• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    凝膠燃燒法合成Li1.07Mn1.93O4納米片及其高倍率放電和循環(huán)穩(wěn)定性

    2012-12-21 06:33:04代克化翟玉春
    物理化學(xué)學(xué)報(bào) 2012年2期
    關(guān)鍵詞:高倍率倍率凝膠

    毛 景 代克化 翟玉春

    (東北大學(xué)材料與冶金學(xué)院,沈陽110004)

    凝膠燃燒法合成Li1.07Mn1.93O4納米片及其高倍率放電和循環(huán)穩(wěn)定性

    毛 景 代克化*翟玉春*

    (東北大學(xué)材料與冶金學(xué)院,沈陽110004)

    利用聚乙烯吡咯烷酮(PVP)作為聚合物配位劑和燃料,通過凝膠-燃燒法合成了Li1.07Mn1.93O4納米片.采用熱重/差熱分析(TG/DTA)研究了凝膠的燃燒過程.采用X射線多晶衍射(XRD)分析了材料的結(jié)構(gòu),結(jié)果表明合成的Li1.07Mn1.93O4結(jié)晶完整,無雜質(zhì)相.掃描電鏡(SEM)結(jié)果顯示材料的二次形貌為厚度約100 nm的片狀,由大小約100 nm的一次顆粒構(gòu)成.充放電測(cè)試表明Li1.07Mn1.93O4納米片具備極佳的倍率放電性能和優(yōu)秀的循環(huán)性能.0.5C(1C=120 mA·g-1)倍率的初始放電容量為115.4 mAh·g-1,即使倍率增大到40C,放電容量仍有105.3 mAh·g-1.在10C倍率的放電條件下,循環(huán)850次容量保持率為81%.電化學(xué)阻抗譜(EIS)測(cè)試表明Li1.07Mn1.93O4納米片的界面電荷轉(zhuǎn)移電阻(Rct)遠(yuǎn)小于同類商業(yè)材料.

    鋰離子電池;錳酸鋰;燃燒合成;倍率性能;循環(huán)性能

    1 Introduction

    The rapid development of electric vehicles requires advanced lithium ion batteries with higher power density and longer cycling life.Spinel LiMn2O4is at present a very prospective candidate for the cathode material due to its low cost, good safety,environmental friendliness,and relatively high voltage.1Enhancing the rate capability and cycling stability of LiMn2O4has recently become one of the most attractive topics of both scientific and industrial interests.2-12

    Nanosized particles provide short diffusion pathways for both Li-ions and electrons,resulting in an improvement in Li-ion intercalation kinetics,which should allow for a higher charge-discharge rate and minimize the structural distortion at the surface of the cathode grains.13-15Recently,nanostructured LiMn2O4with various morphologies has been extensively prepared trying to improve the rate capability.A variety of synthetic routes have been chosen such as ball milling,16,17room-temperature solid-state coordination process,18,19sol-gel,20,21flame spray pyrolysis,22,23hard-template route,24-26electrochemical precipitation,27self-assembly process,28biomimetic synthetic process,29and hydrothermal method.3,8,12,30-32However,most of these methods involve several steps and some are quite complicated or expensive.

    Combustion method has been known as a simple,fast,and energetically economic method that yields high purity products.33Urea,34triethanolamine(TEA)-starch,35starch,36hexamethylenetetramine(HMTA),33polyacrylic acid(PAA),37polyvinylalcohol(PVA),38citric acid/glycol,39and glycine40have been chosen as fuels to synthesize LiMn2O4with high capacity, but the rate capability was not reported or was poor.Rojo et al.41,42reported a sucrose-aided combustion method and synthesized doubly doped LiMn1.99-yLiyM0.01O4(M=Al3+,Ni2+,Cr3+,Co3+; y=0.01,0.06)spinels.Among them the LiMn1.93Li0.06Co0.01O4can deliver 105 and 101 mAh·g-1at 0.2C and 5C rates between 3.1 and 4.4 V,respectively.

    The choice of fuel has a significant impact on structure,morphology,and performance of the synthesized materials.In this study,Li1.07Mn1.93O4(nLi/nMn=0.55,molar ratio)nanoflakes were synthesized by a gel-combustion method using polyvinylpyrrolidone(PVP)as the polymer chelating agent and fuel.PVP was employed due to its low toxicity and high aqueous solubility.It has been extensively used as a stabilizer and a structure-directing agent in nanotechnology because of its excellent adsorption ability.43,44Fu et al.44prepared PVP/LiCoO2nanofibers using an electrospinning route.Kanamura et al.45-48prepared Li4Ti5O12,LiCoO2,and LiMn2O4thin films by introducing PVP to a sol. The authors have synthesized sub-micron LiNi0.5Mn1.5O4with excellent high rate performance by the PVP-assisted gel-combustion method.49It is naturally guessed that PVP also can be used to prepare lithium manganese oxide nano-powders with high electrochemical performance.The molar ratio of Li/Mn(0.55)was chosen because Li doping has been proved to be a simplest but effective strategy to enhance the intrinsic structure stability during Li-ion insertion and extraction from the spinel framework.50,51

    2 Experimental

    Synthesis of Li1.07Mn1.93O4nanoflakes was carried out by dissolving PVP(AR),LiCH3COO·2H2O(AR),and Mn(CH3COO)2· 4H2O(AR)in deionized water with a Li/Mn molar ratio of 0.55.The molar ratio of PVP to total metal ions was fixed at 2.0.HNO3(AR)was added to the solution until the pH value of 3 was achieved.The mixture was stirred and heated at 90°C until viscous,and then the gel was dried at 110°C for 2 h.The resulting dried gel was heated in air on an electric hot plate to ignite a combustion reaction in several minutes.The obtained black powders were heated at 400°C for 3 h then calcinated at 700°C for 6 h to obtain well crystallized Li1.07Mn1.93O4.Finally, Li1.07Mn1.93O4was ground and passed through 300-mesh sieve.

