• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    具有不同Bi/Ti摩爾比的BiOI/TiO2(A)光催化劑的結(jié)構(gòu)與性能

    2012-12-11 09:27:08李慧泉崔玉民吳興才洪文珊
    物理化學學報 2012年8期
    關(guān)鍵詞:阜陽光催化劑催化活性

    李慧泉 崔玉民,* 吳興才 華 林 洪文珊

    (1安徽阜陽師范學院化學化工學院,安徽阜陽236041;2安徽環(huán)境污染物降解與監(jiān)測省級實驗室,安徽阜陽236041; 3南京大學配位化學國家重點實驗室,南京210093;4新加坡Linovus技術(shù)有限公司研發(fā)中心,新加坡059818)

    具有不同Bi/Ti摩爾比的BiOI/TiO2(A)光催化劑的結(jié)構(gòu)與性能

    李慧泉1,2崔玉民1,2,*吳興才3,*華 林4洪文珊1

    (1安徽阜陽師范學院化學化工學院,安徽阜陽236041;2安徽環(huán)境污染物降解與監(jiān)測省級實驗室,安徽阜陽236041;3南京大學配位化學國家重點實驗室,南京210093;4新加坡Linovus技術(shù)有限公司研發(fā)中心,新加坡059818)

    在室溫條件下通過沉積法制備了BiOI敏化納米銳鈦礦TiO2(A)光催化劑.用X射線衍射(XRD),X射線光電子能譜(XPS),光致發(fā)光(PL)光譜和紫外-可見漫反射光譜(UV-Vis DRS)等手段對其進行了表征.通過羅丹明B(RhB)催化降解實驗評價了其光催化活性.隨BiOI含量增加,BiOI/TiO2(A)在370-630 nm的吸收強度增強,吸收帶邊紅移增加,紫外和可見光催化活性先增加,當Bi/Ti摩爾比約為1.7%時,各自達到最大值,然后隨BiOI含量的進一步增加而減小.1.7%BiOI/TiO2(A)的可見光活性明顯高于P25,它的紫外光活性也略高于P25.在BiOI含量相近時,BiOI/TiO2(A)比BiOI/P25具有更低的光催化活性.和TiO2(A)相比,1.7%BiOI/TiO2(A)明顯具有更高的紫外和可見光催化活性,這歸因于它在370-630 nm的強吸收、吸收帶邊紅移明顯以及光生電子和空穴的有效轉(zhuǎn)移,減少了電子-空穴對的復(fù)合.

    沉積法;敏化;銳鈦礦;BiOI含量;光催化

    1 Introduction

    Anatase TiO2(A)has been widely used as a photocatalyst for solar energy conversion and degradation of environmental pollutants because of nontoxicity,chemical stability,good photoactivity,and low cost.1-9However,the intrinsic property of TiO2(A)(wide band-gap energy,~3.2 eV)limits its photocatalytic activity in the UV light region.In order to extend TiO2(A)photocatalytic activity into the visible light region,some attempts have been made to sensitize TiO2(A).10-14Among these attempts,CdS is widely studied as an efficient sensitizer to make TiO2(A)response visible light,but it is prone to decompose and leach out hazardous Cd2+ions under photocatalytic reaction systems.15

    Recently,the as-prepared BiOI micro/nanostructure materials have exhibited efficient photocatalytic activity in the degradation of organic pollutants.16-18Owing to BiOI having narrow band-gap energy(~1.8 eV),it could absorb most of visible solar light and may be a potential sensitizer to sensitize wide band-gap semiconductors.Zhang et al.19reported that BiOI/ TiO2heterostructures with different Bi/Ti molar ratios were synthesized by a soft-chemical method at 80°C and BiOI/TiO2heterostructures exhibited much higher visible light photocatalytic activity than TiO2,and the visible light photocatalytic activity enhancement of BiOI/TiO2heterostructures could be attributed to its strong absorption in the visible region and low recombination rate of the electron-hole pairs because of the heterojunction formed between BiOI and TiO2.Sensitization of oxide photocatalysts is one of the well-known methods for enhancing their photocatalytic activity.However,to the best of our knowledge,there were few reports on the BiOI as a sensitizer of TiO2(A),and the effect of Bi/Ti molar ratios on both UV and visible light photocatalytic performances was also rarely investigated.

    In this work,BiOI-sensitisized TiO2(A)catalysts with varying BiOI content were synthesized by a deposition method at room temperature,and effect of BiOI contents on the structure and photocatalytic activity of BiOI/TiO2(A)catalysts were investigated in detail.The structure of the catalysts were characterized by using X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),photoluminescence(PL)spectrum,and UV-Vis diffuse reflectance spectrum(UV-Vis DRS),and the photocatalytic activities were tested by a degradation of RhB.

    2 Experimental

    2.1 Catalyst preparation

    Tetrabutyl titanate(Ti(OC4H9)4)is chemical pure,and butyl alcohol(C4H9OH),acetic acid,ethanol,nitric acid bismuth salt(Bi(NO3)3·5H2O),potassium iodide(KI),ethylene glycol(C2H6O2)are analytical pure.

    The pure TiO2(A)catalysts were prepared by a sol-gel procedure with Ti(OC4H9)4as raw materials.Ti(OC4H9)4(7.0 mL) was added dropwise into one mixture consisting of 3.0 mL of acetic acid(AR)and 30 mL of C4H9OH in a dry atmosphere under roughly stirring,then a certain of deionized water was added dropwise into above mixture solution to carry out hydrolysis until the yellowish transparent sol was obtained,which was allowed to stand for 24 h at room temperature and was dried in air at 110°C for 24 h.Thus,TiO2(A)gel precursor was obtained.Finally,TiO2(A)catalysts were gained by the thermal treatment of TiO2(A)gel precursor in air at 500°C for 3 h and grinding.

    The BiOI-sensitized TiO2(A)catalysts with different BiOI contents,denoted as BiOI/TiO2(A),were prepared by a deposition method.In a typical experiment,different stoichiometric amounts of Bi(NO3)3·5H2O and 30.0 mg KI were dissolved in 20 mL ethylene glycol(AR)to obtain a clear solution I.TiO2(A)(1.0 g)was ultrasonically dispersed into deionized water to form a homogeneous mixture II.Then the solution I was added dropwise into the mixture II under strong stirring.After further agitation for 5.0 h at room temperature,the products obtained were separated centrifugally,washed with ethanol and deionized water and dried at 80°C in air.The final samples with original Bi/Ti molar ratios of 0.000,0.010,0.012,0.015,0.017, and 0.020 were denoted as 0.0%,1.0%,1.2%,1.5%,1.7%,and 2.0%BiOI/TiO2(A),respectively.

