• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    凝膠燃燒法合成Li1.07Mn1.93O4納米片及其高倍率放電和循環(huán)穩(wěn)定性

    2012-12-21 06:33:04代克化翟玉春
    物理化學(xué)學(xué)報(bào) 2012年2期
    關(guān)鍵詞:高倍率倍率凝膠

    毛 景 代克化 翟玉春

    (東北大學(xué)材料與冶金學(xué)院,沈陽110004)

    凝膠燃燒法合成Li1.07Mn1.93O4納米片及其高倍率放電和循環(huán)穩(wěn)定性

    毛 景 代克化*翟玉春*

    (東北大學(xué)材料與冶金學(xué)院,沈陽110004)

    利用聚乙烯吡咯烷酮(PVP)作為聚合物配位劑和燃料,通過凝膠-燃燒法合成了Li1.07Mn1.93O4納米片.采用熱重/差熱分析(TG/DTA)研究了凝膠的燃燒過程.采用X射線多晶衍射(XRD)分析了材料的結(jié)構(gòu),結(jié)果表明合成的Li1.07Mn1.93O4結(jié)晶完整,無雜質(zhì)相.掃描電鏡(SEM)結(jié)果顯示材料的二次形貌為厚度約100 nm的片狀,由大小約100 nm的一次顆粒構(gòu)成.充放電測(cè)試表明Li1.07Mn1.93O4納米片具備極佳的倍率放電性能和優(yōu)秀的循環(huán)性能.0.5C(1C=120 mA·g-1)倍率的初始放電容量為115.4 mAh·g-1,即使倍率增大到40C,放電容量仍有105.3 mAh·g-1.在10C倍率的放電條件下,循環(huán)850次容量保持率為81%.電化學(xué)阻抗譜(EIS)測(cè)試表明Li1.07Mn1.93O4納米片的界面電荷轉(zhuǎn)移電阻(Rct)遠(yuǎn)小于同類商業(yè)材料.

    鋰離子電池;錳酸鋰;燃燒合成;倍率性能;循環(huán)性能

    1 Introduction

    The rapid development of electric vehicles requires advanced lithium ion batteries with higher power density and longer cycling life.Spinel LiMn2O4is at present a very prospective candidate for the cathode material due to its low cost, good safety,environmental friendliness,and relatively high voltage.1Enhancing the rate capability and cycling stability of LiMn2O4has recently become one of the most attractive topics of both scientific and industrial interests.2-12

    Nanosized particles provide short diffusion pathways for both Li-ions and electrons,resulting in an improvement in Li-ion intercalation kinetics,which should allow for a higher charge-discharge rate and minimize the structural distortion at the surface of the cathode grains.13-15Recently,nanostructured LiMn2O4with various morphologies has been extensively prepared trying to improve the rate capability.A variety of synthetic routes have been chosen such as ball milling,16,17room-temperature solid-state coordination process,18,19sol-gel,20,21flame spray pyrolysis,22,23hard-template route,24-26electrochemical precipitation,27self-assembly process,28biomimetic synthetic process,29and hydrothermal method.3,8,12,30-32However,most of these methods involve several steps and some are quite complicated or expensive.

    Combustion method has been known as a simple,fast,and energetically economic method that yields high purity products.33Urea,34triethanolamine(TEA)-starch,35starch,36hexamethylenetetramine(HMTA),33polyacrylic acid(PAA),37polyvinylalcohol(PVA),38citric acid/glycol,39and glycine40have been chosen as fuels to synthesize LiMn2O4with high capacity, but the rate capability was not reported or was poor.Rojo et al.41,42reported a sucrose-aided combustion method and synthesized doubly doped LiMn1.99-yLiyM0.01O4(M=Al3+,Ni2+,Cr3+,Co3+; y=0.01,0.06)spinels.Among them the LiMn1.93Li0.06Co0.01O4can deliver 105 and 101 mAh·g-1at 0.2C and 5C rates between 3.1 and 4.4 V,respectively.

    The choice of fuel has a significant impact on structure,morphology,and performance of the synthesized materials.In this study,Li1.07Mn1.93O4(nLi/nMn=0.55,molar ratio)nanoflakes were synthesized by a gel-combustion method using polyvinylpyrrolidone(PVP)as the polymer chelating agent and fuel.PVP was employed due to its low toxicity and high aqueous solubility.It has been extensively used as a stabilizer and a structure-directing agent in nanotechnology because of its excellent adsorption ability.43,44Fu et al.44prepared PVP/LiCoO2nanofibers using an electrospinning route.Kanamura et al.45-48prepared Li4Ti5O12,LiCoO2,and LiMn2O4thin films by introducing PVP to a sol. The authors have synthesized sub-micron LiNi0.5Mn1.5O4with excellent high rate performance by the PVP-assisted gel-combustion method.49It is naturally guessed that PVP also can be used to prepare lithium manganese oxide nano-powders with high electrochemical performance.The molar ratio of Li/Mn(0.55)was chosen because Li doping has been proved to be a simplest but effective strategy to enhance the intrinsic structure stability during Li-ion insertion and extraction from the spinel framework.50,51

    2 Experimental

    Synthesis of Li1.07Mn1.93O4nanoflakes was carried out by dissolving PVP(AR),LiCH3COO·2H2O(AR),and Mn(CH3COO)2· 4H2O(AR)in deionized water with a Li/Mn molar ratio of 0.55.The molar ratio of PVP to total metal ions was fixed at 2.0.HNO3(AR)was added to the solution until the pH value of 3 was achieved.The mixture was stirred and heated at 90°C until viscous,and then the gel was dried at 110°C for 2 h.The resulting dried gel was heated in air on an electric hot plate to ignite a combustion reaction in several minutes.The obtained black powders were heated at 400°C for 3 h then calcinated at 700°C for 6 h to obtain well crystallized Li1.07Mn1.93O4.Finally, Li1.07Mn1.93O4was ground and passed through 300-mesh sieve.

