• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Co3O4納米線的丙三醇輔助合成及其電化學(xué)性質(zhì)

    2012-12-21 06:32:52張國梁郭培志位忠斌趙修松
    物理化學(xué)學(xué)報 2012年2期
    關(guān)鍵詞:丙三醇納米線充放電

    張國梁 趙 丹 郭培志,* 位忠斌 趙修松,2

    (1青島大學(xué)化學(xué)化工與環(huán)境學(xué)院,纖維新材料與現(xiàn)代紡織國家重點實驗室培育基地,山東青島266071; 2School of Chemical Engineering,The University of Queensland,St Lucia,QLD 4072,Australia)

    Co3O4納米線的丙三醇輔助合成及其電化學(xué)性質(zhì)

    張國梁1趙 丹1郭培志1,*位忠斌1趙修松1,2

    (1青島大學(xué)化學(xué)化工與環(huán)境學(xué)院,纖維新材料與現(xiàn)代紡織國家重點實驗室培育基地,山東青島266071;2School of Chemical Engineering,The University of Queensland,St Lucia,QLD 4072,Australia)

    以硝酸鈷和丙三醇為反應(yīng)物通過反應(yīng)條件的改變控制制備出Co3O4納米線.利用粉末X射線衍射(XRD),掃描電子顯微鏡(SEM)和透射電子顯微鏡(TEM)對產(chǎn)物的形貌與結(jié)構(gòu)進行了表征.實驗發(fā)現(xiàn),在低掃描速率下,Co3O4納米線電極的循環(huán)伏安(CV)曲線呈現(xiàn)出兩對氧化還原峰.恒電流充放電實驗中,氧化鈷納米線電極在1A·g-1電流密度下的電容為163 F·g-1;在1和4 A·g-1條件下,其容量隨循環(huán)次數(shù)的增加先上升后下降, 1000次充放電循環(huán)后容量保持率分別在98%和80%以上,繼續(xù)增加循環(huán)次數(shù)則容量下降比較明顯.鋰離子電池性質(zhì)測試中,氧化鈷納米線的放電容量為1124 mAh·g-1,然而放電容量隨循環(huán)次數(shù)增加下降較快.基于實驗結(jié)果,對Co3O4納米線的形成機理及其結(jié)構(gòu)與電化學(xué)性質(zhì)之間的關(guān)系進行了探討.

    電極;電容量;Co3O4;納米線;丙三醇

    1 Introduction

    When the material dimensions fall into the nanometer scale, the so-called nanostructured materials may display unique magnetic,optical,catalytic,and electrochemical properties compared with those of the corresponding bulk counterparts.1-3Many methods,including the hydrothermal synthesis,template method,thermolysis,electrochemical route,and chemical vapour deposition,and so on,have been developed to synthesize various nanomaterials with controlled morphologies and architectures,such as nanocrystals,nanorods,nanowires,nanobelts, complex and hierarchical assemblages.3-9For instance,metal nanocrystals that display excellent electrocatalytic properties have been synthesized using an effective electrodeposition method.3

    With the critical demand of advanced functional nanomaterials for electrochemical energy conversion and storage,nanostructures of transition metal oxides have received increasing interest due to their easy synthesis,excellent properties,and non-expensive nature.Among the inorganic oxide nanomaterials synthesized,cobalt oxide nanomaterials have been prepared due to their important applications in gas sensors,catalysts,supercapacitor,and lithium-ion batteries.10-21For example,Co3O4nanotubes that were synthesized using anodic aluminum oxide membranes as the templates showed high discharge capacity and superior cycling reversibility as well as excellent sensitivity to hydrogen and alcohol.10Mesoporous cobalt oxide aerogels displayed excellent supercapacitive properties with high specific capacitances and cycle stability.11Mesoporous Co3O4nanowire arrays can be used as anodes in lithium-ion batteries which show high capacity and rate capability.15In the solutionbased synthesis of nanostructured materials,various liquids,including water,alcohol,ethylene glycol,and glycerol have usually been used as the solvent.1,4-6,22-25In this paper,however, glycerol has been selected as the reagent to synthesize Co3O4nanostructures22-24because hydroxyl groups in the molecules can react with metal ions.It is found that the molar ratio of Co(NO3)2to glycerol in the synthesis system plays an important role in the formation of desired products.The electrochemical properties of the samples are characterized by cyclic voltammetry(CV),galvanic charge-discharge,and cycling experiments either in three-electrode systems and lithium-ion batteries.

    2 Experimental

    Alcohols(≥99.7%),Co(NO3)2·6H2O(≥99.0%),glycerol(≥99.0%),and KOH(≥85.0%)were purchased from Sinopharm Chemical Reagent Company.Acetylene black(99.99%,Strem Chemicals,USA),polytetrafluorothylene latex(PTFE,60%) and polyvinylidene fluoride(PVDF)were purchased from Sigma-Aldrich,USA.Double distilled water was used in all the experiments.In a typical synthesis,aqueous Co(NO3)2solution (0.2 mol·L-1,15 mL)was dropped into aqueous glycerol solution(0.6 mol·L-1,15 mL)under stirring.The mixed solution was then transferred to a 40 mL teflon-lined autoclave.Hydrothermal process was carried out in an oven at 200°C for 24 h. The solid was collected and washed thoroughly with distilled water and ethanol each,and then dried in an oven at 60°C for 6 h.Co3O4nanowires were obtained after calcination of the collected solid in a tube furnace at 500°C for 2 h in air.

    X-ray diffraction(XRD)patterns were recorded on a Bruker D8 Advance X-ray diffractometer(German)equipped with graphite monochromatized Cu Kαradiation(λ=0.15418 nm) from 10°to 80°(2θ)using a solid detector.Scanning electron microscopy(SEM)images were taken with a JSM-6390LV scanning electron microscope(Japan)operated at 20 kV.Transmission electron microscopy(TEM)images were obtained with a JEM-2000EX transmission electron microscope(Japan) operated at 160 kV.Electrochemical measurements were performed on a CHI760C electrochemical workstation using a three-electrode cell with platinum wire as counter electrode and Hg/HgO electrode as reference electrode in aqueous KOH (3 mol·L-1)solutions.Electrodes for electrochemical studies were prepared by mixing Co3O4samples with acetylene carbon black and PTFE in a mass ratio of 75:20:5 and was blended to achieve a homogeneous mixture.The resulting slurry was then pressed onto a nickel foam grid(1 cm×1 cm)at 1.5×107Pa. The typical mass load of each electrode material was about 5 mg.Before measurements,the working electrodes were dipped into KOH(3 mol·L-1)solutions overnight.