    Reference BiOI-sensitized TiO2(P25)samples with original Bi/Ti molar ratios of 0.000,0.010,0.012,0.015,0.017,and 0.020 were denoted as 0.0%,1.0%,1.2%,1.5%,1.7%,and 2.0%BiOI/P25,respectively,prepared by the same method.

    2.2 Catalyst characterization

    X-ray diffraction were performed on a Philips X?pert diffractometer equipped with Ni-filtered Cu Kαradiation source(λ= 0.15418 nm).The X-ray tube was operated at 40 kV and 40 mA.XPS measurements were carried out using Multilab 2000 XPS system with a monochromatic MgKαsource and a charge neutralizer(Multilab 2000 XPS,Thermo Scientific,America). All binding energies were referenced to contaminant carbon(C 1s:284.6 eV).The PL spectra,obtained at 77 K with an excitation wavelength of 220 nm,were recorded on a CARY Eclipse (America)fluorescence spectrophotometer equipped with a Xe Lamp as an excitation source operating in the front face mode. UV-Vis DRS of the catalysts were determined with a Shimadzu UV-3600 spectrophotometer(Japan)using BaSO4as a reference.The actual Bi/Ti molar ratios of the obtained BiOI/TiO2(A)photocatalysts were detected by IRIS(INTREPID 2)inductively coupled plasma atomic emission spectrometry (ICP-AES,ICP710,Varian,America),and the results are listed in Table 1.

    Table 1 Lattice parameters and cell volumes for different BiOI/TiO2(A)samples

    2.3 Photocatalytic reaction

    The self-degradation of RhB solution was evaluated in the absence of BiOI/TiO2photocatalyst under UV or visible light irradiation for 1.0 h.The photocatalytic activities of BiOI/TiO2(A)catalysts were evaluated by the degradation of rhodamine B(RhB)in an aqueous solution.The UV light was obtained by a high-pressure mercury lamp(300 W).The UV irradiation intensity(the wavelengths below 400 nm)of the reaction solution surface is about 15.0 mW·cm-2(UV-A radiometer,the Photoelectric Instrument Factory of Beijing Normal University). The visible light source was a Xenon-arc lamp(350 W)with the combination of a cut-off filter(>400 nm)to eliminate UV radiation during visible light experiments.The visible irradiation intensity of the reaction solution surface is about 8.0 mW·cm-2(FZ-A radiometer,the Photoelectric Instrument Factory of Beijing Normal University).For each UV and visible light test,40 mL RhB aqueous solution(1.04×10-5mol·L-1) and 0.1 g catalyst catalysts were used.A general procedure was carried out as follows.First,RhB aqueous solution was placed into a water-jacketed reactor maintained at 25°C,and then the catalyst samples were suspended in the solution.The suspension was stirred vigorously for 1.0 h in the dark to establish the adsorption-desorption equilibrium of RhB,then irradiated under visible or UV light.About 3.0 mL solution was withdrawn from the reactor periodically and centrifuged and analyzed for the degradation of RhB using a UV-2450 UV-Vis spectrophotometer.RhB has a maximum absorbance at 554 nm,which was used as a value for monitoring RhB degradation.The absorbance was converted to the RhB concentration in accordance with a standard curve showing a linear relationship between the concentration and the absorbance at this wavelength.

    3 Results and discussion

    3.1 Catalyst structure

    Fig.1 XRD patterns of BiOI/TiO2(A)catalysts with different BiOI contentsBi/Ti molar ratio:(a)0.0%;(b)1.0%;(c)1.2%;(d)1.5%;(e)1.7%;(f)2.0%

    Fig.1 shows the XRD patterns of BiOI/TiO2(A)catalysts with different BiOI contents.It can be seen that 2.0%BiOI/ TiO2(A)exhibits a coexistence of both BiOI and anatase TiO2phases,the peaks around 2θ of 29.7°,31.7°,and 45.5°were indexed to those of tetragonal BiOI(JCPDS No.01-073-2062) and correspond to(012),(110),and(020),respectively.When the amount of BiOI is lower than 1.7%,no significant diffraction peak of BiOI could be detected,which could be ascribed to its lower content and high dispersion on the surface of TiO2(A)particles.The average crystalline sizes of TiO2(A)in the BiOI/TiO2(A)composites were calculated to be 19.6,21.2, 19.1,21.7,25.1,and 24.7 nm for 0.0%,1.0%,1.2%,1.5%, 1.7%,and 2.0%BiOI/TiO2(A),respectively,and the average crystalline sizes of BiOI in the BiOI/TiO2(A)composites were calculated to be 5.4 and 3.7 nm for 1.7%and 2.0%BiOI/TiO2(A),respectively,according to the Scherrer formula:20L=0.90λ/ βcosθ,where L is taken as crystalline size,λ is 0.154 nm,β is the full width half maximum(FWHM)measured in radians on the 2θ scale,and θis the Bragg angle for the diffraction peaks.

    The lattice parameters of BiOI-sensitized samples were calculated using Bragg?s equation(2dsinθ=nλ,d:surface distance, θ:angle between incident surface and reflective surface,n:diffraction series,λ:X-ray wavelength)and a formula of(1/d2= (h2+k2)/a2+l2/c2,a,b,c:cell parameters,d:surface distance,h, k,l:indices of crystal face)from their(101),(004),and(200) diffraction peaks,and the results are listed in Table 1.It can be seen that the lattice parameters of a-axis for all the BiOI-sensitized samples are almost unchanged,while that of the c-axis decreases obviously with increase of BiOI content,indicating a lattice shrinkage along the c-axis due to the sensitization of BiOI.This lattice shrinkage may be attributed to the appearance of bismuth vacancy to reach new charge balance after the substitution of oxygen with iodine.21

    In order to further determine the valence state of bismuth and iodine on the surfaces of the BiOI/TiO2(A),XPS measurements were employed to analyze the 1.7%BiOI/TiO2(A)catalyst.Fig.2(A)reveals the binding energies are 157.8 and 163.2 eV for Bi 4f7/2and Bi 4f5/2,respectively,which indicates that Bi is in the form of Bi3+assigned to BiOI.19The I 3d core level spectrum from Fig.2(B)could be observed at the binding energies of around 630.2 eV(I 3d3/2)and 618.6 eV(I 3d5/2),in agreement with that in BiOI.The above XRD and XPS results verify the existence of BiOI along with TiO2(A).

    3.2 Photocatalytic activity

    Fig.2 XPS spectra of 1.7%BiOI/TiO2(A)catalyst

    Prior to illumination,an adsorption-desorption equilibrium between the photocatalyst and RhB was established in the dark for 1.0 h.The corresponding dark adsorption values for different samples are listed in Table 2.