    Simultaneous thermogravimetric and differential thermal analyses(TG/DTA)measurements of the dried gel were carried out in America TA Instrument SDT 2960 Simultaneous DTA-TGA.Crucibles of alumina were used both for the specimen and for the reference material.The samples(about 10 mg) were heated from room temperature to 700°C in flowing air, with a heating rate of 10°C·min-1.

    Powder X-ray diffraction measurement was performed on a Japan Rigaku D/Max-2500PC X-ray diffractometer using Cu Kαradiation.Morphological study was conducted using a FEI Nova NanoSEM 430 scanning electron microscope(SEM,Europe).To determine the chemical composition,Li and Mn concentrations in the lithium manganese oxide were measured by inductively coupled plasma(ICP,Optima 4300DV,PE Ltd.).

    The electrochemical performance of the Li1.07Mn1.93O4nanoflakes as cathode was evaluated using a CR2025 coin cell with a lithium metal anode.The cathode was a mixture of active material/acetylene black/polyvinylidene fluoride(PVDF)with mass ratio of 80:10:10.The average loading density of active material was about 5 mg·cm-2.Celgard 2400 was used as separator and the electrolyte was 1 mol·dm-3LiPF6in a 1:1:1(volume ratio)mixture of ethylene carbonate(EC),dimethyl carbonate(DMC),and ethyl methyl carbonate(EMC).The cells were assembled in an argon filled glovebox.For comparison,a commercial material(produced by CITIC GUOAN Mengguli) with the same chemical composition was chosen and assembled similarly.Charge and discharge tests were performed at various current densities between 3.3 and 4.3 V by a LAND CT2001A battery test system at ambient temperature.Electrochemical impedance spectroscopy(EIS)studies were performed on the coin cell by a Princeton Applied Research PARSTAT2273 electrochemical measurement system.The cells were charged to 3.9 V and balanced for 12 h before EIS tests. The frequency ranged from 100 kHz to 0.1 Hz and the acoscillation amplitude was 10 mV.

    3 Results and discussion

    The pyrolysis process of the dried gel precursor was investigated by TG and DTA(Fig.1).The mass loss below 160°C can be ascribed to the evaporation of residual water.The small exothermic peak between 200 and 250°C can probably be explained by pyrolysis of acetates,and the broad exothermic peak between 250 and 350°C can probably be associated with pyrolysis of PVP.The precursor bloated and charred with giving out brown smoke along with the pyrolysis of PVP and then the polymer precursor automatically ignited and burned violently.This combustion reaction corresponds to the strong exothermic peak at about 400°C in the DTA curve and distinct mass loss in the TG curve.Because the metal ions had been mixed evenly at atomic level by chelating of PVP,the metal precursor formed basic spinel phase in situ during the combustion reaction.The combustion reaction was accompanied by violent gas evolution and the volume of the mixture bloomed up quickly.It means that the newly formed particles are compacted loosely which can prevent the particle growth in the subsequent heat treatment.No obvious mass loss is found after the combustion peak.However,for more gel precursor the remains of the combustion still needed to be calcinated at 400°C for 3 h for complete removal of the organic residue.Heat treating at 700°C is needed to improve the crystallinity and the electrochemical property of the as-prepared nanoparticles.

    Fig.1 TG and DTAcurves of the dried gel precursors

    The prepared and commercial lithium manganese oxides were analyzed by ICP and both identified as Li1.07Mn1.93O4(nLi/ nMn=0.55).

    Fig.2 shows XRD patterns of the samples at different stages. It can be seen from Fig.2a that a spinel phase is formed by the combustion reaction of the gel precursor even in a very short period of time,though some impurities such as Mn3O4phase also exist.Fig.2b shows that very little impurities exist after calcination at 400°C for 3 h but the diffraction lines are still broad indicating a low crystallinity.After heat treatment at 700°C,the impurities completely disappear and the peaks become sharp indicating a higher crystallinity(Fig.2c).XRD analysis of the sample definitely indicates its spinel structure and the crystal structure is indexed to a cubic system with a lattice parameter a of 0.8227(2)nm,and then is defined to the space group Fd3m.

    Fig.2 XRD patterns of the precursor and samples(a)burned precursor;(b)sample after calcination at 400°C; (c)sample after calcination at 700°C

    Figs.3a and 3b show the SEM images of the as-prepared Li1.07Mn1.93O4with different magnifications.Under lower magnification,Fig.3a shows that most of the secondary particles are nanoflakes with several micrometers in size,about 100 nm in thickness and piled up loosely.Under higher magnification (Fig.3b),it can be seen that the nanoflakes consist of uniform nanocrystallites with a size of 100 nm or so.The unique thin flake-like morphology is different from those obtained via other methods.This may be related to good film-forming property of PVP.It may favor electrolyte penetration,thereby enabling better wetting of spinel cathode and faster Li-ion transfer at the interface.At the same time the nanosize of the primary crystallite makes the Li-ion and electron dissociating pathway inside the crystal shorter and then the cathode can behave better under high current densities.While the SEM images of the commercial Li1.07Mn1.93O4(Figs.3c&3d)demonstrate its secondary particle size of about 10 μm,and its primary particle size is about 300-500 nm,much bigger than that of the as prepared Li1.07Mn1.93O4.The subsequent electrochemical tests show that the Li1.07Mn1.93O4nanoflakes have excellent rate capability, which is much better than that of the commercial one.

