases are predominant in the product.

    Fig.2 SEM(a,c)and TEM(b,d)images of samples Co(OH)2(a,b)and Co3O4(c,d)

    Fig.3 SEM images of the intermediates after hydrothermal processes for 140 min(a),160 min(b),and 180 min(c)

    Fig.5 shows the SEM images of the above samples.It is clear that the Co2+/glycerol molar ratios in the raw materials have strong effects on the shapes,and sizes of the products.As depicted in Fig.5a,micro-scale aggregates composed of irregular structures are formed with the molar ratio of 1:1.Two types of structures with micron size,namely flower and aggregate structures,can be observed when the Co2+/glycerol molar ratio is 1:1.2(Fig.5b).More micro-scale flower structures composed of nanosheets with the thickness of 20-40 nm can be seen from Fig.5c when the sample synthesized with the molar ratio of 1:1.5.However,wire-like nanostructures are observed (Fig.5d)when the Co2+/glycerol molar ratio is further increased to 1:2,of which the widths of the nanowires are much larger than the sample shown in Fig.2a.Based on these experimental results,it is suggested that at the early stage of the synthesis one Co2+ion coordinates with one glycerol molecule when the Co2+/glycerol molar ratio is 1:1.However,the Co2+-glycerol coordinated complex can be formed from one Co2+ion and two glycerol molecules when the Co2+/glycerol molar ratio is 1:2 or 1:3.Thereafter,Co(OH)2nanowires can be obtained ultimately after the proper reaction time.

    Fig.4 XRD patterns of the products synthesized from the systems with the Co2+/glycerol molar ratios of(a)1:1,(b)1:1.2, (c)1:1.5,(d)1:2 in the raw materials

    The electrochemical properties of Co3O4nanowires were investigated while micro-scale aggregates of Co3O4obtained from the system with the Co2+/glycerol molar ratio of 1:1 were not involved due to the existence of impurity in the sample. Fig.6 shows the CV curves of Co3O4nanowires in aqueous KOH electrolytes.It can be concluded from Fig.6a that two pairs of peaks in CV curves of Co3O4electrodes are mainly associated with the redox process,which should be attributed to cubic Co3O4phase.4,11,26The redox reactions derived from CV curves can be indexed to the following reactions:27Based on the average value of peak potential(Ep)of p1 versus p2,peak p1 appears prior to oxygen evolution due to the oxidation of Co2+to Co3+and peak p2 is for the reverse process as shown in reaction(1).27-30However,peak p3 occurs due to oxidation Co3+to Co4+and peak p4 is therefore attributed to the reduction of Co4+to Co3+as shown in reaction(2).22,27The ΔEpvalues of p1 versus p2 and p3 versus p4 are increased from 80 and 9.1 mV to 119 and 64 mV,respectively,with the scan rates varied from 2 to 20 mV·s-1.It is well-known that the theoretic ΔEpvalue for a reversible single-electron transfer process is 58 mV. These results indicate that the reaction occurs as a quasi-reversible process at a lower scan rate during the anodic potential sweep of the electrode.If the scan rate is 0.3 V·s-1or larger, the shape of CV curves for the sample changes largely due to the irreversibility of electrochemical reactions(Fig.6b).

    Fig.5 SEM images of the products synthesized from the systems with the Co2+/glycerol molar ratios of(a)1:1,(b)1:1.2,(c)1:1.5,(d)1:2 in the raw materials

    Fig.6 CV curves of Co3O4nanowire-based electrodes at different scan rates

    It can also be derived from Fig.6 that the capacitive charac-teristic of Co3O4nanowire electrodes is mainly based on the redox mechanism.Fig.7 shows the galvanostatic charge-discharge curves of nanowire-based electrodes at different current densities under the potential range of 0-0.47 V in a three-electrode system.The specific capacitance can be calculated from the equation,C=Itd/(mΔv),31where I is the current in the charge-discharge measurement,m is the mass of the active materials,tdis the variance metric of charge or discharge time, and Δv is the variance metric of charge or discharge.It can be calculated that the capacitance of the nanowire is 163 F·g-1at a current density of 1 A·g-1.The capacitances are gradually decreased to 136,121,and 119 F·g-1at current densities of 2,3, and 4 A·g-1,respectively.These results were in good agreement with those of the CV experiments.