    The effect of BiOI sensitizing on the photocatalytic activity of BiOI/TiO2(A)has been investigated by rhodamine B(RhB) degradation in an aqueous solution under UV and visible light irradiation.Table 2 shows the UV and visible light photocatalytic activities of BiOI/TiO2(A)samples with different BiOI content.It can be seen that under UV or visible light irradiationthe degradation of rhodamine B is much lower without photocatalyst in the reaction system.In comparison,the TiO2(A)and BiOI/TiO2(A)catalysts exhibit higher photocatalytic activities than without photocatalyst for RhB degradation,and the BiOI content in the TiO2(A)exerts great influences on the photocatalytic activity of BiOI/TiO2(A)catalyst.With BiOI content increasing,the photocatalytic activities of BiOI/TiO2(A)under UV and visible light irradiation first increase,reaching a maximum around BiOI content of 1.7%,respectively,and then decrease with further increasing BiOI content.The 1.7%BiOI/ TiO2(A)catalyst exhibits much higher visible light photoactivity than P25(i.e.0.0%BiOI/P25 in Table 2),and its UV light photoactivity is slightly higher than that of P25,indicating that sensitization of BiOI in the TiO2(A)with optimum BiOI content remarkably enhances the photocatalytic activity of TiO2(A).In comparison,the UV and visible light photocatalytic activities of BiOI/TiO2(A)catalysts with similar BiOI content are lower than those of BiOI/P25 catalysts,22,23which may be attributed to the fact that the existence of an intimate contact between anatase and rutile particles in the P25 catalyst that enhances electron transfer,hindering the recombination of photogenerated electrons and holes.

    Table 2 Dark adsorption values and photocatalytic activities of different catalysts under UV and visible light irradiation for 1.0 h

    Fig.3 UV-Vis spectra of the RhB aqueous solution under UV light irradiation in the presence of TiO2(A)and 1.7%BiOI/TiO2(A)catalysts

    The UV-Vis spectra of RhB aqueous solution as a function of UV and visible light irradiation time in the presence of TiO2(A)and 1.7%BiOI/TiO2(A)catalysts are illustrated in Fig.3 and Fig.4.It can be seen that the visible region peak intensities in the photodegradation of RhB by 1.7%BiOI/TiO2(A)de-crease more obviously than by TiO2(A)during the same irradiation time,which is in agreement with the results of Table 2. The main absorbance of the degraded solution in the presence of 1.7%BiOI/TiO2(A)catalyst gradually shifted from 554 nm to shorter wavelength as the irradiation time was increased,corresponding to the stepwise formation of a series ofN-deethylated intermediates.24Since no new peak appears,the loss of absorbance can be mainly attributed to the degradation reaction.

    Fig.4 UV-Vis spectra of the RhB aqueous solution under visible light irradiation in the presence of TiO2(A)and 1.7%BiOI/TiO2(A)catalysts

    To test the stability of the BiOI/TiO2(A)catalysts for the photocatalytic reaction,the 1.7%BiOI/TiO2(A)catalyst was reused for photocatalytic reaction 4 times under the same conditions and the result is shown in Fig.5.The photocatalytic efficiency of the 1.7%BiOI/TiO2(A)catalyst decreases only 7.0% and 8.5%,respectively,after four cycles under UV and visible light irradiation,which indicate that the catalyst is stable for the photocatalysis of pollutant molecules.

    Fig.5 Cycling runs in photocatalytic degradation of RhB in the presence of 1.7%BiOI/TiO2(A)catalyst under UV and visible light irradiation for 2.0 h

    3.3 Light absorption

    The UV-Vis DRS of BiOI/TiO2(A)catalysts with different BiOI contents are shown in Fig.6.It can be seen that with increasing BiOI content,the absorption intensity increases in the 370-630 nm and the absorption band edge has a redshift.Accordingly,the photocatalytic activities of BiOI/TiO2(A)catalysts under UV and visible light irradiations increase with increasing BiOI content.When the BiOI content is higher than 1.7%,the light absorption intensity of 2.0%BiOI/TiO2(A)catalyst increases further in the 370-630 nm and the absorption band edge shifts further red but the photocatalytic activities of 2.0%BiOI/TiO2(A)catalyst under UV and visible light irradiation decrease remarkably,which may be attributed to the fact that the excessive BiOI with narrow band gap will be acted as the recombination center of electrons and holes,25impeding the photocatalytic activity on the contrary.

    It can be also seen that there are two prominent absorption bands for the BiOI/TiO2(A)catalysts when the amount of BiOI is greater than 1.7%in Fig.6.The former is assigned to the absorption of anatase TiO2,and the latter is attributed to the characteristic absorption of BiOI.23The appearance of two kinds of characteristic absorption bands also testifies that the BiOI/TiO2(A)catalyst is composed of BiOI and TiO2(A).

    TiO2(A)is n-type semiconductor,while BiOI is p-type semiconductor.When TiO2(A)and BiOI are brought in contact,the energy level difference between TiO2(A)and BiOI causes the electrons to flow from higher level TiO2(A)to lower level BiOI.26However,the redistribution of the electrons between BiOI and TiO2(A)is supposed to trigger an upward and downward shift of the band edges,respectively,for BiOI and TiO2(A).27In addition,BiOI particles on the surface of TiO2(A)are very small and their average crystalline sizes for 1.7%and 2.0%BiOI/TiO2(A)catalysts are less than 5.5 nm.Compared with bulk BiOI,the band gap of the BiOI particles becomes broader due to the size quantization effect,therefore the conduction band of the BiOI particle shifts to negative potentials.28,29When BiOI/TiO2(A)catalyst is exposed to UV or visible light, the electrons in the valence band of BiOI will be excited into the conduction band and then injected into the more positive conduction band of TiO2(A).So the photoelectrons are generated from BiOI and transferred across the interface between Bi-OI and TiO2(A)to the surface of TiO2(A),leaving the photogenerated holes in the valence band of BiOI.By this way,the photogenerated electron-hole pairs are effectively separated. The better separation of electrons and holes in the BiOI/TiO2(A)catalysts is confirmed by PL emission spectra of 1.7%Bi-OI/TiO2(A)and TiO2(A)catalysts in Fig.7.