    Fig.3 SEM images of Li1.07Mn1.93O4(a,b)the nano-Li1.07Mn1.93O4;(c,d)the commercial Li1.07Mn1.93O4

    The high rate capability of the Li1.07Mn1.93O4nanoflakes is presented in Fig.4 and Fig.5.Fig.4 shows the discharge curves of the Li1.07Mn1.93O4nanoflakes recorded at different discharge rates.The rate capability measurements were investigated by discharging from 0.5C to 40C.Charging was done at 1C for all the discharge rates except when discharging was done at 0.5C. In this case,charging was conducted at 0.5C.At 0.5C,4C, 10C,20C,and 40C,the discharge capacity was 115.4,115.3, 114.4,111.9,and 105.3 mAh·g?1,respectively.Moreover,the discharge profiles at high rates of 10C,20C,and 40C still have a relative flat discharge plateau.The maintained relative flat plateau in the high rate of 40C can sustain a constant output voltage.3

    Fig.4 Discharge profiles of the nano-Li1.07Mn1.93O4at different rates between 3.3 and 4.3 V1C=120 mA·g-1

    Fig.5 compares the rate capability of the Li1.07Mn1.93O4nanoflakes and the commercial Li1.07Mn1.93O4.The capacities of the Li1.07Mn1.93O4nanoflakes remain 99.9%at a discharge rate of 4C,99.1%at 10C,97.0%at 20C,and 91.2%at 40C,and those of the commercial Li1.07Mn1.93O4only remain 96.4%at discharge rate of 4C,92.0%at 10C,86.6%at 20C,and 74.9%at 40C,although the electrodes have approximate mass.The results indicate that the excellent rate capability of the as-prepared Li1.07Mn1.93O4nanoflakes is caused by the very small particle size but not by the thin electrode.

    Fig.6 Electrochemical impedance spectra of the nano-Li1.07Mn1.93O4(a)and the commercial Li1.07Mn1.93O4(b) Rs:ohmic resistance;Rct:charge-transfer resistance;CPE:constant phase-angleelement;ZW:Warburg impedance;Cint:insertion capacitance

    Fig.7 Cyclic performance of the nano-Li1.07Mn1.93O4at a high discharge rate of 10C

    The electrochemical impedance spectra(EIS)of the nano-Li1.07Mn1.93O4/Li cell and commercial Li1.07Mn1.93O4/Li cell after 3 cycles at 3.9 V are shown in Fig.6.The Nyquist plots of two samples in Fig.6 show a semicircle followed by a sloping line at low frequencies and they were fitted with the equivalent circuit depicted in the inset of Fig.6.The result of fitting indicates that the Rctof Li1.07Mn1.93O4nanoflakes is 9.7 Ω,which is much less than that of commercial Li1.07Mn1.93O4(60.5 Ω).This means that the lithium insertion/extraction could be easily conducted in the nanoparticles.This result agrees well with the good rate capability of the Li1.07Mn1.93O4nanoflakes as demonstrated above.

    The Li1.07Mn1.93O4nanoflakes has been cycled at a high discharge rate of 10C(charged at 5C rate)for 850 cycles to investigate whether the good rate capability can be retained on prolonged cycling.The result in Fig.7 shows an initial capacity of 107.9 mAh·g-1and the capacity retention is 81%after 850 cycles.It is speculated that the good cycling performance may be originated from the well-crystallized nanoscale cathode active particles which minimize structural distortion at the surface of the cathode.

    4 Conclusions

    Li1.07Mn1.93O4nanoflakes were synthesized by the novel gelcombustion method using PVP as the polymer chelating agent and fuel.TG and DTA results clarified the quick combustion process of the gel.XRD analysis indicated the as-prepared Li1.07Mn1.93O4was pure phase and highly crystallized.SEM images displayed that most of the secondary particles were nanoflakes with thickness of about 100 nm and the primary particle size was about 100 nm.Electrochemical tests showed that the Li1.07Mn1.93O4nanoflakes behaved an excellent rate capability and cycling performance as a cathode material for lithium ion batteries.The discharge capacities at 0.5C and 40C were 115.4 and 105.3 mAh·g-1,respectively.It maintained 81%of its initial capacity after 850 cycles when cycling at 10C rate.EIS tests showed that the charge transfer resistance of the Li1.07Mn1.93O4nanoflakes was smaller than that of the commercial Li1.07Mn1.93O4. This excellent performance of the Li1.07Mn1.93O4nanoflake in this work can be attributed to the small particle size and high crystallinity prepared by the PVP-assisted combustion method.

    (1)Tarascon,J.M.;Armand,M.Nature 2001,414,359.

    (2) Du Pasquier,A.;Huang,C.C.;Spitler,T.Journal of Power Sources 2009,186,508.

    (3)Kudo,T.;Honma,I.;Matsuda,H.;Zhou,H.S.Nano Letters 2009,9,1045.

    (4) Lanz,M.;Kormann,C.;Steininger,H.;Heil,G.;Haas,O.; Novak,P.Journal of the Electrochemical Society 2000,147, 3997.

    (5) Lee,J.W.;Park,S.M.;Kim,H.J.Electrochemistry Communications 2009,11,1101.

    (6)Lee,K.S.;Myung,S.T.;Bang,H.;Amine,K.;Kim,D.W.; Sun,Y.K.Journal of Power Sources 2009,189,494.

    (7) Lim,S.;Cho,J.Electrochemistry Communications 2008,10, 1478.

    (8)Ma,S.B.;Nam,K.W.;Yoon,W.S.;Bak,S.M.;Yang,X.Q.; Cho,B.W.;Kim,K.B.Electrochemistry Communications 2009,11,1575.

    (9) Park,S.C.;Han,Y.S.;Kang,Y.S.;Lee,P.S.;Ahn,S.;Lee,H. M.;Lee,J.Y.Journal of the Electrochemical Society 2001,148, A680.

    (10)Park,S.C.;Kim,Y.M.;Kang,Y.M.;Kim,K.T.;Lee,P.S.; Lee,J.Y.Journal of Power Sources 2001,103,86.

    (11) Wang,X.Q.;Tanaike,O.;Kodama,M.;Hatori,H.Journal of Power Sources 2007,168,282.

    (12)Yue,H.;Huang,X.;Lv,D.;Yang,Y.Electrochimica Acta 2009, 54,5363.

    (13)Arico,A.S.;Bruce,P.;Scrosati,B.;Tarascon,J.M.;Van Schalkwijk,W.Nature Materials 2005,4,366.

    (14) Bruce,P.G.;Scrosati,B.;Tarascon,J.M.Angewandte Chemie-International Edition 2008,47,2930.