    The performance of Co3O4nanowires as the cathode was also evaluated by a fastener cell with a lithium metal anode.To prepare positive electrodes,a homogeneous mixture of 75% (w)Co3O4with 20%(w)acetylene black and 5%(w)PVDF was cast onto an Al foil.After placed in a vacuum oven at 120°C for 12 h,fastener cells were assembled in an argon filled glove box.The assembled cells consisted of Co3O4based composites fabricated onto Al foil,Li metal foil as the negative electrode,and Celgard 2400 separator saturated with a 1 mol· L-1LiPF6electrolytic solution in 1:1 volume ratio of ethylene carbonate to dimethyl carbonate.The galvanostatic charge/discharge experiment was performed between 3.0 and 0.1 V.

    3 Results and discussion

    Fig.1 shows the XRD patterns of the as-made samples.As depicted in Fig.1a,the XRD pattern of the hydrothermal precipitate can be mainly indexed to Co(OH)2phase(JCPDS No. 03-0913).If the precipitate is undergone heat treated in air,the corresponding XRD pattern(Fig.1b)can be well indexed to the pure cubic Co3O4phase(JCPDS No.74-2120).Furthermore, the peaks in Fig.1b are very sharp,indicating the existence of well crystalline Co3O4phase in the calcinated sample.

    Fig.1 XRD patterns of the hydrothermal precipitate(a)and the calcinated sample(b)prepared from the systems with the Co2+/ glycerol molar ratio of 1:3 in the raw materials

    The morphology and structure of the as-made samples have been characterized by SEM and TEM,as shown in Fig.2.It can be seen from Fig.2a that needle-like nanowires of Co(OH)2are obtained with the length scales more than 10 μm.TEM image of sample Co(OH)2further confirms the formation of nearly uniform wire-like nanostructures with the width of about 20 nm(Fig.2b).The inset in Fig.2b shows the selected area electron diffraction(SAED)pattern of a single Co(OH)2nanowire, indicating the polycrystalline nature of the nanowires.Clearly, wire-like nanostructures are maintained for sample Co3O4(Fig.2c)after the heat treatments of sample Co(OH)2.As can be verified by the TEM image(Fig.2d),the contour of sample Co3O4is similar to that of the precursor,which exhibits the formation of moniliform nanowires with nanoparticle decorated. The average size of Co3O4nanoparticles is about 20 nm.The SAED pattern of the sample shown in the inset of Fig.2d approves that Co3O4nanowires are not single crystalline.

    In order to study the formation mechanism of sample Co(OH)2,the intermediates obtained from early stages of the hydrothermal process were investigated by SEM.It should be pointed out that no product can be obtained when the reaction time is less than 120 min.As depicted in Fig.3a,wire-like nanostructures as well as spherical aggregates are formed if the reaction time was 140 min.When the synthesis time prolonged to 160 min,disperse nanowires or bundles of nanowires can be observed except the existence of few particles as depicted in Fig.3b.With the time further up to 3 h,pure nanowire structures can be gained(Fig.3c).Finally,uniform nanowires are obtained with the reaction time extended to 24 h(Fig.2a).

    It is interesting to find that no product can be obtained when glycerol was not involved in the synthesis systems at similar conditions.This indicates that Co2+ions and glycerol are indeed reacted in the hydrothermal synthesis conditions.21Our results confirm that the molar ratio between Co2+and glycerol play a key role in the formation of cobalt hydroxide.21These can be verified by the XRD and SEM results of the samples prepared with different Co2+/glycerol molar ratios of the reactants. As depicted in Fig.4a,mainly cubic phase of Co3O4(JCPDS No.74-2120)can be obtained when the Co2+/glycerol molar ratio is 1:1.Furthermore,a weak peak at 2θ of 32.5°appeared, ascribed to the(100)peak of Co(OH)2(JCPDF No.74-1057), indicating the existence of a small amount of Co(OH)2in the sample.If the Co2+/glycerol molar ratio changes to 1:1.2,besides Co3O4phase,as derived from Fig.4b,two peaks at 14.7° and 17.1°attributed to the(100)and(101)peaks of β-Co(OH)2(JCPDS No.45-0031),respectively,and one peak at 23.9°attributed to the(001)peak of Co(OH)2(JCPDS No.03-0913) are observed.With the Co2+/glycerol molar ratio increased to 1: 1.5,main β-Co(OH)2and Co(OH)2phases are gained concomitant a small amount of cubic Co3O4phase(Fig.4c).When the molar ratios are further up to 1:2,as shown in Fig.4d,the diffraction peaks of the sample are similar to those shown in Fig.1a and Co(OH)2phases are predominant in the product.

    Fig.2 SEM(a,c)and TEM(b,d)images of samples Co(OH)2(a,b)and Co3O4(c,d)

    Fig.3 SEM images of the intermediates after hydrothermal processes for 140 min(a),160 min(b),and 180 min(c)

    Fig.5 shows the SEM images of the above samples.It is clear that the Co2+/glycerol molar ratios in the raw materials have strong effects on the shapes,and sizes of the products.As depicted in Fig.5a,micro-scale aggregates composed of irregular structures are formed with the molar ratio of 1:1.Two types of structures with micron size,namely flower and aggregate structures,can be observed when the Co2+/glycerol molar ratio is 1:1.2(Fig.5b).More micro-scale flower structures composed of nanosheets with the thickness of 20-40 nm can be seen from Fig.5c when the sample synthesized with the molar ratio of 1:1.5.However,wire-like nanostructures are observed (Fig.5d)when the Co2+/glycerol molar ratio is further increased to 1:2,of which the widths of the nanowires are much larger than the sample shown in Fig.2a.Based on these experimental results,it is suggested that at the early stage of the synthesis one Co2+ion coordinates with one glycerol molecule when the Co2+/glycerol molar ratio is 1:1.However,the Co2+-glycerol coordinated complex can be formed from one Co2+ion and two glycerol molecules when the Co2+/glycerol molar ratio is 1:2 or 1:3.Thereafter,Co(OH)2nanowires can be obtained ultimately after the proper reaction time.

