• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    具有不同Bi/Ti摩爾比的BiOI/TiO2(A)光催化劑的結(jié)構(gòu)與性能

    2012-12-11 09:27:08李慧泉崔玉民吳興才洪文珊
    物理化學學報 2012年8期
    關(guān)鍵詞:阜陽光催化劑催化活性

    李慧泉 崔玉民,* 吳興才 華 林 洪文珊

    (1安徽阜陽師范學院化學化工學院,安徽阜陽236041;2安徽環(huán)境污染物降解與監(jiān)測省級實驗室,安徽阜陽236041; 3南京大學配位化學國家重點實驗室,南京210093;4新加坡Linovus技術(shù)有限公司研發(fā)中心,新加坡059818)

    具有不同Bi/Ti摩爾比的BiOI/TiO2(A)光催化劑的結(jié)構(gòu)與性能

    李慧泉1,2崔玉民1,2,*吳興才3,*華 林4洪文珊1

    (1安徽阜陽師范學院化學化工學院,安徽阜陽236041;2安徽環(huán)境污染物降解與監(jiān)測省級實驗室,安徽阜陽236041;3南京大學配位化學國家重點實驗室,南京210093;4新加坡Linovus技術(shù)有限公司研發(fā)中心,新加坡059818)

    在室溫條件下通過沉積法制備了BiOI敏化納米銳鈦礦TiO2(A)光催化劑.用X射線衍射(XRD),X射線光電子能譜(XPS),光致發(fā)光(PL)光譜和紫外-可見漫反射光譜(UV-Vis DRS)等手段對其進行了表征.通過羅丹明B(RhB)催化降解實驗評價了其光催化活性.隨BiOI含量增加,BiOI/TiO2(A)在370-630 nm的吸收強度增強,吸收帶邊紅移增加,紫外和可見光催化活性先增加,當Bi/Ti摩爾比約為1.7%時,各自達到最大值,然后隨BiOI含量的進一步增加而減小.1.7%BiOI/TiO2(A)的可見光活性明顯高于P25,它的紫外光活性也略高于P25.在BiOI含量相近時,BiOI/TiO2(A)比BiOI/P25具有更低的光催化活性.和TiO2(A)相比,1.7%BiOI/TiO2(A)明顯具有更高的紫外和可見光催化活性,這歸因于它在370-630 nm的強吸收、吸收帶邊紅移明顯以及光生電子和空穴的有效轉(zhuǎn)移,減少了電子-空穴對的復(fù)合.

    沉積法;敏化;銳鈦礦;BiOI含量;光催化

    1 Introduction

    Anatase TiO2(A)has been widely used as a photocatalyst for solar energy conversion and degradation of environmental pollutants because of nontoxicity,chemical stability,good photoactivity,and low cost.1-9However,the intrinsic property of TiO2(A)(wide band-gap energy,~3.2 eV)limits its photocatalytic activity in the UV light region.In order to extend TiO2(A)photocatalytic activity into the visible light region,some attempts have been made to sensitize TiO2(A).10-14Among these attempts,CdS is widely studied as an efficient sensitizer to make TiO2(A)response visible light,but it is prone to decompose and leach out hazardous Cd2+ions under photocatalytic reaction systems.15

    Recently,the as-prepared BiOI micro/nanostructure materials have exhibited efficient photocatalytic activity in the degradation of organic pollutants.16-18Owing to BiOI having narrow band-gap energy(~1.8 eV),it could absorb most of visible solar light and may be a potential sensitizer to sensitize wide band-gap semiconductors.Zhang et al.19reported that BiOI/ TiO2heterostructures with different Bi/Ti molar ratios were synthesized by a soft-chemical method at 80°C and BiOI/TiO2heterostructures exhibited much higher visible light photocatalytic activity than TiO2,and the visible light photocatalytic activity enhancement of BiOI/TiO2heterostructures could be attributed to its strong absorption in the visible region and low recombination rate of the electron-hole pairs because of the heterojunction formed between BiOI and TiO2.Sensitization of oxide photocatalysts is one of the well-known methods for enhancing their photocatalytic activity.However,to the best of our knowledge,there were few reports on the BiOI as a sensitizer of TiO2(A),and the effect of Bi/Ti molar ratios on both UV and visible light photocatalytic performances was also rarely investigated.

    In this work,BiOI-sensitisized TiO2(A)catalysts with varying BiOI content were synthesized by a deposition method at room temperature,and effect of BiOI contents on the structure and photocatalytic activity of BiOI/TiO2(A)catalysts were investigated in detail.The structure of the catalysts were characterized by using X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),photoluminescence(PL)spectrum,and UV-Vis diffuse reflectance spectrum(UV-Vis DRS),and the photocatalytic activities were tested by a degradation of RhB.

    2 Experimental

    2.1 Catalyst preparation

    Tetrabutyl titanate(Ti(OC4H9)4)is chemical pure,and butyl alcohol(C4H9OH),acetic acid,ethanol,nitric acid bismuth salt(Bi(NO3)3·5H2O),potassium iodide(KI),ethylene glycol(C2H6O2)are analytical pure.

    The pure TiO2(A)catalysts were prepared by a sol-gel procedure with Ti(OC4H9)4as raw materials.Ti(OC4H9)4(7.0 mL) was added dropwise into one mixture consisting of 3.0 mL of acetic acid(AR)and 30 mL of C4H9OH in a dry atmosphere under roughly stirring,then a certain of deionized water was added dropwise into above mixture solution to carry out hydrolysis until the yellowish transparent sol was obtained,which was allowed to stand for 24 h at room temperature and was dried in air at 110°C for 24 h.Thus,TiO2(A)gel precursor was obtained.Finally,TiO2(A)catalysts were gained by the thermal treatment of TiO2(A)gel precursor in air at 500°C for 3 h and grinding.

    The BiOI-sensitized TiO2(A)catalysts with different BiOI contents,denoted as BiOI/TiO2(A),were prepared by a deposition method.In a typical experiment,different stoichiometric amounts of Bi(NO3)3·5H2O and 30.0 mg KI were dissolved in 20 mL ethylene glycol(AR)to obtain a clear solution I.TiO2(A)(1.0 g)was ultrasonically dispersed into deionized water to form a homogeneous mixture II.Then the solution I was added dropwise into the mixture II under strong stirring.After further agitation for 5.0 h at room temperature,the products obtained were separated centrifugally,washed with ethanol and deionized water and dried at 80°C in air.The final samples with original Bi/Ti molar ratios of 0.000,0.010,0.012,0.015,0.017, and 0.020 were denoted as 0.0%,1.0%,1.2%,1.5%,1.7%,and 2.0%BiOI/TiO2(A),respectively.