    (15) Chen,Z.Y.;Zhu,H.L.;Ji,S.;Linkov,V.;Zhang,J.L.;Zhu,W. Journal of Power Sources 2009,189,507.

    (16)Kamarulzaman,N.;Yusoff,R.;Kamarudin,N.;Shaari,N.H.; Aziz,N.A.A.;Bustam,M.A.;Blagojevic,N.;Elcombe,M.; Blackford,M.;Avdeev,M.;Arof,A.K.Journal of Power Sources 2009,188,274.

    (17)Ye,S.H.;Lv,J.Y.;Gao,X.P.;Wu,F.;Song,D.Y. Electrochimica Acta 2004,49,1623.

    (18) Caballero,A.;Cruz,M.;Hernán,L.;Melero,M.;Morales,J.; Castellón,E.R.Journal of Power Sources 2005,150,192.

    (19) Huang,Y.D.;Jiang,R.R.;Bao,S.J.;Dong,Z.F.;Cao,Y.L.; Jia,D.Z.;Guo,Z.P.Journal of Solid State Electrochemistry 2009,13,799.

    (20) Shaju,K.M.;Bruce,P.G.Chemistry of Materials 2008,20, 5557.

    (21) Vivekanandhan,S.;Venkateswarlu,M.;Satyanarayana,N. Journal of Alloys and Compounds 2007,441,284.

    (22) Patey,T.J.;Buchel,R.;Nakayama,M.;Novak,P.Physical Chemistry Chemical Physics 2009,11,3756.

    (23) Patey,T.J.;Buchel,R.;Ng,S.H.;Krumeich,F.;Pratsinis,S.E.; Novak,P.Journal of Power Sources 2009,189,149.

    (24) Cabana,J.;Valdes-Solis,T.;Palacin,M.R.;Oro-Sole,J.; Fuertes,A.;Marban,G.;Fuertes,A.B.Journal of Power Sources 2007,166,492.

    (25) Jiao,F.;Bao,J.L.;Hill,A.H.;Bruce,P.G.Angewandte Chemie-International Edition 2008,47,9711.

    (26)Luo,J.Y.;Wang,Y.G.;Xiong,H.M.;Xia,Y.Y.Chemistry of Materials 2007,19,4791.

    (27)Katakura,K.;Wada,K.;Kajiki,Y.;Yamamoto,A.;Ogumi,Z. Journal of Power Sources 2009,189,240.

    (28) Luo,J.Y.;Cheng,L.;Xia,Y.Y.Electrochemistry Communications 2007,9,1404.

    (29) Uchiyama,H.;Hosono,E.;Zhou,H.S.;Imai,H.Journal of Materials Chemistry 2009,19,4012.

    (30) Fang,H.S.;Li,L.P.;Yang,Y.;Yan,G.F.;Li,G.S.Journal of Power Sources 2008,184,494.

    (31) Jiang,C.H.;Dou,S.X.;Liu,H.K.;Ichihara,M.;Zhou,H.S. Journal of Power Sources 2007,172,410.

    (32) Kim,D.K.;Muralidharan,P.;Lee,H.W.;Ruffo,R.;Yang,Y.; Chan,C.K.;Peng,H.;Huggins,R.A.;Cui,Y.Nano Letters 2008,8,3948.

    (33) Fey,G.;Cho,Y.;Kumar,T.Materials Chemistry and Physics 2006,99,451.

    (34)Liu,Q.G.;Yang,W.S.;Zhang,G.;Xie,J.Y.;Yang,L.L. Journal of Power Sources 1999,81,412.

    (35)Fey,G.T.K.;Cho,Y.D.;Kumar,T.P.Materials Chemistry and Physics 2004,87,275.

    (36) Kalyani,P.;Kalaiselvi,N.;Muniyandi,N.Journal of Power Sources 2002,111,232.

    (37) Park,H.B.;Kim,J.;Lee,C.W.Journal of Power Sources 2001, 92,124.

    (38) Subramania,A.;Angayarkanni,N.;Vasudevan,T.Materials Chemistry and Physics 2007,102,19.

    (39)Wu,X.M.;Li,X.H.;Xiao,Z.B.;Liu,J.;Yan,W.B.;Ma,M.Y. Materials Chemistry and Physics 2004,84,182.

    (40) Zhang,Y.;Shin,H.C.;Dong,J.;Liu,M.Solid State Ionics 2004,171,25.

    (41)Amarilla,J.M.;Petrov,K.;Pico,F.;Avdeev,G.;Rojo,J.M.; Rojas,R.M.Journal of Power Sources 2009,191,591.

    (42) Kovacheva,D.;Gadjov,H.;Petrov,K.;Mandal,S.;Lazarraga, M.G.;Pascual,L.;Amarilla,J.M.;Rojas,R.M.;Herrero,P.; Rojo,J.M.Journal of Materials Chemistry 2002,12,1184.

    (43) Zhang,J.H.;Liu,J.B.;Wang,S.Z.;Zhan,P.;Wang,Z.L.; Ming,N.B.Adv.Funct.Mater.2004,14,1089.

    (44) Fu,Y.S.;Chen,L.J.;Liao,J.D.;Chuang,Y.J.;Hsu,K.C.; Chiang,Y.F.J.Appl.Polym.Sci.2011,121,154.

    (45) Kanamura,K.;Rho,Y.H.J.Electroanal.Chem.2003,559,69.

    (46) Kanamura,K.;Rho,Y.H.J.Solid State Chem.2004,177,2094.

    (47) Kanamura,K.;Rho,Y.H.Journal of Power Sources 2006,158, 1436.

    (48)Kanamura,K.;Rho,Y.H.;Umegaki,T.Chem.Lett.2001,1322.

    (49) Dai,K.H.;Mao,J.;Zhai,Y.C.Acta Phys.-Chim.Sin.2010,26, 2130.[代克化,毛 景,翟玉春.物理化學(xué)學(xué)報(bào),2010,26, 2130.]

    (50) Hirose,S.;Kodera,T.;Ogihara,T.Journal of Alloys and Compounds 2010,506,883.

