• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mpro-C蛋白三維結(jié)構(gòu)域交換的機(jī)理:來(lái)自分子模擬的線索

    2012-12-11 09:12:22黃永棋劉志榮
    物理化學(xué)學(xué)報(bào) 2012年10期
    關(guān)鍵詞:北京大學(xué)機(jī)理二聚體

    黃永棋 康 雪 夏 斌,5 劉志榮,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院,北京100871;2北京大學(xué)分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京100871;3北京大學(xué)定量生物學(xué)中心,北京100871;4北京核磁共振中心,北京100871; 5北京大學(xué)生命科學(xué)學(xué)院,北京100871)

    Mpro-C蛋白三維結(jié)構(gòu)域交換的機(jī)理:來(lái)自分子模擬的線索

    黃永棋1,2,3康 雪1,4夏 斌1,4,5劉志榮1,2,3,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院,北京100871;2北京大學(xué)分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京100871;3北京大學(xué)定量生物學(xué)中心,北京100871;4北京核磁共振中心,北京100871;5北京大學(xué)生命科學(xué)學(xué)院,北京100871)

    SARS冠狀病毒主蛋白酶(Mpro)在病毒的蛋白酶切過(guò)程中發(fā)揮著重要作用.Mpro的晶體結(jié)構(gòu)顯示它存在兩種形式的二聚體:一種是發(fā)生三維結(jié)構(gòu)域交換的形式,另一種是非交換的形式.Mpro的C端結(jié)構(gòu)域(Mpro-C)單獨(dú)表達(dá)時(shí)也能形成與全長(zhǎng)Mpro類似的三維結(jié)構(gòu)域交換二聚體.三維結(jié)構(gòu)域交換通常發(fā)生在蛋白質(zhì)的表面,但Mpro-C的結(jié)構(gòu)域交換卻發(fā)生在疏水核心.在本文中,我們利用分子動(dòng)力學(xué)模擬及三維結(jié)構(gòu)域交換預(yù)測(cè)算法研究了Mpro-C中被高度埋藏的核心螺旋片段發(fā)生交換的機(jī)理.我們發(fā)現(xiàn)基于結(jié)構(gòu)與基于序列的已有算法都不能正確預(yù)言出Mpro-C和Mpro中發(fā)生結(jié)構(gòu)域交換的鉸鏈區(qū)位置.分子模擬結(jié)果表明Mpro-C中的交換片段在天然態(tài)下埋藏得很好,但在變性單體中則會(huì)被釋放并暴露在外面.因此,在完全或部分解折疊狀態(tài)下交換片段的打開(kāi)有助于促進(jìn)單體間的相互作用及結(jié)構(gòu)域交換二聚體的形成.

    SARS冠狀病毒;主蛋白酶;分子模擬;結(jié)構(gòu)域交換;蛋白質(zhì)-蛋白質(zhì)相互作用;蛋白質(zhì)解折疊

    1 Introduction

    Three-dimensional(3D)domain swapping is one of the mechanisms by which protein complexes are formed.In a 3D domain swapping process,protein monomers exchange identical domains or structural elements during oligomerization.1Great efforts have been devoted to understanding the structural features and biological functions of 3D domain swapping. There is evidence that 3D domain swapping mediates amyloid fibril formation.2-5Furthermore,3D domain swapping is a mechanism underlying the evolution of protein complexes6-8and promotes signal transduction within large protein complexes.9,10

    Analyses of the structures of domain-swapped complexes show that there is no general features(including size,sequence,and secondary structure)of the exchanged regions.11However,in most experimental observations of domainswapped oligomers,the swapped regions locate to the surface of protein 3D structures,i.e.,the swapped regions are not wrapped by other structural elements,11-13suggesting that native topology is a general determinant of 3D domain swapping.14Topology-based methods have achieved some success in reproducing the 3D domain-swapped structures or locating the hinge loop regions based on monomer structures,14-18further supporting the role of structural topology in 3D domain swapping.The swapping of surface regions may be promoted by the local unfolding of proteins,whereby the swapped regions are released and are able to form extensive intermolecular interactions between monomers.12,19

    SARS coronavirus main protease(Mpro)is a key enzyme involved in the extensive proteolytic processing of the virus? polyproteins and is an attractive target for anti-SARS drug design.Crystal structures of Mproreveal that the enzyme contains two domains(an N-terminal domain and a C-terminal domain) and exists as a homodimer in which a domain-swapped form20and a non-swapped form21have been observed.The isolated C-terminal domain(Mpro-C)alone also forms a domainswapped structure(Fig.1A)identical to that formed by the full-length protein.22Unlike previously observed 3D domainswapped structures,Mprois unique in that the swapped region (T201?N214,α1-helix)locates to the core rather than the surface of a folded domain.To date,the swapping mechanism of Mprohas not been solved.