    Simultaneous thermogravimetric and differential thermal analyses(TG/DTA)measurements of the dried gel were carried out in America TA Instrument SDT 2960 Simultaneous DTA-TGA.Crucibles of alumina were used both for the specimen and for the reference material.The samples(about 10 mg) were heated from room temperature to 700°C in flowing air, with a heating rate of 10°C·min-1.

    Powder X-ray diffraction measurement was performed on a Japan Rigaku D/Max-2500PC X-ray diffractometer using Cu Kαradiation.Morphological study was conducted using a FEI Nova NanoSEM 430 scanning electron microscope(SEM,Europe).To determine the chemical composition,Li and Mn concentrations in the lithium manganese oxide were measured by inductively coupled plasma(ICP,Optima 4300DV,PE Ltd.).

    The electrochemical performance of the Li1.07Mn1.93O4nanoflakes as cathode was evaluated using a CR2025 coin cell with a lithium metal anode.The cathode was a mixture of active material/acetylene black/polyvinylidene fluoride(PVDF)with mass ratio of 80:10:10.The average loading density of active material was about 5 mg·cm-2.Celgard 2400 was used as separator and the electrolyte was 1 mol·dm-3LiPF6in a 1:1:1(volume ratio)mixture of ethylene carbonate(EC),dimethyl carbonate(DMC),and ethyl methyl carbonate(EMC).The cells were assembled in an argon filled glovebox.For comparison,a commercial material(produced by CITIC GUOAN Mengguli) with the same chemical composition was chosen and assembled similarly.Charge and discharge tests were performed at various current densities between 3.3 and 4.3 V by a LAND CT2001A battery test system at ambient temperature.Electrochemical impedance spectroscopy(EIS)studies were performed on the coin cell by a Princeton Applied Research PARSTAT2273 electrochemical measurement system.The cells were charged to 3.9 V and balanced for 12 h before EIS tests. The frequency ranged from 100 kHz to 0.1 Hz and the acoscillation amplitude was 10 mV.

    3 Results and discussion

    The pyrolysis process of the dried gel precursor was investigated by TG and DTA(Fig.1).The mass loss below 160°C can be ascribed to the evaporation of residual water.The small exothermic peak between 200 and 250°C can probably be explained by pyrolysis of acetates,and the broad exothermic peak between 250 and 350°C can probably be associated with pyrolysis of PVP.The precursor bloated and charred with giving out brown smoke along with the pyrolysis of PVP and then the polymer precursor automatically ignited and burned violently.This combustion reaction corresponds to the strong exothermic peak at about 400°C in the DTA curve and distinct mass loss in the TG curve.Because the metal ions had been mixed evenly at atomic level by chelating of PVP,the metal precursor formed basic spinel phase in situ during the combustion reaction.The combustion reaction was accompanied by violent gas evolution and the volume of the mixture bloomed up quickly.It means that the newly formed particles are compacted loosely which can prevent the particle growth in the subsequent heat treatment.No obvious mass loss is found after the combustion peak.However,for more gel precursor the remains of the combustion still needed to be calcinated at 400°C for 3 h for complete removal of the organic residue.Heat treating at 700°C is needed to improve the crystallinity and the electrochemical property of the as-prepared nanoparticles.

    Fig.1 TG and DTAcurves of the dried gel precursors

    The prepared and commercial lithium manganese oxides were analyzed by ICP and both identified as Li1.07Mn1.93O4(nLi/ nMn=0.55).

    Fig.2 shows XRD patterns of the samples at different stages. It can be seen from Fig.2a that a spinel phase is formed by the combustion reaction of the gel precursor even in a very short period of time,though some impurities such as Mn3O4phase also exist.Fig.2b shows that very little impurities exist after calcination at 400°C for 3 h but the diffraction lines are still broad indicating a low crystallinity.After heat treatment at 700°C,the impurities completely disappear and the peaks become sharp indicating a higher crystallinity(Fig.2c).XRD analysis of the sample definitely indicates its spinel structure and the crystal structure is indexed to a cubic system with a lattice parameter a of 0.8227(2)nm,and then is defined to the space group Fd3m.

    Fig.2 XRD patterns of the precursor and samples(a)burned precursor;(b)sample after calcination at 400°C; (c)sample after calcination at 700°C

    Figs.3a and 3b show the SEM images of the as-prepared Li1.07Mn1.93O4with different magnifications.Under lower magnification,Fig.3a shows that most of the secondary particles are nanoflakes with several micrometers in size,about 100 nm in thickness and piled up loosely.Under higher magnification (Fig.3b),it can be seen that the nanoflakes consist of uniform nanocrystallites with a size of 100 nm or so.The unique thin flake-like morphology is different from those obtained via other methods.This may be related to good film-forming property of PVP.It may favor electrolyte penetration,thereby enabling better wetting of spinel cathode and faster Li-ion transfer at the interface.At the same time the nanosize of the primary crystallite makes the Li-ion and electron dissociating pathway inside the crystal shorter and then the cathode can behave better under high current densities.While the SEM images of the commercial Li1.07Mn1.93O4(Figs.3c&3d)demonstrate its secondary particle size of about 10 μm,and its primary particle size is about 300-500 nm,much bigger than that of the as prepared Li1.07Mn1.93O4.The subsequent electrochemical tests show that the Li1.07Mn1.93O4nanoflakes have excellent rate capability, which is much better than that of the commercial one.