    (51)Peng,Z.D.;Jiang,Q.L.;Du,K.;Wang,W.G.;Hu,G.R.;Liu, Y.X.Journal of Alloys and Compounds 2010,493,640.

    July 18,2011;Revised:November 24,2011;Published on Web:December 5,2011.

    High Rate Capability and Cycling Stability of Li1.07Mn1.93O4Nanoflakes Synthesized via Gel-Combustion Method

    MAO Jing DAI Ke-Hua*ZHAI Yu-Chun*
    (School of Materials and Metallurgy,Northeastern University,Shenyang 110004,P.R.China)

    Li1.07Mn1.93O4nanoflakes were synthesized by a gel-combustion method using polyvinylpyrrolidone(PVP)as the polymer chelating agent and fuel.Thermogravimetric and differential thermal analyses(TG/DTA)were used to investigate the combustion process of the gel precursor.X-ray diffraction(XRD)analysis indicated that the as-prepared Li1.07Mn1.93O4was a pure,highly crystalline phase. Scanning electron microscopy(SEM)results showed that most of the secondary particles were nanoflakes, about 100 nm in thickness,and the primary particle of the nanoflakes was about 100 nm in size.Charge and discharge tests suggested that the Li1.07Mn1.93O4nanoflakes had excellent rate capability and good cycling stability.The initial discharge capacity was 115.4 mAh·g-1at a rate of 0.5C(1C=120 mAh·g-1)and the capacity was maintained at 105.3 mAh·g-1at the high discharge rate of 40C.When cycling at 10C,the material retained 81%of its initial capacity after 850 cycles.Electrochemical impedance spectroscopy (EIS)tests indicated that the charge-transfer resistance(Rct)of the Li1.07Mn1.93O4nanoflakes was much less than that of commercial Li1.07Mn1.93O4.

    Lithium ion battery;Lithium manganese oxide;Combustion synthesis;Rate capability; Cycling stability

    10.3866/PKU.WHXB201112052

    *Corresponding authors.DAI Ke-Hua,Email:daikh@smm.neu.edu.cn;Tel/Fax:+86-24-83684943.ZHAI Yu-Chun,Email:zhaiyc@smm.neu.edu.cn