    In this work,we used molecular dynamics(MD)simulations and 3D domain-swapping predictions to investigate how a highly buried core helix in a helix bundle structure of Mpro-C is swapped.

    2 Materials and methods

    A series of MD simulations were performed on the Mpro-C monomer and the 3D domain-swapped dimer.Initial conformations for the simulations were taken from the solution structure of Mpro-C monomer(PDB 2K7X)22and the crystal structure of Mpro-C dimer(PDB 3EBN).22The duration of the simulations was 50 ns at 298 K and 100 ns at 498 K for both monomer and dimer.

    Fig.1 (A)Structure of domain-swapped Mpro-C dimer(PDB 3EBN),to clearly show the swapped core helix,one chain is shown by a cyan ribbon and the other by an orange surface.(B)H-Predictor prediction for Mpro-C,red stars indicate the predicted hinge loop regions; green dots indicate the experimentally observed hinge loop regions.

    Simulations were performed using the GROMACS 4.5.1 program23,24and the OPLS-AA/L force field.25Water molecules were modeled by the SPC/E representation.26Each of the starting conformations was placed in the center of a cubic water box with a distance of at least 1.0 nm from the box edge.Peri-odic boundary conditions were used and Na+ions were added to neutralize the net charges.The long-range electrostatic interactions were treated with the particle mesh Ewald method.27The bond lengths were fixed by using the LINCS algorism,28and a time step of 2 fs was used.After relaxation by 1000 steps of the steepest-descent energy minimization,each system was equilibrated at 298 K by 100 ps under an NVT ensemble and further equilibrated for 200 ps at constant pressure(1×105Pa). Production simulations were performed at constant temperature(298 or 498 K)and pressure(1×105Pa).Coordinates were saved every 5 ps.V-rescale29and Parrinello-Rahman30were used to couple the system to the simulation temperature and pressure with coupling constants of 0.1 and 2.0 ps,respectively.

    We monitored the contacts between the two chains in the domain-swapped dimer to investigate the intermolecular interactions during simulations.An intermolecular contact was considered to be formed between two residues(one contributed by each chain)when the distance between any two non-H atom pairs was≤0.45 nm.Secondary structure analysis was assigned using the DSSP program.31Molecular graphics images were created using the VMD program.32

    3 Results

    3.1 Hinge loop prediction

    The hinge loop is the region linking the swapped domain and the main domain.Because of the special role of the hinge loop playing in a swapping process,much effort has been devoted to the development of methods for locating the hinge loop regions based on monomeric structures and/or sequences. Two different methods were used here to predict the location of the hinge loop or the probability of domain swapping in Mproand Mpro-C.The first method was H-Predictor,14which is based on the 3D structure of a protein and calculates the effective unfolding temperature for each residue using a simple contactbased potential for enthalpy and a graph theory-based estimation for entropy.Residues with the lowest effective unfolding temperature will have the highest probability of being in the hinge region.Fig.1B shows the results for Mpro-C predicted by H-Predictor.The predicted hinge loop regions are the C-terminal loop(ca 276-281)for Mpro-C(Fig.1B)or the loop linking the C-terminal and N-terminal domains(ca 186-193)for Mpro(data not shown).Neither of the predicted hinge loops coincides with the hinge loop determined experimentally(ca 214-226).The second method is 3dswap-pred.33Unlike H-Predictor,3dswap-pred predicts the probability of domain swapping based on protein sequences using the random forest approach.3dswap-pred succeeded in predicting Mproto be a domain-swapped protein but incorrectly predicted Mpro-C to be a non-domain-swapped protein.3dswap-pred does not provide the location of the possible hinge loop.The discrepancy between predictions and the experimental results suggests that the domain swapping in Mpro-C is not conventional.

