• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bi3.25La0.75Ti3O12納米線的可見光催化性能

    2012-12-11 09:26:04關(guān)慶豐李海波李洪吉
    物理化學(xué)學(xué)報 2012年8期
    關(guān)鍵詞:慶豐鈦酸海波

    林 雪 呂 鵬 關(guān)慶豐,* 李海波 李洪吉 蔡 杰 鄒 陽

    (1江蘇大學(xué)材料科學(xué)與工程學(xué)院,江蘇鎮(zhèn)江212013;2吉林師范大學(xué)化學(xué)學(xué)院,環(huán)境友好材料制備與應(yīng)用教育部重點實驗室,吉林四平136000;3吉林師范大學(xué)物理學(xué)院,吉林四平136000)

    Bi3.25La0.75Ti3O12納米線的可見光催化性能

    林 雪1,2呂 鵬1關(guān)慶豐1,*李海波3李洪吉2蔡 杰1鄒 陽1

    (1江蘇大學(xué)材料科學(xué)與工程學(xué)院,江蘇鎮(zhèn)江212013;2吉林師范大學(xué)化學(xué)學(xué)院,環(huán)境友好材料制備與應(yīng)用教育部重點實驗室,吉林四平136000;3吉林師范大學(xué)物理學(xué)院,吉林四平136000)

    研究了用一步水熱法制備的摻鑭鈦酸鉍(Bi3.25La0.75Ti3O12,BLT)納米線的光學(xué)和可見光催化性能,并對其晶體結(jié)構(gòu)和微觀結(jié)構(gòu)用X射線衍射(XRD)、透射電子顯微鏡(TEM)和高分辨透射電子顯微鏡(HRTEM)等手段進(jìn)行了表征.結(jié)果表明,制備的納米線為純相的Bi3.25La0.75Ti3O12,平均直徑約為25 nm.室溫光致發(fā)(PL)光譜顯示BLT納米線在433和565 nm附近有較強(qiáng)的發(fā)射峰,分別對應(yīng)激子發(fā)射和表面缺陷發(fā)光.紫外-可見漫反射光譜(UV-Vis DRS)表明BLT樣品的帶隙能約為2.07 eV.利用可見光(λ>420 nm)照射下的甲基橙(MO)降解實驗評價了BLT樣品的光催化性能.結(jié)果表明,BLT的光催化活性比商用TiO2催化劑P25、摻氮TiO2和純相鈦酸鉍(Bi4Ti3O12,BIT)高得多.BLT光催化劑具有更高催化活性的原因是La3+離子的摻雜拓展了BIT對可見光的吸收范圍,同時抑制了BIT的光生電子-空穴的復(fù)合.

    鈦酸鉍;摻鑭;納米線;水熱合成;光催化降解;可見光照射

    1 Introduction

    The worldwide quest for clean and renewable energy sources has encouraged a great deal of research activities and development in the field of solar energy in the last twenty years.Solar energy as a clean energy is inexhaustible in supply and always available for use.Therefore,high efficient catalyst,photochemical cell and solar cell have become the hotspot of scientific research.Since the discovery of the photocatalytic splitting of water on the TiO2electrodes by Fujishima and Honda1in 1972,the application of semiconductor photocatalysts on degradation ofpollutantshasreceived greatattention.2-7Among all photocatalysts,TiO2attracts the most attention due to its chemical stability,low cost,nontoxicity,and high photocatalytic activity.8-12However,the band gap energy of the TiO2is 3.2 eV.It absorbs only the ultraviolet light(λ≤386.5 nm) which only accounts for about 4.0%of the sunlight.In order to improve the efficiency of the sunlight utilization,the development of photocatalysts with high activity under a wide range of visible light is highly desirable.13-15

    In recent years,bismuth titanate photocatalysts,such as Bi12TiO20,16Bi2Ti2O7,17and Bi4Ti3O12(BIT),18have been widely studied as a class of promising photocatalysts which can respond under visible light.Among bismuth titanate photocatalysts,Bi4Ti3O12(BIT)has received more attention for its high photocatalytic ability in degrading the organic pollutants.18-20Photocatalytic properties of BIT have been examined before. Kudo et al.18had reported the preparation of BIT by the solidsolid method and examined the photocatalytic activity of BIT for water splitting.Recently,Yao et al.19,20reported the preparation of BIT by using the chemical solution decomposition (CSD)method and examined the photocatalytic activity for oxidizing methyl orange(MO).In our previous work,21we presented the hydrothermal synthesis of BIT microspheres and tested the photocatalytic properties of the as-prepared BIT spheres. Furthermore,Metal element doping is one of the typical approaches to extend the spectral response of BIT photocatalysts by providing defect states in the band gap.22-24

    However,few papers have revealed the photocatalytic activity of Lanthanum doped bismuth titanate(Bi3.25La0.75Ti3O12,BLT) crystals for oxidizing organic contaminants in water.It is known that the activity of photocatalysts is influenced by a wide variety of factors,such as the catalyst preparation conditions,crystal morphology,the adsorption affinity and capacity for organic contaminants,pH,intrinsic solid state defects and so on.The aim of the present paper is to study the influence of La-doping on the microstructure,optical properties,and photocatalytic properties of BIT photocatalysts.

    2 Experimental

    2.1 Preparation of BLT photocatalysts

    All the chemicals were analytically graded(purchased from Shanghai Chemical Industrial Company)and used without further purification.BLT photocatalysts were prepared with a one-step hydrothermal synthesis.24Bismuth nitrate(Bi(NO3)3· 5H2O),lanthanum nitrate(La(NO3)3·6H2O),and titanium tetrachloride(TiCl4)were chosen as starting materials with the bismuth:lanthanum:titanium ions molar ratios of 3.25:0.75:3.00. TiCl4(10 mL)was dissolved in cold water(50 mL)under vigorous stirring,then mixed with Bi(NO3)3·5H2O and La(NO3)3· 6H2O.The concentration of the alkali solution was adjusted using KOH.Before being transferred to a 20 mL stainless steel autoclave,the solution mixture was prepared under an ultrasonic water bath for 30 min and kept at a filling ratio of 70%(volume fraction).The autoclave was kept at 180°C for 24 h,and cooled to room temperature after the reaction.The precipitates were washed with deionized water and ethanol three times,separately.The final products were dried at 100°C for 2 h in a vacuum box.The samples prepared for comparison are(i)BIT and (ii)N doped TiO2(N-TiO2).For more details about the preparation of BIT and N-TiO2,the readers can refer to our previous work.24-26

    2.2 Characterization of photocatalysts

    The crystal structures of the samples were characterized by X-ray diffraction(XRD,America PE,D/max 2500)with Cu Kαradiation.Transmission electron microscopy (TEM)and high-resolution transmission electron microscopy(HRTEM) were conducted using a JEM-2100F(Japan JEOL)instrument. The surface areas of samples were measured by TriStar 3000-BET/BJH Surface Area.The optical property was obtained by thephotoluminescence(PL)measurementusing HR800 LabRam Infinity Spectro photometer excited by a continuous He-Cd laser with a wavelength of 325 nm at a power of 50 mW.The UV-Vis diffuse reflectance spectra(DRS)were recorded for the dry-pressed disk sample using a scan UV-Vis spectrophotometer(UV-Vis,Japan SHIMADZU,UV-2550) equipped with an integrating sphere assembly.