    Fig.7 Galvanostatic charge-discharge curves of Co3O4 nanowire-based electrodes at different current densities i/(A·g-1):(a)1,(b)2,(c)3,(d)4

    The cycle stability of the active material was investigated by galvanostatic charge-discharge measurements.Fig.8 displays the variations of specific capacitances at 1 and 4 A·g-1with the cycle number.It can be seen that the capacitance increases slightly at the first cycle,indicating that more active substance were excited.31When the current density is 1 A·g-1,the specific capacitance increases from 120 F·g-1at the first cycle to 135 F·g-1at the 50th cycle,retains more than 98%after 1000 cycles and then decreases rapidly to 78 F·g-1after 1600 cycles.If the current density increases to 4 A·g-1,the change of the specific capacitance is similar to that obtained at 1 A·g-1.The specific capacitance increases at the first cycle and then decreases with the cycles larger than 50.After 1000 cycles,the capacitance retains more than 80%of the origin and then reduces rapidly to 85 F·g-1after 1600 cycles.Furthermore,long-term cycle test could lead to distinctly irreversible electrochemical reactions and morphology change,14explaining similar capacity behavior of these electrodes after 1100 cycles.

    Fig.8 Specific capacitances of Co3O4nanowires-based electrodes at 1A·g-1(a)and 4A·g-1(b)

    The performance of Co3O4nanowires as lithium-ion battery positive electrodes is evaluated by the cell configuration Co3O4/ Li at room temperature.Fig.9 displays both the discharge curves(i.e.,voltage vs capacity)and cycle performance of the sample.The first discharge capacity at the rate of 0.1C(1C= 890 mA·g-1)is 1124 mAh·g-1(Fig.9a),with the first cycle irreversible loss of 410 mAh·g-1(Fig.9b).Furthermore,the voltage plateaus at around 1.0 V in discharge curves for these samples can be ascribed to the formation of metallic Co embedding in the Li2O matrix.15The large first discharge capacity is normally ascribed to irreversible reactions(e.g.,decomposition of electrolyte)occurring during the first discharge.The first discharge capacity of the sample decreased drastically to 631 and 368 mAh·g-1at 0.5C and 1C rates,respectively.It can also be observed from Fig.9b that the capacity decreases slowly after the second cycle similar to other reports.32-34The reason is that with the Li+insertion and extraction process,its large volume expansion/contraction and severe particle result in electrode pulverization and loss of interparticle contact and,conse-quently lead to a large irreversible capacity loss and poor cycling stability.15,35,36

    Fig.9 The first discharge curves(a)and specific capacity(b)of Co3O4nanowires at different rates

    4 Conclusions

    Co3O4nanowires were controllable synthesized by a glycerol-assisted synthesis method using Co(NO3)2and glycerol as the reactants.The CV curves of Co3O4nanowire electrodes display two pairs of redox reactions at scan rates less than 0.2 V· s-1.Galvanostatic charge-discharge measurements in the threeelectrode system showed that specific capacitances of Co3O4nanowire electrodes were 163 F·g-1at a current density of 1 A· g-1.The electrodes showed higher cycle stability at a lower current density based on the cycle-capacitance relationship under current densities of 1 and 4 A·g-1.In lithium-ion battery measurements,Co3O4nanowire electrodes showed a discharge capacitance of 1124 mAh·g-1.The formation mechanism of Co3O4structures and the relationship between their structures and electrochemical properties were discussed based on the experimental results.

    (1) Burda,C.;Chen,X.;Narayanan,R.;El-Sayed,M.A.Chem. Rev.2005,105,1025.

    (2)Xia,Y.;Yang,P.;Sun,Y.;Wu,Y.;Mayers,B.;Gates,B.;Yin,Y.; Kim,F.;Yan,H.Adv.Mater.2003,15,353.

    (3)Tian,N.;Zhou,Z.Y.;Sun,S.G.;Ding,Y.;Wang,Z.L.Science 2007,316,732.

    (4) Xiong,S.L.;Yuan,C.Z.;Zhang,X.G.;Xi,B.J.;Qian,Y.T.

    Chem.Eur.J.2009,15,5320.

    (5)Guo,P.Z.;Wei,Z.B.;Wang,B.Y.;Ding,Y.H.;Li,H.L.;

    Zhang,G.L.;Zhao,X.S.Colloids Surf.A 2011,380,237.

    (6) Chen,C.H.;Abbs,S.F.;Morey,A.;Sithambaram,S.;Xu,L.P.; Garces,H.F.;Hines,W.A.;Suib,S.L.Adv.Mater.2008,20, 1205.

    (7)Li,Y.G.;Tan,B.;Wu,Y.Y.J.Am.Chem.Soc.2006,128, 14258.

    (8) Cong,H.P.;Yu,S.H.Cryst.Growth Des.2009,9,210.

    (9)Chen,Y.C.;Hu,L.;Wang,M.;Min,Y.L.;Zhang,Y.G.

    Colloids Surf.A 2009,336,64.

    (10) Li,W.Y.;Xu,L.N.;Chen,J.Adv.Funct.Mater.2005,15,851.

    (11)Wei,T.Y.;Chen,C.H.;Chang,K.H.;Lu,S.Y.;Hu,C.C.

    Chem.Mater.2009,21,3228.

    (12)Zhao,Z.G.;Geng,F.X.;Bai,J.B.;Cheng,H.M.J.Phys.