    Fig.4 XRD patterns of the products synthesized from the systems with the Co2+/glycerol molar ratios of(a)1:1,(b)1:1.2, (c)1:1.5,(d)1:2 in the raw materials

    The electrochemical properties of Co3O4nanowires were investigated while micro-scale aggregates of Co3O4obtained from the system with the Co2+/glycerol molar ratio of 1:1 were not involved due to the existence of impurity in the sample. Fig.6 shows the CV curves of Co3O4nanowires in aqueous KOH electrolytes.It can be concluded from Fig.6a that two pairs of peaks in CV curves of Co3O4electrodes are mainly associated with the redox process,which should be attributed to cubic Co3O4phase.4,11,26The redox reactions derived from CV curves can be indexed to the following reactions:27Based on the average value of peak potential(Ep)of p1 versus p2,peak p1 appears prior to oxygen evolution due to the oxidation of Co2+to Co3+and peak p2 is for the reverse process as shown in reaction(1).27-30However,peak p3 occurs due to oxidation Co3+to Co4+and peak p4 is therefore attributed to the reduction of Co4+to Co3+as shown in reaction(2).22,27The ΔEpvalues of p1 versus p2 and p3 versus p4 are increased from 80 and 9.1 mV to 119 and 64 mV,respectively,with the scan rates varied from 2 to 20 mV·s-1.It is well-known that the theoretic ΔEpvalue for a reversible single-electron transfer process is 58 mV. These results indicate that the reaction occurs as a quasi-reversible process at a lower scan rate during the anodic potential sweep of the electrode.If the scan rate is 0.3 V·s-1or larger, the shape of CV curves for the sample changes largely due to the irreversibility of electrochemical reactions(Fig.6b).

    Fig.5 SEM images of the products synthesized from the systems with the Co2+/glycerol molar ratios of(a)1:1,(b)1:1.2,(c)1:1.5,(d)1:2 in the raw materials

    Fig.6 CV curves of Co3O4nanowire-based electrodes at different scan rates

    It can also be derived from Fig.6 that the capacitive charac-teristic of Co3O4nanowire electrodes is mainly based on the redox mechanism.Fig.7 shows the galvanostatic charge-discharge curves of nanowire-based electrodes at different current densities under the potential range of 0-0.47 V in a three-electrode system.The specific capacitance can be calculated from the equation,C=Itd/(mΔv),31where I is the current in the charge-discharge measurement,m is the mass of the active materials,tdis the variance metric of charge or discharge time, and Δv is the variance metric of charge or discharge.It can be calculated that the capacitance of the nanowire is 163 F·g-1at a current density of 1 A·g-1.The capacitances are gradually decreased to 136,121,and 119 F·g-1at current densities of 2,3, and 4 A·g-1,respectively.These results were in good agreement with those of the CV experiments.

    Fig.7 Galvanostatic charge-discharge curves of Co3O4 nanowire-based electrodes at different current densities i/(A·g-1):(a)1,(b)2,(c)3,(d)4

    The cycle stability of the active material was investigated by galvanostatic charge-discharge measurements.Fig.8 displays the variations of specific capacitances at 1 and 4 A·g-1with the cycle number.It can be seen that the capacitance increases slightly at the first cycle,indicating that more active substance were excited.31When the current density is 1 A·g-1,the specific capacitance increases from 120 F·g-1at the first cycle to 135 F·g-1at the 50th cycle,retains more than 98%after 1000 cycles and then decreases rapidly to 78 F·g-1after 1600 cycles.If the current density increases to 4 A·g-1,the change of the specific capacitance is similar to that obtained at 1 A·g-1.The specific capacitance increases at the first cycle and then decreases with the cycles larger than 50.After 1000 cycles,the capacitance retains more than 80%of the origin and then reduces rapidly to 85 F·g-1after 1600 cycles.Furthermore,long-term cycle test could lead to distinctly irreversible electrochemical reactions and morphology change,14explaining similar capacity behavior of these electrodes after 1100 cycles.

    Fig.8 Specific capacitances of Co3O4nanowires-based electrodes at 1A·g-1(a)and 4A·g-1(b)

    The performance of Co3O4nanowires as lithium-ion battery positive electrodes is evaluated by the cell configuration Co3O4/ Li at room temperature.Fig.9 displays both the discharge curves(i.e.,voltage vs capacity)and cycle performance of the sample.The first discharge capacity at the rate of 0.1C(1C= 890 mA·g-1)is 1124 mAh·g-1(Fig.9a),with the first cycle irreversible loss of 410 mAh·g-1(Fig.9b).Furthermore,the voltage plateaus at around 1.0 V in discharge curves for these samples can be ascribed to the formation of metallic Co embedding in the Li2O matrix.15The large first discharge capacity is normally ascribed to irreversible reactions(e.g.,decomposition of electrolyte)occurring during the first discharge.The first discharge capacity of the sample decreased drastically to 631 and 368 mAh·g-1at 0.5C and 1C rates,respectively.It can also be observed from Fig.9b that the capacity decreases slowly after the second cycle similar to other reports.32-34The reason is that with the Li+insertion and extraction process,its large volume expansion/contraction and severe particle result in electrode pulverization and loss of interparticle contact and,conse-quently lead to a large irreversible capacity loss and poor cycling stability.15,35,36

    Fig.9 The first discharge curves(a)and specific capacity(b)of Co3O4nanowires at different rates

    4 Conclusions

    Co3O4nanowires were controllable synthesized by a glycerol-assisted synthesis method using Co(NO3)2and glycerol as the reactants.The CV curves of Co3O4nanowire electrodes display two pairs of redox reactions at scan rates less than 0.2 V· s-1.Galvanostatic charge-discharge measurements in the threeelectrode system showed that specific capacitances of Co3O4nanowire electrodes were 163 F·g-1at a current density of 1 A· g-1.The electrodes showed higher cycle stability at a lower current density based on the cycle-capacitance relationship under current densities of 1 and 4 A·g-1.In lithium-ion battery measurements,Co3O4nanowire electrodes showed a discharge capacitance of 1124 mAh·g-1.The formation mechanism of Co3O4structures and the relationship between their structures and electrochemical properties were discussed based on the experimental results.