    2.3 Photocatalytic activity test

    The photocatalytic degradation of MO was employed to evaluate the photocatalytic activities of the samples.A 300 W Xe lamp(λ>420 nm)was used to provide visible light irradiation.Photocatalyst(0.10 g)was added to 100 mL of MO solution(0.01 mmol·L-1).Before irradiation,the suspensions were magnetically stirred in the dark for 30 min to ensure the adsorption-desorption equilibrium between the photocatalysts and MO.Then the solution was exposed to visible light irradiation under magnetic stirring.At given time intervals,4 mL of suspension was sampled and centrifuged to remove the photocatalyst particles.Then,the catalyst-free dye solution was analyzed by a UV-2550 spectrometer to record intensity of the maximum band at 462 nm in the UV-Vis absorption spectra.

    3 Results and discussion

    3.1 XRD analysis

    XRD patterns of the as-prepared BLT products synthesized at OH-concentrations of 3 and 8 mol·L-1,respectively,are shown in Fig.1.All the reflection peaks can be indexed according to the JCPDS card No.36-1486,suggesting that the as-prepared products are of layered-perovskite structure(Bi4Ti3O12). No peaks of impurities were detected from the patterns.The strong and sharp peaks indicate high crystallinities of BLT samples.

    3.2 TEM analysis

    TEM was employed to observe the morphologies and structure details of BLT products.Fig.2a shows the TEM images of a typical example of nanoparticles.It can be observed that BLT product prepared at OH-concentration of 3 mol·L-1was composed of nano-sized particles with average size about 20 nm, and each particle is nearly spherical in shape(as shown in Fig.2b).Fig.2c gives BLT sample obtained at OH-concentration of 8 mol·L-1.It can be seen that there are BLT nanowires with width of approximate 25 nm and lengths up to several micrometres.Further structure details of BLT nanowires were obtained by TEM,as illustrated in Fig.2d.It reveals that BLT nanowires are made up of nanoparticles with average size of about 4 nm.These results show that OH-concentration seems to play a key role in controlling the morphologies of BLT crystals.

    Although the crystal growth habit is mainly determined by the intrinsic structure,it is also affected by the external conditions such as pH of the solution,saturation,temperature and so on.23As we all know,OH-concentration in the precursor solution has been found to be very important for the microstructure.It has been reported that the morphologies of Bi2Ti2O7crystals can be controlled by adjusting the OH-concentrations suggesting that OH-ionscan behave as a surfactant,17obtaining a better understandingof the role of OH-ions in the hydrothermal process.On the basis of our previous report about Bi3.25Nd0.75Ti3O12(BNdT)nanostructure and BNdT nanosheets and nanowires,24at lower concentration of OH-,only nanoparticles were obtained.When the OH-concentration was increased,nanowires were obtained.Our experimental results are in accordance with the above mechanism.Thus,the pH value plays an important role in controlling the formation of seeds and the growth rates to shape BLT particles.

    Fig.1 XRD patterns of BLT and BIT samplesT=180°C,t=24 h

    In this work,the condition of the alkaline medium as a factor is considered to play a key part in the formation of BLT nanowires.At lower OH-concentration(3 mol·L-1),BLT nuclei produced in solution can aggregate to form small particles. These particles may serve as crystal seeds to grow the nanowire structure.With the increase of alkalinity(OH-concentration:8 mol·L-1),a large amount of BLT nuclei produced in the solution,leads to form the very high supersaturation solution, which favors the formation of nanowires structure.Hence,the formation of BLT nanowires in the present route is resulted from the highly alkaline medium.27

    In order to investigate the detailed crystal structure of the as-prepared BLT sample,HRTEM images for BLT nanowires were measured,as shown in Fig.3.The lattice distance for BLT sample is calculated to be 0.38 nm,which is in agreement with the(111)lattice plane of the layered-perovskite BIT.Thus,we can conclude that the low concentration doping of La3+ions does not induce the formation of separate purity phases(lanthanum metal).

    Fig.4 shows EDX analytical results of BLT composite,the molar ratios of Bi/Ti and Bi/La are calculated to be 1.09 and 4.74,respectively,which are in accordance with the nominal molar ratio of Bi3.25La0.75Ti3O12.

    3.3 PL spectral analysis

    Fig.2 TEM images of BLT samples obtained at different concentrations of OH-c(OH-)/(mol·L-1):(a,b)3,(c,d)8

    Fig.5 shows PL spectra of BLT and BIT samples measured at room temperature at an excitation wavelength of 325 nm. The as-prepared BLT sample showed the presence of two PL bands.The first band was detected at 400 nm(violet emission), while the second was observed at 596 nm(yellow emission).It could be deduced that there exited surface oxygen vacancy in BLT nanowires and the two emission bands might arise respectively from the excitonic emission and surface-defect.28The fluorescence intensity of BLT was significantly weaker than that of BIT product,which showed the recombination restraint of the e-/h+pairs resulting from doping of La3+ions.The reduction of fluorescence indicates that the surface-defect of BLT is much less than that of BIT.And the decrease of surface-defect enhances the activity of photocatalysis.

    Fig.3 HRTEM image of BLT nanowiresT=180°C,t=24 h

    Fig.4 EDX spectrum of the as-prepared BLT sampleT=180°C,t=24 h

    Fig.5 PLspectra of BLT and BIT samples T=230°C,t=24 h

    3.4 UV-Vis DRS spectral analysis

    Fig.6 UV-Vis DRS of different samples(a)N-TiO2,(b)P25 TiO2,(c)BIT,(d)BLT;A:absorbance.The inset shows the plot of(Ahv)2as a function of photon energy.