    Reference BiOI-sensitized TiO2(P25)samples with original Bi/Ti molar ratios of 0.000,0.010,0.012,0.015,0.017,and 0.020 were denoted as 0.0%,1.0%,1.2%,1.5%,1.7%,and 2.0%BiOI/P25,respectively,prepared by the same method.

    2.2 Catalyst characterization

    X-ray diffraction were performed on a Philips X?pert diffractometer equipped with Ni-filtered Cu Kαradiation source(λ= 0.15418 nm).The X-ray tube was operated at 40 kV and 40 mA.XPS measurements were carried out using Multilab 2000 XPS system with a monochromatic MgKαsource and a charge neutralizer(Multilab 2000 XPS,Thermo Scientific,America). All binding energies were referenced to contaminant carbon(C 1s:284.6 eV).The PL spectra,obtained at 77 K with an excitation wavelength of 220 nm,were recorded on a CARY Eclipse (America)fluorescence spectrophotometer equipped with a Xe Lamp as an excitation source operating in the front face mode. UV-Vis DRS of the catalysts were determined with a Shimadzu UV-3600 spectrophotometer(Japan)using BaSO4as a reference.The actual Bi/Ti molar ratios of the obtained BiOI/TiO2(A)photocatalysts were detected by IRIS(INTREPID 2)inductively coupled plasma atomic emission spectrometry (ICP-AES,ICP710,Varian,America),and the results are listed in Table 1.

    Table 1 Lattice parameters and cell volumes for different BiOI/TiO2(A)samples

    2.3 Photocatalytic reaction

    The self-degradation of RhB solution was evaluated in the absence of BiOI/TiO2photocatalyst under UV or visible light irradiation for 1.0 h.The photocatalytic activities of BiOI/TiO2(A)catalysts were evaluated by the degradation of rhodamine B(RhB)in an aqueous solution.The UV light was obtained by a high-pressure mercury lamp(300 W).The UV irradiation intensity(the wavelengths below 400 nm)of the reaction solution surface is about 15.0 mW·cm-2(UV-A radiometer,the Photoelectric Instrument Factory of Beijing Normal University). The visible light source was a Xenon-arc lamp(350 W)with the combination of a cut-off filter(>400 nm)to eliminate UV radiation during visible light experiments.The visible irradiation intensity of the reaction solution surface is about 8.0 mW·cm-2(FZ-A radiometer,the Photoelectric Instrument Factory of Beijing Normal University).For each UV and visible light test,40 mL RhB aqueous solution(1.04×10-5mol·L-1) and 0.1 g catalyst catalysts were used.A general procedure was carried out as follows.First,RhB aqueous solution was placed into a water-jacketed reactor maintained at 25°C,and then the catalyst samples were suspended in the solution.The suspension was stirred vigorously for 1.0 h in the dark to establish the adsorption-desorption equilibrium of RhB,then irradiated under visible or UV light.About 3.0 mL solution was withdrawn from the reactor periodically and centrifuged and analyzed for the degradation of RhB using a UV-2450 UV-Vis spectrophotometer.RhB has a maximum absorbance at 554 nm,which was used as a value for monitoring RhB degradation.The absorbance was converted to the RhB concentration in accordance with a standard curve showing a linear relationship between the concentration and the absorbance at this wavelength.

    3 Results and discussion

    3.1 Catalyst structure

    Fig.1 XRD patterns of BiOI/TiO2(A)catalysts with different BiOI contentsBi/Ti molar ratio:(a)0.0%;(b)1.0%;(c)1.2%;(d)1.5%;(e)1.7%;(f)2.0%

    Fig.1 shows the XRD patterns of BiOI/TiO2(A)catalysts with different BiOI contents.It can be seen that 2.0%BiOI/ TiO2(A)exhibits a coexistence of both BiOI and anatase TiO2phases,the peaks around 2θ of 29.7°,31.7°,and 45.5°were indexed to those of tetragonal BiOI(JCPDS No.01-073-2062) and correspond to(012),(110),and(020),respectively.When the amount of BiOI is lower than 1.7%,no significant diffraction peak of BiOI could be detected,which could be ascribed to its lower content and high dispersion on the surface of TiO2(A)particles.The average crystalline sizes of TiO2(A)in the BiOI/TiO2(A)composites were calculated to be 19.6,21.2, 19.1,21.7,25.1,and 24.7 nm for 0.0%,1.0%,1.2%,1.5%, 1.7%,and 2.0%BiOI/TiO2(A),respectively,and the average crystalline sizes of BiOI in the BiOI/TiO2(A)composites were calculated to be 5.4 and 3.7 nm for 1.7%and 2.0%BiOI/TiO2(A),respectively,according to the Scherrer formula:20L=0.90λ/ βcosθ,where L is taken as crystalline size,λ is 0.154 nm,β is the full width half maximum(FWHM)measured in radians on the 2θ scale,and θis the Bragg angle for the diffraction peaks.

    The lattice parameters of BiOI-sensitized samples were calculated using Bragg?s equation(2dsinθ=nλ,d:surface distance, θ:angle between incident surface and reflective surface,n:diffraction series,λ:X-ray wavelength)and a formula of(1/d2= (h2+k2)/a2+l2/c2,a,b,c:cell parameters,d:surface distance,h, k,l:indices of crystal face)from their(101),(004),and(200) diffraction peaks,and the results are listed in Table 1.It can be seen that the lattice parameters of a-axis for all the BiOI-sensitized samples are almost unchanged,while that of the c-axis decreases obviously with increase of BiOI content,indicating a lattice shrinkage along the c-axis due to the sensitization of BiOI.This lattice shrinkage may be attributed to the appearance of bismuth vacancy to reach new charge balance after the substitution of oxygen with iodine.21

    In order to further determine the valence state of bismuth and iodine on the surfaces of the BiOI/TiO2(A),XPS measurements were employed to analyze the 1.7%BiOI/TiO2(A)catalyst.Fig.2(A)reveals the binding energies are 157.8 and 163.2 eV for Bi 4f7/2and Bi 4f5/2,respectively,which indicates that Bi is in the form of Bi3+assigned to BiOI.19The I 3d core level spectrum from Fig.2(B)could be observed at the binding energies of around 630.2 eV(I 3d3/2)and 618.6 eV(I 3d5/2),in agreement with that in BiOI.The above XRD and XPS results verify the existence of BiOI along with TiO2(A).

    3.2 Photocatalytic activity

    Fig.2 XPS spectra of 1.7%BiOI/TiO2(A)catalyst

    Prior to illumination,an adsorption-desorption equilibrium between the photocatalyst and RhB was established in the dark for 1.0 h.The corresponding dark adsorption values for different samples are listed in Table 2.