    O646

    猜你喜歡
    高倍率倍率凝膠
    大型桅桿起重機(jī)起升變倍率方法及其應(yīng)用
    纖維素氣凝膠的制備與應(yīng)用研究進(jìn)展
    三維多孔石墨烯在高倍率超級(jí)電容器中的應(yīng)用
    能源工程(2020年5期)2021-01-04 01:29:06
    超輕航天材料——?dú)饽z
    軍事文摘(2020年20期)2020-11-16 00:31:56
    保暖神器——?dú)饽z外套
    FANUC0iD系統(tǒng)速度倍率PMC控制方法
    “凍結(jié)的煙”——?dú)饽z
    論ZVR高倍率視頻壓縮存儲(chǔ)技術(shù)的先進(jìn)性與實(shí)用性
    一種智能加工系統(tǒng)中的機(jī)床倍率控制方法
    李賢能:銀隆鈦高倍率快充 解決新能源汽車之痛
    国产淫语在线视频| 久久ye,这里只有精品| av免费观看日本| 久久久久久久久大av| 国产成人免费观看mmmm| 中文精品一卡2卡3卡4更新| 亚洲精品国产成人久久av| 色哟哟·www| 欧美少妇被猛烈插入视频| 丰满乱子伦码专区| 国产男女内射视频| 久久午夜综合久久蜜桃| 亚洲色图综合在线观看| 性色avwww在线观看| 中文字幕亚洲精品专区| 日韩,欧美,国产一区二区三区| 男女啪啪激烈高潮av片| 日本猛色少妇xxxxx猛交久久| 免费大片18禁| 激情五月婷婷亚洲| 欧美+日韩+精品| 成年人免费黄色播放视频 | 成人亚洲欧美一区二区av| 一级,二级,三级黄色视频| 久久精品久久久久久噜噜老黄| 国产欧美另类精品又又久久亚洲欧美| 久久ye,这里只有精品| 一区二区三区免费毛片| 乱系列少妇在线播放| 丝瓜视频免费看黄片| 少妇的逼水好多| av.在线天堂| 亚洲精品久久久久久婷婷小说| 自拍偷自拍亚洲精品老妇| 久久青草综合色| 各种免费的搞黄视频| 国产精品欧美亚洲77777| 天美传媒精品一区二区| 亚洲综合精品二区| 日本黄色片子视频| 精品视频人人做人人爽| 久久av网站| 色94色欧美一区二区| 寂寞人妻少妇视频99o| 黄色配什么色好看| 午夜福利在线观看免费完整高清在| freevideosex欧美| 久久免费观看电影| 国产极品粉嫩免费观看在线 | 边亲边吃奶的免费视频| 国产一区二区三区av在线| 欧美日韩视频精品一区| 精品一区在线观看国产| 能在线免费看毛片的网站| 精品久久久精品久久久| 51国产日韩欧美| 最近2019中文字幕mv第一页| 亚洲欧美一区二区三区国产| 狠狠精品人妻久久久久久综合| 中文字幕人妻熟人妻熟丝袜美| 久久婷婷青草| 日韩成人伦理影院| 日韩熟女老妇一区二区性免费视频| 免费观看av网站的网址| 日本黄大片高清| 国产亚洲5aaaaa淫片| 日韩不卡一区二区三区视频在线| 一边亲一边摸免费视频| 亚洲精品久久午夜乱码| 亚洲成人手机| 亚洲va在线va天堂va国产| 下体分泌物呈黄色| 中文字幕亚洲精品专区| 国产伦精品一区二区三区四那| 三级经典国产精品| 99国产精品免费福利视频| 午夜免费男女啪啪视频观看| 亚洲精品国产av蜜桃| 国产老妇伦熟女老妇高清| 嫩草影院新地址| 成人国产av品久久久| 午夜精品国产一区二区电影| 自线自在国产av| 国产精品久久久久久久久免| 美女视频免费永久观看网站| h视频一区二区三区| 国产在线男女| 在线播放无遮挡| 十八禁网站网址无遮挡 | 最后的刺客免费高清国语| 国产精品国产三级国产专区5o| 在线观看一区二区三区激情| 久久鲁丝午夜福利片| 22中文网久久字幕| 亚洲国产精品专区欧美| 一级毛片久久久久久久久女| 中文字幕精品免费在线观看视频 | av又黄又爽大尺度在线免费看| 日日爽夜夜爽网站| 国产精品国产三级国产专区5o| 久久狼人影院| 国产精品久久久久久久电影| 国产极品粉嫩免费观看在线 | 我的女老师完整版在线观看| 青青草视频在线视频观看| 一本一本综合久久| 中文字幕免费在线视频6| 午夜免费男女啪啪视频观看| 日本-黄色视频高清免费观看| 成年美女黄网站色视频大全免费 | 欧美日韩在线观看h| 日韩中文字幕视频在线看片| 久久综合国产亚洲精品| 丰满少妇做爰视频| 啦啦啦啦在线视频资源| 亚洲av成人精品一区久久| 国产爽快片一区二区三区| 亚洲国产精品成人久久小说| 久久97久久精品| 夫妻午夜视频| 在线观看美女被高潮喷水网站| 免费观看无遮挡的男女| 少妇人妻精品综合一区二区| 久久久久久人妻| 久久精品国产亚洲av涩爱| 日韩人妻高清精品专区| 色婷婷av一区二区三区视频| 夫妻午夜视频| 最近中文字幕高清免费大全6| 少妇猛男粗大的猛烈进出视频| 精品久久久精品久久久| 在线免费观看不下载黄p国产| 国产成人精品一,二区| 国产又色又爽无遮挡免| 在线播放无遮挡| 看免费成人av毛片| 大陆偷拍与自拍| 国产成人精品无人区| 91aial.com中文字幕在线观看| 一级毛片 在线播放| 精品久久久久久电影网| 国产亚洲91精品色在线| 搡老乐熟女国产| 国语对白做爰xxxⅹ性视频网站| av女优亚洲男人天堂| a级毛色黄片| 欧美成人午夜免费资源| 国产日韩欧美亚洲二区| 成人美女网站在线观看视频| 久久鲁丝午夜福利片| 亚洲欧美一区二区三区黑人 | 永久免费av网站大全| 少妇人妻 视频| 欧美性感艳星| 欧美日韩av久久| 少妇精品久久久久久久| 国产精品一区二区三区四区免费观看| 欧美精品一区二区大全| 十分钟在线观看高清视频www | 国产视频内射| 久久久国产欧美日韩av| 制服丝袜香蕉在线| 日韩制服骚丝袜av| 中文字幕精品免费在线观看视频 | 午夜福利在线观看免费完整高清在| 全区人妻精品视频| 少妇人妻一区二区三区视频| 午夜久久久在线观看| 亚洲av.av天堂| 人人妻人人添人人爽欧美一区卜| 五月天丁香电影| 午夜影院在线不卡| 波野结衣二区三区在线| 久久久久久久久久人人人人人人| 三级国产精品欧美在线观看| 精华霜和精华液先用哪个| 免费av中文字幕在线| 国产免费一区二区三区四区乱码| 女性被躁到高潮视频| 国产91av在线免费观看| 九草在线视频观看| 日韩精品有码人妻一区| 中国国产av一级| 久久精品夜色国产| 精品一品国产午夜福利视频| 欧美区成人在线视频| a级毛片在线看网站| 国产精品免费大片| 人妻人人澡人人爽人人| 狠狠精品人妻久久久久久综合| 精品少妇黑人巨大在线播放| 亚洲精品,欧美精品| 在线观看国产h片| 在线免费观看不下载黄p国产| 国产伦精品一区二区三区四那| 哪个播放器可以免费观看大片| 免费观看的影片在线观看| 蜜桃在线观看..