    Fig.6 shows the UV-Vis DRS of P25 TiO2,N-TiO2,BIT,and BLT photocatalysts.It shows that the absorption onset wavelength(λg)of BLT sample is around 600 nm,which is shifted 175,150,and 50 nm to visible region compared to P25 TiO2, N-TiO2and BIT,respectively.The absorption coefficient(α)as a function of photon energy can be expressed by the Tauc relation:29

    where hv,C,and Egare the photon energy,a constant,and the energy gap,respectively.And n is an index determined by the nature of the electron transition during the absorption process. It is well known that there are two types of fundamental optical transitions,namely direct(n=1/2)and indirect(n=2).For BLT, it is a direct band gap semiconductor,so here n=1/2.Since absorbance(A)is proportional to absorption coefficient,we use absorbance to substitute absorption coefficient.22The plot of (Ahv)2versus hv is presented in the inset of Fig.6.Thus,the band gap energy of BLT is calculated to be 2.07 eV,which shows a marked red shift in the absorbance compared to P25 TiO2,N-TiO2,due to the contribution of 6s electrons from Bi3+.22It indicates that BLT photocatalyst has a suitable band gap for photocatalytic decomposition of organic contaminants under visible light irradiation.The absorption spectrum of BLT photocatalyst has steep shape which shows that the absorption relevant to the band gap is due to the intrinsic transition of the nanomaterials.30

    3.5 Degradation of MO using BLT photocatalysts

    Photodegradation experiments of MO were employed under visible light irradiation to test the photocatalytic performance of N-TiO2,P25 TiO2,BIT,and BLT.UV-Vis spectral changes of MO solution by BLT are displayed in Fig.7(A)while the temporal courses of the photodegradation of MO in different catalyst aqueous dispersions are shown in Fig.7(B).It can be observed that the peaks at 462 and 271 nm are reduced with the increase of irradiation time(Fig.7(A)).It shows that MO solution is stable under visible light irradiation in the absence of any catalyst(Fig.7(B)).The degradation rates of P25 TiO2, N-TiO2,BIT,and BLT are 95.0%,80.0%,52.0%,and 18.0%, respectively.Thus,the addition of BLT photocatalyst leads to the obvious degradation of MO.

    Fig.7 (a)UV-Vis spectral changes of MO by BLT sample; (b)Temporal courses of the photodegradation of MO in different catalyst aqueous dispersions;(c)First-order plots for the photocatalytic degradation of MO using different catalysts(a)without catalyst,(b)P25 TiO2,(c)N-TiO2,(d)BIT,(e)BLT

    To quantitatively study the photocatalytic reaction kinetics of the MO degradation in the experiments,the degradation data was analyzed with the pseudo-first-order model,as expressed by Eq.(2)as follows:31

    where C0and C represent MO concentrations at time zero and t,respectively,and k is the pseudo first-order rate constant.The first-order linear relationship was revealed by the plots of the ln(C/C0)vs irradiation time(t),as shown in Fig.7(C).The reaction rate constant k for P25 TiO2,N-TiO2,BIT,and BLT are determined to be 5.81×10-4,1.94×10-3,4.13×10-3,and 7.85×10-3min-1,respectively(Table 1),indicating the highest photocata-lytic performance of BLT nanowires.The BET surface areas of samples were also measured(as shown in Table 1).Based on the above analysis,it can be concluded that La doping is one of the typical approaches to improve the performance of BIT photocatalysts.

    Table 1 BET specific surface area(SBET)and reaction rate constants(k)of samples

    3.6 Stability of BLT as the photocatalyst

    Fig.8 shows the XRD patterns of the BLT sample before and after 360 min of visible light irradiation.It can be seen that both the position and the intensity of the peaks in the XRD pattern are almost the same to those of BLT before irradiation. Thus,BLT photocatalyst is considered to be relatively stable to visible light irradiation under the present experimental conditions.This result indicates a possibility for application of BLT photocatalyst in the waste water treatment.

    The stability tests were also conducted by using recycling reactions four times for the photodegradation of MO over BLT photocatalyst under visible light irradiation,and the results are displayed in Fig.9.No significant decrease in catalytic activity was observed in the recycling reactions.Combined with the XRD patterns,all evidences demonstrate that the BLT photocatalyst is a stable photocatalyst for degradation of MO under visible light irradiation.

    3.7 Photocatalytic activity mechanism

    On the basis of our previous work,24a schematic diagram of the band levels of doped BIT and the possible reaction mechanism of the photocatalytic procedure are proposed and illustrated.Thus,La doping would result in the improvement of the corresponding photocatalytic properties,as clarified by following equations:

    Fig.8 XRD patterns of BLT before and after visible light irradiation

    Fig.9 Stability evaluation for BLTfour reaction cycles for photodegradation of MO under visible light irradiation

    Furthermore,the photocatalytic activity of the semiconductor is very closely related to its corresponding band structure. The band gap of oxides is generally defined by the O 2p level and transition metal d level.31,32As calculated by Goto et al.33the conduction band(CB)and valence band(VB)of Nd doped bismuth titanate(BNdT)consist mostly of empty Ti 3d and occupied O 2p orbitals,respectively,and the latter is hybridized with Bi 6s and Nd 5d.These bands meet the potential requirements of organic oxidation.Therefore,in the present hybridized VB composed of O 2p and Bi 6s,the photogenerated carriers may own a high mobility.Then it will reduce the recombination opportunities of the photogenerated electron-hole pairs that could effectively move to the crystal surface to degrade the absorbed MO molecules.Based on the above consideration,we presume that the CB and VB of BLT consist mostly of empty Ti 3d and occupied O 2p orbitals,respectively,and the latter is hybridized with Bi 6s and La 5d.The higher photocatalytic activity of BLT over TiO2and BIT is attributed to be suitable band gap and stable e-/h+pair formation in the VB formed by the hybrid orbitals of Bi 6s,La 5d,and O 2p,and the CB of Ti 3d.

    4 Conclusions

    Bi3.25La0.75Ti3O12nanowires were synthesized by a one-step hydrothermal process without the use of any surfactant or template.The optical band gap of BLT nanowires was estimated to be about 2.07 eV,which proved that BLT photocatalysts could respond to the visible light.Most importantly,BLT photocatalysts with good stability exhibited higher photocatalytic performance in the degradation of methyl orange under visible light irradiation(λ>420 nm)than traditional N doped TiO2,commercial P25 TiO2,and pure BIT.Over this catalyst,the 95.0%degradation of MO solution(0.01 mmol·L-1)was obtained after visible light irradiation for 360 min.In addition,after 4 recycles,there was no significant decrease in its photocatalytic activity,indicating that BLT is a stable photocatalyst for degradation of MO under visible light irradiation.