    Fig.3 SEM images of Li1.07Mn1.93O4(a,b)the nano-Li1.07Mn1.93O4;(c,d)the commercial Li1.07Mn1.93O4

    The high rate capability of the Li1.07Mn1.93O4nanoflakes is presented in Fig.4 and Fig.5.Fig.4 shows the discharge curves of the Li1.07Mn1.93O4nanoflakes recorded at different discharge rates.The rate capability measurements were investigated by discharging from 0.5C to 40C.Charging was done at 1C for all the discharge rates except when discharging was done at 0.5C. In this case,charging was conducted at 0.5C.At 0.5C,4C, 10C,20C,and 40C,the discharge capacity was 115.4,115.3, 114.4,111.9,and 105.3 mAh·g?1,respectively.Moreover,the discharge profiles at high rates of 10C,20C,and 40C still have a relative flat discharge plateau.The maintained relative flat plateau in the high rate of 40C can sustain a constant output voltage.3

    Fig.4 Discharge profiles of the nano-Li1.07Mn1.93O4at different rates between 3.3 and 4.3 V1C=120 mA·g-1

    Fig.5 compares the rate capability of the Li1.07Mn1.93O4nanoflakes and the commercial Li1.07Mn1.93O4.The capacities of the Li1.07Mn1.93O4nanoflakes remain 99.9%at a discharge rate of 4C,99.1%at 10C,97.0%at 20C,and 91.2%at 40C,and those of the commercial Li1.07Mn1.93O4only remain 96.4%at discharge rate of 4C,92.0%at 10C,86.6%at 20C,and 74.9%at 40C,although the electrodes have approximate mass.The results indicate that the excellent rate capability of the as-prepared Li1.07Mn1.93O4nanoflakes is caused by the very small particle size but not by the thin electrode.

    Fig.6 Electrochemical impedance spectra of the nano-Li1.07Mn1.93O4(a)and the commercial Li1.07Mn1.93O4(b) Rs:ohmic resistance;Rct:charge-transfer resistance;CPE:constant phase-angleelement;ZW:Warburg impedance;Cint:insertion capacitance

    Fig.7 Cyclic performance of the nano-Li1.07Mn1.93O4at a high discharge rate of 10C

    The electrochemical impedance spectra(EIS)of the nano-Li1.07Mn1.93O4/Li cell and commercial Li1.07Mn1.93O4/Li cell after 3 cycles at 3.9 V are shown in Fig.6.The Nyquist plots of two samples in Fig.6 show a semicircle followed by a sloping line at low frequencies and they were fitted with the equivalent circuit depicted in the inset of Fig.6.The result of fitting indicates that the Rctof Li1.07Mn1.93O4nanoflakes is 9.7 Ω,which is much less than that of commercial Li1.07Mn1.93O4(60.5 Ω).This means that the lithium insertion/extraction could be easily conducted in the nanoparticles.This result agrees well with the good rate capability of the Li1.07Mn1.93O4nanoflakes as demonstrated above.

    The Li1.07Mn1.93O4nanoflakes has been cycled at a high discharge rate of 10C(charged at 5C rate)for 850 cycles to investigate whether the good rate capability can be retained on prolonged cycling.The result in Fig.7 shows an initial capacity of 107.9 mAh·g-1and the capacity retention is 81%after 850 cycles.It is speculated that the good cycling performance may be originated from the well-crystallized nanoscale cathode active particles which minimize structural distortion at the surface of the cathode.

    4 Conclusions

    Li1.07Mn1.93O4nanoflakes were synthesized by the novel gelcombustion method using PVP as the polymer chelating agent and fuel.TG and DTA results clarified the quick combustion process of the gel.XRD analysis indicated the as-prepared Li1.07Mn1.93O4was pure phase and highly crystallized.SEM images displayed that most of the secondary particles were nanoflakes with thickness of about 100 nm and the primary particle size was about 100 nm.Electrochemical tests showed that the Li1.07Mn1.93O4nanoflakes behaved an excellent rate capability and cycling performance as a cathode material for lithium ion batteries.The discharge capacities at 0.5C and 40C were 115.4 and 105.3 mAh·g-1,respectively.It maintained 81%of its initial capacity after 850 cycles when cycling at 10C rate.EIS tests showed that the charge transfer resistance of the Li1.07Mn1.93O4nanoflakes was smaller than that of the commercial Li1.07Mn1.93O4. This excellent performance of the Li1.07Mn1.93O4nanoflake in this work can be attributed to the small particle size and high crystallinity prepared by the PVP-assisted combustion method.

    (1)Tarascon,J.M.;Armand,M.Nature 2001,414,359.

    (2) Du Pasquier,A.;Huang,C.C.;Spitler,T.Journal of Power Sources 2009,186,508.

    (3)Kudo,T.;Honma,I.;Matsuda,H.;Zhou,H.S.Nano Letters 2009,9,1045.

    (4) Lanz,M.;Kormann,C.;Steininger,H.;Heil,G.;Haas,O.; Novak,P.Journal of the Electrochemical Society 2000,147, 3997.

    (5) Lee,J.W.;Park,S.M.;Kim,H.J.Electrochemistry Communications 2009,11,1101.

    (6)Lee,K.S.;Myung,S.T.;Bang,H.;Amine,K.;Kim,D.W.; Sun,Y.K.Journal of Power Sources 2009,189,494.

    (7) Lim,S.;Cho,J.Electrochemistry Communications 2008,10, 1478.

    (8)Ma,S.B.;Nam,K.W.;Yoon,W.S.;Bak,S.M.;Yang,X.Q.; Cho,B.W.;Kim,K.B.Electrochemistry Communications 2009,11,1575.

    (9) Park,S.C.;Han,Y.S.;Kang,Y.S.;Lee,P.S.;Ahn,S.;Lee,H. M.;Lee,J.Y.Journal of the Electrochemical Society 2001,148, A680.

    (10)Park,S.C.;Kim,Y.M.;Kang,Y.M.;Kim,K.T.;Lee,P.S.; Lee,J.Y.Journal of Power Sources 2001,103,86.

    (11) Wang,X.Q.;Tanaike,O.;Kodama,M.;Hatori,H.Journal of Power Sources 2007,168,282.

    (12)Yue,H.;Huang,X.;Lv,D.;Yang,Y.Electrochimica Acta 2009, 54,5363.

    (13)Arico,A.S.;Bruce,P.;Scrosati,B.;Tarascon,J.M.;Van Schalkwijk,W.Nature Materials 2005,4,366.

    (14) Bruce,P.G.;Scrosati,B.;Tarascon,J.M.Angewandte Chemie-International Edition 2008,47,2930.

    (15) Chen,Z.Y.;Zhu,H.L.;Ji,S.;Linkov,V.;Zhang,J.L.;Zhu,W. Journal of Power Sources 2009,189,507.