    (1) Burda,C.;Chen,X.;Narayanan,R.;El-Sayed,M.A.Chem. Rev.2005,105,1025.

    (2)Xia,Y.;Yang,P.;Sun,Y.;Wu,Y.;Mayers,B.;Gates,B.;Yin,Y.; Kim,F.;Yan,H.Adv.Mater.2003,15,353.

    (3)Tian,N.;Zhou,Z.Y.;Sun,S.G.;Ding,Y.;Wang,Z.L.Science 2007,316,732.

    (4) Xiong,S.L.;Yuan,C.Z.;Zhang,X.G.;Xi,B.J.;Qian,Y.T.

    Chem.Eur.J.2009,15,5320.

    (5)Guo,P.Z.;Wei,Z.B.;Wang,B.Y.;Ding,Y.H.;Li,H.L.;

    Zhang,G.L.;Zhao,X.S.Colloids Surf.A 2011,380,237.

    (6) Chen,C.H.;Abbs,S.F.;Morey,A.;Sithambaram,S.;Xu,L.P.; Garces,H.F.;Hines,W.A.;Suib,S.L.Adv.Mater.2008,20, 1205.

    (7)Li,Y.G.;Tan,B.;Wu,Y.Y.J.Am.Chem.Soc.2006,128, 14258.

    (8) Cong,H.P.;Yu,S.H.Cryst.Growth Des.2009,9,210.

    (9)Chen,Y.C.;Hu,L.;Wang,M.;Min,Y.L.;Zhang,Y.G.

    Colloids Surf.A 2009,336,64.

    (10) Li,W.Y.;Xu,L.N.;Chen,J.Adv.Funct.Mater.2005,15,851.

    (11)Wei,T.Y.;Chen,C.H.;Chang,K.H.;Lu,S.Y.;Hu,C.C.

    Chem.Mater.2009,21,3228.

    (12)Zhao,Z.G.;Geng,F.X.;Bai,J.B.;Cheng,H.M.J.Phys.

    Chem.C 2007,111,3848.

    (13) Hu,L.H.;Peng,Q.;Li,Y.D.J.Am.Chem.Soc.2008,130, 16136.

    (14) Lou,X.W.;Deng,D.;Lee,J.Y.;Archer,L.A.J.Mater.Chem. 2008,18,4397.

    (15) Li,Y.G.;Tan,B.;Wu,Y.Y.Nano Lett.2008,8,265.

    (16)Mekhemer,G.A.H.;Abd-Allah,H.M.M.;Mansour,S.A.A. Colloids Surf.A 1999,160,251.

    (17) Salabas,E.L.;Rumplecker,A.;Kleitz,F.;Radu,F.;Schueth,F. Nano Lett.2006,6,2977.

    (18)Nam,K.T.;Kim,D.W.;Yoo,P.J.;Chiang,C.Y.;Meethong, N.;Hammond,P.T.;Chiang,Y.M.;Belcher,A.M.Science 2006,312,885.

    (19) Li,T.;Yang,S.;Huang,L.;Gu,B.;Du,Y.Nanotechnology 2004,15,1479.

    (20)Kang,Y.M.;Song,M.S.;Kim,J.H.;Kim,H.S.;Park,M.S.; Lee,J.Y.;Liu,K.H.;Dou,S.X.Electrochim.Acta 2005,50, 3667.

    (21)Yang,L.X.;Zhu,Y.J.;Li,L.;Zhang,L.;Tong,H.;Wang,W. W.;Cheng,G.F.;Zhu,J.F.Eur.J.Inorg.Chem.2006,4787.

    (22)Xiu,S.N.;Shahbazi,A.;Shirley,V.;Mims,M.R.;Wallace,C. W.J.Anal.Appl.Pyrol.2010,87,194.

    (23)Yao,J.F.;Yu,L.;Zhang,L.X.;Wang,H.T.Mater.Lett.2011, 65,2304.

    (24) Li,X.H.;Zhang,D.H.;Chen,J.S.J.Am.Chem.Soc.2006, 128,8382.

    (25)Guo,P.Z.;Han,G.T.;Wang,B.Y.;Zhao,X.S.Acta Phys.-Chim.Sin.2010,26,2557.[郭培志,韓光亭,王寶燕,趙修松.物理化學(xué)學(xué)報,2010,26,2557.]

    (26) Zheng,M.;Cao,J.;Liao,S.;Liu,J.;Chen,H.;Zhao,Y.;Dai, W.;Ji,G.;Cao,J.;Tao,J.J.Phys.Chem.C 2009,113,3887.

    (27) Gao,Y.Y.;Chen,S.L.;Cao,D.X.;Wang,G.L.;Yin,J.L. J.Power Sources 2010,195,1757.

    (28) Lin,C.;Ritter,J.A.;Popov,B.N.J.Electrochem.Soc.1998, 145,4097.

    (29) Barbero,C.;Planes,G.A.;Miras,M.C.Electrochem.Commun. 2001,3,113.

    (30) Xu,J.;Gao,L.;Cao,J.Y.;Wang,W.C.;Chen.Z.D. Electrochim.Acta 2010,56,732.

    (31)Ye,X.G.;Zhang,X.G.;Mi,H.Y.;Yang,S.D.Acta Phys.-Chim.Sin.2008,24,1105. [葉向果,張校剛,米紅宇,楊蘇東.物理化學(xué)學(xué)報,2008,24,1105.]

    (32) Lou,X.W.;Deng,D.;Lee,J.Y.;Feng,J.;Archer,L.A.Adv. Mater.2008,20,258.

    (33)Kang,J.G.;Ko,Y.D.;Park,J.G.;Kim,D.W.Nanoscale Res. Lett.2008,3,390.

    (34) Binotto,G.;Larcher,D.;Prakash,A.S.;Urbina,R.H.;Hegde, M.S.;Tarascon,J.M.Chem.Mater.2007,19,3032.

    (35)Yao,W.L.;Wang,J.L.;Yang,J.;Du,G.D.J.Power Sources 2008,176,369.

    (36)Wu,Z.S.;Ren,W.C.;Wen,L.;Gao,L.B.;Zhao,J.P.;Chen,Z. P.;Zhou,G.M.;Li,F.;Cheng H.M.ACS Nano 2010,4,3187.