    Chem.C 2007,111,3848.

    (13) Hu,L.H.;Peng,Q.;Li,Y.D.J.Am.Chem.Soc.2008,130, 16136.

    (14) Lou,X.W.;Deng,D.;Lee,J.Y.;Archer,L.A.J.Mater.Chem. 2008,18,4397.

    (15) Li,Y.G.;Tan,B.;Wu,Y.Y.Nano Lett.2008,8,265.

    (16)Mekhemer,G.A.H.;Abd-Allah,H.M.M.;Mansour,S.A.A. Colloids Surf.A 1999,160,251.

    (17) Salabas,E.L.;Rumplecker,A.;Kleitz,F.;Radu,F.;Schueth,F. Nano Lett.2006,6,2977.

    (18)Nam,K.T.;Kim,D.W.;Yoo,P.J.;Chiang,C.Y.;Meethong, N.;Hammond,P.T.;Chiang,Y.M.;Belcher,A.M.Science 2006,312,885.

    (19) Li,T.;Yang,S.;Huang,L.;Gu,B.;Du,Y.Nanotechnology 2004,15,1479.

    (20)Kang,Y.M.;Song,M.S.;Kim,J.H.;Kim,H.S.;Park,M.S.; Lee,J.Y.;Liu,K.H.;Dou,S.X.Electrochim.Acta 2005,50, 3667.

    (21)Yang,L.X.;Zhu,Y.J.;Li,L.;Zhang,L.;Tong,H.;Wang,W. W.;Cheng,G.F.;Zhu,J.F.Eur.J.Inorg.Chem.2006,4787.

    (22)Xiu,S.N.;Shahbazi,A.;Shirley,V.;Mims,M.R.;Wallace,C. W.J.Anal.Appl.Pyrol.2010,87,194.

    (23)Yao,J.F.;Yu,L.;Zhang,L.X.;Wang,H.T.Mater.Lett.2011, 65,2304.

    (24) Li,X.H.;Zhang,D.H.;Chen,J.S.J.Am.Chem.Soc.2006, 128,8382.

    (25)Guo,P.Z.;Han,G.T.;Wang,B.Y.;Zhao,X.S.Acta Phys.-Chim.Sin.2010,26,2557.[郭培志,韓光亭,王寶燕,趙修松.物理化學(xué)學(xué)報,2010,26,2557.]

    (26) Zheng,M.;Cao,J.;Liao,S.;Liu,J.;Chen,H.;Zhao,Y.;Dai, W.;Ji,G.;Cao,J.;Tao,J.J.Phys.Chem.C 2009,113,3887.

    (27) Gao,Y.Y.;Chen,S.L.;Cao,D.X.;Wang,G.L.;Yin,J.L. J.Power Sources 2010,195,1757.

    (28) Lin,C.;Ritter,J.A.;Popov,B.N.J.Electrochem.Soc.1998, 145,4097.

    (29) Barbero,C.;Planes,G.A.;Miras,M.C.Electrochem.Commun. 2001,3,113.

    (30) Xu,J.;Gao,L.;Cao,J.Y.;Wang,W.C.;Chen.Z.D. Electrochim.Acta 2010,56,732.

    (31)Ye,X.G.;Zhang,X.G.;Mi,H.Y.;Yang,S.D.Acta Phys.-Chim.Sin.2008,24,1105. [葉向果,張校剛,米紅宇,楊蘇東.物理化學(xué)學(xué)報,2008,24,1105.]

    (32) Lou,X.W.;Deng,D.;Lee,J.Y.;Feng,J.;Archer,L.A.Adv. Mater.2008,20,258.

    (33)Kang,J.G.;Ko,Y.D.;Park,J.G.;Kim,D.W.Nanoscale Res. Lett.2008,3,390.

    (34) Binotto,G.;Larcher,D.;Prakash,A.S.;Urbina,R.H.;Hegde, M.S.;Tarascon,J.M.Chem.Mater.2007,19,3032.

    (35)Yao,W.L.;Wang,J.L.;Yang,J.;Du,G.D.J.Power Sources 2008,176,369.

    (36)Wu,Z.S.;Ren,W.C.;Wen,L.;Gao,L.B.;Zhao,J.P.;Chen,Z. P.;Zhou,G.M.;Li,F.;Cheng H.M.ACS Nano 2010,4,3187.

    October 11,2011;Revised:November 18,2011;Published on Web:November 24,2011.