    (1) Fujishima,A.;Honda,K.Nature 1972,238,37.doi:10.1038/ 238037a0

    (2)Lu,S.Y.;Wu,D.;Wang,Q.L.;Yan,J.H.;Buekens,A.G.;Cen, K.F.Chemosphere 2011,82,1215.doi:10.1016/j. chemosphere.2010.12.034

    (3) Xie,J.;Wang,H.;Duan,M.Acta Phys.-Chim.Sin.2011,27(1), 193. [謝 娟,王 虎,段 明.物理化學(xué)學(xué)報,2011,27(1), 193.]doi:10.3866/PKU.WHXB20110124

    (4) Yang,X.H.;Liu,C.;Liu,J.K.;Zhu,Z.C.Acta Phys.-Chim. Sin.2011,27(12),2939.[楊小紅,劉 暢,劉金庫,朱子春.物理化學(xué)學(xué)報,2011,27(12),2939.]doi:10.3866/PKU. WHXB20112939

    (5) Hu,Y.F.;Li,Y.X.;Peng,S.Q.;Lü,G.X.;Li,S.B.Acta Phys.-Chim.Sin.2008,24(11),2071.[胡元方,李越湘,彭紹琴,呂功煊,李樹本.物理化學(xué)學(xué)報,2008,24(11),2071.] doi:10.3866/PKU.WHXB20081123

    (6) Zhang,L.S.;Wang,H.L.;Chen,Z.G.;Wong,P.K.;Liu,J.S. Appl.Catal.B:Environ.2011,106,1.

    (7) Zhang,L.;Cao,X.F.;Chen,X.T.;Xue,Z.L.J.Colloid Interface Sci.2011,354,630.doi:10.1016/j.jcis.2010.11.042

    (8) Selishchev,D.S.;Kolinko,P.A.;Kozlov,D.V.J.Photochem. Photobiol.A 2012,229,11.doi:10.1016/j.jphotochem. 2011.12.006

    (9) Zhang,J.W.;Jin,Z.S.;Feng,C.X.;Yu,L.G.;Zhang,J.W.; Zhang,Z.J.J.Solid State Chem.2011,184,3066.doi:10.1016/ j.jssc.2011.09.016

    (10) Su,Y.R.;Yu,J.G.;Lin,J.J.Solid State Chem.2007,180,2080. doi:10.1016/j.jssc.2007.04.028

    (11)Xu,J.;Wang,W.Z.;Shang,M.;Gao,E.P.;Zhang,Z.J.;Ren,J. J.Hazard.Mater.2011,196,426.doi:10.1016/j.jhazmat. 2011.09.010

    (12)Wang,H.Q.;Wu,Z.B.;Liu,Y.;Wang,Y.J.Chemosphere 2008, 74,773.

    (13) Xu,J.J.;Chen,M.D.;Fu,D.G.Appl.Surf.Sci.2011,257, 7381.doi:10.1016/j.apsusc.2011.02.030

    (14) Ghorai,T.K.;Biswas,S.K.;Pramanik,P.Appl.Surf.Sci.2008, 254,7498.doi:10.1016/j.apsusc.2008.06.042

    (15) Zhang,Y.L.;Deng,L.J.;Zhang,G.K.;Gan,H.H.Colloids and Surfaces A:Physicochem.Eng.Aspects.2011,384,137. doi:10.1016/j.colsurfa.2011.03.043

    (16) Zhang,H.P.;Lü,M.K.;Liu,S.W.;Xiu,Z.L.;Zhou,G.J.; Zhou,Y.Y.;Qiu,Z.F.;Zhang,A.Y.;Ma,Q.Surf.Coat.Tech. 2008,202,4930.doi:10.1016/j.surfcoat.2008.04.081

    (17) Hou,J.G.;Jiao,S.Q.;Zhu,H.M.;Kumar,R.V.J.Solid State Chem.2011,184,154.doi:10.1016/j.jssc.2010.11.017

    (18) Kudo,A.;Hijii,S.Chem.Lett.1999,28(10),1103.

    (19)Yao,W.F.;Xu,X.H.;Wang,H.;Zhou,J.T.;Yang,X.N.; Zhang,Y.;Shang,S.X.;Huang,B.B.Appl.Catal.B:Environ. 2004,52,109.doi:10.1016/j.apcatb.2004.04.002

    (20)Yao,W.F.;Wang,H.;Xu,X.H.;Shang,S.X.;Hou,Y.;Zhang, Y.;Wang,M.Mater.Lett.2003,57,1899.doi:10.1016/ S0167-577X(02)01097-2

    (21) Lin,X.;Lv,P.;Guan,Q.F.;Li,H.B.;Zhai,H.J.;Liu,C.B. Appl.Surf.Sci.2012,258,7146.doi:10.1016/j.apsusc. 2012.04.019

    (22)Wang,Z.Z.;Qi,Y.J.;Qi,H.Y.;Lu,C.J.;Wang,S.M.J.Mater. Sci.:Mater.Electron 2010,21,523.doi:10.1007/s10854-009-9950-z

    (23)Yao,W.F.;Wang,H.;Shang,S.X.;Xu,X.H.;Yang,X.N.; Zhang,Y.;Wang,M.J.Mol.Catal.A:Chem.2003,198,343. doi:10.1016/S1381-1169(02)00699-4

    (24) Lin,X.;Guan,Q.F.;Li,H.B.;Li,H.J.;Ba,C.H.;Deng,H.D. Acta Phys.-Chim.Sin.2012,28(6),1481. [林 雪,關(guān)慶豐,李海波,李洪吉,巴春華,鄧海德.物理化學(xué)學(xué)報,2012,28(6), 1481.]doi:10.3866/PKU.WHXB201203313

    (25) Lin,X.;Guan,Q.F.;Li,H.B.;Liu,Y.;Zou,G.T.Sci.China Ser.G 2012,55,33.[林 雪,關(guān)慶豐,李海波,劉 洋,鄒廣田.中國科學(xué)G,2012,55,33.]doi:10.1007/s11433-011-4574-8

    (26) Xu,G.C.;Pan,L.;Guan,Q.F.;Zou,G.T.Acta Phys.Sin.2006, 55,3080.[徐國成,潘 玲,關(guān)慶豐,鄒廣田.物理學(xué)報, 2006,55,3080.]