    October 11,2011;Revised:November 18,2011;Published on Web:November 24,2011.

    Glycerol-Assisted Synthesis and Electrochemical Properties of Co3O4Nanowires

    ZHANG Guo-Liang1ZHAO Dan1GUO Pei-Zhi1,*WEI Zhong-Bin1ZHAO Xiu-Song1,2
    (1Laboratory of New Fiber Materials and Modern Textile,the Growing Base for State Key Laboratory,School of Chemistry, Chemical Engineering and Environmental Sciences,Qingdao University,Qingdao 266071,Shandong Province,P.R.China;2School of Chemical Engineering,The University of Queensland,St Lucia,QLD 4072,Australia)

    Cobalt oxide(Co3O4)nanowires were controllably synthesized using glycerol and Co(NO3)2as reagents and adjustment of the experimental parameters.The morphology and structure of the asprepared products were characterized by a series of techniques such as X-ray podwer diffraction(XRD), scanning electron microscopy(SEM),and transmission electron microscopy(TEM).Electrochemical performance of the nanowires was studied by cyclic voltammetry(CV)and galvanostatic charge-discharge measurements.It was found that two pairs of redox peaks appeared in the CV curves of Co3O4nanowire electrodes at low scan rates.The specific capacitance of the Co3O4nanowire electrodes was 163 F·g-1at a current density of 1 A·g-1,according to the galvanostatic charge-discharge measurements.Cycle stability tests showed that the specific capacitance increased over the first tens of cycles and then reduced slowly. After 1000 cycles,the capacitance retention was over 98%at 1 A·g-1and 80%at 4 A·g-1;it then decreased obviously with further increase in cycle number.In Li-ion battery measurements,Co3O4nanowire electrodes showed a discharge capacitance of 1124 mAh·g-1which decreased rapidly during the cycle test. The formation mechanism and the relationship between the structure and electrochemical properties of Co3O4nanowires were discussed based on the experimental results.

    Electrode;Capacitance;Co3O4;Nanowire;Glycerol

    10.3866/PKU.WHXB201111241

    *Corresponding author.Email:pzguo@qdu.edu.cn,guopz77@yahoo.com;Tel:+86-532-83780378.

    The project was supported by the National Natural Science Foundation of China(20803037,21143006),Natural Science Foundation of Shandong Province,China(ZR2009BM013),and Foundation of Qingdao Municipal Science and Technology Commission,China(11-2-4-2-(8)-jch).

    國家自然科學(xué)基金(20803037,21143006),山東省自然科學(xué)基金(ZR2009BM013)和青島市應(yīng)用基礎(chǔ)研究項目(11-2-4-2-(8)-jch)資助