    Glycerol-Assisted Synthesis and Electrochemical Properties of Co3O4Nanowires

    ZHANG Guo-Liang1ZHAO Dan1GUO Pei-Zhi1,*WEI Zhong-Bin1ZHAO Xiu-Song1,2
    (1Laboratory of New Fiber Materials and Modern Textile,the Growing Base for State Key Laboratory,School of Chemistry, Chemical Engineering and Environmental Sciences,Qingdao University,Qingdao 266071,Shandong Province,P.R.China;2School of Chemical Engineering,The University of Queensland,St Lucia,QLD 4072,Australia)

    Cobalt oxide(Co3O4)nanowires were controllably synthesized using glycerol and Co(NO3)2as reagents and adjustment of the experimental parameters.The morphology and structure of the asprepared products were characterized by a series of techniques such as X-ray podwer diffraction(XRD), scanning electron microscopy(SEM),and transmission electron microscopy(TEM).Electrochemical performance of the nanowires was studied by cyclic voltammetry(CV)and galvanostatic charge-discharge measurements.It was found that two pairs of redox peaks appeared in the CV curves of Co3O4nanowire electrodes at low scan rates.The specific capacitance of the Co3O4nanowire electrodes was 163 F·g-1at a current density of 1 A·g-1,according to the galvanostatic charge-discharge measurements.Cycle stability tests showed that the specific capacitance increased over the first tens of cycles and then reduced slowly. After 1000 cycles,the capacitance retention was over 98%at 1 A·g-1and 80%at 4 A·g-1;it then decreased obviously with further increase in cycle number.In Li-ion battery measurements,Co3O4nanowire electrodes showed a discharge capacitance of 1124 mAh·g-1which decreased rapidly during the cycle test. The formation mechanism and the relationship between the structure and electrochemical properties of Co3O4nanowires were discussed based on the experimental results.

    Electrode;Capacitance;Co3O4;Nanowire;Glycerol

    10.3866/PKU.WHXB201111241

    *Corresponding author.Email:pzguo@qdu.edu.cn,guopz77@yahoo.com;Tel:+86-532-83780378.

    The project was supported by the National Natural Science Foundation of China(20803037,21143006),Natural Science Foundation of Shandong Province,China(ZR2009BM013),and Foundation of Qingdao Municipal Science and Technology Commission,China(11-2-4-2-(8)-jch).

    國家自然科學(xué)基金(20803037,21143006),山東省自然科學(xué)基金(ZR2009BM013)和青島市應(yīng)用基礎(chǔ)研究項目(11-2-4-2-(8)-jch)資助