    The effect of BiOI sensitizing on the photocatalytic activity of BiOI/TiO2(A)has been investigated by rhodamine B(RhB) degradation in an aqueous solution under UV and visible light irradiation.Table 2 shows the UV and visible light photocatalytic activities of BiOI/TiO2(A)samples with different BiOI content.It can be seen that under UV or visible light irradiationthe degradation of rhodamine B is much lower without photocatalyst in the reaction system.In comparison,the TiO2(A)and BiOI/TiO2(A)catalysts exhibit higher photocatalytic activities than without photocatalyst for RhB degradation,and the BiOI content in the TiO2(A)exerts great influences on the photocatalytic activity of BiOI/TiO2(A)catalyst.With BiOI content increasing,the photocatalytic activities of BiOI/TiO2(A)under UV and visible light irradiation first increase,reaching a maximum around BiOI content of 1.7%,respectively,and then decrease with further increasing BiOI content.The 1.7%BiOI/ TiO2(A)catalyst exhibits much higher visible light photoactivity than P25(i.e.0.0%BiOI/P25 in Table 2),and its UV light photoactivity is slightly higher than that of P25,indicating that sensitization of BiOI in the TiO2(A)with optimum BiOI content remarkably enhances the photocatalytic activity of TiO2(A).In comparison,the UV and visible light photocatalytic activities of BiOI/TiO2(A)catalysts with similar BiOI content are lower than those of BiOI/P25 catalysts,22,23which may be attributed to the fact that the existence of an intimate contact between anatase and rutile particles in the P25 catalyst that enhances electron transfer,hindering the recombination of photogenerated electrons and holes.

    Table 2 Dark adsorption values and photocatalytic activities of different catalysts under UV and visible light irradiation for 1.0 h

    Fig.3 UV-Vis spectra of the RhB aqueous solution under UV light irradiation in the presence of TiO2(A)and 1.7%BiOI/TiO2(A)catalysts

    The UV-Vis spectra of RhB aqueous solution as a function of UV and visible light irradiation time in the presence of TiO2(A)and 1.7%BiOI/TiO2(A)catalysts are illustrated in Fig.3 and Fig.4.It can be seen that the visible region peak intensities in the photodegradation of RhB by 1.7%BiOI/TiO2(A)de-crease more obviously than by TiO2(A)during the same irradiation time,which is in agreement with the results of Table 2. The main absorbance of the degraded solution in the presence of 1.7%BiOI/TiO2(A)catalyst gradually shifted from 554 nm to shorter wavelength as the irradiation time was increased,corresponding to the stepwise formation of a series ofN-deethylated intermediates.24Since no new peak appears,the loss of absorbance can be mainly attributed to the degradation reaction.

    Fig.4 UV-Vis spectra of the RhB aqueous solution under visible light irradiation in the presence of TiO2(A)and 1.7%BiOI/TiO2(A)catalysts

    To test the stability of the BiOI/TiO2(A)catalysts for the photocatalytic reaction,the 1.7%BiOI/TiO2(A)catalyst was reused for photocatalytic reaction 4 times under the same conditions and the result is shown in Fig.5.The photocatalytic efficiency of the 1.7%BiOI/TiO2(A)catalyst decreases only 7.0% and 8.5%,respectively,after four cycles under UV and visible light irradiation,which indicate that the catalyst is stable for the photocatalysis of pollutant molecules.

    Fig.5 Cycling runs in photocatalytic degradation of RhB in the presence of 1.7%BiOI/TiO2(A)catalyst under UV and visible light irradiation for 2.0 h

    3.3 Light absorption

    The UV-Vis DRS of BiOI/TiO2(A)catalysts with different BiOI contents are shown in Fig.6.It can be seen that with increasing BiOI content,the absorption intensity increases in the 370-630 nm and the absorption band edge has a redshift.Accordingly,the photocatalytic activities of BiOI/TiO2(A)catalysts under UV and visible light irradiations increase with increasing BiOI content.When the BiOI content is higher than 1.7%,the light absorption intensity of 2.0%BiOI/TiO2(A)catalyst increases further in the 370-630 nm and the absorption band edge shifts further red but the photocatalytic activities of 2.0%BiOI/TiO2(A)catalyst under UV and visible light irradiation decrease remarkably,which may be attributed to the fact that the excessive BiOI with narrow band gap will be acted as the recombination center of electrons and holes,25impeding the photocatalytic activity on the contrary.

    It can be also seen that there are two prominent absorption bands for the BiOI/TiO2(A)catalysts when the amount of BiOI is greater than 1.7%in Fig.6.The former is assigned to the absorption of anatase TiO2,and the latter is attributed to the characteristic absorption of BiOI.23The appearance of two kinds of characteristic absorption bands also testifies that the BiOI/TiO2(A)catalyst is composed of BiOI and TiO2(A).

    TiO2(A)is n-type semiconductor,while BiOI is p-type semiconductor.When TiO2(A)and BiOI are brought in contact,the energy level difference between TiO2(A)and BiOI causes the electrons to flow from higher level TiO2(A)to lower level BiOI.26However,the redistribution of the electrons between BiOI and TiO2(A)is supposed to trigger an upward and downward shift of the band edges,respectively,for BiOI and TiO2(A).27In addition,BiOI particles on the surface of TiO2(A)are very small and their average crystalline sizes for 1.7%and 2.0%BiOI/TiO2(A)catalysts are less than 5.5 nm.Compared with bulk BiOI,the band gap of the BiOI particles becomes broader due to the size quantization effect,therefore the conduction band of the BiOI particle shifts to negative potentials.28,29When BiOI/TiO2(A)catalyst is exposed to UV or visible light, the electrons in the valence band of BiOI will be excited into the conduction band and then injected into the more positive conduction band of TiO2(A).So the photoelectrons are generated from BiOI and transferred across the interface between Bi-OI and TiO2(A)to the surface of TiO2(A),leaving the photogenerated holes in the valence band of BiOI.By this way,the photogenerated electron-hole pairs are effectively separated. The better separation of electrons and holes in the BiOI/TiO2(A)catalysts is confirmed by PL emission spectra of 1.7%Bi-OI/TiO2(A)and TiO2(A)catalysts in Fig.7.