    (16)Kamarulzaman,N.;Yusoff,R.;Kamarudin,N.;Shaari,N.H.; Aziz,N.A.A.;Bustam,M.A.;Blagojevic,N.;Elcombe,M.; Blackford,M.;Avdeev,M.;Arof,A.K.Journal of Power Sources 2009,188,274.

    (17)Ye,S.H.;Lv,J.Y.;Gao,X.P.;Wu,F.;Song,D.Y. Electrochimica Acta 2004,49,1623.

    (18) Caballero,A.;Cruz,M.;Hernán,L.;Melero,M.;Morales,J.; Castellón,E.R.Journal of Power Sources 2005,150,192.

    (19) Huang,Y.D.;Jiang,R.R.;Bao,S.J.;Dong,Z.F.;Cao,Y.L.; Jia,D.Z.;Guo,Z.P.Journal of Solid State Electrochemistry 2009,13,799.

    (20) Shaju,K.M.;Bruce,P.G.Chemistry of Materials 2008,20, 5557.

    (21) Vivekanandhan,S.;Venkateswarlu,M.;Satyanarayana,N. Journal of Alloys and Compounds 2007,441,284.

    (22) Patey,T.J.;Buchel,R.;Nakayama,M.;Novak,P.Physical Chemistry Chemical Physics 2009,11,3756.

    (23) Patey,T.J.;Buchel,R.;Ng,S.H.;Krumeich,F.;Pratsinis,S.E.; Novak,P.Journal of Power Sources 2009,189,149.

    (24) Cabana,J.;Valdes-Solis,T.;Palacin,M.R.;Oro-Sole,J.; Fuertes,A.;Marban,G.;Fuertes,A.B.Journal of Power Sources 2007,166,492.

    (25) Jiao,F.;Bao,J.L.;Hill,A.H.;Bruce,P.G.Angewandte Chemie-International Edition 2008,47,9711.

    (26)Luo,J.Y.;Wang,Y.G.;Xiong,H.M.;Xia,Y.Y.Chemistry of Materials 2007,19,4791.

    (27)Katakura,K.;Wada,K.;Kajiki,Y.;Yamamoto,A.;Ogumi,Z. Journal of Power Sources 2009,189,240.

    (28) Luo,J.Y.;Cheng,L.;Xia,Y.Y.Electrochemistry Communications 2007,9,1404.

    (29) Uchiyama,H.;Hosono,E.;Zhou,H.S.;Imai,H.Journal of Materials Chemistry 2009,19,4012.

    (30) Fang,H.S.;Li,L.P.;Yang,Y.;Yan,G.F.;Li,G.S.Journal of Power Sources 2008,184,494.

    (31) Jiang,C.H.;Dou,S.X.;Liu,H.K.;Ichihara,M.;Zhou,H.S. Journal of Power Sources 2007,172,410.

    (32) Kim,D.K.;Muralidharan,P.;Lee,H.W.;Ruffo,R.;Yang,Y.; Chan,C.K.;Peng,H.;Huggins,R.A.;Cui,Y.Nano Letters 2008,8,3948.

    (33) Fey,G.;Cho,Y.;Kumar,T.Materials Chemistry and Physics 2006,99,451.

    (34)Liu,Q.G.;Yang,W.S.;Zhang,G.;Xie,J.Y.;Yang,L.L. Journal of Power Sources 1999,81,412.

    (35)Fey,G.T.K.;Cho,Y.D.;Kumar,T.P.Materials Chemistry and Physics 2004,87,275.

    (36) Kalyani,P.;Kalaiselvi,N.;Muniyandi,N.Journal of Power Sources 2002,111,232.

    (37) Park,H.B.;Kim,J.;Lee,C.W.Journal of Power Sources 2001, 92,124.

    (38) Subramania,A.;Angayarkanni,N.;Vasudevan,T.Materials Chemistry and Physics 2007,102,19.

    (39)Wu,X.M.;Li,X.H.;Xiao,Z.B.;Liu,J.;Yan,W.B.;Ma,M.Y. Materials Chemistry and Physics 2004,84,182.

    (40) Zhang,Y.;Shin,H.C.;Dong,J.;Liu,M.Solid State Ionics 2004,171,25.

    (41)Amarilla,J.M.;Petrov,K.;Pico,F.;Avdeev,G.;Rojo,J.M.; Rojas,R.M.Journal of Power Sources 2009,191,591.

    (42) Kovacheva,D.;Gadjov,H.;Petrov,K.;Mandal,S.;Lazarraga, M.G.;Pascual,L.;Amarilla,J.M.;Rojas,R.M.;Herrero,P.; Rojo,J.M.Journal of Materials Chemistry 2002,12,1184.

    (43) Zhang,J.H.;Liu,J.B.;Wang,S.Z.;Zhan,P.;Wang,Z.L.; Ming,N.B.Adv.Funct.Mater.2004,14,1089.

    (44) Fu,Y.S.;Chen,L.J.;Liao,J.D.;Chuang,Y.J.;Hsu,K.C.; Chiang,Y.F.J.Appl.Polym.Sci.2011,121,154.

    (45) Kanamura,K.;Rho,Y.H.J.Electroanal.Chem.2003,559,69.

    (46) Kanamura,K.;Rho,Y.H.J.Solid State Chem.2004,177,2094.

    (47) Kanamura,K.;Rho,Y.H.Journal of Power Sources 2006,158, 1436.

    (48)Kanamura,K.;Rho,Y.H.;Umegaki,T.Chem.Lett.2001,1322.

    (49) Dai,K.H.;Mao,J.;Zhai,Y.C.Acta Phys.-Chim.Sin.2010,26, 2130.[代克化,毛 景,翟玉春.物理化學(xué)學(xué)報(bào),2010,26, 2130.]

    (50) Hirose,S.;Kodera,T.;Ogihara,T.Journal of Alloys and Compounds 2010,506,883.