    Fig.6 UV-Vis DRS of BiOI/TiO2(A)catalysts with different initial BiOI contents

    Fig.7 PLspectra of TiO2(A)and 1.7%BiOI/TiO2(A)catalysts recorded at-196°C with the excitation wavelength of 220 nm

    Fig.7 shows the photoluminescence(PL)emission spectra of TiO2(A)and 1.7%BiOI-TiO2(A)catalysts.It is well known that the PL signals of semiconductor materials result from the recombination of photogenerated charge carriers.In general, the lower the PL intensity,the lower the recombination rate of photogenerated electron-hole pairs,and the higher the photocatalytic activity of semiconductor photocatalysts.30-32As shown in Fig.7,TiO2(A)and 1.7%BiOI/TiO2(A)catalysts show a strong and broad peak from 350 to 650 nm,and exhibit an emission peak around at 463 nm,which is an excitonic PL signal.33Compared with that of TiO2(A),the emission peak intensity of 1.7%BiOI/TiO2(A)decreases considerably,indicating that the recombination of photogenerated charge carrier is inhibited greatly in the 1.7%BiOI/TiO2(A)catalysts.Thus photogenerated electron-hole pairs are effectively separated.The efficient charge separation could increase lifetime of charge carriers and enhance the efficiency of interfacial charge transfer to adsorbed substrates,and then improve photocatalytic activity.

    4 Conclusions

    In summary,BiOI-sensitisized TiO2(A)photocatalysts with different BiOI contents have been successfully synthesized by a deposition method at room temperature.The BiOI content exerts great influences on the physicochemical properties and photocatalytic activities of BiOI/TiO2(A)catalysts.With increasing BiOI content,the absorption intensity of BiOI/TiO2(A)samples enhances in 370-630 nm and the redshift of absorption band edges increase,and their UV and visible light photocatalytic activities first increase,reaching the maxima around BiOI content of 1.7%,respectively,and then decrease with further increasing BiOI content.The 1.7%BiOI/TiO2(A) catalyst exhibits much higher visible light photoactivity than P25,and its UV light photoactivity is slightly higher than that of P25.The UV and visible light photocatalytic activities of BiOI/TiO2(A)catalysts with similar BiOI content are lower than those of BiOI/P25 catalysts.Compared with TiO2(A), 1.7%BiOI/TiO2(A)exhibits much higher UV and visible light photoactivity.It can be attributed to the stronger light absorption in 370-630 nm,the obvious red shift of absorption band edge,and the effective transfer of the photogenerated electrons and holes,reducing the recombination of electron-hole pairs. The 1.7%BiOI/TiO2(A)catalyst is stable for the photocatalysis of RhB.

    (1) Chen,X.B.;Liu,L.;Yu,P.Y.;Mao,S.S.Science 2011,331, 746.doi:10.1126/science.1200448

    (2)Qiu,W.;Ren,C.J.;Gong,M.C.;Hou,Y.Z.;Chen,Y.Q.Acta Phys.-Chim.Sin.2011,27,1487. [仇 偉,任成軍,龔茂初,侯云澤,陳耀強.物理化學學報,2011,27,1487.]doi:10.3866/ PKU.WHXB20110621

    (3)Tong,X.;Chen,R.;Chen,T.H.Acta Phys.-Chim.Sin.2011,27, 1941.[佟 欣,陳 睿,陳鐵紅.物理化學學報,2011,27, 1941.]doi:10.3866/PKU.WHXB20110836

    (4) Chen,S.F.;Zhao,W.;Liu,W.;Zhang,S.J.Appl.Surf.Sci. 2008,255,2478.doi:10.1016/j.apsusc.2008.07.115

    (5) Chen,S.F.;Zhang,S.J.;Liu,W.;Zhao,W.J.Hazard.Mater. 2008,155,320.doi:10.1016/j.jhazmat.2007.11.063

    (6) Li,Y.Z.;Kim,S.J.J.Phys.Chem.B 2005,109(25),12309. doi:10.1021/jp0512917

    (7)Wu,J.M.;Yao,J.J.;Yang,H.P.;Fan,Y.N.;Xu,B.L.Acta. Chim.Sin.2010,68(14),1349.[吳俊明,姚俊杰,楊漢培,范以寧,許波連.化學學報,2010,68(14),1349.]

    (8) Li,Y.Z.;Lee,N.H.;Hwang,D.S.;Song,J.S.;Lee,E.G.; Kim,S.J.Langmuir 2004,20(25),10838.

    (9) Sério,S.;Jorge,M.E.M.;Coutinho,M.L.;Hoffmann,S.V.; Limao-Vieira,P.;Nunes,Y.Chem.Phys.Lett.2011,508,71. doi:10.1016/j.cplett.2011.04.002

    (10)Sun,W.T.;Yu,Y.;Pan,H.Y.;Gao,X.F.;Chen,Q.;Peng,L.M. J.Am.Chem.Soc.2008,130,1124.doi:10.1021/ja0777741

    (11)Morikawa,T.;Ohwaki,T.;Suzuki,K.I.;Shinya,M.; Tero-Kubota,S.Appl.Catal.B:Environ.2008,83,56.doi: 10.1016/j.apcatb.2008.01.034

    (12) Mitoraj,D.;Kisch,H.Angew.Chem.Int.Edit.2008,47,9975. doi:10.1002/anie.200800304

    (13) Li,G.S.;Zhang,D.Q.;Yu,J.C.Environ.Sci.Technol.2009, 43,7079.doi:10.1021/es9011993

    (14) Li,L.;Rohrer,G.S.;Salvador,P.A.J.Am.Ceram.Soc.2012, 95,1414.doi:10.1111/j.1551-2916.2012.05076.x

    (15) Zyoud,A.H.;Zaatar,N.;Saadeddin,I.;Ali,C.;Park,D.; Campet,G.;Hilal,H.S.J.Hazard.Mater.2010,173,318.doi: 10.1016/j.jhazmat.2009.08.093

    (16) Xia,J.X.;Yin,S.;Li,H.M.;Xu,H.;Xua,L.;Zhang,Q. Colloids and Surfaces A:Physicochem.Eng.Aspects 2011,387, 23.doi:10.1016/j.colsurfa.2011.07.023

    (17) Li,Y.Y.;Wang,J.S.;Yao,H.C.;Dang,L.Y.;Li,Z.J.J.Mol. Catal.A:Chem.2011,334,116.doi:10.1016/j.molcata. 2010.11.005

    (18)Wang,Y.N.;Deng,K.J.;Zhang,L.Z.J.Phys.Chem.C 2011, 115,14300 doi:10.1021/jp2042069

    (19)Zhang,X.;Zhang,L.Z.;Xie,T.F.;Wang,D.J.J.Phys.Chem. C 2009,113,7371.doi:10.1021/jp900812d

    (20) Galceran,M.;Pujol,M.C.;Zaldo,C.;Díaz,F.;Aguiló,M. J.Phys.Chem.C 2009,113,15497.doi:10.1021/jp901109a

    (21) Huang,G.L.;Zhu,Y.F.J.Phys.Chem.C 2007,111,11952. doi:10.1021/jp071987v

    (22) Hua,X.;Zhang,L.Z.J.Phys.Chem.C 2009,113,1785.

    (23) Bakardjieva,S.;Subrta,J.;?tengla,V.;Dianez,M.J.;Sayagues, M.J.Appl.Catal.B:Environ.2005,58,193.