    (27) Yang,J.H.;Zheng,J.H.;Zhai,H.J.;Yang,L.L.;Lang,J.H.; Gao,M.J.Alloy.Compd.2009,481,628.doi:10.1016/j.jallcom. 2009.03.108

    (28) Li,L.;Yang,H.Q.;Ma,J.H.;Jia,D.Z.Chin.J.Inorg.Chem. 2012,28(1),25.[李 麗,楊合情,馬軍虎,賈殿贈.無機(jī)化學(xué)學(xué)報,2012,28(1),25.]

    (29)Xu,D.;Gao,A.M.;Deng,W.L.Acta Phys.-Chim.Sin.2008, 24(7),1219.[許 迪,高愛梅,鄧文禮.物理化學(xué)學(xué)報,2008, 24(7),1219.]doi:10.3866/PKU.WHXB20080717

    (30) Zhu,X.Q.;Zhang,J.L.;Chen,F.Chemosphere 2010,78,1350. doi:10.1016/j.chemosphere.2010.01.002

    (31) Cheng,H.F.;Huang,B.B.;Dai,Y.;Qin,X.Y.;Zhang,X.Y.; Wang,Z.Y.;Jiang,M.H.J.Solid State Chem.2009,182,2274. doi:10.1016/j.jssc.2009.06.006

    (32) Li,B.X.;Wang,Y.F.;Liu,T.X.Acta Phys.-Chim.Sin.2011, 27(12),2946.[李本俠,王艷芬,劉同宣.物理化學(xué)學(xué)報, 2011,27(12),2946.]doi:10.3866/PKU.WHXB20112946

    (33)Goto,T.;Noguchi,Y.;Soga,M.;Miyayama,M.Mater.Res. Bull.2005,40,1044.doi:10.1016/j.materresbull.2005.02.025

    April 9,2012;Revised:May 17,2012;Published on Web:May 17,2012.

    Visible Light Photocatalytic Properties of Bi3.25La0.75Ti3O12Nanowires

    LIN Xue1,2LU¨Peng1GUAN Qing-Feng1,*LI Hai-Bo3LI Hong-Ji2CAI Jie1ZOU Yang1(1School of Materials Science and Engineering,Jiangsu University,Zhenjiang 212013,Jiangsu Porvnce,P.R.China;2Key Laboratory of Preparation and Application Environmentally Friendly Materials of the Ministry of Education,College of Chemistry,Jilin Normal University,Siping 136000,Jilin Province,P.R.China;3College of Physics,Jilin Normal University, Siping 136000,Jilin Province,P.R.China)

    Lanthanum-doped bismuth titanate(Bi3.25La0.75Ti3O12,BLT)nanowires were synthesized by a one-step hydrothermal process and their optical and photocatalytic properties were investigated.Their crystal structure and microstructures were characterized using X-ray diffraction(XRD),transmission electron microscopy(TEM),and high-resolution transmission electron microscopy(HRTEM).The BLT nanowires obtained are single-phase with an average diameter of 25 nm.The room temperature photoluminescence(PL)spectrum reveals two visible emission peaks at 400 and 596 nm,which are assigned to excitonic and surface-defect emissions,respectively.The UV-visible diffuse reflectance spectrum(UV-Vis DRS)reveals that the band gap of BLT nanowires is 2.07 eV.The prepared BLT nanowires are stable and exhibit higher photocatalytic activities in the degradation of methyl orange(MO) under visible light irradiation(λ>420 nm)compared with commercial P25 TiO2,traditional N-doped TiO2(N-TiO2),and pure bismuth titanate(Bi4Ti3O12,BIT).The high photocatalytic performance of BLT photocatalysts is attributed to the strong visible light absorption and the recombination restraint of the e-/h+pairs resulting from the presence of La3+ions.

    Bismuth titanate;Lanthanum doping;Nanowire;Hydrothermal synthesis; Photocatalytic degradation; Visible light irradiation

    10.3866/PKU.WHXB201205172

    ?Corresponding author.Email:guanqf@ujs.edu.cn;Tel:+86-13852904936;Fax:+86-434-3290363.

    The project was supported by the Key Laboratory of Preparation andApplication Environmentally Friendly Materials of the Ministry of Education of China.