    Fig.6 UV-Vis DRS of BiOI/TiO2(A)catalysts with different initial BiOI contents

    Fig.7 PLspectra of TiO2(A)and 1.7%BiOI/TiO2(A)catalysts recorded at-196°C with the excitation wavelength of 220 nm

    Fig.7 shows the photoluminescence(PL)emission spectra of TiO2(A)and 1.7%BiOI-TiO2(A)catalysts.It is well known that the PL signals of semiconductor materials result from the recombination of photogenerated charge carriers.In general, the lower the PL intensity,the lower the recombination rate of photogenerated electron-hole pairs,and the higher the photocatalytic activity of semiconductor photocatalysts.30-32As shown in Fig.7,TiO2(A)and 1.7%BiOI/TiO2(A)catalysts show a strong and broad peak from 350 to 650 nm,and exhibit an emission peak around at 463 nm,which is an excitonic PL signal.33Compared with that of TiO2(A),the emission peak intensity of 1.7%BiOI/TiO2(A)decreases considerably,indicating that the recombination of photogenerated charge carrier is inhibited greatly in the 1.7%BiOI/TiO2(A)catalysts.Thus photogenerated electron-hole pairs are effectively separated.The efficient charge separation could increase lifetime of charge carriers and enhance the efficiency of interfacial charge transfer to adsorbed substrates,and then improve photocatalytic activity.

    4 Conclusions

    In summary,BiOI-sensitisized TiO2(A)photocatalysts with different BiOI contents have been successfully synthesized by a deposition method at room temperature.The BiOI content exerts great influences on the physicochemical properties and photocatalytic activities of BiOI/TiO2(A)catalysts.With increasing BiOI content,the absorption intensity of BiOI/TiO2(A)samples enhances in 370-630 nm and the redshift of absorption band edges increase,and their UV and visible light photocatalytic activities first increase,reaching the maxima around BiOI content of 1.7%,respectively,and then decrease with further increasing BiOI content.The 1.7%BiOI/TiO2(A) catalyst exhibits much higher visible light photoactivity than P25,and its UV light photoactivity is slightly higher than that of P25.The UV and visible light photocatalytic activities of BiOI/TiO2(A)catalysts with similar BiOI content are lower than those of BiOI/P25 catalysts.Compared with TiO2(A), 1.7%BiOI/TiO2(A)exhibits much higher UV and visible light photoactivity.It can be attributed to the stronger light absorption in 370-630 nm,the obvious red shift of absorption band edge,and the effective transfer of the photogenerated electrons and holes,reducing the recombination of electron-hole pairs. The 1.7%BiOI/TiO2(A)catalyst is stable for the photocatalysis of RhB.

    (1) Chen,X.B.;Liu,L.;Yu,P.Y.;Mao,S.S.Science 2011,331, 746.doi:10.1126/science.1200448

    (2)Qiu,W.;Ren,C.J.;Gong,M.C.;Hou,Y.Z.;Chen,Y.Q.Acta Phys.-Chim.Sin.2011,27,1487. [仇 偉,任成軍,龔茂初,侯云澤,陳耀強.物理化學學報,2011,27,1487.]doi:10.3866/ PKU.WHXB20110621

    (3)Tong,X.;Chen,R.;Chen,T.H.Acta Phys.-Chim.Sin.2011,27, 1941.[佟 欣,陳 睿,陳鐵紅.物理化學學報,2011,27, 1941.]doi:10.3866/PKU.WHXB20110836

    (4) Chen,S.F.;Zhao,W.;Liu,W.;Zhang,S.J.Appl.Surf.Sci. 2008,255,2478.doi:10.1016/j.apsusc.2008.07.115

    (5) Chen,S.F.;Zhang,S.J.;Liu,W.;Zhao,W.J.Hazard.Mater. 2008,155,320.doi:10.1016/j.jhazmat.2007.11.063

    (6) Li,Y.Z.;Kim,S.J.J.Phys.Chem.B 2005,109(25),12309. doi:10.1021/jp0512917

    (7)Wu,J.M.;Yao,J.J.;Yang,H.P.;Fan,Y.N.;Xu,B.L.Acta. Chim.Sin.2010,68(14),1349.[吳俊明,姚俊杰,楊漢培,范以寧,許波連.化學學報,2010,68(14),1349.]

    (8) Li,Y.Z.;Lee,N.H.;Hwang,D.S.;Song,J.S.;Lee,E.G.; Kim,S.J.Langmuir 2004,20(25),10838.

    (9) Sério,S.;Jorge,M.E.M.;Coutinho,M.L.;Hoffmann,S.V.; Limao-Vieira,P.;Nunes,Y.Chem.Phys.Lett.2011,508,71. doi:10.1016/j.cplett.2011.04.002

    (10)Sun,W.T.;Yu,Y.;Pan,H.Y.;Gao,X.F.;Chen,Q.;Peng,L.M. J.Am.Chem.Soc.2008,130,1124.doi:10.1021/ja0777741

    (11)Morikawa,T.;Ohwaki,T.;Suzuki,K.I.;Shinya,M.; Tero-Kubota,S.Appl.Catal.B:Environ.2008,83,56.doi: 10.1016/j.apcatb.2008.01.034

    (12) Mitoraj,D.;Kisch,H.Angew.Chem.Int.Edit.2008,47,9975. doi:10.1002/anie.200800304

    (13) Li,G.S.;Zhang,D.Q.;Yu,J.C.Environ.Sci.Technol.2009, 43,7079.doi:10.1021/es9011993

    (14) Li,L.;Rohrer,G.S.;Salvador,P.A.J.Am.Ceram.Soc.2012, 95,1414.doi:10.1111/j.1551-2916.2012.05076.x

    (15) Zyoud,A.H.;Zaatar,N.;Saadeddin,I.;Ali,C.;Park,D.; Campet,G.;Hilal,H.S.J.Hazard.Mater.2010,173,318.doi: 10.1016/j.jhazmat.2009.08.093

    (16) Xia,J.X.;Yin,S.;Li,H.M.;Xu,H.;Xua,L.;Zhang,Q. Colloids and Surfaces A:Physicochem.Eng.Aspects 2011,387, 23.doi:10.1016/j.colsurfa.2011.07.023

    (17) Li,Y.Y.;Wang,J.S.;Yao,H.C.;Dang,L.Y.;Li,Z.J.J.Mol. Catal.A:Chem.2011,334,116.doi:10.1016/j.molcata. 2010.11.005

    (18)Wang,Y.N.;Deng,K.J.;Zhang,L.Z.J.Phys.Chem.C 2011, 115,14300 doi:10.1021/jp2042069

    (19)Zhang,X.;Zhang,L.Z.;Xie,T.F.;Wang,D.J.J.Phys.Chem. C 2009,113,7371.doi:10.1021/jp900812d

    (20) Galceran,M.;Pujol,M.C.;Zaldo,C.;Díaz,F.;Aguiló,M. J.Phys.Chem.C 2009,113,15497.doi:10.1021/jp901109a

    (21) Huang,G.L.;Zhu,Y.F.J.Phys.Chem.C 2007,111,11952. doi:10.1021/jp071987v

    (22) Hua,X.;Zhang,L.Z.J.Phys.Chem.C 2009,113,1785.