    O646;O613.3;O614.8

    猜你喜歡
    丙三醇納米線充放電
    Au/Co3O4-ZnO催化劑上CO2-丙三醇羰基化合成丙三醇碳酸酯
    葉絲氣流干燥過程中水分和丙三醇遷移特性
    煙草科技(2022年11期)2022-12-20 05:58:40
    V2G模式下電動汽車充放電效率的研究
    丙三醇制丙三醇碳酸酯催化研究進展
    遼寧化工(2021年8期)2021-09-07 09:14:46
    3d過渡金屬摻雜對Cd12O12納米線電子和磁性能的影響
    基于SG3525的電池充放電管理的雙向DC-DC轉(zhuǎn)換器設(shè)計
    電子制作(2019年23期)2019-02-23 13:21:36
    溫度對NiAl合金納米線應(yīng)力誘發(fā)相變的影響
    磁性金屬Fe納米線的制備及其性能
    丙三醇對氧化鋁陶瓷支撐體性能的影響
    鋰離子電池充放電保護電路的研究
    国产精品秋霞免费鲁丝片| 波野结衣二区三区在线| 日产精品乱码卡一卡2卡三| 精品一区二区免费观看| av在线播放精品| 国产视频内射| 在线观看一区二区三区激情| 夫妻性生交免费视频一级片| 亚洲自拍偷在线| 夫妻午夜视频| 久久久久国产精品人妻一区二区| 国产精品不卡视频一区二区| 黄片无遮挡物在线观看| 午夜免费鲁丝| 国产乱来视频区| 国产欧美日韩精品一区二区| 我的老师免费观看完整版| 免费电影在线观看免费观看| 最近手机中文字幕大全| 成人美女网站在线观看视频| 身体一侧抽搐| 国国产精品蜜臀av免费| 久久精品国产亚洲网站| 国产探花极品一区二区| 欧美bdsm另类| 亚洲国产精品成人综合色| 超碰97精品在线观看| 另类亚洲欧美激情| 亚洲精品,欧美精品| 成人特级av手机在线观看| 精品一区二区三区视频在线| 精品人妻一区二区三区麻豆| 欧美潮喷喷水| 成年女人看的毛片在线观看| 中文欧美无线码| 精品久久久久久久久av| 久久久久性生活片| 久久精品国产亚洲av涩爱| 免费高清在线观看视频在线观看| 校园人妻丝袜中文字幕| 亚洲不卡免费看| 欧美激情久久久久久爽电影| 日本wwww免费看| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品456在线播放app| 国产伦在线观看视频一区| 日日啪夜夜撸| 亚洲精品国产色婷婷电影| 国产成人aa在线观看| 成人欧美大片| 汤姆久久久久久久影院中文字幕| 久久久精品欧美日韩精品| 亚洲精品第二区| a级一级毛片免费在线观看| 国产高潮美女av| 国产亚洲91精品色在线| 国产黄色视频一区二区在线观看| 可以在线观看毛片的网站| 成人毛片a级毛片在线播放| 777米奇影视久久| 国产精品熟女久久久久浪| 国产精品麻豆人妻色哟哟久久| 在线a可以看的网站| 日韩制服骚丝袜av| 最后的刺客免费高清国语| 日韩伦理黄色片| 久久ye,这里只有精品| 在线免费观看不下载黄p国产| 亚洲丝袜综合中文字幕| 免费电影在线观看免费观看| 精品久久久久久久末码| 国产综合懂色| 在线看a的网站| 午夜激情久久久久久久| 亚洲欧美中文字幕日韩二区| 成人一区二区视频在线观看| 欧美亚洲 丝袜 人妻 在线| 偷拍熟女少妇极品色| 日本黄色片子视频| 久久久久久久久久久免费av| 九九久久精品国产亚洲av麻豆| 好男人视频免费观看在线| 高清毛片免费看| 亚洲成色77777| 亚洲av.av天堂| 插阴视频在线观看视频| 国产伦精品一区二区三区四那| 在线观看av片永久免费下载| 青青草视频在线视频观看| 免费看日本二区| 内射极品少妇av片p| 精品久久久久久久久亚洲| 丝袜美腿在线中文| 亚洲国产精品国产精品| 亚洲精品aⅴ在线观看| 丰满乱子伦码专区| 国产精品久久久久久久久免| av天堂中文字幕网| 国产精品久久久久久精品电影| 亚洲va在线va天堂va国产| av在线老鸭窝| av网站免费在线观看视频| 国产精品三级大全| 国产一级毛片在线| 高清午夜精品一区二区三区| 色哟哟·www| 麻豆成人午夜福利视频| 91精品一卡2卡3卡4卡| 欧美日韩在线观看h| 久久97久久精品| 国产久久久一区二区三区| 99精国产麻豆久久婷婷| 国产成人福利小说| 韩国av在线不卡| 欧美变态另类bdsm刘玥| 亚洲真实伦在线观看| 久久人人爽av亚洲精品天堂 | 精品一区二区三卡| 久久99精品国语久久久| 欧美激情在线99| 久久久久久久久久久丰满| 99精国产麻豆久久婷婷| 97在线视频观看| 亚洲精品成人av观看孕妇| 国产伦在线观看视频一区| 