    (51)Peng,Z.D.;Jiang,Q.L.;Du,K.;Wang,W.G.;Hu,G.R.;Liu, Y.X.Journal of Alloys and Compounds 2010,493,640.

    July 18,2011;Revised:November 24,2011;Published on Web:December 5,2011.

    High Rate Capability and Cycling Stability of Li1.07Mn1.93O4Nanoflakes Synthesized via Gel-Combustion Method

    MAO Jing DAI Ke-Hua*ZHAI Yu-Chun*
    (School of Materials and Metallurgy,Northeastern University,Shenyang 110004,P.R.China)

    Li1.07Mn1.93O4nanoflakes were synthesized by a gel-combustion method using polyvinylpyrrolidone(PVP)as the polymer chelating agent and fuel.Thermogravimetric and differential thermal analyses(TG/DTA)were used to investigate the combustion process of the gel precursor.X-ray diffraction(XRD)analysis indicated that the as-prepared Li1.07Mn1.93O4was a pure,highly crystalline phase. Scanning electron microscopy(SEM)results showed that most of the secondary particles were nanoflakes, about 100 nm in thickness,and the primary particle of the nanoflakes was about 100 nm in size.Charge and discharge tests suggested that the Li1.07Mn1.93O4nanoflakes had excellent rate capability and good cycling stability.The initial discharge capacity was 115.4 mAh·g-1at a rate of 0.5C(1C=120 mAh·g-1)and the capacity was maintained at 105.3 mAh·g-1at the high discharge rate of 40C.When cycling at 10C,the material retained 81%of its initial capacity after 850 cycles.Electrochemical impedance spectroscopy (EIS)tests indicated that the charge-transfer resistance(Rct)of the Li1.07Mn1.93O4nanoflakes was much less than that of commercial Li1.07Mn1.93O4.

    Lithium ion battery;Lithium manganese oxide;Combustion synthesis;Rate capability; Cycling stability

    10.3866/PKU.WHXB201112052

    *Corresponding authors.DAI Ke-Hua,Email:daikh@smm.neu.edu.cn;Tel/Fax:+86-24-83684943.ZHAI Yu-Chun,Email:zhaiyc@smm.neu.edu.cn