| 日韩制服骚丝袜av| 国产中年淑女户外野战色| 人人妻人人澡人人爽人人夜夜| 97超视频在线观看视频| 欧美日韩亚洲高清精品| 午夜日本视频在线| 精品少妇内射三级| 亚洲精华国产精华液的使用体验| 草草在线视频免费看| 欧美日韩av久久| 欧美激情极品国产一区二区三区 | 亚洲精品,欧美精品| 人妻人人澡人人爽人人| 黄色一级大片看看| 91久久精品国产一区二区三区| 亚洲精品乱码久久久v下载方式| 久久久亚洲精品成人影院| 久久国产亚洲av麻豆专区| 精品视频人人做人人爽| 十分钟在线观看高清视频www | 男的添女的下面高潮视频| 久久国产亚洲av麻豆专区| 在线观看免费视频网站a站| 婷婷色综合大香蕉| 亚洲欧美日韩另类电影网站| 亚洲欧美一区二区三区黑人 | 亚洲欧美精品自产自拍| 91精品国产国语对白视频| 久久这里有精品视频免费| 日韩不卡一区二区三区视频在线| 韩国av在线不卡| 最近中文字幕2019免费版| 91久久精品国产一区二区三区| 高清在线视频一区二区三区| av福利片在线| 久久99热6这里只有精品| 久久人妻熟女aⅴ| 综合色丁香网| 赤兔流量卡办理| 久久久久久久久大av| 最近的中文字幕免费完整| 色94色欧美一区二区| 搡老乐熟女国产| 亚洲国产毛片av蜜桃av| 精品一区二区免费观看| 色视频www国产| 制服丝袜香蕉在线| 最后的刺客免费高清国语| 麻豆成人av视频| 精品午夜福利在线看| 亚洲精品国产av蜜桃| 91午夜精品亚洲一区二区三区| 能在线免费看毛片的网站| 高清视频免费观看一区二区| xxx大片免费视频| 中文字幕免费在线视频6| 亚洲一区二区三区欧美精品| av女优亚洲男人天堂| 国产精品一区二区在线观看99| 搡老乐熟女国产| 日韩大片免费观看网站| 亚洲精品中文字幕在线视频 | 日本爱情动作片www.在线观看| 欧美97在线视频| 国产精品秋霞免费鲁丝片| 秋霞在线观看毛片| 男女啪啪激烈高潮av片| 亚洲国产色片| 国产精品一区二区性色av| 热re99久久国产66热| 日日摸夜夜添夜夜添av毛片| 久久久国产一区二区| 亚洲精品一区蜜桃| 欧美日韩精品成人综合77777| 亚洲国产色片| 日本免费在线观看一区| 99久久综合免费| 欧美激情国产日韩精品一区| 丰满迷人的少妇在线观看| 乱人伦中国视频| 亚洲美女黄色视频免费看| 国产 精品1| 黑丝袜美女国产一区| 嫩草影院新地址| 午夜免费男女啪啪视频观看| √禁漫天堂资源中文www| 精品亚洲成国产av| 亚洲av男天堂| 精品亚洲乱码少妇综合久久| 草草在线视频免费看| 国产精品伦人一区二区| 街头女战士在线观看网站| 亚洲国产精品成人久久小说| 在线看a的网站| 国产免费视频播放在线视频| 亚洲在久久综合| 伦理电影免费视频| 少妇的逼水好多| 欧美精品国产亚洲| 亚洲国产精品国产精品| 日本wwww免费看| 国产精品久久久久久精品古装| 寂寞人妻少妇视频99o| 99九九在线精品视频 | 亚洲国产最新在线播放| 免费av不卡在线播放| 国产高清有码在线观看视频| 欧美老熟妇乱子伦牲交| 在线观看国产h片| 秋霞伦理黄片| 多毛熟女@视频| 国产深夜福利视频在线观看| 亚洲欧洲国产日韩| 晚上一个人看的免费电影| 汤姆久久久久久久影院中文字幕| 少妇熟女欧美另类| 2022亚洲国产成人精品| 免费黄色在线免费观看| 亚洲一区二区三区欧美精品| 曰老女人黄片| 国产成人精品无人区| 美女cb高潮喷水在线观看| 夫妻性生交免费视频一级片| 亚洲成人手机| 国产男女超爽视频在线观看| 久久午夜福利片| 欧美日本中文国产一区发布| 久久97久久精品| 99re6热这里在线精品视频| 国产亚洲最大av| 国产淫语在线视频| 又粗又硬又长又爽又黄的视频| 精品亚洲乱码少妇综合久久| 国产成人免费观看mmmm| 91成人精品电影| 国内揄拍国产精品人妻在线| 丝瓜视频免费看黄片| 少妇丰满av| 妹子高潮喷水视频| 国产真实伦视频高清在线观看| 国产日韩欧美视频二区| 亚洲精品久久久久久婷婷小说| 日韩 亚洲 欧美在线| 大话2 男鬼变身卡| 亚洲欧美中文字幕日韩二区| 国产永久视频网站| 亚洲人与动物交配视频| 日日啪夜夜撸| 免费在线观看成人毛片| 亚洲精品亚洲一区二区| 麻豆精品久久久久久蜜桃| 亚洲av中文av极速乱| 久久久久精品性色| 精品熟女少妇av免费看| 99久国产av精品国产电影| 欧美日韩综合久久久久久| 精品少妇内射三级| 精品国产一区二区三区久久久樱花| 18禁在线无遮挡免费观看视频| 三级经典国产精品| 美女福利国产在线| 久久女婷五月综合色啪小说| 人妻人人澡人人爽人人| 永久网站在线| 男人爽女人下面视频在线观看| 日本免费在线观看一区| 日韩亚洲欧美综合| 亚洲av欧美aⅴ国产| 日韩亚洲欧美综合| 国产永久视频网站| 三级国产精品片| 亚洲真实伦在线观看| 久久精品国产亚洲网站| 午夜av观看不卡| 免费看日本二区| 日本午夜av视频| 免费看日本二区| 五月伊人婷婷丁香| 久久精品国产a三级三级三级| 成人国产麻豆网| 黑人巨大精品欧美一区二区蜜桃 | 黄色欧美视频在线观看| 在线观看免费日韩欧美大片 | 亚洲欧美清纯卡通| 久久狼人影院| 精品国产乱码久久久久久小说| 国产精品99久久99久久久不卡 | 成年人午夜在线观看视频| 两个人免费观看高清视频 | 国产黄色视频一区二区在线观看| 国产精品99久久久久久久久| 亚洲av.av天堂| 99热全是精品| 国产精品久久久久久久电影| 有码 亚洲区| 亚洲不卡免费看| 亚洲精品乱码久久久久久按摩| 成人无遮挡网站| 在线播放无遮挡| 女人精品久久久久毛片| 人妻系列 视频| 熟女电影av网| 少妇猛男粗大的猛烈进出视频| 青春草视频在线免费观看| 日本午夜av视频| 狂野欧美白嫩少妇大欣赏| 欧美人与善性xxx| 国产一区亚洲一区在线观看| 日韩一区二区三区影片| av.