亚洲精品日韩av片在线观看| 国模一区二区三区四区视频| 精品一区二区三卡| 深夜a级毛片| 久久99热这里只频精品6学生| 欧美成人精品欧美一级黄| h日本视频在线播放| 亚洲国产av新网站| 人妻少妇偷人精品九色| 欧美+日韩+精品| 精品久久久久久久久亚洲| 好男人视频免费观看在线| 真实男女啪啪啪动态图| 国产亚洲5aaaaa淫片| 天美传媒精品一区二区| 老师上课跳d突然被开到最大视频| 夜夜看夜夜爽夜夜摸| 亚洲国产欧美在线一区| 水蜜桃什么品种好| 久久久久国产网址| 在线观看三级黄色| 国产乱来视频区| 久久鲁丝午夜福利片| 亚洲欧洲国产日韩| 高清欧美精品videossex| 精品视频人人做人人爽| 日本色播在线视频| 亚洲最大成人手机在线| 国产精品99久久久久久久久| 最近最新中文字幕免费大全7| 久久国内精品自在自线图片| 熟女av电影| av免费观看日本| 成人无遮挡网站| 欧美一级a爱片免费观看看| 天天躁夜夜躁狠狠久久av| 日本猛色少妇xxxxx猛交久久| 99久久精品国产国产毛片| 婷婷色av中文字幕| 乱码一卡2卡4卡精品| 亚洲av中文字字幕乱码综合| 99视频精品全部免费 在线| 亚洲精品日韩av片在线观看| 成人漫画全彩无遮挡| 国产 精品1| 成人美女网站在线观看视频| 黄色一级大片看看| 亚洲精品久久久久久婷婷小说| 亚洲自偷自拍三级| 国产成人免费无遮挡视频| 51国产日韩欧美| 欧美一级a爱片免费观看看| 国产一区二区三区综合在线观看 | 国产淫语在线视频| 看黄色毛片网站| 内射极品少妇av片p| 午夜日本视频在线| 日韩三级伦理在线观看| 久久久久久久精品精品| 国产老妇伦熟女老妇高清| 久久久久久久大尺度免费视频| 精品久久久噜噜| 国产亚洲最大av| 日韩三级伦理在线观看| 91精品伊人久久大香线蕉| 性色av一级| 精品久久久噜噜| 亚洲av欧美aⅴ国产| 国产精品国产三级国产av玫瑰| 色播亚洲综合网| 狠狠精品人妻久久久久久综合| 伦精品一区二区三区| 自拍偷自拍亚洲精品老妇| 91久久精品国产一区二区三区| 欧美xxxx性猛交bbbb| 成人欧美大片| 国产高潮美女av| 一级黄片播放器| 乱码一卡2卡4卡精品| 亚洲av二区三区四区| 少妇被粗大猛烈的视频| 久久精品综合一区二区三区| 一本久久精品| 日韩一区二区三区影片| 亚洲天堂国产精品一区在线| 日韩在线高清观看一区二区三区| 99久久九九国产精品国产免费| 久久热精品热| 一级毛片 在线播放| 美女xxoo啪啪120秒动态图| 成人无遮挡网站| 香蕉精品网在线| 国产在线男女| 国产女主播在线喷水免费视频网站| 亚洲天堂av无毛| a级毛片免费高清观看在线播放| 国产精品国产三级国产专区5o| 精品人妻偷拍中文字幕| 国产男人的电影天堂91| 国产亚洲91精品色在线| 男人和女人高潮做爰伦理| 赤兔流量卡办理| 亚洲人成网站高清观看| 天堂俺去俺来也www色官网| 免费黄网站久久成人精品| 大陆偷拍与自拍| 日韩三级伦理在线观看| 欧美丝袜亚洲另类| www.av在线官网国产| 在线观看三级黄色| 内地一区二区视频在线| 日日啪夜夜撸| 国产淫片久久久久久久久| 国产成人freesex在线| 亚洲av男天堂| 女的被弄到高潮叫床怎么办| 国产极品天堂在线| 18禁裸乳无遮挡免费网站照片| 国产午夜精品一二区理论片| 国产男人的电影天堂91| 涩涩av久久男人的天堂| 精品国产乱码久久久久久小说| 亚洲欧美中文字幕日韩二区| 国产老妇女一区| 中国国产av一级| 丝袜喷水一区| 日韩制服骚丝袜av| 国产一级毛片在线| 久久精品人妻少妇| 久久久久网色| 肉色欧美久久久久久久蜜桃 | 国产精品久久久久久久久免| 日韩一本色道免费dvd| 六月丁香七月| 亚洲最大成人中文| 丰满乱子伦码专区| 成人一区二区视频在线观看| 高清日韩中文字幕在线| 日本三级黄在线观看| 日韩av在线免费看完整版不卡| 日韩欧美精品免费久久| 九草在线视频观看| 午夜免费鲁丝| 亚洲无线观看免费| 国产视频首页在线观看| 王馨瑶露胸无遮挡在线观看| 人妻 亚洲 视频| 国产成人免费观看mmmm| 丝瓜视频免费看黄片| 亚洲精品,欧美精品| 老司机影院成人| 成年版毛片免费区| 国产av国产精品国产| 国产又色又爽无遮挡免| 国产一区二区亚洲精品在线观看| 午夜精品一区二区三区免费看| 最新中文字幕久久久久| 国产精品久久久久久精品古装| av网站免费在线观看视频| 国模一区二区三区四区视频| 成人亚洲精品一区在线观看 | 国精品久久久久久国模美| 精品久久久久久久人妻蜜臀av| 日日撸夜夜添| 建设人人有责人人尽责人人享有的 | 三级国产精品片| 