    (23) Bakardjieva,S.;Subrta,J.;?tengla,V.;Dianez,M.J.;Sayagues, M.J.Appl.Catal.B:Environ.2005,58,193.

    (24) Chen,C.C.;Zhao,W.;Li,J.Y.;Zhao,J.C.Environ.Sci. Technol.2002,36,3604.doi:10.1021/es0205434

    (25)Cao,J.;Xu,B.Y.;Lin,H.L.;Luo,B.D.;Chen,S.F.Chem. Eng.J.2012,185/186,91.

    (26) Lee,Y.L.;Lo,Y.S.Adv.Funct.Mater.2009,19,604.doi: 10.1002/adfm.200800940

    (27) Li,Y.Y.;Wang,J.S.;Liu,B.;Dang,L.Y.;Yao,H.C.;Li,Z.J. Chem.Phys.Lett.2011,508,102.doi:10.1016/j.cplett. 2011.04.019

    (28) Robel,I.;Kuno,M.;Kamat,P.V.J.Am.Chem.Soc.2007,129, 4136.doi:10.1021/ja070099a

    (29)Kongkanand,A.;Tvrdy,K.;Takechi,K.;Kuno,M.;Kamat,P.V. J.Am.Chem.Soc.2008,130,4007.doi:10.1021/ja0782706

    (30)Yu,J.G.;Yu,H.G.;Cheng,B.;Zhao,X.J.;Yu,J.C.;Ho,W.K. J.Phys.Chem.B 2003,107(50),13871.doi:10.1021/ jp036158y

    (31) Li,X.Z.;Li,F.B.;Yang,C.L.;Ge,W.K.J.Photochem. Photobiol.A 2001,141(2-3),209.doi:10.1016/S1010-6030 (01)00446-4

    (32) Jing,L.Q.;Qu,Y.C.;Wang,B.Q.;Li,S.D.;Jiang,B.J.;Yang, L.B.;Fu,W.;Fu,H.G.;Sun,J.Z.Sol.Energy Mat.Sol.Cells 2006,90,1773.doi:10.1016/j.solmat.2005.11.007

    (33) Baiju,K.V.;Zachariah,A.;Shukla,S.;Biju,S.;Reddy,M.L.P.; Warrier,K.G.K.Catal.Lett.2009,130,130.doi:10.1007/ s10562-008-9798-5

    March 19,2012;Revised:May 15,2012;Published on Web:May 16,2012.

    Structure and Properties of BiOI/TiO2(A)Photocatalysts with Different Bi/Ti Molar Ratios

    LI Hui-Quan1,2CUI Yu-Min1,2,*WU Xing-Cai3,*HUA Lin4HONG Wen-Shan1
    (1School of Chemistry and Chemical Engineering,Fuyang Normal College,Fuyang,236041,Anhui Province,P.R.China;2Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment,Fuyang 236041,Anhui Province,P.R.China;3State Key Laboratory of Coordination Chemistry,Nanjing University,Nanjing 210093,P.R.China;4Research District Center,Singapore Linovus Technology Private Limited,059818,Singapore)

    BiOI-sensitized nano-anatase(TiO2(A))photocatalysts were prepared by a deposition method at room temperature,and characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy (XPS),and photoluminescence(PL),and UV-Vis diffuse reflectance spectra(UV-Vis DRS).The photocatalytic activities were evaluated by photo-degradation experiments of rhodamine B.With increasing BiOI content,the absorption intensity of BiOI/TiO2(A)increases in the 370-630 nm region and the absorption band edge redshifts.The UV and visible light photocatalytic activities increase,reaching a maximum when the Bi/Ti molar ratio is 1.7%.The 1.7%BiOI/TiO2(A)catalyst exhibits much higher visible-light photoactivity than P25,and its UV-light photoactivity is slightly higher than that of P25.The UV and visible light photocatalytic activities of BiOI/TiO2(A)with similar BiOI content are lower than those of BiOI/P25 catalysts.Compared with TiO2(A),1.7%BiOI/TiO2(A)shows higher UV and visible light photoactivities.This is attributed to the strong absorption in the 370-630 nm region,the redshift of the absorption band edge,and the effective transfer of the photogenerated electrons and holes,which reduces the recombination of electron-hole pairs.

    Deposition method;Sensitized;Anatase;BiOI content;Photocatalysis

    10.3866/PKU.WHXB201205161

    ?Corresponding authors.CUI Yu-Min,Email:cymlh@fync.edu.cn;Tel:+86-558-2596507;Fax:+86-558-2596703.

    WU Xing-Cai,Eamil:wuxingca@nju.edu.cn;Tel:+86-25-83594945;Fax:+86-25-83317761.

    The project was supported by the National Natural Science Foundation of China(21171091)and Natural Science Foundation of Higher Education Institutions inAnhui Province,China(KJ2012A217,KJ2012B136).