    O646;O613.3;O614.8

    猜你喜歡
    丙三醇納米線充放電
    Au/Co3O4-ZnO催化劑上CO2-丙三醇羰基化合成丙三醇碳酸酯
    葉絲氣流干燥過程中水分和丙三醇遷移特性
    煙草科技(2022年11期)2022-12-20 05:58:40
    V2G模式下電動汽車充放電效率的研究
    丙三醇制丙三醇碳酸酯催化研究進展
    遼寧化工(2021年8期)2021-09-07 09:14:46
    3d過渡金屬摻雜對Cd12O12納米線電子和磁性能的影響
    基于SG3525的電池充放電管理的雙向DC-DC轉(zhuǎn)換器設(shè)計
    電子制作(2019年23期)2019-02-23 13:21:36
    溫度對NiAl合金納米線應(yīng)力誘發(fā)相變的影響
    磁性金屬Fe納米線的制備及其性能
    丙三醇對氧化鋁陶瓷支撐體性能的影響
    鋰離子電池充放電保護電路的研究
    国产欧美日韩一区二区精品| 亚洲欧洲精品一区二区精品久久久| 色播在线永久视频| www.自偷自拍.com| 成人免费观看视频高清| 午夜福利在线观看吧| 国产亚洲欧美98| 一级毛片高清免费大全| 动漫黄色视频在线观看| 91麻豆精品激情在线观看国产 | 久久人妻福利社区极品人妻图片| 日本撒尿小便嘘嘘汇集6| 精品少妇久久久久久888优播| av免费在线观看网站| 乱人伦中国视频| 日韩三级视频一区二区三区| 国产欧美日韩一区二区精品| 一级毛片高清免费大全| 国产亚洲精品第一综合不卡| 99精国产麻豆久久婷婷| 少妇的丰满在线观看| 黑人操中国人逼视频| 三上悠亚av全集在线观看| av视频免费观看在线观看| 亚洲国产精品一区二区三区在线| 亚洲第一欧美日韩一区二区三区| 女性被躁到高潮视频| 国产野战对白在线观看| 精品免费久久久久久久清纯 | 国产主播在线观看一区二区| 亚洲一区二区三区欧美精品| 成人18禁高潮啪啪吃奶动态图| 日韩免费高清中文字幕av| 女人高潮潮喷娇喘18禁视频| 18禁美女被吸乳视频| 国产区一区二久久| 在线十欧美十亚洲十日本专区| 亚洲美女黄片视频| 在线看a的网站| 精品久久久久久电影网| netflix在线观看网站| 亚洲专区中文字幕在线| 欧美激情高清一区二区三区| 色综合欧美亚洲国产小说| 两性午夜刺激爽爽歪歪视频在线观看 | 国产在线一区二区三区精| 亚洲成人国产一区在线观看| 日韩免费高清中文字幕av| av线在线观看网站| 国产亚洲精品久久久久5区| 女人精品久久久久毛片| 亚洲自偷自拍图片 自拍| 亚洲美女黄片视频| 啪啪无遮挡十八禁网站| √禁漫天堂资源中文www| 欧美性长视频在线观看| 一级a爱片免费观看的视频| 丝袜美腿诱惑在线| 久久久久国产一级毛片高清牌| 美国免费a级毛片| 国产在线一区二区三区精| 91成年电影在线观看| 男人操女人黄网站| 在线观看免费高清a一片| 不卡一级毛片| 欧美日本中文国产一区发布| 国产成人一区二区三区免费视频网站| 久久精品国产亚洲av高清一级| 老司机午夜十八禁免费视频| 欧美性长视频在线观看| 午夜福利一区二区在线看| 欧美精品人与动牲交sv欧美| 最新美女视频免费是黄的| 亚洲欧美激情在线| 久久香蕉国产精品| 首页视频小说图片口味搜索| 免费日韩欧美在线观看| 18禁国产床啪视频网站| 中文字幕人妻熟女乱码| av电影中文网址| 久久国产乱子伦精品免费另类| 中文字幕另类日韩欧美亚洲嫩草| 亚洲avbb在线观看| 国产99白浆流出| 国产欧美日韩精品亚洲av| 久9热在线精品视频| 欧美最黄视频在线播放免费 | 国产一区有黄有色的免费视频| 国产伦人伦偷精品视频| 大片电影免费在线观看免费| 欧美日韩精品网址| 国产一卡二卡三卡精品| 国产欧美日韩一区二区精品| av电影中文网址| 日本欧美视频一区| 18在线观看网站| 精品久久久久久久久久免费视频 | 自线自在国产av| 午夜福利在线免费观看网站| 国产精品亚洲av一区麻豆| 无限看片的www在线观看| 搡老岳熟女国产| 精品福利永久在线观看| 黑人欧美特级aaaaaa片| 乱人伦中国视频| 免费女性裸体啪啪无遮挡网站| 精品欧美一区二区三区在线| 国产精品99久久99久久久不卡| 国产精品久久久人人做人人爽| 母亲3免费完整高清在线观看| 18禁黄网站禁片午夜丰满| 色婷婷av一区二区三区视频| 国产精品永久免费网站| 日本黄色视频三级网站网址 | 成人永久免费在线观看视频| 午夜福利欧美成人| 国产黄色免费在线视频| 窝窝影院91人妻| 嫩草影视91久久| 国产有黄有色有爽视频| av网站在线播放免费| 久热爱精品视频在线9| 日韩欧美三级三区| 日本wwww免费看| 一本综合久久免费| 亚洲精品一二三| 99香蕉大伊视频| 国产成人精品久久二区二区免费| 精品人妻在线不人妻| 亚洲人成电影观看| 亚洲欧美一区二区三区久久| 丁香欧美五月| 丝袜人妻中文字幕| 午夜日韩欧美国产| 日韩 欧美 亚洲 中文字幕| 中亚洲国语对白在线视频| 国产高清videossex| 亚洲精品国产区一区二| 免费观看人在逋| 亚洲精品国产一区二区精华液| 久热爱精品视频在线9| 亚洲av成人av| 久久久国产成人精品二区 | 国产成人系列免费观看| 成年人黄色毛片网站| 亚洲av片天天在线观看| 午夜福利一区二区在线看| 成人黄色视频免费在线看| 亚洲中文日韩欧美视频| 国产精品香港三级国产av潘金莲| 欧美人与性动交α欧美精品济南到| 久久 成人 亚洲| 日本五十路高清| 亚洲aⅴ乱码一区二区在线播放 | av中文乱码字幕在线| 高清黄色对白视频在线免费看| 国产高清国产精品国产三级| 99国产极品粉嫩在线观看| 欧美激情高清一区二区三区| 国产97色在线日韩免费| 亚洲va日本ⅴa欧美va伊人久久| 天天影视国产精品| 最近最新中文字幕大全免费视频| 最近最新中文字幕大全电影3 | 麻豆av在线久日| xxxhd国产人妻xxx| 免费黄频网站在线观看国产| 如日韩欧美国产精品一区二区三区| 丝袜美足系列| 成年动漫av网址| 欧美人与性动交α欧美精品济南到| 香蕉久久夜色| 1024香蕉在线观看| 午夜老司机福利片| 久久香蕉精品热| 精品人妻1区二区| 在线看a的网站| 国产精品一区二区免费欧美| 在线视频色国产色| 久久久国产成人免费| 久久精品亚洲精品国产色婷小说| 中文字幕人妻丝袜一区二区| 国产亚洲欧美精品永久| 精品国产超薄肉色丝袜足j| 亚洲av日韩精品久久久久久密| 校园春色视频在线观看| www.