    O646

    猜你喜歡
    高倍率倍率凝膠
    大型桅桿起重機(jī)起升變倍率方法及其應(yīng)用
    纖維素氣凝膠的制備與應(yīng)用研究進(jìn)展
    三維多孔石墨烯在高倍率超級(jí)電容器中的應(yīng)用
    能源工程(2020年5期)2021-01-04 01:29:06
    超輕航天材料——?dú)饽z
    軍事文摘(2020年20期)2020-11-16 00:31:56
    保暖神器——?dú)饽z外套
    FANUC0iD系統(tǒng)速度倍率PMC控制方法
    “凍結(jié)的煙”——?dú)饽z
    論ZVR高倍率視頻壓縮存儲(chǔ)技術(shù)的先進(jìn)性與實(shí)用性
    一種智能加工系統(tǒng)中的機(jī)床倍率控制方法
    李賢能:銀隆鈦高倍率快充 解決新能源汽車之痛
    免费观看无遮挡的男女| 日韩一区二区视频免费看| 国产黄色视频一区二区在线观看| 亚洲成国产人片在线观看| 深夜精品福利| 免费大片黄手机在线观看| 搡老乐熟女国产| videosex国产| 久久婷婷青草| 国产黄色视频一区二区在线观看| 国产欧美日韩综合在线一区二区| 日本-黄色视频高清免费观看| 蜜桃在线观看..| 久久久国产欧美日韩av| 欧美成人午夜精品| 午夜福利视频精品| 搡老乐熟女国产| 一边亲一边摸免费视频| 日韩不卡一区二区三区视频在线| 国产 一区精品| 亚洲精品视频女| 国产精品 国内视频| 亚洲一区二区三区欧美精品| 国产黄色免费在线视频| 中文字幕人妻熟女乱码| 桃花免费在线播放| 免费av中文字幕在线| 免费观看性生交大片5| 99久久精品国产国产毛片| 国产亚洲一区二区精品| 熟妇人妻不卡中文字幕| 97人妻天天添夜夜摸| 亚洲五月色婷婷综合| 18禁动态无遮挡网站| 久久精品国产鲁丝片午夜精品| 涩涩av久久男人的天堂| 久热这里只有精品99| 尾随美女入室| 蜜桃在线观看..| 亚洲中文av在线| 欧美日韩综合久久久久久| 亚洲欧美一区二区三区黑人 | 99热全是精品| 国产视频首页在线观看| 久久久久精品久久久久真实原创| 人体艺术视频欧美日本| 久久久a久久爽久久v久久| 亚洲美女搞黄在线观看| 午夜激情av网站| 大香蕉97超碰在线| 久久精品久久精品一区二区三区| 国产精品国产三级国产av玫瑰| 国产精品无大码| 纵有疾风起免费观看全集完整版| 性高湖久久久久久久久免费观看| 久久这里有精品视频免费| 狠狠精品人妻久久久久久综合| 欧美国产精品va在线观看不卡| 中文字幕最新亚洲高清| 视频区图区小说| 亚洲精品aⅴ在线观看| 波野结衣二区三区在线| 青春草视频在线免费观看| 99热全是精品| 国产在视频线精品| 亚洲欧洲精品一区二区精品久久久 | 国产有黄有色有爽视频| 亚洲精品视频女| 九九在线视频观看精品| 热99久久久久精品小说推荐| 99热6这里只有精品| 一本大道久久a久久精品| 黄片播放在线免费| 午夜久久久在线观看| 国产亚洲欧美精品永久| 亚洲欧洲国产日韩| 欧美精品国产亚洲| 一边亲一边摸免费视频| 又大又黄又爽视频免费| 一级,二级,三级黄色视频| 免费观看av网站的网址| 久久精品国产亚洲av涩爱| 少妇被粗大的猛进出69影院 | 亚洲成色77777| 国产一区二区激情短视频 | 777米奇影视久久| 观看av在线不卡| 日本av免费视频播放| av播播在线观看一区| 欧美精品一区二区大全| 国产白丝娇喘喷水9色精品| 欧美老熟妇乱子伦牲交| 91成人精品电影| 亚洲精品视频女| 日本免费在线观看一区| 国产欧美亚洲国产| 宅男免费午夜| 精品人妻在线不人妻| 免费黄网站久久成人精品| 久久97久久精品| 爱豆传媒免费全集在线观看| 成人免费观看视频高清| 在线 av 中文字幕| 少妇的逼好多水| 精品熟女少妇av免费看| 午夜影院在线不卡| 国产无遮挡羞羞视频在线观看| 飞空精品影院首页| 国产欧美日韩一区二区三区在线| 亚洲欧美中文字幕日韩二区| 国产免费一区二区三区四区乱码| 成人18禁高潮啪啪吃奶动态图| 国产男女内射视频| 99热网站在线观看| 成人国语在线视频| 精品午夜福利在线看| 女人精品久久久久毛片| 自拍欧美九色日韩亚洲蝌蚪91| 久久ye,这里只有精品| 亚洲,一卡二卡三卡| 久久国产亚洲av麻豆专区| 亚洲精品久久午夜乱码| 男男h啪啪无遮挡| 一边摸一边做爽爽视频免费| 日韩一区二区视频免费看| 亚洲av电影在线进入| 肉色欧美久久久久久久蜜桃| 欧美xxⅹ黑人| 满18在线观看网站| 18在线观看网站| 母亲3免费完整高清在线观看 | 99热全是精品| 狠狠精品人妻久久久久久综合| 免费人成在线观看视频色| 久久精品aⅴ一区二区三区四区 | 欧美成人午夜精品| 伊人久久国产一区二区| 亚洲,欧美精品.| 性高湖久久久久久久久免费观看| 欧美最新免费一区二区三区| 色94色欧美一区二区| 一级毛片黄色毛片免费观看视频| 满18在线观看网站| 91午夜精品亚洲一区二区三区| 国产成人精品久久久久久| 在线看a的网站| 汤姆久久久久久久影院中文字幕| freevideosex欧美| 国产熟女午夜一区二区三区| 色吧在线观看| 国产成人91sexporn| 日本vs欧美在线观看视频| 国产激情久久老熟女| 丰满迷人的少妇在线观看| 人人妻人人添人人爽欧美一区卜| 久久精品久久精品一区二区三区| 啦啦啦视频在线资源免费观看| 卡戴珊不雅视频在线播放| videossex国产| 韩国av在线不卡| 婷婷色av中文字幕| 在线观看人妻少妇| 日韩精品免费视频一区二区三区 | 亚洲欧美一区二区三区黑人 | 交换朋友夫妻互换小说| 国产精品无大码| 亚洲综合色惰| 国产精品女同一区二区软件| 一本久久精品| 三上悠亚av全集在线观看| 热99久久久久精品小说推荐| 亚洲人成网站在线观看播放| 高清视频免费观看一区二区| 亚洲成人av在线免费| 亚洲av日韩在线播放| 免费观看a级毛片全部| 少妇人妻 视频| 九色成人免费人妻av| 搡老乐熟女国产| 国产免费一区二区三区四区乱码| 亚洲欧美中文字幕日韩二区| 亚洲成人一二三区av| 精品亚洲成a人片在线观看| 国产成人午夜福利电影在线观看| 99精国产麻豆久久婷婷| 