    國家自然科學基金(21171091)和安徽省高校省級自然科學基金(KJ2012A217,KJ2012B136)資助項目

    O644

    猜你喜歡
    阜陽光催化劑催化活性
    第二屆淮河文化論壇在阜陽舉行
    可見光響應(yīng)的ZnO/ZnFe2O4復(fù)合光催化劑的合成及磁性研究
    陶瓷學報(2019年6期)2019-10-27 01:18:18
    合肥至霍邱至阜陽高速公路今年開建
    安徽阜陽潁上:“產(chǎn)業(yè)花”結(jié)出“脫貧果”
    Pr3+/TiO2光催化劑的制備及性能研究
    關(guān)于把阜陽建成區(qū)域中心城市的思考
    稀土La摻雜的Ti/nanoTiO2膜電極的制備及電催化活性
    環(huán)化聚丙烯腈/TiO2納米復(fù)合材料的制備及可見光催化活性
    BiVO4光催化劑的改性及其在水處理中的應(yīng)用研究進展
    g-C3N4/TiO2復(fù)合光催化劑的制備及其性能研究
    狂野欧美激情性xxxx在线观看| 天堂中文最新版在线下载| 99热这里只有精品一区| 下体分泌物呈黄色| 婷婷色综合www| 视频中文字幕在线观看| 免费不卡的大黄色大毛片视频在线观看| 亚洲av中文av极速乱| 精品熟女少妇av免费看| 在线精品无人区一区二区三| 久久精品熟女亚洲av麻豆精品| 丝瓜视频免费看黄片| 亚洲精品国产av蜜桃| 乱人伦中国视频| 在线观看www视频免费| 久久久久网色| 好男人视频免费观看在线| a级毛片免费高清观看在线播放| 免费不卡的大黄色大毛片视频在线观看| 国产成人91sexporn| 日韩中字成人| 亚洲天堂av无毛| 交换朋友夫妻互换小说| 你懂的网址亚洲精品在线观看| 黑丝袜美女国产一区| 性高湖久久久久久久久免费观看| 人人妻人人爽人人添夜夜欢视频 | 久久久久久久亚洲中文字幕| 国产欧美日韩一区二区三区在线 | 天堂俺去俺来也www色官网| 久久久久精品性色| 中文字幕精品免费在线观看视频 | 插逼视频在线观看| 夫妻性生交免费视频一级片| 免费看光身美女| 国产伦理片在线播放av一区| 国产一区有黄有色的免费视频| 精品99又大又爽又粗少妇毛片| 人妻少妇偷人精品九色| 女性被躁到高潮视频| 热99国产精品久久久久久7| 久久6这里有精品| 久久综合国产亚洲精品| 国产精品欧美亚洲77777| 亚洲国产欧美在线一区| 亚洲综合色惰| 亚洲欧美成人综合另类久久久| 日本色播在线视频| 免费人妻精品一区二区三区视频| 男女边摸边吃奶| 国产成人精品久久久久久| 老司机影院毛片| 色视频www国产| 99热6这里只有精品| 男人和女人高潮做爰伦理| 一本大道久久a久久精品| 9色porny在线观看| 久久久久人妻精品一区果冻| 国产一区二区在线观看日韩| 国产黄片美女视频| 观看免费一级毛片| 亚洲精品日本国产第一区| 欧美日韩国产mv在线观看视频| 日韩中文字幕视频在线看片| 两个人的视频大全免费| 成人亚洲欧美一区二区av| 嫩草影院入口| 亚洲自偷自拍三级| 日韩不卡一区二区三区视频在线| 在线观看av片永久免费下载| 亚洲久久久国产精品| 国产高清三级在线| 久久久久国产精品人妻一区二区| 99久久综合免费| 亚洲精品乱久久久久久| 美女主播在线视频| 91久久精品电影网| 欧美+日韩+精品| 乱人伦中国视频| 久久久久网色| 男女国产视频网站| 亚洲精品国产成人久久av| 国产午夜精品久久久久久一区二区三区| 色94色欧美一区二区| 国产亚洲av片在线观看秒播厂| 高清欧美精品videossex| 丰满乱子伦码专区| 日本vs欧美在线观看视频 | 成人特级av手机在线观看| 只有这里有精品99| 男人狂女人下面高潮的视频| 午夜老司机福利剧场| 视频中文字幕在线观看| 亚洲情色 制服丝袜| 精品久久久久久电影网| 永久网站在线| 免费看光身美女| 尾随美女入室| 天堂中文最新版在线下载| 国产成人精品福利久久| 成年女人在线观看亚洲视频| 中文字幕免费在线视频6| 久久久久国产精品人妻一区二区| 久久精品国产亚洲网站| 欧美 亚洲 国产 日韩一| 免费大片18禁| 国产精品人妻久久久影院| 亚洲精品久久久久久婷婷小说| 日本欧美视频一区| 久久精品熟女亚洲av麻豆精品| 国产乱人偷精品视频| 国产精品国产三级国产专区5o| 亚洲高清免费不卡视频| 亚洲av电影在线观看一区二区三区| 久久久久视频综合| 伦理电影免费视频| 亚洲av福利一区| 日韩伦理黄色片| 街头女战士在线观看网站| 两个人的视频大全免费| 国产黄片美女视频| 在线精品无人区一区二区三| 色5月婷婷丁香| 秋霞伦理黄片| 免费黄频网站在线观看国产| 亚洲成人一二三区av| 狂野欧美激情性bbbbbb| 欧美 亚洲 国产 日韩一| 午夜福利视频精品| 欧美性感艳星| 男女国产视频网站| 国产精品免费大片| 桃花免费在线播放| 国内揄拍国产精品人妻在线| 午夜日本视频在线| 中文资源天堂在线| 亚洲第一av免费看| 三级国产精品片| 国产亚洲精品久久久com| av在线播放精品| 男女边吃奶边做爰视频| 亚洲精品色激情综合| 日韩不卡一区二区三区视频在线| 最新的欧美精品一区二区| 精品熟女少妇av免费看| 久久久久久久久久人人人人人人| 日日摸夜夜添夜夜添av毛片| 99久久人妻综合| 另类精品久久| 热99国产精品久久久久久7| 中文字幕精品免费在线观看视频 | 国产免费又黄又爽又色| 国产极品粉嫩免费观看在线 | 国产一区亚洲一区在线观看| 欧美bdsm另类| 国产日韩欧美在线精品| 乱人伦中国视频| 中文字幕制服av| 韩国高清视频一区二区三区| 一级黄片播放器| 午夜福利影视在线免费观看| 一二三四中文在线观看免费高清| 视频区图区小说| 这个男人来自地球电影免费观看 | 一级毛片aaaaaa免费看小| 国产高清国产精品国产三级| 国产亚洲一区二区精品| 日日摸夜夜添夜夜添av毛片| 一区二区三区精品91| 亚洲第一av免费看| 精品99又大又爽又粗少妇毛片| 亚洲av免费高清在线观看| 一区二区三区免费毛片| 亚洲精品久久午夜乱码| 亚洲精品国产成人久久av| 亚洲av福利一区| 亚洲怡红院男人天堂| 五月伊人婷婷丁香| 你懂的网址亚洲精品在线观看| 国产精品一区二区在线观看99| av视频免费观看在线观看| 