    3.2 Flexibility of the domain-swapped dimer

    The dynamic nature of domain-swapped complexes has been observed in previous simulations.34-37For Mpro-C,the simulated backbone root mean square fluctuation(RMSF)at 298 K shows that its structural flexibility is increased in the transition from monomer to domain-swapped dimer(Fig.2A).The increased flexibility of the domain-swapped dimer is consistent with experimental B-factors(Fig.2B).It is noted that the hinge loop does not locate to the region with the highest flexibility. This may be the reason why the structure-based method H-Predictor failed to correctly locate the hinge loop in Mpro-C.The flexibility of the domain-swapped dimer can also be revealed by investigating intermolecular contacts in the open interface. The open interface in the Mpro-C dimer is mainly formed between the two hinge loops and between the two main domains. During simulations,contacts between the two hinge loops (Fig.2C)and between the two main domains(Fig.2D)fluctuated to a certain extent,indicating the dynamic feature of the open interfaces.

    3.3 Compacting of the unfolded monomer and dimer

    The unfolding of a protein(fully or partially)and opening of the swapped region has been proposed as a mechanism for domain swapping in several proteins.12,19Unlike previously studied proteins,the swapped region of Mpro-C locates to the core of a folded structure and is wrapped by four other helices (Fig.1A).It is currently unclear whether the swapped region of Mpro-C is released and exposed in the unfolded state.To address the structural properties of unfolded Mpro-C,we performed simulations at 498 K.Simulation trajectories indicate that the unfolding process initiates from the C-terminal helix, which is consistent with the experimental observation that the C-terminal helix exhibits the lowest stability and unfolds in the presence of 2.5 mol·L-1urea.38Figs.3A and 3B indicate that the Mpro-C monomer unfolds within about 40 ns.The unfolded monomer retains a compact structure and the average radius of gyration of the unfolded conformations(40-100 ns)is only (0.13±0.06)nm greater than the native folded state(Fig.3C).

    Unfolding of the Mpro-C dimer takes longer than that of the monomer and the CαRMSD does not reach a plateau within 100 ns of simulation(Fig.3D).The partially unfolded dimer is also compact as revealed by intermolecular contacts between the two monomers(Fig.3E)and the radius of gyration (Fig.3F).Extensive intermolecular contacts and a decrease in the radius of gyration indicate that the partially unfolded dimer forms a united molten structure rather than being two individual components.

    3.4 Opening of the swapped helix in the unfolded monomer

    Although the unfolded Mpro-C monomer is compact,solvent accessible surface area(SASA)indicates that the swapped region is released and exposed in the unfolded state.In the native state,SASA of the swapped region is 4.75 nm2,while in the unfolded state(40-100 ns),SASA increases to(10.57±2.04)nm2. Dividing SASA into hydrophobic and hydrophilic,we find that a great part of the increased SASA is hydrophobic,from 2.11 nm2in the native state to(7.00±1.48)nm2in the unfolded state (Fig.4A).Hydrophilic SASA only increases moderately (Fig.4B).Snapshots of simulations clearly show that the swapped region is exposed in the unfolded state(Fig.4C).Our results indicate that regions with the lowest stability may not possess the highest propensity of being swapped and regions that are highly buried but exposed in the unfolded state may also be swapped.Therefore,more factors are needed to be considered to further improve the hinge loop prediction methods.

    Fig.2 Comparison of the flexibility between the monomer and the domain-swapped dimer of Mpro-C(A)simulated backbone RMSF and(B)experimental B-factor for the monomer and the dimer,the monomer is indicated by a black line and the two chains in the dimer are indicated by red and blue lines.(C)Number of contacts between the hinge loops and(D)number of contacts between the main domains in the dimer during simulations

    Fig.3 Unfolding simulations of Mpro-C(A-C)monomer and(D-F)domain-swapped dimer(A)CαRMSD relative to the native monomer structure;(B)percentage of residues in the α-helical structure;(C)radius of gyration of all protein atoms;(D)CαRMSD relative to native dimer structure;(E)number of contacts between the two monomers;(F)radius of gyration of all protein atoms.Three simulation trajectories are shown.