自偷自拍.com| 一区二区三区精品91| 午夜日韩欧美国产| 男女床上黄色一级片免费看| 大码成人一级视频| 18禁观看日本| 一级片免费观看大全| 欧美最黄视频在线播放免费 | 国产精品二区激情视频| 国产激情久久老熟女| 美女视频免费永久观看网站| 国产亚洲精品久久久久5区| 丰满迷人的少妇在线观看| 精品亚洲成a人片在线观看| 午夜福利在线观看吧| 热re99久久国产66热| 一区二区日韩欧美中文字幕| 日韩有码中文字幕| 在线观看免费视频日本深夜| 天堂中文最新版在线下载| 精品第一国产精品| 国产淫语在线视频| 两人在一起打扑克的视频| 变态另类成人亚洲欧美熟女 | 日本精品一区二区三区蜜桃| 美女扒开内裤让男人捅视频| 亚洲精品在线观看二区| 成年人黄色毛片网站| 免费在线观看视频国产中文字幕亚洲| 日韩三级视频一区二区三区| 久久ye,这里只有精品| 99国产极品粉嫩在线观看| 免费看十八禁软件| 欧美 亚洲 国产 日韩一| 十八禁网站免费在线| 精品午夜福利视频在线观看一区| 成人国产一区最新在线观看| 在线观看免费日韩欧美大片| 老熟妇乱子伦视频在线观看| 亚洲九九香蕉| 一级毛片女人18水好多| 国产不卡av网站在线观看| 极品人妻少妇av视频| 亚洲欧美日韩另类电影网站| 18禁美女被吸乳视频| av国产精品久久久久影院| 美女午夜性视频免费| 亚洲人成电影免费在线| 天堂俺去俺来也www色官网| 中文字幕人妻丝袜制服| 成人精品一区二区免费| 天堂动漫精品| 久久久国产一区二区| 欧美日韩亚洲高清精品| 18在线观看网站| 亚洲自偷自拍图片 自拍| 日韩三级视频一区二区三区| 欧美久久黑人一区二区| 久热这里只有精品99| 午夜老司机福利片| 午夜视频精品福利| 男人的好看免费观看在线视频 | 啦啦啦免费观看视频1| tocl精华| 女同久久另类99精品国产91| 亚洲aⅴ乱码一区二区在线播放 | 精品国产一区二区久久| 怎么达到女性高潮| 久久天堂一区二区三区四区| 国产激情久久老熟女| 国产在线一区二区三区精| 91国产中文字幕| 欧美精品啪啪一区二区三区| 一个人免费在线观看的高清视频| 久久青草综合色| 成年动漫av网址| 99久久精品国产亚洲精品| 一区二区三区激情视频| 亚洲国产欧美一区二区综合| 在线十欧美十亚洲十日本专区| 日韩熟女老妇一区二区性免费视频| 国产片内射在线| 天天躁狠狠躁夜夜躁狠狠躁| av片东京热男人的天堂| 精品电影一区二区在线| 日韩大码丰满熟妇| 1024香蕉在线观看| 别揉我奶头~嗯~啊~动态视频| 色老头精品视频在线观看| 人人妻人人澡人人爽人人夜夜| 久久影院123| 免费少妇av软件| 午夜精品在线福利| 久久国产精品影院| 久久精品国产亚洲av高清一级| 在线观看免费高清a一片| 国产精品免费一区二区三区在线 | 美女视频免费永久观看网站| 超色免费av| 老司机亚洲免费影院| 女性生殖器流出的白浆| 亚洲 欧美一区二区三区| 国产不卡av网站在线观看| 老司机福利观看| 日韩欧美国产一区二区入口| 欧美日韩视频精品一区| 天堂俺去俺来也www色官网| 亚洲黑人精品在线| www日本在线高清视频| 国产精品一区二区在线观看99| 亚洲情色 制服丝袜| 一区福利在线观看| 成熟少妇高潮喷水视频| 搡老岳熟女国产| 日本vs欧美在线观看视频| 欧美日韩亚洲高清精品| 久久香蕉激情| 成人特级黄色片久久久久久久| 人成视频在线观看免费观看| 欧美性长视频在线观看| 亚洲av第一区精品v没综合| 久久国产亚洲av麻豆专区| 久久中文看片网| 熟女少妇亚洲综合色aaa.| videos熟女内射| av福利片在线| 久久婷婷成人综合色麻豆| 亚洲黑人精品在线| 下体分泌物呈黄色| av网站免费在线观看视频| 欧美 亚洲 国产 日韩一| 天天添夜夜摸| 99精品在免费线老司机午夜| 一二三四社区在线视频社区8| 国产男女内射视频| 精品一区二区三卡| av网站在线播放免费| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品亚洲av一区麻豆| 嫩草影视91久久| 中文字幕人妻熟女乱码| 久久久久久免费高清国产稀缺| 久久天躁狠狠躁夜夜2o2o| 岛国在线观看网站| 亚洲中文av在线| 国内久久婷婷六月综合欲色啪| 国产真人三级小视频在线观看| 在线av久久热| 亚洲美女黄片视频| 狂野欧美激情性xxxx| 精品亚洲成a人片在线观看| 人人妻人人澡人人看| 美女视频免费永久观看网站| 别揉我奶头~嗯~啊~动态视频| 国产无遮挡羞羞视频在线观看| 久久天躁狠狠躁夜夜2o2o| 9热在线视频观看99| 91av网站免费观看| 午夜91福利影院| 黄色视频不卡| 久久午夜综合久久蜜桃| 飞空精品影院首页| a级片在线免费高清观看视频| 亚洲全国av大片| 亚洲七黄色美女视频| 99久久综合精品五月天人人| 一二三四在线观看免费中文在| 19禁男女啪啪无遮挡网站| 美女扒开内裤让男人捅视频| 亚洲专区中文字幕在线| 久久人妻福利社区极品人妻图片| 最近最新中文字幕大全电影3 | 97人妻天天添夜夜摸| 久久久久精品人妻al黑| 色综合欧美亚洲国产小说| 飞空精品影院首页| 18禁美女被吸乳视频| 黄色a级毛片大全视频| 国产男靠女视频免费网站| 精品免费久久久久久久清纯 | 宅男免费午夜| 99久久国产精品久久久| av免费在线观看网站| 国产成人精品在线电影| 欧美大码av| 亚洲国产精品sss在线观看 | 高清黄色对白视频在线免费看| 久久青草综合色| 国产又色又爽无遮挡免费看| 麻豆国产av国片精品| 欧美 亚洲 国产 日韩一| 亚洲久久久国产精品| 亚洲欧美激情综合另类| 国产精品亚洲一级av第二区| 90打野战视频偷拍视频| 正在播放国产对白刺激| 涩涩av久久男人的天堂| 中文欧美无线码| av电影中文网址| 中文字幕人妻丝袜一区二区| 亚洲avbb在线观看| 国产精品影院久久| 久久精品成人免费网站| 制服人妻中文乱码| 亚洲精华国产精华精| 人妻丰满熟妇av一区二区三区 | 在线天堂中文资源库| 人妻久久中文字幕网| 久久久久久人人人人人| 男女免费视频国产| 高潮久久久久久久久久久不卡| 亚洲欧美色中文字幕在线| 99riav亚洲国产免费| 在线观看免费高清a一片| 