日韩av在线免费看完整版不卡| 亚洲熟女精品中文字幕| 亚洲av福利一区| 亚洲 欧美一区二区三区| 一级毛片我不卡| 欧美亚洲日本最大视频资源| 高清毛片免费看| 国产免费又黄又爽又色| 午夜福利,免费看| 欧美最新免费一区二区三区| 亚洲av欧美aⅴ国产| 男人操女人黄网站| 欧美精品国产亚洲| 观看美女的网站| 国产精品久久久久成人av| 天堂俺去俺来也www色官网| 亚洲少妇的诱惑av| 国产成人午夜福利电影在线观看| 国产高清不卡午夜福利| 日产精品乱码卡一卡2卡三| 爱豆传媒免费全集在线观看| 最近中文字幕高清免费大全6| 午夜福利影视在线免费观看| 天堂俺去俺来也www色官网| 久久精品国产亚洲av天美| 精品少妇黑人巨大在线播放| 国产女主播在线喷水免费视频网站| 日韩伦理黄色片| 亚洲综合色网址| 视频中文字幕在线观看| 中文字幕精品免费在线观看视频 | 久久久久久久久久久免费av| 久久人妻熟女aⅴ| 91国产中文字幕| 日韩大片免费观看网站| 欧美性感艳星| 亚洲欧美一区二区三区国产| 乱人伦中国视频| 深夜精品福利| 亚洲欧美一区二区三区黑人 | 亚洲av欧美aⅴ国产| 日本av免费视频播放| 国产激情久久老熟女| 美国免费a级毛片| 热re99久久精品国产66热6| 国产在线一区二区三区精| 赤兔流量卡办理| 成人亚洲欧美一区二区av| 2022亚洲国产成人精品| 国产一区二区在线观看av| 欧美性感艳星| 国产亚洲精品久久久com| 999精品在线视频| 考比视频在线观看| 美女脱内裤让男人舔精品视频| 日本与韩国留学比较| 日韩中文字幕视频在线看片| 久久韩国三级中文字幕| 亚洲五月色婷婷综合| 精品亚洲成国产av| 夫妻性生交免费视频一级片| 久久免费观看电影| 草草在线视频免费看| 国产成人av激情在线播放| 侵犯人妻中文字幕一二三四区| tube8黄色片| 女性生殖器流出的白浆| av播播在线观看一区| 国产激情久久老熟女| 国产精品久久久久成人av| 久久精品国产a三级三级三级| 99re6热这里在线精品视频| 亚洲av中文av极速乱| 又粗又硬又长又爽又黄的视频| 国精品久久久久久国模美| 亚洲欧美日韩另类电影网站| 一个人免费看片子| 亚洲av电影在线进入| 免费观看a级毛片全部| 久久热在线av| 下体分泌物呈黄色| 欧美精品高潮呻吟av久久| 少妇高潮的动态图| 天天躁夜夜躁狠狠久久av| 亚洲综合色惰| 日韩成人av中文字幕在线观看| 亚洲欧美中文字幕日韩二区| 热re99久久精品国产66热6| 久久久国产欧美日韩av| 亚洲中文av在线| 你懂的网址亚洲精品在线观看| 波多野结衣一区麻豆| 国产亚洲午夜精品一区二区久久| 最近手机中文字幕大全| 晚上一个人看的免费电影| 国产精品国产av在线观看| 国产高清不卡午夜福利| 中文天堂在线官网| 亚洲精品乱久久久久久| 久久99热这里只频精品6学生| 少妇人妻精品综合一区二区| 一个人免费看片子| 国产白丝娇喘喷水9色精品| 国产精品国产三级专区第一集| 亚洲精品色激情综合| 国产成人免费无遮挡视频| 成人二区视频| 久久久精品免费免费高清| 亚洲欧美精品自产自拍| 我的女老师完整版在线观看| 午夜福利视频精品| 欧美 日韩 精品 国产| 欧美激情 高清一区二区三区| 久久久亚洲精品成人影院| 大片电影免费在线观看免费| 又黄又粗又硬又大视频| 新久久久久国产一级毛片| 免费av不卡在线播放| 国产欧美日韩综合在线一区二区| 亚洲欧美日韩卡通动漫| 精品99又大又爽又粗少妇毛片| 在线精品无人区一区二区三| 亚洲性久久影院| 亚洲av日韩在线播放| 精品久久蜜臀av无| 午夜福利影视在线免费观看| 亚洲av在线观看美女高潮| av有码第一页| 99热国产这里只有精品6| 9色porny在线观看| 啦啦啦啦在线视频资源| 国产成人午夜福利电影在线观看| 永久免费av网站大全| 日韩中文字幕视频在线看片| 日韩欧美精品免费久久| 国产欧美日韩一区二区三区在线| 人妻一区二区av| 日本色播在线视频| 在线观看国产h片| 婷婷成人精品国产| 人妻一区二区av| 亚洲av国产av综合av卡| 国产激情久久老熟女| 成年人午夜在线观看视频| 国产日韩欧美在线精品| av.在线天堂| 一本色道久久久久久精品综合| 性色avwww在线观看| 新久久久久国产一级毛片| 亚洲经典国产精华液单| 久久精品国产自在天天线| 亚洲精品久久午夜乱码| 人妻系列 视频| 少妇被粗大的猛进出69影院 | 看非洲黑人一级黄片| 亚洲欧美中文字幕日韩二区| www.av在线官网国产| 最近最新中文字幕免费大全7| a级毛色黄片| 国产精品一区二区在线观看99| 高清av免费在线| 在线观看www视频免费| 精品人妻熟女毛片av久久网站| 五月伊人婷婷丁香| 一本久久精品| 两个人免费观看高清视频| av播播在线观看一区| av在线播放精品| 国产精品麻豆人妻色哟哟久久| 伊人亚洲综合成人网| 狂野欧美激情性xxxx在线观看| 免费日韩欧美在线观看| 少妇被粗大的猛进出69影院 | 激情五月婷婷亚洲| 国产一级毛片在线| 国产一区二区激情短视频 | 中文字幕制服av| 成人亚洲精品一区在线观看| 国产男女内射视频| 国产欧美日韩一区二区三区在线| 最近中文字幕2019免费版| 99香蕉大伊视频| 18禁在线无遮挡免费观看视频| 欧美97在线视频| 亚洲精品自拍成人| 日本爱情动作片www.