国产午夜福利久久久久久| 在线观看美女被高潮喷水网站| 免费人成在线观看视频色| 亚洲国产精品专区欧美| 欧美极品一区二区三区四区| 亚洲成人中文字幕在线播放| 建设人人有责人人尽责人人享有的 | 少妇高潮的动态图| 免费观看性生交大片5| a级一级毛片免费在线观看| 亚洲一级一片aⅴ在线观看| 蜜桃亚洲精品一区二区三区| 国产真实伦视频高清在线观看| 最近2019中文字幕mv第一页| 亚洲精品aⅴ在线观看| 精品久久久精品久久久| 亚洲经典国产精华液单| 一个人观看的视频www高清免费观看| 国产精品人妻久久久久久| 国产亚洲91精品色在线| 国产免费又黄又爽又色| 亚洲av免费在线观看| 亚洲av在线观看美女高潮| 五月伊人婷婷丁香| 如何舔出高潮| 看非洲黑人一级黄片| 麻豆精品久久久久久蜜桃| 欧美精品人与动牲交sv欧美| 精品一区二区三区视频在线| 纵有疾风起免费观看全集完整版| 午夜福利视频1000在线观看| 国产有黄有色有爽视频| 婷婷色综合www| h日本视频在线播放| 国产黄片视频在线免费观看| 欧美人与善性xxx| 久久ye,这里只有精品| 可以在线观看毛片的网站| 国产精品人妻久久久影院| 中文字幕人妻熟人妻熟丝袜美| 少妇丰满av| 国产v大片淫在线免费观看| 国产黄色免费在线视频| 国产乱来视频区| 久久久久久九九精品二区国产| 一本一本综合久久| 午夜福利网站1000一区二区三区| 精品一区二区三区视频在线| 成人毛片a级毛片在线播放| 毛片女人毛片| 我的老师免费观看完整版| 久久久久九九精品影院| 日本-黄色视频高清免费观看| 一区二区三区免费毛片| 国产精品一区二区在线观看99| 日日摸夜夜添夜夜爱| 天天一区二区日本电影三级| 最近中文字幕高清免费大全6| 麻豆成人av视频| 久久影院123| 久热这里只有精品99| 亚洲精品色激情综合| 国产综合懂色| 黑人高潮一二区| 观看免费一级毛片| 亚州av有码| 在线观看人妻少妇| 精品午夜福利在线看| 最近最新中文字幕大全电影3| 久久久久久伊人网av| 久久精品国产a三级三级三级| 亚洲成人中文字幕在线播放| 中文字幕免费在线视频6| 少妇被粗大猛烈的视频| av线在线观看网站| 日本wwww免费看| 久久精品国产亚洲av天美| 精品国产乱码久久久久久小说| 欧美 日韩 精品 国产| 国产一区二区三区av在线| 色视频www国产| 黄片无遮挡物在线观看| 中文字幕亚洲精品专区| 日韩不卡一区二区三区视频在线| 亚洲av在线观看美女高潮| 久久99热这里只有精品18| 久久精品国产鲁丝片午夜精品| 国产伦精品一区二区三区视频9| 日本三级黄在线观看| 草草在线视频免费看| 亚洲不卡免费看| 国产精品秋霞免费鲁丝片| 99久久人妻综合| 国产成人91sexporn| 亚洲天堂国产精品一区在线| 黑人高潮一二区| 国产色婷婷99| av一本久久久久| kizo精华| av国产精品久久久久影院| 黄色一级大片看看| 大片免费播放器 马上看| 免费av不卡在线播放| 丰满少妇做爰视频| 国产精品久久久久久久电影| 男人爽女人下面视频在线观看| 国内精品美女久久久久久| 男人爽女人下面视频在线观看| 国产高潮美女av| 最近2019中文字幕mv第一页| 2021天堂中文幕一二区在线观| 美女高潮的动态| 97人妻精品一区二区三区麻豆| 久久久久久久大尺度免费视频| 亚洲精品成人久久久久久| 国产欧美日韩一区二区三区在线 | 国产免费又黄又爽又色| 成人特级av手机在线观看| 亚洲精品一二三| 在线观看美女被高潮喷水网站| 看免费成人av毛片| av国产久精品久网站免费入址| 欧美日韩一区二区视频在线观看视频在线 | 99久久人妻综合| 我的女老师完整版在线观看| 欧美97在线视频| a级毛片免费高清观看在线播放| 在线播放无遮挡| 狂野欧美激情性xxxx在线观看| 成年女人在线观看亚洲视频 | 女的被弄到高潮叫床怎么办| 久久99精品国语久久久| 男人爽女人下面视频在线观看| 国产精品久久久久久久电影| 午夜爱爱视频在线播放| 久久99蜜桃精品久久| 嘟嘟电影网在线观看| 亚洲av成人精品一二三区| 精品人妻一区二区三区麻豆| 亚洲内射少妇av| 97超碰精品成人国产| 久久久久久久精品精品| 国产老妇女一区| 老司机影院成人| 亚洲av中文av极速乱| 又爽又黄无遮挡网站| 成人国产麻豆网| 真实男女啪啪啪动态图| 激情五月婷婷亚洲| 亚洲国产日韩一区二区| 最近手机中文字幕大全| 亚洲精品乱码久久久久久按摩| 免费看av在线观看网站| 久久久成人免费电影| 免费少妇av软件| 国产亚洲午夜精品一区二区久久 | 97热精品久久久久久| 国内精品美女久久久久久| 