    Fig.4 SASAof the swapped helix during unfolding simulations of the monomer(A)hydrophobic SASA,(B)hydrophilic SASA,three simulation trajectories are shown;(C)representative unfolded conformations of the Mpro-C monomer in one trajectory.The swapped region is shown in red.

    4 Discussion

    As a mechanism for forming protein complexes,3D domain swapping has been observed in about 10%of structural classification of protein(SCOP)fold types and 5%of SCOP families.13Extensive distribution of 3D domain swapping in the protein structure space indicates that 3D domain swapping plays important biological functions.To clarify how 3D domainswapped structures are formed,many studies have been conducted to investigate the mechanism of 3D domain swapping. A general picture has been obtained for some proteins,whereby the swapping process starts from the fully or partially unfolded state.12,19,39The unfolding of a protein and the opening of the swapped region promote interactions between the swapped region of one monomer and the main domain of another monomer,and thus increase the probability of forming 3D domain-swapping complexes.It is expected that mutations which destabilize a monomer will increase the population of the domain-swapped form,e.g.,cyanovirin-N.40

    The opening of swapped regions in the unfolded state has been observed in several proteins,e.g.,p13suc1,41ribonuclease A,42GB1,43FIS,44and SH3 domain.15However,simulations with GB1 showed that unfolding may be not necessary in the swapping process,and that the conformational changes of monomers are tightly coupled to the swapping process.45NMR measurements of the isolated EC1 domain of type II cadherin-8 identified monomers with exposed swapped regions, and it was proposed that swapping of the EC1 domain of cadherin-8 proceeds via a selected-fit mechanism.46However,later studies by Sivasankar et al.,47suggested that cadherin dimerization proceeds via an induced fit mechanism.We noted that the GB1 domain and the EC1 domain of cadherin-8 share one common structural feature that the swapped region is exposed at the surface even in the folded monomer.This enables monomers to form intermolecular interactions between the swapped region of one monomer and the main domain of the other monomer,and then to undergo subsequent conformational changes to form the final domain-swapped dimer.

    In contrast to the GB1 and EC1 domains of cadherin-8,the swapped regions of Mpro-C and Mprolocate to the core of a folded structure.Weak interactions that form during encounters between two folded monomers may not enable the folded structures to deform and release the swapped regions.Recently, Kang et al.38studied the swapping kinetics and thermodynamics of Mpro-C and found that unfolding of the C-terminal α5-helix is required for Mpro-C to form domain-swapped dimer.It is proposed that unfolding of the C-terminal helix converts Mpro-C into an active state,which promotes Mpro-C to form an intermediate dimer.The N-terminal α1-helices are exchanged in the intermediate dimer.Exposure of the α1-helix in the unfolded monomer may facilitate α1-helix from one Mpro-C monomer to form extensive hydrophobic interactions with the other Mpro-C monomer and so promote the formation of domainswapped dimer.

    5 Conclusions

    By using 3D domain-swapping predictions and molecular dynamics simulations,we studied the swapping mechanism of Mpro-C and Mpro.We found that both structure-based and sequence-based methods failed to predict the hinge loop location in Mpro-C and Mpro.We then performed extensive molecular dynamics simulations to investigate the structural properties of the unfolded monomer and the domain-swapped dimer.We found that although the swapped region was buried in the native state,it was exposed in the unfolded monomer.Our results suggest that exposure of the swapped region in the unfolded state may promote interactions between monomers and the formation of domain-swapped structures in Mpro-C and Mpro.

    (1) Bennett,M.J.;Schlunegger,M.P.;Eisenberg,D.Protein Sci. 1995,4,2455.doi:10.1002/pro.v4:12

    (2) Nelson,R.;Eisenberg,D.Curr.Opin.Struct.Biol.2006,16, 260.doi:10.1016/j.sbi.2006.03.007

    (3) Liu,C.;Sawaya,M.R.;Eisenberg,D.Nat.Struct.Mol.Biol. 2011,18,49.doi:10.1038/nsmb.1948

    (4) ?erovnik,E.;Stoka,V.;Mirti?,A.;Gun?ar,G.;Grdadolnik,J.; Staniforth,R.A.;Turk,D.;Turk,V.FEBS J.2011,278,2263. doi:10.1111/j.1742-4658.2011.08149.x