    (24) Chen,C.C.;Zhao,W.;Li,J.Y.;Zhao,J.C.Environ.Sci. Technol.2002,36,3604.doi:10.1021/es0205434

    (25)Cao,J.;Xu,B.Y.;Lin,H.L.;Luo,B.D.;Chen,S.F.Chem. Eng.J.2012,185/186,91.

    (26) Lee,Y.L.;Lo,Y.S.Adv.Funct.Mater.2009,19,604.doi: 10.1002/adfm.200800940

    (27) Li,Y.Y.;Wang,J.S.;Liu,B.;Dang,L.Y.;Yao,H.C.;Li,Z.J. Chem.Phys.Lett.2011,508,102.doi:10.1016/j.cplett. 2011.04.019

    (28) Robel,I.;Kuno,M.;Kamat,P.V.J.Am.Chem.Soc.2007,129, 4136.doi:10.1021/ja070099a

    (29)Kongkanand,A.;Tvrdy,K.;Takechi,K.;Kuno,M.;Kamat,P.V. J.Am.Chem.Soc.2008,130,4007.doi:10.1021/ja0782706

    (30)Yu,J.G.;Yu,H.G.;Cheng,B.;Zhao,X.J.;Yu,J.C.;Ho,W.K. J.Phys.Chem.B 2003,107(50),13871.doi:10.1021/ jp036158y

    (31) Li,X.Z.;Li,F.B.;Yang,C.L.;Ge,W.K.J.Photochem. Photobiol.A 2001,141(2-3),209.doi:10.1016/S1010-6030 (01)00446-4

    (32) Jing,L.Q.;Qu,Y.C.;Wang,B.Q.;Li,S.D.;Jiang,B.J.;Yang, L.B.;Fu,W.;Fu,H.G.;Sun,J.Z.Sol.Energy Mat.Sol.Cells 2006,90,1773.doi:10.1016/j.solmat.2005.11.007

    (33) Baiju,K.V.;Zachariah,A.;Shukla,S.;Biju,S.;Reddy,M.L.P.; Warrier,K.G.K.Catal.Lett.2009,130,130.doi:10.1007/ s10562-008-9798-5

    March 19,2012;Revised:May 15,2012;Published on Web:May 16,2012.

    Structure and Properties of BiOI/TiO2(A)Photocatalysts with Different Bi/Ti Molar Ratios

    LI Hui-Quan1,2CUI Yu-Min1,2,*WU Xing-Cai3,*HUA Lin4HONG Wen-Shan1
    (1School of Chemistry and Chemical Engineering,Fuyang Normal College,Fuyang,236041,Anhui Province,P.R.China;2Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment,Fuyang 236041,Anhui Province,P.R.China;3State Key Laboratory of Coordination Chemistry,Nanjing University,Nanjing 210093,P.R.China;4Research District Center,Singapore Linovus Technology Private Limited,059818,Singapore)

    BiOI-sensitized nano-anatase(TiO2(A))photocatalysts were prepared by a deposition method at room temperature,and characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy (XPS),and photoluminescence(PL),and UV-Vis diffuse reflectance spectra(UV-Vis DRS).The photocatalytic activities were evaluated by photo-degradation experiments of rhodamine B.With increasing BiOI content,the absorption intensity of BiOI/TiO2(A)increases in the 370-630 nm region and the absorption band edge redshifts.The UV and visible light photocatalytic activities increase,reaching a maximum when the Bi/Ti molar ratio is 1.7%.The 1.7%BiOI/TiO2(A)catalyst exhibits much higher visible-light photoactivity than P25,and its UV-light photoactivity is slightly higher than that of P25.The UV and visible light photocatalytic activities of BiOI/TiO2(A)with similar BiOI content are lower than those of BiOI/P25 catalysts.Compared with TiO2(A),1.7%BiOI/TiO2(A)shows higher UV and visible light photoactivities.This is attributed to the strong absorption in the 370-630 nm region,the redshift of the absorption band edge,and the effective transfer of the photogenerated electrons and holes,which reduces the recombination of electron-hole pairs.

    Deposition method;Sensitized;Anatase;BiOI content;Photocatalysis

    10.3866/PKU.WHXB201205161

    ?Corresponding authors.CUI Yu-Min,Email:cymlh@fync.edu.cn;Tel:+86-558-2596507;Fax:+86-558-2596703.

    WU Xing-Cai,Eamil:wuxingca@nju.edu.cn;Tel:+86-25-83594945;Fax:+86-25-83317761.

    The project was supported by the National Natural Science Foundation of China(21171091)and Natural Science Foundation of Higher Education Institutions inAnhui Province,China(KJ2012A217,KJ2012B136).