在线天堂| 亚洲色图综合在线观看| 久久狼人影院| 国产成人91sexporn| 国产精品久久久久久精品古装| 天天操日日干夜夜撸| 好男人视频免费观看在线| 久久国产精品男人的天堂亚洲 | 亚洲精品中文字幕在线视频 | xxx大片免费视频| 国产视频内射| 全区人妻精品视频| av在线播放精品| h视频一区二区三区| 精品一区二区免费观看| 国产精品嫩草影院av在线观看| 国产欧美亚洲国产| 国产高清国产精品国产三级| 在线观看免费视频网站a站| 午夜精品国产一区二区电影| 国产极品天堂在线| 一本一本综合久久| 不卡视频在线观看欧美| a级毛片免费高清观看在线播放| 午夜影院在线不卡| 日本av免费视频播放| 伦理电影免费视频| videos熟女内射| 国产黄频视频在线观看| av国产精品久久久久影院| 日日啪夜夜爽| 中文欧美无线码| 国产老妇伦熟女老妇高清| 插逼视频在线观看| 免费观看无遮挡的男女| 中国美白少妇内射xxxbb| 成人国产av品久久久| 大话2 男鬼变身卡| 久久午夜福利片| www.av在线官网国产| 9色porny在线观看| h视频一区二区三区| 成人国产av品久久久| 五月开心婷婷网| 丰满乱子伦码专区| 国产免费又黄又爽又色| 99热国产这里只有精品6| 另类精品久久| 国内少妇人妻偷人精品xxx网站| 亚洲高清免费不卡视频| 亚洲无线观看免费| 国产一区亚洲一区在线观看| 午夜精品国产一区二区电影| 三级国产精品欧美在线观看| 亚洲高清免费不卡视频| 欧美激情国产日韩精品一区| 国国产精品蜜臀av免费| 日日啪夜夜爽| 男女边摸边吃奶| 国产av国产精品国产| av专区在线播放| 桃花免费在线播放| 久久久久国产精品人妻一区二区| 黑丝袜美女国产一区| 观看美女的网站| 男人添女人高潮全过程视频| 黄片无遮挡物在线观看| 女性被躁到高潮视频| 亚洲成人av在线免费| 久久久久人妻精品一区果冻| 日日啪夜夜爽| 午夜日本视频在线| 卡戴珊不雅视频在线播放| 日韩在线高清观看一区二区三区| 日日撸夜夜添| 国产精品国产三级国产专区5o| 久久韩国三级中文字幕| 丝袜脚勾引网站| 欧美xxⅹ黑人| 王馨瑶露胸无遮挡在线观看| 性高湖久久久久久久久免费观看| 国产综合精华液| 免费看不卡的av| 九色成人免费人妻av| 日本欧美视频一区| 婷婷色综合大香蕉| 97精品久久久久久久久久精品| 国产成人精品无人区| 春色校园在线视频观看| .国产精品久久| 久久6这里有精品| 日本黄色日本黄色录像| 国产高清国产精品国产三级| 在线观看免费视频网站a站| av免费在线看不卡| 乱人伦中国视频| 亚洲美女视频黄频| av线在线观看网站| 99热网站在线观看| 97在线人人人人妻| www.色视频.com| 亚洲美女搞黄在线观看| 少妇丰满av| 纯流量卡能插随身wifi吗| 中文欧美无线码| 国产日韩欧美视频二区| 日韩一本色道免费dvd| 亚洲国产色片| 三级国产精品欧美在线观看| 99久久精品国产国产毛片| 亚洲成人av在线免费| 成人无遮挡网站| 老司机影院毛片| 一二三四中文在线观看免费高清| 精品人妻熟女毛片av久久网站| av天堂久久9| 亚洲精品一二三| 黑人猛操日本美女一级片| 美女中出高潮动态图| 国产精品国产三级国产av玫瑰| 在线观看一区二区三区激情| 亚洲自偷自拍三级| av线在线观看网站| 国产黄频视频在线观看| 国产精品熟女久久久久浪| 大香蕉久久网| 午夜福利视频精品| 亚洲av二区三区四区| 日日摸夜夜添夜夜爱| 日韩,欧美,国产一区二区三区| 少妇裸体淫交视频免费看高清| 午夜免费男女啪啪视频观看| 少妇的逼好多水| 国产日韩欧美在线精品| 亚洲国产欧美在线一区| 亚洲美女搞黄在线观看| 最黄视频免费看| 国产精品蜜桃在线观看| 国产黄频视频在线观看| 韩国高清视频一区二区三区| 最新的欧美精品一区二区| 亚洲欧美一区二区三区国产| 男的添女的下面高潮视频| 免费黄色在线免费观看| 久久免费观看电影| 中文乱码字字幕精品一区二区三区| 成人亚洲欧美一区二区av| 亚洲欧美清纯卡通| 亚洲av日韩在线播放| 下体分泌物呈黄色| 免费高清在线观看视频在线观看| 性色av一级| 婷婷色综合大香蕉| 97在线人人人人妻| 777米奇影视久久| 观看免费一级毛片| 十分钟在线观看高清视频www | 大又大粗又爽又黄少妇毛片口| 亚洲自偷自拍三级| 中文字幕久久专区| 一级毛片电影观看| 日韩在线高清观看一区二区三区| 综合色丁香网| 亚洲av二区三区四区| 丰满少妇做爰视频| 三级国产精品欧美在线观看| 狂野欧美激情性bbbbbb| 一个人看视频在线观看www免费| 天堂8中文在线网| 国产在线视频一区二区| 91精品伊人久久大香线蕉| 夜夜看夜夜爽夜夜摸| 国产黄色视频一区二区在线观看| 自拍偷自拍亚洲精品老妇| 午夜精品国产一区二区电影| 日日撸夜夜添| 午夜视频国产福利| 色视频在线一区二区三区| 亚洲,欧美,日韩| 卡戴珊不雅视频在线播放| 欧美区成人在线视频| 人妻少妇偷人精品九色| 欧美xxⅹ黑人| 欧美3d第一页| 精品久久久久久久久av| 亚洲成人av在线免费| 男人狂女人下面高潮的视频| 精品久久国产蜜桃| 精品国产露脸久久av麻豆| 极品教师在线视频| 男女国产视频网站| av.在线天堂| 精品99又大又爽又粗少妇毛片| 国产国拍精品亚洲av在线观看| 波野结衣二区三区在线| 免费看av在线观看网站| 一级a做视频免费观看| 99视频精品全部免费 在线| 成人二区视频| 一级毛片电影观看| 天堂中文最新版在线下载| 蜜桃久久精品国产亚洲av| 欧美性感艳星| 人妻夜夜爽99麻豆av| 亚洲国产精品国产精品| 日本av手机在线免费观看| a级毛片在线看网站| 亚洲国产毛片av蜜桃av|