    環(huán)境友好材料制備與應(yīng)用教育部重點實驗室項目資助

    O643

    猜你喜歡
    慶豐鈦酸海波
    搏浪
    科教新報(2023年25期)2023-07-10 05:59:40
    Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions*
    鈦酸鉍微米球的合成、晶型調(diào)控及光催化性能表征
    山清水秀
    科教新報(2020年2期)2020-02-14 05:57:58
    說海波
    胺/層狀鈦酸鹽復(fù)合材料對CO2的吸附性能研究
    這里有爺爺
    鈦酸鋰電池脹氣問題的研究進(jìn)展
    六鈦酸鉀納米晶須的水熱反應(yīng)相轉(zhuǎn)變行為
    AltBOC navigation signal quality assessment and measurement*
    岛国在线免费视频观看| 久久久久国产网址| 午夜福利在线在线| a级毛片a级免费在线| 国产精品嫩草影院av在线观看| 九九爱精品视频在线观看| 搡老熟女国产l中国老女人| 欧美一区二区精品小视频在线| 成人国产麻豆网| 男女之事视频高清在线观看| 麻豆精品久久久久久蜜桃| 黄色欧美视频在线观看| 亚洲人成网站在线播放欧美日韩| 黑人高潮一二区| 人妻人人澡人人爽人人| 免费黄频网站在线观看国产| 人妻夜夜爽99麻豆av| av免费观看日本| 国产日韩一区二区三区精品不卡 | 国产av国产精品国产| 国产中年淑女户外野战色| 一个人免费看片子| 午夜福利网站1000一区二区三区| 国产男人的电影天堂91| a 毛片基地| 男人添女人高潮全过程视频| 久久久亚洲精品成人影院| 自拍欧美九色日韩亚洲蝌蚪91 | 一级,二级,三级黄色视频| 啦啦啦在线观看免费高清www| 春色校园在线视频观看| 国产色爽女视频免费观看| 色网站视频免费| 日韩制服骚丝袜av| 国产精品久久久久成人av| 中文在线观看免费www的网站| 人人妻人人澡人人爽人人夜夜| 少妇丰满av| 国产av国产精品国产| 亚洲国产欧美日韩在线播放 | 亚洲国产最新在线播放| 国产成人精品一,二区| 一级毛片黄色毛片免费观看视频| 国产一区亚洲一区在线观看| 麻豆成人午夜福利视频| 日韩在线高清观看一区二区三区| 久久久午夜欧美精品| 亚洲欧洲精品一区二区精品久久久 | 天堂8中文在线网| 亚洲欧美中文字幕日韩二区| a级一级毛片免费在线观看| 伊人亚洲综合成人网| 九色成人免费人妻av| 热99国产精品久久久久久7| 国产精品麻豆人妻色哟哟久久| 国产黄片美女视频| av又黄又爽大尺度在线免费看| 婷婷色综合www| 中文在线观看免费www的网站| 精品国产露脸久久av麻豆| 亚洲av.av天堂| 一区二区三区乱码不卡18| 精品亚洲成国产av| 肉色欧美久久久久久久蜜桃| 久久人人爽人人爽人人片va| 韩国高清视频一区二区三区| 成人免费观看视频高清| 亚洲自偷自拍三级| 最近2019中文字幕mv第一页| 国产成人午夜福利电影在线观看| 国产真实伦视频高清在线观看| 午夜免费鲁丝| 老熟女久久久| 全区人妻精品视频| 国国产精品蜜臀av免费| 人妻系列 视频| 亚洲精品一二三| av在线观看视频网站免费| 一级二级三级毛片免费看| 另类精品久久| 老司机影院毛片| 国产成人免费观看mmmm| 欧美 亚洲 国产 日韩一| 亚洲国产毛片av蜜桃av| 国产免费一级a男人的天堂| 日本猛色少妇xxxxx猛交久久| 久久久久精品性色| 国产又色又爽无遮挡免| 少妇被粗大猛烈的视频| 亚洲精品国产av成人精品| 夜夜爽夜夜爽视频| 国产精品成人在线| 少妇猛男粗大的猛烈进出视频| 内地一区二区视频在线| 成人毛片60女人毛片免费| 国产精品三级大全| 韩国高清视频一区二区三区| 人人妻人人澡人人爽人人夜夜| 亚洲av男天堂| 丝袜脚勾引网站| 久久久欧美国产精品| 免费高清在线观看视频在线观看| 久久韩国三级中文字幕| 亚洲三级黄色毛片| 91aial.com中文字幕在线观看| 91在线精品国自产拍蜜月| 国产爽快片一区二区三区| 欧美日韩综合久久久久久| 亚洲精品乱久久久久久| 一级黄片播放器| 欧美激情国产日韩精品一区| 高清午夜精品一区二区三区| 日韩中文字幕视频在线看片| 国产视频内射| 少妇高潮的动态图| 中文精品一卡2卡3卡4更新| 国产精品99久久99久久久不卡 | 91午夜精品亚洲一区二区三区| 久久午夜综合久久蜜桃| 老熟女久久久| 亚洲精品视频女| 人人妻人人添人人爽欧美一区卜| 国产亚洲av片在线观看秒播厂| 三级国产精品欧美在线观看| 人人澡人人妻人| 中文字幕亚洲精品专区| 国产精品一区二区性色av| 激情五月婷婷亚洲| 91精品国产九色| 亚洲成人av在线免费| av又黄又爽大尺度在线免费看| 最近2019中文字幕mv第一页| 岛国毛片在线播放| 一边亲一边摸免费视频| 男人狂女人下面高潮的视频| 国产精品一区二区在线观看99| 国产精品人妻久久久影院| 亚洲人与动物交配视频| 看十八女毛片水多多多| 国产男女内射视频| 国产爽快片一区二区三区| 一级毛片黄色毛片免费观看视频| 国国产精品蜜臀av免费| 成年av动漫网址| 99视频精品全部免费 在线| 又粗又硬又长又爽又黄的视频| 国产中年淑女户外野战色| 亚洲国产日韩一区二区| 国产精品免费大片| 在线亚洲精品国产二区图片欧美 | 丰满人妻一区二区三区视频av| 简卡轻食公司| 国产白丝娇喘喷水9色精品| 97超视频在线观看视频| 妹子高潮喷水视频| 日本-黄色视频高清免费观看| 激情五月婷婷亚洲| 新久久久久国产一级毛片| 亚洲精品aⅴ在线观看| 久久久久久久久大av| av国产精品久久久久影院| 免费黄色在线免费观看| 精品亚洲成a人片在线观看| h日本视频在线播放| 26uuu在线亚洲综合色| av在线播放精品| 国产精品久久久久久精品古装| 国产精品国产av在线观看| 一级,二级,三级黄色视频| 日韩大片免费观看网站| 久久久久久久精品精品| 国产在线一区二区三区精| 国产成人精品无人区| 9色porny在线观看| 国产日韩欧美亚洲二区| 国产精品福利在线免费观看| 女性被躁到高潮视频| 