精品亚洲成国产av| 国产片特级美女逼逼视频| 欧美日韩国产mv在线观看视频| 久久久久人妻精品一区果冻| 国产精品三级大全| 又大又黄又爽视频免费| 国产极品天堂在线| 人妻夜夜爽99麻豆av| 人妻制服诱惑在线中文字幕| 久久av网站| 夜夜爽夜夜爽视频| 老女人水多毛片| 嘟嘟电影网在线观看| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久成人av| 卡戴珊不雅视频在线播放| 亚洲欧美日韩卡通动漫| 爱豆传媒免费全集在线观看| 看非洲黑人一级黄片| 国产精品无大码| 免费人妻精品一区二区三区视频| 汤姆久久久久久久影院中文字幕| 国产免费福利视频在线观看| 亚洲欧美精品自产自拍| 日本-黄色视频高清免费观看| 女人久久www免费人成看片| 十八禁高潮呻吟视频 | 精品一区二区三卡| 老女人水多毛片| 久久国内精品自在自线图片| 午夜老司机福利剧场| 日日爽夜夜爽网站| 久久97久久精品| 国产精品女同一区二区软件| xxx大片免费视频| 一边亲一边摸免费视频| 十分钟在线观看高清视频www | 国产淫语在线视频| 亚洲精品中文字幕在线视频 | 人人妻人人爽人人添夜夜欢视频 | 亚洲久久久国产精品| 亚洲人成网站在线播| 亚洲人与动物交配视频| 亚洲综合精品二区| 久久综合国产亚洲精品| 噜噜噜噜噜久久久久久91| 在线观看三级黄色| 少妇人妻久久综合中文| 99久久精品热视频| 日本vs欧美在线观看视频 | 欧美日韩视频高清一区二区三区二| 亚洲av福利一区| 麻豆精品久久久久久蜜桃| 大香蕉97超碰在线| 老司机亚洲免费影院| 熟女人妻精品中文字幕| 欧美日韩av久久| 丝袜脚勾引网站| 日韩亚洲欧美综合| 大香蕉97超碰在线| 性色avwww在线观看| 亚洲高清免费不卡视频| 欧美日韩国产mv在线观看视频| 亚洲综合精品二区| 久久国内精品自在自线图片| 好男人视频免费观看在线| 精品久久国产蜜桃| 少妇裸体淫交视频免费看高清| 亚洲精品色激情综合| 久久人人爽人人爽人人片va| 色哟哟·www| 一级a做视频免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产淫片久久久久久久久| 午夜福利视频精品| av在线播放精品| 9色porny在线观看| 久久久久久久精品精品| 久久ye,这里只有精品| 亚洲精品国产av成人精品| 男女国产视频网站| 精品一区在线观看国产| 色视频在线一区二区三区| freevideosex欧美| 国产 一区精品| 七月丁香在线播放| 久久久国产一区二区| 亚洲av电影在线观看一区二区三区| 91精品国产国语对白视频| 久久国产亚洲av麻豆专区| 最近中文字幕高清免费大全6| 久久国内精品自在自线图片| 人妻系列 视频| 中文乱码字字幕精品一区二区三区| 亚洲精品成人av观看孕妇| 在线亚洲精品国产二区图片欧美 | 简卡轻食公司| 韩国高清视频一区二区三区| 久久人人爽人人片av| 国产视频内射| 五月天丁香电影| 最近的中文字幕免费完整| 亚洲成人手机| 国产 精品1| 国产精品久久久久久精品古装| 亚洲不卡免费看| 中文字幕人妻熟人妻熟丝袜美| 久久国产精品男人的天堂亚洲 | av视频免费观看在线观看| 国产又色又爽无遮挡免| 老熟女久久久| 成人美女网站在线观看视频| av视频免费观看在线观看| 国产毛片在线视频| 国产精品一区二区在线观看99| 国产在线视频一区二区| 全区人妻精品视频| 日日啪夜夜撸| 成人黄色视频免费在线看| 亚洲伊人久久精品综合| 亚洲国产av新网站| 精品午夜福利在线看| 18禁在线播放成人免费| 国产精品女同一区二区软件| 美女内射精品一级片tv| 亚洲欧美清纯卡通| 男人和女人高潮做爰伦理| 97精品久久久久久久久久精品| 韩国高清视频一区二区三区| 亚洲精品456在线播放app| 亚洲美女搞黄在线观看| 极品少妇高潮喷水抽搐| 精品一品国产午夜福利视频| 国产精品国产av在线观看| 国产成人freesex在线| 女性生殖器流出的白浆| 精品国产露脸久久av麻豆| 日日啪夜夜撸| 亚洲一级一片aⅴ在线观看| a级毛片免费高清观看在线播放| 中文字幕av电影在线播放| 亚洲精品国产av成人精品| 国产精品99久久99久久久不卡 | 日韩不卡一区二区三区视频在线| 久久久久久久久大av| 狂野欧美激情性xxxx在线观看| 免费观看性生交大片5| 久久久久久久久久久免费av| 欧美精品人与动牲交sv欧美| 亚洲精品,欧美精品| 日韩伦理黄色片| 国产男人的电影天堂91| 爱豆传媒免费全集在线观看| 丰满迷人的少妇在线观看| 精品少妇内射三级| 日本欧美国产在线视频| 日韩一区二区三区影片| 自线自在国产av| 精品一区二区三卡| 国产精品麻豆人妻色哟哟久久| 夜夜爽夜夜爽视频| 久久久久久久国产电影| 狠狠精品人妻久久久久久综合| 狂野欧美激情性bbbbbb| 国产视频内射| 国产精品久久久久久精品古装| 精品亚洲成a人片在线观看| 国产伦理片在线播放av一区| 人妻制服诱惑在线中文字幕| 亚洲丝袜综合中文字幕| 国产色爽女视频免费观看| 日韩在线高清观看一区二区三区| 伦理电影大哥的女人| 99精国产麻豆久久婷婷| 亚洲精品日韩在线中文字幕| 亚洲激情五月婷婷啪啪| 日本色播在线视频| 啦啦啦在线观看免费高清www| 在线观看美女被高潮喷水网站| 好男人视频免费观看在线| 一级黄片播放器| 日韩,欧美,国产一区二区三区| 精品国产一区二区久久| 亚洲国产色片| 亚洲人成网站在线观看播放| 午夜av观看不卡| av不卡在线播放| 久久这里有精品视频免费| 亚洲欧美精品专区久久| 亚洲婷婷狠狠爱综合网| 国产成人精品一,二区| 成年美女黄网站色视频大全免费 | 在线天堂最新版资源| 久久久久久久久大av| 国产精品嫩草影院av在线观看| av专区在线播放| 这个男人来自地球电影免费观看 | 国产有黄有色有爽视频| 午夜激情久久久久久久| 秋霞在线观看毛片| 免费av不卡在线播放| √禁漫天堂资源中文www| 欧美精品亚洲一区二区| 久久久久久久久久成人| 国产一区二区在线观看日韩| 久久韩国三级中文字幕| 国产片特级美女逼逼视频| 国产爽快片一区二区三区| 人人妻人人看人人澡| 亚洲第一区二区三区不卡| 亚洲美女黄色视频免费看| 少妇人妻久久综合中文| 啦啦啦在线观看免费高清www| 