少妇 在线观看| 日本色播在线视频| 亚洲天堂国产精品一区在线| 亚洲欧洲日产国产| 日韩国内少妇激情av| videossex国产| 人妻夜夜爽99麻豆av| 久久人人爽人人片av| 黄片无遮挡物在线观看| 亚洲国产精品国产精品| 色哟哟·www| 国产伦理片在线播放av一区| 六月丁香七月| 欧美精品人与动牲交sv欧美| 国产精品久久久久久久久免| 中国三级夫妇交换| 国产又色又爽无遮挡免| 久久韩国三级中文字幕| 国产成人精品久久久久久| 综合色丁香网| 女人久久www免费人成看片| 亚洲综合精品二区| 边亲边吃奶的免费视频| 男人狂女人下面高潮的视频| 免费电影在线观看免费观看| 另类亚洲欧美激情| 少妇猛男粗大的猛烈进出视频 | 久久99热6这里只有精品| 精品人妻视频免费看| 97在线人人人人妻| 丰满乱子伦码专区| 国产精品.久久久| 在现免费观看毛片| 亚洲成人精品中文字幕电影| 亚洲国产精品国产精品| 久久久久久久午夜电影| 国产精品一区二区三区四区免费观看| 一本一本综合久久| 日韩欧美精品v在线| 精品亚洲乱码少妇综合久久| 久久精品综合一区二区三区| 精品酒店卫生间| 久久久色成人| 国产真实伦视频高清在线观看| 日日啪夜夜爽| 国产视频首页在线观看| 人人妻人人澡人人爽人人夜夜| 在线免费十八禁| 亚洲天堂av无毛| 国产色爽女视频免费观看| 亚洲最大成人av| h日本视频在线播放| 在线免费十八禁| 97人妻精品一区二区三区麻豆| 免费黄频网站在线观看国产| 听说在线观看完整版免费高清| 亚洲经典国产精华液单| 亚洲人与动物交配视频| 亚洲美女视频黄频| 亚洲av中文字字幕乱码综合| 久久韩国三级中文字幕| 精品人妻偷拍中文字幕| 蜜桃久久精品国产亚洲av| 2018国产大陆天天弄谢| 黄色配什么色好看| 亚洲最大成人手机在线| 亚洲熟女精品中文字幕| 一级爰片在线观看| 天美传媒精品一区二区| 国内精品美女久久久久久| 成人二区视频| av又黄又爽大尺度在线免费看| 91狼人影院| 亚洲精品国产av成人精品| 欧美亚洲 丝袜 人妻 在线| 尤物成人国产欧美一区二区三区| 久久ye,这里只有精品| av天堂中文字幕网| 午夜激情福利司机影院| 少妇人妻久久综合中文| 国产精品不卡视频一区二区| 一本久久精品| 亚洲成人精品中文字幕电影| 日本一本二区三区精品| 精品少妇久久久久久888优播| 永久网站在线| 欧美成人精品欧美一级黄| 午夜激情久久久久久久| 日韩,欧美,国产一区二区三区| 老司机影院成人| 日韩中字成人| 久久这里有精品视频免费| 卡戴珊不雅视频在线播放| 国产永久视频网站| 久久精品国产亚洲av天美| 激情五月婷婷亚洲| 国产老妇女一区| 韩国高清视频一区二区三区| 各种免费的搞黄视频| 特级一级黄色大片| 欧美xxxx黑人xx丫x性爽| 国产极品天堂在线| 久久久a久久爽久久v久久| 国产综合精华液| 国产免费福利视频在线观看| 久久久久久久大尺度免费视频| 九色成人免费人妻av| 看十八女毛片水多多多| 国产美女午夜福利| 亚洲国产精品专区欧美| 色5月婷婷丁香| 国内精品宾馆在线| 国产一区二区在线观看日韩| 联通29元200g的流量卡| 欧美zozozo另类| 国产爱豆传媒在线观看| 国产在线一区二区三区精| 欧美性猛交╳xxx乱大交人| 肉色欧美久久久久久久蜜桃 | 国产精品人妻久久久影院| 国产一区二区三区综合在线观看 | 亚洲av中文字字幕乱码综合| 国模一区二区三区四区视频| 街头女战士在线观看网站| 夜夜爽夜夜爽视频| 国产成人a∨麻豆精品| 亚洲精品久久久久久婷婷小说| 免费黄频网站在线观看国产| 久久99热这里只频精品6学生| 亚洲av欧美aⅴ国产| 丝瓜视频免费看黄片| 在线观看国产h片| 永久网站在线| 亚洲久久久久久中文字幕| 亚洲最大成人av| 日本-黄色视频高清免费观看| 国产精品蜜桃在线观看| 丰满乱子伦码专区| 日本免费在线观看一区| 晚上一个人看的免费电影| 久久久精品94久久精品| 你懂的网址亚洲精品在线观看| 久热久热在线精品观看| 欧美少妇被猛烈插入视频| 熟女电影av网| 美女视频免费永久观看网站| 亚洲国产欧美人成| 九九在线视频观看精品| 极品教师在线视频| 成人特级av手机在线观看| 在线天堂最新版资源| 免费看日本二区| 一级毛片电影观看| 亚洲电影在线观看av| 极品教师在线视频| 精品一区在线观看国产| av.在线天堂| 亚洲久久久久久中文字幕| 欧美性猛交╳xxx乱大交人| 国产免费一级a男人的天堂| 久久久久久久久久久丰满| 黄色怎么调成土黄色| 男女边摸边吃奶| 99热这里只有是精品50| av卡一久久| 国产一区二区三区av在线|