国产xxxxx性猛交| 午夜精品在线福利| 欧美不卡视频在线免费观看 | 妹子高潮喷水视频| 久久国产精品大桥未久av| 国产人伦9x9x在线观看| 午夜影院日韩av| 一区在线观看完整版| 国产在视频线精品| 老汉色av国产亚洲站长工具| 国产男女内射视频| 中文字幕制服av| 麻豆av在线久日| 欧美乱码精品一区二区三区| 久久中文看片网| 大码成人一级视频| 韩国精品一区二区三区| 十八禁人妻一区二区| 欧美人与性动交α欧美软件| 久久久水蜜桃国产精品网| 国产精品欧美亚洲77777| 午夜福利视频在线观看免费| 一级作爱视频免费观看| 一级a爱视频在线免费观看| 国产精品自产拍在线观看55亚洲 | 国产91精品成人一区二区三区| 中出人妻视频一区二区| 国产高清视频在线播放一区| 免费看十八禁软件| 午夜91福利影院| 啦啦啦 在线观看视频| 伦理电影免费视频| 美女午夜性视频免费| 亚洲欧美激情综合另类| 国产精品久久久久久精品古装| 免费女性裸体啪啪无遮挡网站| 99国产精品99久久久久| 成人18禁在线播放| 飞空精品影院首页| 国产精品 国内视频| 国产亚洲精品一区二区www | av一本久久久久| 婷婷精品国产亚洲av在线 | 亚洲精品中文字幕在线视频| av网站免费在线观看视频| 精品久久久精品久久久| 国产欧美亚洲国产| 成人18禁在线播放| 天天影视国产精品| 性少妇av在线| 动漫黄色视频在线观看| 国产精品 国内视频| 欧美 亚洲 国产 日韩一| 亚洲精品粉嫩美女一区| svipshipincom国产片| 欧美av亚洲av综合av国产av| aaaaa片日本免费| 成人国产一区最新在线观看| 国产欧美日韩一区二区精品| 久久国产精品影院| 亚洲av熟女| 搡老熟女国产l中国老女人| 老汉色av国产亚洲站长工具| 欧美精品av麻豆av| 精品国产一区二区三区四区第35| 日本撒尿小便嘘嘘汇集6| 久久人人97超碰香蕉20202| tocl精华| 久久久久久免费高清国产稀缺| 麻豆av在线久日| a级毛片黄视频| 欧美日韩乱码在线| 精品卡一卡二卡四卡免费| 亚洲精品国产精品久久久不卡| 搡老乐熟女国产| 国产精品国产av在线观看| 成人三级做爰电影| 亚洲欧美色中文字幕在线| 十分钟在线观看高清视频www| 日韩制服丝袜自拍偷拍| 久久午夜亚洲精品久久| 9热在线视频观看99| 亚洲aⅴ乱码一区二区在线播放 | 久9热在线精品视频| 黑人操中国人逼视频| 久久精品熟女亚洲av麻豆精品| 制服诱惑二区| 国产成+人综合+亚洲专区| 18禁国产床啪视频网站| 老司机午夜十八禁免费视频| 国内久久婷婷六月综合欲色啪| 免费一级毛片在线播放高清视频 | 久久久久久免费高清国产稀缺| 亚洲成av片中文字幕在线观看| 中文欧美无线码| av不卡在线播放| 欧美日韩乱码在线| 国产激情欧美一区二区| 美女高潮喷水抽搐中文字幕| 精品人妻1区二区| 99久久国产精品久久久| 丝瓜视频免费看黄片| 国产成人av教育| 18禁观看日本| 国产极品粉嫩免费观看在线| ponron亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美成人午夜精品| 老鸭窝网址在线观看| 午夜激情av网站| 亚洲国产精品一区二区三区在线| 欧美性长视频在线观看| 亚洲av日韩在线播放| 老司机亚洲免费影院| 满18在线观看网站| 老司机在亚洲福利影院| 亚洲五月天丁香| 欧美日韩av久久| 母亲3免费完整高清在线观看| 国产精品1区2区在线观看. | 熟女少妇亚洲综合色aaa.| 国产日韩欧美亚洲二区| 久久精品国产99精品国产亚洲性色 | 国产淫语在线视频| svipshipincom国产片| 日韩欧美一区二区三区在线观看 | 国产一区二区三区视频了| 久久香蕉激情| 亚洲全国av大片| 美女 人体艺术 gogo| 18禁观看日本| 国产麻豆69| 午夜福利视频在线观看免费| 精品欧美一区二区三区在线| 亚洲国产看品久久| 夫妻午夜视频| a级片在线免费高清观看视频| 淫妇啪啪啪对白视频| 十八禁网站免费在线| 在线播放国产精品三级| 欧美老熟妇乱子伦牲交| 91国产中文字幕| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩视频精品一区| 国产精品综合久久久久久久免费 | 丰满饥渴人妻一区二区三| 欧美乱妇无乱码| 亚洲精品国产区一区二| 成年人黄色毛片网站| 黄色 视频免费看| 在线观看免费午夜福利视频| 91字幕亚洲| 女人被狂操c到高潮| av欧美777| 黑人猛操日本美女一级片| 久久天堂一区二区三区四区| 9色porny在线观看| 久久香蕉国产精品| 咕卡用的链子| 亚洲精品中文字幕一二三四区| 久久精品亚洲熟妇少妇任你| 亚洲欧美一区二区三区黑人| 欧美精品啪啪一区二区三区| av超薄肉色丝袜交足视频| 丰满饥渴人妻一区二区三| 日韩有码中文字幕| 亚洲成人免费av在线播放| 人妻久久中文字幕网| 国产主播在线观看一区二区| 国产aⅴ精品一区二区三区波| 另类亚洲欧美激情| 高潮久久久久久久久久久不卡| 女性生殖器流出的白浆| 成人永久免费在线观看视频| 国产精品久久久久久人妻精品电影| 女同久久另类99精品国产91| 久久久国产成人免费| 日韩欧美国产一区二区入口| 母亲3免费完整高清在线观看| 超碰成人久久| 18禁裸乳无遮挡免费网站照片 | 亚洲精品国产区一区二| 久久久精品国产亚洲av高清涩受| 免费黄频网站在线观看国产| 法律面前人人平等表现在哪些方面| 国产91精品成人一区二区三区| 窝窝影院91人妻| 香蕉丝袜av| 成年版毛片免费区| 99riav亚洲国产免费| 国产精品综合久久久久久久免费 | 成年人午夜在线观看视频| 一级,二级,三级黄色视频| 亚洲国产精品合色在线| 桃红色精品国产亚洲av| 纯流量卡能插随身wifi吗| 国产区一区二久久| 一区二区日韩欧美中文字幕| 人人妻人人添人人爽欧美一区卜| 国产xxxxx性猛交| 黑人欧美特级aaaaaa片| 人人妻人人澡人人爽人人夜夜| 啦啦啦视频在线资源免费观看| 日韩欧美免费精品| 少妇 在线观看| 午夜精品久久久久久毛片777| 波多野结衣av一区二区av| 高清在线国产一区| 国产三级黄色录像| 午夜日韩欧美国产| 老鸭窝网址在线观看| 美女视频免费永久观看网站| 99热网站在线观看| 在线永久观看黄色视频| 久久香蕉国产精品|