男男h啪啪无遮挡| 一级毛片我不卡| 国产精品蜜桃在线观看| 国产淫语在线视频| 国产av精品麻豆| 免费播放大片免费观看视频在线观看| 日韩不卡一区二区三区视频在线| 9色porny在线观看| 国产淫片久久久久久久久| 十八禁高潮呻吟视频 | 久久精品夜色国产| 高清在线视频一区二区三区| 国产色婷婷99| 亚洲欧美成人精品一区二区| 女性生殖器流出的白浆| 只有这里有精品99| 婷婷色综合大香蕉| 偷拍熟女少妇极品色| 国产精品久久久久久精品电影小说| 狂野欧美激情性bbbbbb| 亚洲av成人精品一区久久| 大香蕉久久网| 国产有黄有色有爽视频| 国产熟女午夜一区二区三区 | 国产一级毛片在线| 人人妻人人看人人澡| 亚洲精品aⅴ在线观看| 精品国产乱码久久久久久小说| 欧美性感艳星| 亚洲人与动物交配视频| 久久久久久久亚洲中文字幕| 精品国产露脸久久av麻豆| 一区在线观看完整版| 日韩强制内射视频| 狂野欧美激情性bbbbbb| 日韩一区二区视频免费看| 久久人妻熟女aⅴ| 亚洲国产av新网站| 久久久久久久精品精品| 国产视频内射| 日韩电影二区| 免费观看av网站的网址| 亚洲伊人久久精品综合| 亚洲伊人久久精品综合| 国精品久久久久久国模美| 国产精品欧美亚洲77777| 纯流量卡能插随身wifi吗| 日韩成人av中文字幕在线观看| 男女国产视频网站| 欧美xxxx性猛交bbbb| av视频免费观看在线观看| 亚洲一区二区三区欧美精品| 少妇人妻久久综合中文| 我要看日韩黄色一级片| 校园人妻丝袜中文字幕| 欧美日韩av久久| 99久久人妻综合| 国产成人freesex在线| 亚洲av欧美aⅴ国产| 我的女老师完整版在线观看| 偷拍熟女少妇极品色| 最近手机中文字幕大全| 免费看日本二区| 精品久久久噜噜| 亚洲人成网站在线观看播放| 高清黄色对白视频在线免费看 | 久久精品久久久久久久性| 免费观看的影片在线观看| 久久午夜综合久久蜜桃| 亚洲国产精品专区欧美| 26uuu在线亚洲综合色| 99九九线精品视频在线观看视频| 国产爽快片一区二区三区| 22中文网久久字幕| 国产精品久久久久久av不卡| 超碰97精品在线观看| 亚洲不卡免费看| 亚洲精品亚洲一区二区| 国精品久久久久久国模美| tube8黄色片| 欧美亚洲 丝袜 人妻 在线| 最近手机中文字幕大全| 高清视频免费观看一区二区| 美女国产视频在线观看| 亚洲成人一二三区av| 久久免费观看电影| 好男人视频免费观看在线| 日本黄色日本黄色录像| 亚洲欧洲日产国产| 黑人巨大精品欧美一区二区蜜桃 | 国产免费视频播放在线视频| 在线观看免费视频网站a站| 亚洲欧美成人综合另类久久久| 秋霞在线观看毛片| 永久网站在线| 精品少妇久久久久久888优播| av在线app专区| 国产精品成人在线| 五月天丁香电影| 国产成人精品福利久久| a级毛片免费高清观看在线播放| 99久久人妻综合| 婷婷色综合大香蕉| 51国产日韩欧美| 在线天堂最新版资源| 亚洲色图综合在线观看| 久久久欧美国产精品| 成人国产av品久久久| 人妻少妇偷人精品九色| 在线精品无人区一区二区三| 亚洲一级一片aⅴ在线观看| 自线自在国产av| 自拍偷自拍亚洲精品老妇| 国产精品一区www在线观看| 最近中文字幕2019免费版| 久久久久久久精品精品| 国产av一区二区精品久久| 大码成人一级视频| 亚洲美女搞黄在线观看| 国产精品偷伦视频观看了| 国产黄色视频一区二区在线观看| 日本-黄色视频高清免费观看| 大片免费播放器 马上看| 国产在线视频一区二区| 狂野欧美激情性xxxx在线观看| 中文字幕久久专区| 一本—道久久a久久精品蜜桃钙片| 另类精品久久| 22中文网久久字幕| 成年人午夜在线观看视频| 国产av精品麻豆| 一区二区三区四区激情视频| 日韩成人伦理影院| 国产高清国产精品国产三级| 亚洲丝袜综合中文字幕| 97超视频在线观看视频| 久久久久久久久久久丰满| 国产一区二区在线观看av| 久久精品国产a三级三级三级| 一区在线观看完整版| 久久99热6这里只有精品| 久久热精品热| xxx大片免费视频| tube8黄色片| av免费在线看不卡| 午夜精品国产一区二区电影| 国产黄频视频在线观看| 国产中年淑女户外野战色| 久久久久久久久久久久大奶| 日韩亚洲欧美综合| 亚洲欧美一区二区三区黑人 | 女性被躁到高潮视频| 人人妻人人澡人人爽人人夜夜| 久久久久久久精品精品| a级片在线免费高清观看视频| 亚洲内射少妇av| 大又大粗又爽又黄少妇毛片口| 国产成人免费观看mmmm| 久久久久久人妻| 久久国产乱子免费精品| 丰满饥渴人妻一区二区三| 日本-黄色视频高清免费观看| 精品卡一卡二卡四卡免费| 九草在线视频观看| 高清不卡的av网站| 精品酒店卫生间| 免费观看无遮挡的男女| 十八禁网站网址无遮挡 | 久久毛片免费看一区二区三区| 日韩av免费高清视频| 91成人精品电影| 国产熟女午夜一区二区三区 | 狂野欧美白嫩少妇大欣赏| 欧美精品人与动牲交sv欧美| 曰老女人黄片| 欧美最新免费一区二区三区| 18禁在线无遮挡免费观看视频| 大香蕉久久网| 国产成人a∨麻豆精品| 伊人久久精品亚洲午夜| 美女xxoo啪啪120秒动态图| 少妇精品久久久久久久| 日本与韩国留学比较| 麻豆成人午夜福利视频| 亚洲中文av在线| 国产免费视频播放在线视频| 波野结衣二区三区在线| 91久久精品国产一区二区成人| www.av在线官网国产| 校园人妻丝袜中文字幕| 伊人久久精品亚洲午夜| 久久6这里有精品| 国产高清不卡午夜福利| 国产在视频线精品| 一级毛片黄色毛片免费观看视频| 少妇猛男粗大的猛烈进出视频| 国产精品一区二区在线观看99| 91精品国产国语对白视频| 三级经典国产精品| 成人无遮挡网站| 人体艺术视频欧美日本| 插阴视频在线观看视频| 寂寞人妻少妇视频99o| a 毛片基地| 国产黄频视频在线观看| 国产精品久久久久久精品古装| 美女主播在线视频| 乱人伦中国视频| 一本色道久久久久久精品综合| 99热这里只有是精品50| 欧美精品国产亚洲| 国产在线男女| 综合色丁香网| 最近中文字幕2019免费版| 美女cb高潮喷水在线观看| 纵有疾风起免费观看全集完整版| av女优亚洲男人天堂| 日韩一本色道免费dvd| a级毛色黄片| 国产极品粉嫩免费观看在线 | 免费观看的影片在线观看|