中国美白少妇内射xxxbb| 国产精品秋霞免费鲁丝片| 简卡轻食公司| 精品国产一区二区三区久久久樱花| 国产精品免费大片| av在线app专区| 日韩av在线免费看完整版不卡| 最近中文字幕高清免费大全6| 久久久国产欧美日韩av| 免费人妻精品一区二区三区视频| 国产精品嫩草影院av在线观看| 色5月婷婷丁香| 亚洲伊人久久精品综合| 妹子高潮喷水视频| av网站免费在线观看视频| 久久97久久精品| 成人综合一区亚洲| 亚洲怡红院男人天堂| a 毛片基地| 黄色一级大片看看| 国产高清国产精品国产三级| 99热这里只有是精品50| 亚洲欧美成人综合另类久久久| 曰老女人黄片| 国产av精品麻豆| 噜噜噜噜噜久久久久久91| 内地一区二区视频在线| 黄片无遮挡物在线观看| 免费观看的影片在线观看| 高清视频免费观看一区二区| 97在线视频观看| 国产深夜福利视频在线观看| 国产午夜精品久久久久久一区二区三区| 午夜老司机福利剧场| 免费看不卡的av| 菩萨蛮人人尽说江南好唐韦庄| 最近2019中文字幕mv第一页| 精品国产露脸久久av麻豆| 久久综合国产亚洲精品| 在线观看免费视频网站a站| 3wmmmm亚洲av在线观看| 三级国产精品片| 成人亚洲欧美一区二区av| 亚洲av电影在线观看一区二区三区| 新久久久久国产一级毛片| 亚洲真实伦在线观看| 亚洲综合精品二区| 欧美+日韩+精品| 精品午夜福利在线看| 国产精品伦人一区二区| 亚洲av中文av极速乱| 国产免费一区二区三区四区乱码| 中国美白少妇内射xxxbb| 各种免费的搞黄视频| 妹子高潮喷水视频| 男人舔奶头视频| 精品国产国语对白av| 国产精品不卡视频一区二区| 亚洲内射少妇av| 亚洲人成网站在线播| 美女大奶头黄色视频| 男男h啪啪无遮挡| 亚洲精华国产精华液的使用体验| 高清av免费在线| 99热这里只有精品一区| 亚洲精品,欧美精品| 99久国产av精品国产电影| 看免费成人av毛片| 在线观看美女被高潮喷水网站| 涩涩av久久男人的天堂| 国产免费福利视频在线观看| 免费人成在线观看视频色| 黄色一级大片看看| 日韩伦理黄色片| av国产久精品久网站免费入址| 亚洲精品乱码久久久v下载方式| 美女脱内裤让男人舔精品视频| 少妇人妻久久综合中文| 女性被躁到高潮视频| 精品亚洲乱码少妇综合久久| av.在线天堂| 少妇丰满av| 18禁在线播放成人免费| 中文在线观看免费www的网站| 男人狂女人下面高潮的视频| 两个人免费观看高清视频 | 97精品久久久久久久久久精品| 人人妻人人爽人人添夜夜欢视频 | 观看美女的网站| 丝袜在线中文字幕| 久久女婷五月综合色啪小说| √禁漫天堂资源中文www| 亚洲不卡免费看| 国产高清不卡午夜福利| 国产真实伦视频高清在线观看| 欧美少妇被猛烈插入视频| 乱系列少妇在线播放| 久久久久久久亚洲中文字幕| 国产高清不卡午夜福利| 91精品国产国语对白视频| 成人午夜精彩视频在线观看| 亚洲av福利一区| 国产在线一区二区三区精| 欧美日韩视频精品一区| 日本黄色片子视频| 亚洲精品久久久久久婷婷小说| 午夜91福利影院| 不卡视频在线观看欧美| 欧美性感艳星| 91精品一卡2卡3卡4卡| 大片电影免费在线观看免费| 一级爰片在线观看| 日本vs欧美在线观看视频 | 18禁裸乳无遮挡动漫免费视频| 国产精品蜜桃在线观看| 亚洲熟女精品中文字幕| 人妻系列 视频| 22中文网久久字幕| 简卡轻食公司| av网站免费在线观看视频| 亚洲精品国产av成人精品| 女人久久www免费人成看片| 丰满迷人的少妇在线观看| 久久精品熟女亚洲av麻豆精品| 桃花免费在线播放| 十八禁高潮呻吟视频 | 成人美女网站在线观看视频| 18禁裸乳无遮挡动漫免费视频| 蜜桃久久精品国产亚洲av| 国产一区二区三区av在线| 51国产日韩欧美| 国产免费福利视频在线观看| 国产精品熟女久久久久浪| 欧美日韩综合久久久久久| 高清不卡的av网站| 五月开心婷婷网| 青青草视频在线视频观看| 久久毛片免费看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品国产色婷婷电影| 精品一区二区三卡| 一本色道久久久久久精品综合| 亚洲不卡免费看| 3wmmmm亚洲av在线观看| 午夜精品国产一区二区电影| 日韩伦理黄色片| 婷婷色av中文字幕| 欧美日韩视频精品一区| 青春草国产在线视频| 国产免费一级a男人的天堂| 午夜福利影视在线免费观看| av.在线天堂| 精品久久久精品久久久| 国产av码专区亚洲av| 美女内射精品一级片tv| 黑丝袜美女国产一区| 美女福利国产在线| 亚洲经典国产精华液单| 国模一区二区三区四区视频| 国产av码专区亚洲av| 精品国产国语对白av| 国产精品.久久久| 天堂8中文在线网| 尾随美女入室| 少妇裸体淫交视频免费看高清| 亚洲欧美成人精品一区二区| 亚洲国产精品一区三区| 99国产精品免费福利视频| 丰满迷人的少妇在线观看| 免费看不卡的av| 激情五月婷婷亚洲| 日韩成人伦理影院| 天堂8中文在线网| 亚洲国产精品999| 国产日韩一区二区三区精品不卡 | 久久久国产精品麻豆| av国产精品久久久久影院| 亚洲在久久综合| 日韩成人av中文字幕在线观看| 国产伦理片在线播放av一区| 免费大片18禁| 久久鲁丝午夜福利片| 日韩成人av中文字幕在线观看| 国产伦在线观看视频一区| 欧美性感艳星| 亚洲国产日韩一区二区| 热re99久久国产66热| 少妇高潮的动态图| 国产免费一区二区三区四区乱码| 全区人妻精品视频| 中文乱码字字幕精品一区二区三区| 永久网站在线| 国产 精品1| 欧美精品人与动牲交sv欧美| 免费在线观看成人毛片| 如日韩欧美国产精品一区二区三区 | 精品久久久精品久久久| 国产成人精品久久久久久| 大香蕉97超碰在线| 日韩欧美 国产精品| a 毛片基地| 日韩一本色道免费dvd| 午夜激情福利司机影院| 久久99蜜桃精品久久| 欧美3d第一页| 日韩伦理黄色片| 亚洲美女搞黄在线观看| 中国三级夫妇交换| 久久婷婷青草| 青春草亚洲视频在线观看| a级片在线免费高清观看视频| 久久午夜综合久久蜜桃| 欧美日本中文国产一区发布| 国产精品久久久久久av不卡| 欧美日韩一区二区视频在线观看视频在线| 