    國家自然科學基金(21171091)和安徽省高校省級自然科學基金(KJ2012A217,KJ2012B136)資助項目

    O644

    猜你喜歡
    阜陽光催化劑催化活性
    第二屆淮河文化論壇在阜陽舉行
    可見光響應(yīng)的ZnO/ZnFe2O4復(fù)合光催化劑的合成及磁性研究
    陶瓷學報(2019年6期)2019-10-27 01:18:18
    合肥至霍邱至阜陽高速公路今年開建
    安徽阜陽潁上:“產(chǎn)業(yè)花”結(jié)出“脫貧果”
    Pr3+/TiO2光催化劑的制備及性能研究
    關(guān)于把阜陽建成區(qū)域中心城市的思考
    稀土La摻雜的Ti/nanoTiO2膜電極的制備及電催化活性
    環(huán)化聚丙烯腈/TiO2納米復(fù)合材料的制備及可見光催化活性
    BiVO4光催化劑的改性及其在水處理中的應(yīng)用研究進展
    g-C3N4/TiO2復(fù)合光催化劑的制備及其性能研究
    成人高潮视频无遮挡免费网站| 中文字幕人妻熟人妻熟丝袜美| 国产又色又爽无遮挡免| 日韩人妻高清精品专区| 亚洲欧洲日产国产| 亚洲综合精品二区| 亚洲美女搞黄在线观看| 人人妻人人爽人人添夜夜欢视频 | 亚洲美女搞黄在线观看| 国产毛片a区久久久久| 国产一区二区三区av在线| 97在线视频观看| 大香蕉97超碰在线| 极品少妇高潮喷水抽搐| 国产成人一区二区在线| 日韩欧美精品v在线| 91久久精品国产一区二区三区| av女优亚洲男人天堂| 婷婷色av中文字幕| 国产在线男女| 久久热精品热| 亚洲精品国产色婷婷电影| 精品人妻熟女av久视频| 国产午夜精品一二区理论片| 亚洲精品乱码久久久久久按摩| 亚洲自偷自拍三级| 高清欧美精品videossex| 精品亚洲乱码少妇综合久久| 国产男女内射视频| 久久久久九九精品影院| 伊人久久国产一区二区| 精品国产露脸久久av麻豆| 少妇丰满av| 久久久久久久精品精品| 一级av片app| 欧美人与善性xxx| 汤姆久久久久久久影院中文字幕| 美女xxoo啪啪120秒动态图| 狂野欧美白嫩少妇大欣赏| 男人添女人高潮全过程视频| 22中文网久久字幕| 欧美国产精品一级二级三级 | 久久97久久精品| 久热久热在线精品观看| 日韩,欧美,国产一区二区三区| 久久99蜜桃精品久久| 亚洲精品国产成人久久av| 狂野欧美白嫩少妇大欣赏| 久久久精品免费免费高清| 午夜福利网站1000一区二区三区| 九色成人免费人妻av| 日本欧美国产在线视频| av专区在线播放| 成人毛片60女人毛片免费| 美女国产视频在线观看| 大香蕉97超碰在线| 午夜免费观看性视频| 午夜福利高清视频| 丰满乱子伦码专区| 少妇熟女欧美另类| 亚洲性久久影院| 日韩欧美精品v在线| 观看美女的网站| 性色av一级| 中文资源天堂在线| 精品久久久久久久久亚洲| 深爱激情五月婷婷| 成人亚洲精品av一区二区| 天天一区二区日本电影三级| 亚洲欧洲国产日韩| 亚洲婷婷狠狠爱综合网| 久久精品国产亚洲av天美| 欧美最新免费一区二区三区| 高清日韩中文字幕在线| 毛片女人毛片| 大又大粗又爽又黄少妇毛片口| 午夜福利在线观看免费完整高清在| 国产精品一及| 亚洲国产色片| 中国美白少妇内射xxxbb| 黄片无遮挡物在线观看| av在线播放精品| 亚洲人成网站在线播| 成人亚洲精品一区在线观看 | 男女边吃奶边做爰视频| 国产精品一二三区在线看| 91精品一卡2卡3卡4卡| 久久99蜜桃精品久久| 黄色怎么调成土黄色| 中文字幕亚洲精品专区| 亚洲色图av天堂| 高清日韩中文字幕在线| 人妻少妇偷人精品九色| 久久亚洲国产成人精品v| 国产午夜精品久久久久久一区二区三区| av在线天堂中文字幕| 亚洲精品中文字幕在线视频 | 日本三级黄在线观看| 大陆偷拍与自拍| 久久久久久伊人网av| 一本久久精品| 日韩电影二区| 街头女战士在线观看网站| 国产av国产精品国产| 亚洲人成网站在线播| 国产伦在线观看视频一区| 日本黄大片高清| 欧美高清性xxxxhd video| 国产黄a三级三级三级人| 最新中文字幕久久久久| 制服丝袜香蕉在线| 男女啪啪激烈高潮av片| 视频区图区小说| 久久精品综合一区二区三区| 欧美xxxx黑人xx丫x性爽| 亚洲成人一二三区av| 国产伦精品一区二区三区四那| 在线播放无遮挡| 国产精品一区二区在线观看99| 国产极品天堂在线| 亚洲av免费在线观看| 日日摸夜夜添夜夜爱| 免费黄色在线免费观看| 男女那种视频在线观看| 黄色一级大片看看| 免费不卡的大黄色大毛片视频在线观看| 男人和女人高潮做爰伦理| 人人妻人人看人人澡| 日本与韩国留学比较| 国产成人a∨麻豆精品| 国产精品麻豆人妻色哟哟久久| 三级国产精品欧美在线观看| 青春草亚洲视频在线观看| 嘟嘟电影网在线观看| 网址你懂的国产日韩在线| 七月丁香在线播放| 狂野欧美白嫩少妇大欣赏| 欧美高清成人免费视频www| 少妇人妻一区二区三区视频| 一级毛片我不卡| 免费人成在线观看视频色| 亚洲精品,欧美精品| 在线观看免费高清a一片| 男女那种视频在线观看| 亚洲欧美精品专区久久| 嫩草影院入口| 国产成人a区在线观看| 在线观看av片永久免费下载| av国产精品久久久久影院| av黄色大香蕉| 亚洲一区二区三区欧美精品 | 国产免费又黄又爽又色| 自拍偷自拍亚洲精品老妇| 亚洲国产精品成人综合色| 国产综合懂色| 婷婷色麻豆天堂久久| 色播亚洲综合网| 中国三级夫妇交换| 国产精品熟女久久久久浪| 少妇的逼水好多| 国产精品福利在线免费观看| 国产男人的电影天堂91| 校园人妻丝袜中文字幕| 欧美xxxx性猛交bbbb| 成年av动漫网址| 特级一级黄色大片| 午夜福利高清视频| 少妇人妻 视频| 国产综合精华液| 免费在线观看成人毛片| 一级毛片aaaaaa免费看小| 精品国产露脸久久av麻豆| 久久久成人免费电影| 国产亚洲最大av| 国产免费视频播放在线视频| 亚洲精品中文字幕在线视频 | 男女边摸边吃奶| av又黄又爽大尺度在线免费看| 亚洲综合精品二区| 极品少妇高潮喷水抽搐| av福利片在线观看| 菩萨蛮人人尽说江南好唐韦庄| 91精品伊人久久大香线蕉| 