    (5) Bennett,M.J.;Sawaya,M.R.;Eisenberg,D.Structure 2006, 14,811.doi:10.1016/j.str.2006.03.011

    (6) Bergdoll,M.;Eltis,L.D.;Cameron,A.D.;Dumas,P.;Bolin,J. T.Protein Sci.1998,7,1661.doi:10.1002/pro.v7:8

    (7) D?Alessio,G.Prog.Biophys.Mol.Biol.1999,72,271.doi: 10.1016/S0079-6107(99)00009-7

    (8) Hadjithomas,M.;Moudrianakis,E.N.Proc.Natl.Acad.Sci.U. S.A.2011,108,13462.doi:10.1073/pnas.1108649108 (9)Schymkowitz,J.W.H.;Rousseau,F.;Wilkinson,H.R.; Friedler,A.;Itzhaki,L.S.Nat.Struct.Biol.2001,8,888.doi: 10.1038/nsb1001-888

    (10) Shi,Q.;Maruthamuthu,V.;Li,F.;Leckband,D.Biophys.J. 2010,99,95.doi:10.1016/j.bpj.2010.03.062

    (11) Liu,Y.S.;Eisenberg,D.Protein Sci.2002,11,1285.doi: 10.1110/ps.0201402

    (12) Gronenborn,A.M.Curr.Opin.Struct.Biol.2009,19,39.doi: 10.1016/j.sbi.2008.12.002

    (13) Huang,Y.;Cao,H.;Liu,Z.Proteins 2012,doi:10.1002/ prot.24055.

    (14) Ding,F.;Prutzman,K.C.;Campbell,S.L.;Dokholyan,N.V. Structure 2006,14,5.doi:10.1016/j.str.2005.09.008

    (15) Yang,S.C.;Cho,S.S.;Levy,Y.;Cheung,M.S.;Levine,H.; Wolynes,P.G.;Onuchic,J.N.Proc.Natl.Acad.Sci.U.S.A. 2004,101,13786.doi:10.1073/pnas.0403724101

    (16) Chen,Y.W.;Dokholyan,N.V.J.Mol.Biol.2005,354,473.doi: 10.1016/j.jmb.2005.09.075

    (17) Chahine,J.;Cheung,M.S.Biophys.J.2005,89,2693.doi: 10.1529/biophysj.105.062679

    (18) Song,G.;Jernigan,R.L.Proteins 2006,63,197.doi:10.1002/ prot.20836

    (19) Rousseau,F.;Schymkowitz,J.W.H.;Itzhaki,L.S.Structure 2003,11,243.doi:10.1016/S0969-2126(03)00029-7

    (20) Zhang,S.;Zhong,N.;Xue,F.;Kang,X.;Ren,X.;Chen,J.;Jin, C.;Lou,Z.;Xia,B.Protein Cell 2010,1,371.doi:10.1007/ s13238-010-0044-8

    (21)Yang,H.;Yang,M.;Ding,Y.;Liu,Y.;Lou,Z.;Zhou,Z.;Sun, L.;Mo,L.;Ye,S.;Pang,H.;Gao,G.F.;Anand,K.;Bartlam, M.;Hilgenfeld,R.;Rao,Z.Proc.Natl.Acad.Sci.U.S.A.2003, 100,13190.doi:10.1073/pnas.1835675100

    (22) Zhong,N.;Zhang,S.N.;Xue,F.;Kang,X.;Zou,P.;Chen,J.X.; Liang,C.;Rao,Z.H.;Jin,C.W.;Lou,Z.Y.;Xia,B.Protein Sci. 2009,18,839.