五月天丁香电影| 成人毛片a级毛片在线播放| 国产 精品1| 亚洲精品视频女| 国产视频内射| 少妇丰满av| 久久久久久久久久久丰满| 日日撸夜夜添| 亚洲三级黄色毛片| 搡老乐熟女国产| 亚洲性久久影院| 亚洲色图综合在线观看| 国产男女超爽视频在线观看| 男人和女人高潮做爰伦理| 交换朋友夫妻互换小说| 免费黄色在线免费观看| 日本色播在线视频| 国产在线一区二区三区精| 中国三级夫妇交换| 人妻 亚洲 视频| 青春草亚洲视频在线观看| 99re6热这里在线精品视频| 亚洲色图综合在线观看| 精品国产露脸久久av麻豆| 国产精品熟女久久久久浪| 男的添女的下面高潮视频| 一级黄片播放器| 深夜a级毛片| 狠狠精品人妻久久久久久综合| 国产精品成人在线| 亚洲精品第二区| 日韩人妻高清精品专区| 国产精品一二三区在线看| 欧美xxⅹ黑人| 日韩免费高清中文字幕av| 欧美日韩一区二区视频在线观看视频在线| 精品人妻熟女av久视频| 欧美日韩在线观看h| 国产91av在线免费观看| 国产精品国产三级国产av玫瑰| 久久国产精品男人的天堂亚洲 | 大码成人一级视频| 国产又色又爽无遮挡免| 亚洲欧美日韩卡通动漫| 国产熟女欧美一区二区| 亚洲欧美一区二区三区国产| 免费观看a级毛片全部| 久久精品国产亚洲av天美| 一本色道久久久久久精品综合| 久久婷婷青草| 黄色怎么调成土黄色| 亚洲av二区三区四区| 免费观看的影片在线观看| 国产高清有码在线观看视频| 在线观看免费视频网站a站| 国产精品一区二区在线不卡| 五月开心婷婷网| 久久韩国三级中文字幕| 日本黄大片高清| 99热6这里只有精品| 国产熟女午夜一区二区三区 | 99视频精品全部免费 在线| 国产老妇伦熟女老妇高清| 国产精品一区二区性色av| 春色校园在线视频观看| 成人亚洲欧美一区二区av| 国精品久久久久久国模美| 午夜视频国产福利| 国产亚洲91精品色在线| 99久久人妻综合| 亚洲国产av新网站| 伊人久久国产一区二区| 色婷婷av一区二区三区视频| 国产深夜福利视频在线观看| 免费人妻精品一区二区三区视频| 丝袜脚勾引网站| 国产极品天堂在线| 久久久久久人妻| 国产精品国产三级国产av玫瑰| 人妻 亚洲 视频| 国产黄片视频在线免费观看| 高清午夜精品一区二区三区| 亚洲精品成人av观看孕妇| 日韩中字成人| 欧美一级a爱片免费观看看| 久久久久人妻精品一区果冻| 黄色日韩在线| 国产精品99久久99久久久不卡 | 国产成人免费无遮挡视频| 免费观看在线日韩| 三级国产精品片| 日本wwww免费看| 一级毛片aaaaaa免费看小| 9色porny在线观看| 九九在线视频观看精品| 99热全是精品| 亚洲国产av新网站| 午夜视频国产福利| 在线观看免费高清a一片| 成年美女黄网站色视频大全免费 | 色5月婷婷丁香| 国产免费一区二区三区四区乱码| 久久免费观看电影| 九九爱精品视频在线观看| 午夜激情久久久久久久| 99国产精品免费福利视频| 插阴视频在线观看视频| 这个男人来自地球电影免费观看 | 国产男女超爽视频在线观看| 日韩 亚洲 欧美在线| 五月伊人婷婷丁香| 日韩视频在线欧美| 日本爱情动作片www.在线观看| 一级毛片黄色毛片免费观看视频| 三级国产精品片| 少妇人妻久久综合中文| 免费看不卡的av| 大片免费播放器 马上看| 伊人亚洲综合成人网| 晚上一个人看的免费电影| 国产精品人妻久久久影院| 国产伦理片在线播放av一区| 一区二区三区乱码不卡18| 亚洲精品日韩在线中文字幕| 久久精品国产鲁丝片午夜精品| 欧美国产精品一级二级三级 | 亚洲国产色片| 精品久久久久久久久亚洲| 免费少妇av软件| 在线观看美女被高潮喷水网站| 熟女电影av网| 啦啦啦啦在线视频资源| 黑人高潮一二区| 欧美人与善性xxx| 99久久精品国产国产毛片| 街头女战士在线观看网站| 丁香六月天网| 人人澡人人妻人| 亚洲电影在线观看av| 色视频www国产| 99久久中文字幕三级久久日本| 亚洲精品一二三| 性色avwww在线观看| 久久热精品热| 99久久人妻综合| 亚洲精品国产色婷婷电影| 久久国产精品大桥未久av | 日本wwww免费看| av视频免费观看在线观看| 少妇猛男粗大的猛烈进出视频| 中文天堂在线官网| 欧美成人午夜免费资源| 亚洲精品国产成人久久av| 国产男女超爽视频在线观看| 麻豆精品久久久久久蜜桃| av免费在线看不卡| 亚洲久久久国产精品| 亚洲四区av| 免费观看a级毛片全部| 中文字幕久久专区| 黄色毛片三级朝国网站 | 午夜精品国产一区二区电影| 国产精品三级大全| 老司机影院毛片| 麻豆精品久久久久久蜜桃| 国产精品国产三级国产av玫瑰| 国产成人一区二区在线| 国产精品嫩草影院av在线观看| 婷婷色综合大香蕉| 亚洲丝袜综合中文字幕| 亚洲高清免费不卡视频| 国产亚洲5aaaaa淫片| 观看免费一级毛片| 嫩草影院新地址| 成人毛片a级毛片在线播放| 亚洲精品乱码久久久v下载方式| 噜噜噜噜噜久久久久久91| 国产精品久久久久久久电影| 欧美丝袜亚洲另类| 大片电影免费在线观看免费| 国产白丝娇喘喷水9色精品| 秋霞在线观看毛片| 久久久久视频综合| 国产成人精品福利久久| 免费黄色在线免费观看| 中国三级夫妇交换| 日韩,欧美,国产一区二区三区| 曰老女人黄片| 亚洲伊人久久精品综合| 国产精品99久久久久久久久| 国产老妇伦熟女老妇高清| 亚洲美女视频黄频| 欧美老熟妇乱子伦牲交| 2021少妇久久久久久久久久久| 最黄视频免费看| 少妇被粗大的猛进出69影院 | 又粗又硬又长又爽又黄的视频| 日韩熟女老妇一区二区性免费视频| 秋霞在线观看毛片| 久久久久视频综合| 伦理电影大哥的女人| 国产乱来视频区| 亚洲国产欧美在线一区| 亚洲中文av在线| 三级国产精品片| 午夜激情久久久久久久| 免费av不卡在线播放| 在线观看www视频免费| 国产男女内射视频| 欧美区成人在线视频| 极品教师在线视频| 久久久国产一区二区| 波野结衣二区三区在线| 在线观看www视频免费| 国产精品免费大片| 99视频精品全部免费 在线| 晚上一个人看的免费电影| 亚洲精品国产色婷婷电影| 永久网站在线| 自线自在国产av| 偷拍熟女少妇极品色| 日韩欧美 国产精品| videos熟女内射|