亚洲精品456在线播放app| 欧美人与善性xxx| 一区二区三区精品91| 偷拍熟女少妇极品色| 国产乱人偷精品视频| 亚洲av欧美aⅴ国产| 91在线精品国自产拍蜜月| 久久久久久久亚洲中文字幕| 亚洲精品久久久久久婷婷小说| 欧美激情在线99| 大又大粗又爽又黄少妇毛片口| 欧美日韩在线观看h| 日韩免费高清中文字幕av| 看黄色毛片网站| 最新中文字幕久久久久| 99热6这里只有精品| 不卡视频在线观看欧美| 国产亚洲午夜精品一区二区久久 | 97超视频在线观看视频| 建设人人有责人人尽责人人享有的 | 一级毛片aaaaaa免费看小| 五月伊人婷婷丁香| 狂野欧美白嫩少妇大欣赏| 亚洲经典国产精华液单| 99九九线精品视频在线观看视频| 国产成人a区在线观看| 国产一区二区三区av在线| 大香蕉97超碰在线| 99久久九九国产精品国产免费| 五月玫瑰六月丁香| 免费黄网站久久成人精品| 中文字幕av成人在线电影| 日日摸夜夜添夜夜爱| 午夜免费观看性视频| 亚洲欧美成人综合另类久久久| 日韩 亚洲 欧美在线| 99久久九九国产精品国产免费| 有码 亚洲区| 免费黄网站久久成人精品| 男女啪啪激烈高潮av片| 午夜福利视频1000在线观看| 女人久久www免费人成看片| 夫妻午夜视频| 熟妇人妻不卡中文字幕| 成人亚洲欧美一区二区av| 久久久久精品久久久久真实原创| 久久精品久久精品一区二区三区| 一级黄片播放器| 大又大粗又爽又黄少妇毛片口| 夜夜看夜夜爽夜夜摸| 看非洲黑人一级黄片| av在线播放精品| 国产亚洲一区二区精品| 国产毛片在线视频| 精品人妻偷拍中文字幕| 久久久精品94久久精品| 亚洲国产色片| 成人美女网站在线观看视频| 欧美xxⅹ黑人| 国产精品三级大全| 狂野欧美激情性bbbbbb| 成年女人在线观看亚洲视频 | 在现免费观看毛片| 一级毛片aaaaaa免费看小| 日韩av在线免费看完整版不卡| 国产高清国产精品国产三级 | 熟妇人妻不卡中文字幕| 欧美高清成人免费视频www| 亚洲av国产av综合av卡| 2018国产大陆天天弄谢| 日韩免费高清中文字幕av| 亚洲在线观看片| 亚洲精品乱码久久久久久按摩| 深爱激情五月婷婷| 香蕉精品网在线| 亚洲经典国产精华液单| 99久久中文字幕三级久久日本| 亚洲av免费高清在线观看| 亚洲av中文字字幕乱码综合| 久久99精品国语久久久| 黄色怎么调成土黄色| 国产91av在线免费观看| 国产av码专区亚洲av| 久久久久久久久大av| 少妇 在线观看| 色网站视频免费| 偷拍熟女少妇极品色| 久久精品熟女亚洲av麻豆精品| 亚洲伊人久久精品综合| 99热这里只有精品一区| 日本午夜av视频| 亚洲成人久久爱视频| 国产有黄有色有爽视频| 91精品伊人久久大香线蕉| 亚洲国产精品999| 国产黄a三级三级三级人| 亚洲国产精品国产精品| 精品久久久久久久久亚洲| 久久精品国产亚洲网站| av网站免费在线观看视频| 一区二区三区乱码不卡18| 久久精品国产亚洲av涩爱| 国产黄a三级三级三级人| 在线观看人妻少妇| 又大又黄又爽视频免费| 久久久久久久大尺度免费视频| 三级国产精品欧美在线观看| 春色校园在线视频观看| 成人免费观看视频高清| 欧美激情在线99| 色5月婷婷丁香| 亚洲精品色激情综合| 别揉我奶头 嗯啊视频| 日本色播在线视频| 狂野欧美白嫩少妇大欣赏| 国产免费福利视频在线观看| 国产永久视频网站| 国语对白做爰xxxⅹ性视频网站| 天天一区二区日本电影三级| 校园人妻丝袜中文字幕| 亚洲在久久综合| 国产高清国产精品国产三级 | 久久热精品热| 人妻少妇偷人精品九色| 男的添女的下面高潮视频| 美女cb高潮喷水在线观看| 三级经典国产精品| 男男h啪啪无遮挡| 十八禁网站网址无遮挡 | 97超视频在线观看视频| 国产在线一区二区三区精| eeuss影院久久| 国产精品一区www在线观看| 色综合色国产| 中国三级夫妇交换| 国产成人aa在线观看| 搞女人的毛片| 亚洲怡红院男人天堂| 亚洲精品成人av观看孕妇| 久久久久久久久久成人| 欧美日韩视频精品一区| 国产成人免费无遮挡视频| 极品少妇高潮喷水抽搐| 欧美精品人与动牲交sv欧美| 国产综合精华液| 欧美高清性xxxxhd video| 我的老师免费观看完整版| 深爱激情五月婷婷| 老师上课跳d突然被开到最大视频| 交换朋友夫妻互换小说| 免费观看性生交大片5| 免费少妇av软件| 亚洲欧美日韩无卡精品| 精品久久久久久久末码| 成人午夜精彩视频在线观看| 少妇被粗大猛烈的视频| 国产亚洲av嫩草精品影院| 国产伦精品一区二区三区四那| 久久国产乱子免费精品| 亚洲国产最新在线播放| 夜夜爽夜夜爽视频| 自拍偷自拍亚洲精品老妇| 性色avwww在线观看| 69av精品久久久久久| 亚洲精品乱码久久久v下载方式| 午夜福利网站1000一区二区三区| av在线播放精品| 亚洲三级黄色毛片| 哪个播放器可以免费观看大片| 成人无遮挡网站| 欧美日本视频| 免费电影在线观看免费观看| 日韩一区二区三区影片| 亚洲国产高清在线一区二区三| 日本爱情动作片www.在线观看| 欧美97在线视频| 日韩中字成人| 晚上一个人看的免费电影| 日本色播在线视频| 成年av动漫网址| 精品国产三级普通话版| av黄色大香蕉| xxx大片免费视频| 国产免费又黄又爽又色| 色哟哟·www| 久久久精品免费免费高清| 夫妻午夜视频| 亚洲无线观看免费| 国精品久久久久久国模美| 国产成人精品福利久久| 欧美成人一区二区免费高清观看| 肉色欧美久久久久久久蜜桃 | 午夜福利网站1000一区二区三区| 精品人妻熟女av久视频| 免费高清在线观看视频在线观看| 国产精品伦人一区二区| 欧美日韩精品成人综合77777| 在线亚洲精品国产二区图片欧美 | 联通29元200g的流量卡| 男女国产视频网站| 欧美人与善性xxx| 精品少妇久久久久久888优播| 亚洲最大成人中文| 亚洲高清免费不卡视频| 国产熟女欧美一区二区| 麻豆成人午夜福利视频| 国产乱人视频| a级毛色黄片| 欧美日韩在线观看h| 欧美成人精品欧美一级黄| 97人妻精品一区二区三区麻豆| 亚洲av不卡在线观看| 五月伊人婷婷丁香| av黄色大香蕉| 久久久国产一区二区| 国产伦精品一区二区三区四那| 精品一区在线观看国产| 