在线观看| 乱人伦中国视频| 日本-黄色视频高清免费观看| 国产亚洲午夜精品一区二区久久| 香蕉精品网在线| 色网站视频免费| 国产亚洲欧美精品永久| 亚洲成人一二三区av| 亚洲经典国产精华液单| 精品午夜福利在线看| 国产精品蜜桃在线观看| 99国产综合亚洲精品| 日本猛色少妇xxxxx猛交久久| 久久久精品区二区三区| 国产白丝娇喘喷水9色精品| 亚洲av男天堂| 成年人午夜在线观看视频| 国产又色又爽无遮挡免| 成人黄色视频免费在线看| 日韩欧美精品免费久久| 熟女av电影| 一级毛片 在线播放| 亚洲人与动物交配视频| 性高湖久久久久久久久免费观看| 在线观看三级黄色| 久久99热6这里只有精品| 在线天堂中文资源库| 国产男女内射视频| 韩国精品一区二区三区 | 热re99久久国产66热| 亚洲第一av免费看| 国产黄频视频在线观看| 大片免费播放器 马上看| 欧美97在线视频| 成人黄色视频免费在线看| 99久久精品国产国产毛片| 老女人水多毛片| av有码第一页| 国产国拍精品亚洲av在线观看| 久久久精品区二区三区| 久久久国产精品麻豆| 精品久久国产蜜桃| 国产爽快片一区二区三区| 国产极品天堂在线| 国产亚洲精品久久久com| 国产一区二区激情短视频 | 成人午夜精彩视频在线观看| av福利片在线| 久久精品夜色国产| 成人免费观看视频高清| av又黄又爽大尺度在线免费看| 国产精品99久久99久久久不卡 | 在线观看免费高清a一片| 日韩视频在线欧美| 日本午夜av视频| 女性被躁到高潮视频| 国产欧美亚洲国产| av又黄又爽大尺度在线免费看| 久久精品夜色国产| 老司机影院毛片| 九色成人免费人妻av| 精品99又大又爽又粗少妇毛片| 男女免费视频国产| 国产精品欧美亚洲77777| 日韩 亚洲 欧美在线| 久久鲁丝午夜福利片| 中文精品一卡2卡3卡4更新| 激情视频va一区二区三区| 99精国产麻豆久久婷婷| 亚洲欧洲日产国产| 青春草国产在线视频| 日本黄色日本黄色录像| 国产麻豆69| 9热在线视频观看99| 99re6热这里在线精品视频| 十分钟在线观看高清视频www| 亚洲精品成人av观看孕妇| 久久久久久久久久人人人人人人| 中文字幕最新亚洲高清| 乱人伦中国视频| 日韩人妻精品一区2区三区| 精品国产国语对白av| 欧美+日韩+精品| 亚洲内射少妇av| 久久精品国产a三级三级三级| 久久人妻熟女aⅴ| 久久精品久久精品一区二区三区| videos熟女内射| 国产精品国产三级专区第一集| 男人爽女人下面视频在线观看| 免费人成在线观看视频色| 亚洲国产av影院在线观看| 韩国高清视频一区二区三区| 90打野战视频偷拍视频| 搡老乐熟女国产| 久久精品国产鲁丝片午夜精品| 久久久亚洲精品成人影院| 亚洲高清免费不卡视频| 两个人免费观看高清视频| 91aial.com中文字幕在线观看| 精品卡一卡二卡四卡免费| 少妇被粗大的猛进出69影院 | 久久人人爽人人爽人人片va| 热re99久久精品国产66热6| 香蕉丝袜av| 热re99久久国产66热| 中国美白少妇内射xxxbb| 亚洲激情五月婷婷啪啪| 嫩草影院入口| h视频一区二区三区| 视频区图区小说| 少妇人妻精品综合一区二区| 国产男女超爽视频在线观看| 成人18禁高潮啪啪吃奶动态图| 精品人妻一区二区三区麻豆| 日产精品乱码卡一卡2卡三| 日韩免费高清中文字幕av| 亚洲精品美女久久久久99蜜臀 | 又粗又硬又长又爽又黄的视频| 黄色 视频免费看| av在线观看视频网站免费| 高清欧美精品videossex| 久久久久久久久久成人| 一级片'在线观看视频| 韩国精品一区二区三区 | 亚洲综合精品二区| 国产一区二区三区综合在线观看 | 亚洲伊人色综图| 日韩伦理黄色片| 久久精品久久久久久久性| 午夜福利网站1000一区二区三区| 美女内射精品一级片tv| 欧美激情国产日韩精品一区| 一级a做视频免费观看| 国产精品蜜桃在线观看| 免费人妻精品一区二区三区视频| 亚洲精品日本国产第一区| 成人亚洲欧美一区二区av| 久久97久久精品| a级片在线免费高清观看视频| 国产亚洲欧美精品永久| 丁香六月天网| 精品一区二区三区四区五区乱码 | 91久久精品国产一区二区三区| 九九爱精品视频在线观看| freevideosex欧美| 亚洲国产精品一区三区| 亚洲第一av免费看| 搡女人真爽免费视频火全软件| 欧美3d第一页| 亚洲精品视频女| 久久久久网色| 中文字幕人妻丝袜制服| 国产av国产精品国产| 欧美激情极品国产一区二区三区 | 日本黄色日本黄色录像| 啦啦啦中文免费视频观看日本| 国产精品.久久久| 亚洲国产最新在线播放| 日本黄色日本黄色录像| 一级毛片电影观看| 午夜免费男女啪啪视频观看| 伦理电影免费视频| 欧美激情 高清一区二区三区| 男女国产视频网站| a级片在线免费高清观看视频| 午夜免费鲁丝| 两个人免费观看高清视频| 国产精品免费大片| 老女人水多毛片| 69精品国产乱码久久久| videossex国产| 日韩制服丝袜自拍偷拍| 久久久精品免费免费高清| 欧美成人精品欧美一级黄| 国产成人精品福利久久| 久久久久久伊人网av| 免费看av在线观看网站| 最近中文字幕2019免费版| 精品久久国产蜜桃| 国产高清三级在线| 亚洲色图 男人天堂 中文字幕 | 日韩伦理黄色片| 夜夜骑夜夜射夜夜干| 男人添女人高潮全过程视频| 少妇人妻 视频| 中文字幕制服av| 观看av在线不卡| 国产日韩欧美视频二区| 边亲边吃奶的免费视频| 99久久精品国产国产毛片| 精品国产一区二区三区久久久樱花| 国产成人免费无遮挡视频| 欧美激情国产日韩精品一区| 9色porny在线观看| 国产在线视频一区二区| 91精品国产国语对白视频| 久久久久久久久久久免费av| 综合色丁香网| kizo精华| 久久久久人妻精品一区果冻| 日韩一区二区视频免费看| 大码成人一级视频| 成人综合一区亚洲| 精品久久蜜臀av无| 国产乱人偷精品视频| 中文字幕人妻熟女乱码| 99久久人妻综合| 少妇人妻久久综合中文| 精品亚洲成a人片在线观看| 十分钟在线观看高清视频www| 精品人妻一区二区三区麻豆| 亚洲欧美成人综合另类久久久| 韩国精品一区二区三区 | 久久午夜福利片| 亚洲成色77777| 99九九在线精品视频| 人体艺术视频欧美日本| 咕卡用的链子| 一级毛片黄色毛片免费观看视频| 精品国产国语对白av| 免费女性裸体啪啪无遮挡网站| 美国免费a级毛片| 免费女性裸体啪啪无遮挡网站| 热99国产精品久久久久久7| 狠狠婷婷综合久久久久久88av| 性色avwww在线观看| 美女脱内裤让男人舔精品视频| 人妻人人澡人人爽人人| 亚洲av电影在线进入| 亚洲国产最新在线播放| 日本-黄色视频高清免费观看| 女性被躁到高潮视频| 欧美精品人与动牲交sv欧美| 精品一区二区三区视频在线| 边亲边吃奶的免费视频| 秋霞在线观看毛片| 蜜臀久久99精品久久宅男| 亚洲人与动物交配视频| 免费高清在线观看视频在线观看| 天堂俺去俺来也www色官网| 免费人妻精品一区二区三区视频| 国产69精品久久久久777片| 日本与韩国留学比较| 麻豆精品久久久久久蜜桃|