不卡视频在线观看欧美| 性插视频无遮挡在线免费观看| 色网站视频免费| 禁无遮挡网站| 男女啪啪激烈高潮av片| 亚洲精品中文字幕在线视频 | 人人妻人人澡人人爽人人夜夜| 欧美成人一区二区免费高清观看| 国产成人精品久久久久久| 丝袜脚勾引网站| 国产永久视频网站| 女人被狂操c到高潮| 美女主播在线视频| 直男gayav资源| 国产成人免费观看mmmm| 一级毛片aaaaaa免费看小| 综合色av麻豆| 午夜免费观看性视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费少妇av软件| 亚洲精品,欧美精品| 国产美女午夜福利| 制服丝袜香蕉在线| 久久精品久久精品一区二区三区| 夜夜爽夜夜爽视频| 黄片无遮挡物在线观看| 好男人在线观看高清免费视频| 免费看光身美女| 自拍欧美九色日韩亚洲蝌蚪91 | 五月玫瑰六月丁香| 高清毛片免费看| 亚洲成人精品中文字幕电影| 国产淫片久久久久久久久| 人体艺术视频欧美日本| 嫩草影院新地址| 精品久久久久久久人妻蜜臀av| 日韩三级伦理在线观看| 别揉我奶头 嗯啊视频| 亚洲天堂av无毛| 久久精品夜色国产| 人妻夜夜爽99麻豆av| 久久久久九九精品影院| 五月开心婷婷网| 综合色丁香网| 亚洲精华国产精华液的使用体验| 美女xxoo啪啪120秒动态图| 黄色一级大片看看| 2021少妇久久久久久久久久久| 天天躁夜夜躁狠狠久久av| 欧美丝袜亚洲另类| 日韩伦理黄色片| 乱码一卡2卡4卡精品| 日本猛色少妇xxxxx猛交久久| 国产又色又爽无遮挡免| 免费观看性生交大片5| 国产高清不卡午夜福利| 在线 av 中文字幕| 黄片无遮挡物在线观看| 97在线人人人人妻| 日韩av免费高清视频| 91狼人影院| av卡一久久| 大话2 男鬼变身卡| 久久精品久久久久久久性| 视频区图区小说| 免费少妇av软件| 舔av片在线| 女人久久www免费人成看片| 国产亚洲av嫩草精品影院| 亚洲精品亚洲一区二区| 亚洲国产成人一精品久久久| 91久久精品国产一区二区三区| 国产精品不卡视频一区二区| 久久6这里有精品| 你懂的网址亚洲精品在线观看| 在线免费十八禁| 国产午夜精品久久久久久一区二区三区| 亚洲美女搞黄在线观看| 国产成人福利小说| 久久鲁丝午夜福利片| 婷婷色综合www| 亚洲av中文av极速乱| 成人亚洲精品av一区二区| 爱豆传媒免费全集在线观看| 欧美日本视频| 能在线免费看毛片的网站| 久久热精品热| 晚上一个人看的免费电影| 18禁裸乳无遮挡动漫免费视频 | 女人十人毛片免费观看3o分钟| 欧美日韩一区二区视频在线观看视频在线 | 国产探花在线观看一区二区| 观看美女的网站| 99视频精品全部免费 在线| 国产精品久久久久久精品电影小说 | 亚洲国产精品专区欧美| 赤兔流量卡办理| 亚洲国产精品成人综合色| 亚洲av日韩在线播放| 欧美丝袜亚洲另类| 99热网站在线观看| 精品久久久久久久人妻蜜臀av| 久久ye,这里只有精品| kizo精华| 国产视频首页在线观看| 美女被艹到高潮喷水动态| 亚洲av福利一区| 日韩视频在线欧美| 免费不卡的大黄色大毛片视频在线观看| 丝瓜视频免费看黄片| 日本午夜av视频| 国产一级毛片在线| 久久久午夜欧美精品| 久久精品夜色国产| 中文字幕av成人在线电影| 国产美女午夜福利| 亚洲av欧美aⅴ国产| 国产精品久久久久久精品电影小说 | 国产欧美日韩精品一区二区| xxx大片免费视频| 精品一区二区三卡| 日本猛色少妇xxxxx猛交久久| 联通29元200g的流量卡| 大片电影免费在线观看免费| 大又大粗又爽又黄少妇毛片口| 国产欧美另类精品又又久久亚洲欧美| 又爽又黄a免费视频| 国产成人91sexporn| 尤物成人国产欧美一区二区三区| 亚洲伊人久久精品综合| videos熟女内射| 只有这里有精品99| 简卡轻食公司| 久久女婷五月综合色啪小说 | 真实男女啪啪啪动态图| 免费不卡的大黄色大毛片视频在线观看| av黄色大香蕉| 美女国产视频在线观看| 久久久久久久久久久丰满| 亚洲伊人久久精品综合| 国产 一区 欧美 日韩| xxx大片免费视频| 亚洲丝袜综合中文字幕| 久久久久久国产a免费观看| 18+在线观看网站| 午夜亚洲福利在线播放| 女人久久www免费人成看片| 简卡轻食公司| 草草在线视频免费看| 国产又色又爽无遮挡免| 亚洲va在线va天堂va国产| 欧美亚洲 丝袜 人妻 在线| 国产 一区 欧美 日韩| 超碰av人人做人人爽久久| 全区人妻精品视频| 免费看日本二区| 久久久国产一区二区| 99久久九九国产精品国产免费| 国产成人aa在线观看| 精品久久久久久电影网| 久久久欧美国产精品| 插阴视频在线观看视频| 精品人妻视频免费看| 一级爰片在线观看| 色视频在线一区二区三区| 夜夜看夜夜爽夜夜摸| 亚洲精品456在线播放app| 日韩av免费高清视频| 亚洲av二区三区四区| 三级国产精品片| 亚洲精品色激情综合| www.av在线官网国产| 最近的中文字幕免费完整| 七月丁香在线播放| 久久精品国产亚洲av涩爱| 下体分泌物呈黄色| 久久久成人免费电影| 高清视频免费观看一区二区| 国产亚洲精品久久久com| 3wmmmm亚洲av在线观看| 亚洲人成网站在线观看播放| 亚洲va在线va天堂va国产| 国产 一区精品| 午夜精品一区二区三区免费看| 69人妻影院| 久久精品人妻少妇| 国产 一区 欧美 日韩| 啦啦啦中文免费视频观看日本| 在线观看av片永久免费下载| 新久久久久国产一级毛片| 黄色怎么调成土黄色| 午夜福利高清视频| 中文在线观看免费www的网站| 久久99热这里只频精品6学生| 永久免费av网站大全| 久久久久久久久久久丰满| 在线观看美女被高潮喷水网站| 国产高潮美女av| 97在线人人人人妻| 天美传媒精品一区二区| 永久免费av网站大全| 伊人久久国产一区二区| 色视频在线一区二区三区| 国产爱豆传媒在线观看| 亚洲av在线观看美女高潮| 视频中文字幕在线观看| 22中文网久久字幕| 最近最新中文字幕大全电影3| 久久6这里有精品| 国产精品国产三级专区第一集| 国产免费又黄又爽又色| 18禁在线无遮挡免费观看视频| 少妇人妻一区二区三区视频| 成人午夜精彩视频在线观看| 禁无遮挡网站|