    (23) Berendsen,H.J.C.;van der Spoel,D.;van Drunen,R.Comp. Phys.Commun.1995,91,43.doi:10.1016/0010-4655(95) 00042-E

    (24) Hess,B.;Kutzner,C.;Spoel,D.v.d.;Lindahl,E.J.Chem. Theory Comput.2008,4,435.doi:10.1021/ct700301q

    (25) Kaminski,G.A.;Friesner,R.A.;Tirado-Rives,J.;Jorgensen,W. L.J.Phys.Chem.B 2001,105,6474.doi:10.1021/jp003919d

    (26) Berendsen,H.J.C.;Grigera,J.R.;Straatsma,T.P.J.Phys. Chem.1987,91,6269.doi:10.1021/j100308a038

    (27) Darden,T.;York,D.;Pedersen,L.J.Chem.Phys.1993,98, 10089.doi:10.1063/1.464397

    (28) Hess,B.;Bekker,H.;Berendsen,H.J.C.;Fraaije,J.G.E.M. J.Comput.Chem.1997,18,1463.doi:10.1002/(ISSN) 1096-987X

    (29) Bussi,G.;Donadio,D.;Parrinello,M.J.Chem.Phys.2007, 126,014101.doi:10.1063/1.2408420

    (30) Parrinello,M.;Rahman,A.J.Appl.Phys.1981,52,7182.doi: 10.1063/1.328693

    (31) Kabsch,W.;Sander,C.Biopolymers 1983,22,2577.doi: 10.1002/(ISSN)1097-0282

    (32) Humphrey,W.;Dalke,A.;Schulten,K.J.Mol.Graph.1996,14, 33.doi:10.1016/0263-7855(96)00018-5

    (33)Shameer,K.;Pugalenthi,G.;Kandaswamy,K.K.;Sowdhamini, R.Protein Pept.Lett.2011,18,1010.doi:10.2174/ 092986611796378729

    (34) Merlino,A.;Vitagliano,L.;Ceruso,M.A.;Mazzarella,L. Biophys.J.2004,86,2383.doi:10.1016/S0006-3495(04) 74295-2

    (35) Kundu,S.;Jernigan,R.L.Biophys.J.2004,86,3846.doi: 10.1529/biophysj.103.034736

    (36) Merlino,A.;Ceruso,M.A.;Vitagliano,L.;Mazzarella,L. Biophys.J.2005,88,2003.doi:10.1529/biophysj.104.048611

    (37) Cailliez,F.;Lavery,R.Biophys.J.2006,91,3964.doi:10.1529/ biophysj.106.087213

    (38) Kang,X.;Zhong,N.;Zou,P.;Zhang,S.;Jin,C.;Xia,B.Proc. Natl.Acad.Sci.U.S.A.2012,109,14900.doi:10.1073/ pnas.1205241109.

    (39) Liu,L.;Byeon,I.J.;Bahar,I.;Gronenborn,A.M.J.Am.Chem. Soc.2012,134,4229.doi:10.1021/ja210118w

    (40) Barrientos,L.G.;Louis,J.M.;Botos,I.;Mori,T.;Han,Z.; O?Keefe,B.R.;Boyd,M.R.;Wlodawer,A.;Gronenborn,A.M. Structure 2002,10,673.doi:10.1016/S0969-2126(02)00758-X

    (41) Rousseau,F.;Schymkowitz,J.W.;Wilkinson,H.R.;Itzhaki,L. S.J.Biol.Chem.2004,279,8368.

    (42) Esposito,L.;Daggett,V.Biochemistry 2005,44,3358.doi: 10.1021/bi0488350

    (43) Byeon,I.J.L.;Louis,J.M.;Gronenborn,A.M.J.Mol.Biol. 2004,340,615.doi:10.1016/j.jmb.2004.04.069

    (44)Topping,T.B.;Hoch,D.A.;Gloss,L.M.J.Mol.Biol.2004, 335,1065.doi:10.1016/j.jmb.2003.11.013

    (45) Malevanets,A.;Sirota,F.L.;Wodak,S.J.J.Mol.Biol.2008, 382,223.doi:10.1016/j.jmb.2008.06.025

    (46) Miloushev,V.Z.;Bahna,F.;Ciatto,C.;Ahlsen,G.;Honig,B.; Shapiro,L.;Palmer,A.G.Structure 2008,16,1195.doi: 10.1016/j.str.2008.05.009

    (47) Sivasankar,S.;Zhang,Y.;Nelson,W.J.;Chu,S.Structure 2009, 17,1075.doi:10.1016/j.str.2009.06.012

    August 13,2012;Revised:September 7,2012;Published on Web:September 7,2012.

    Mechanism of 3D Domain Swapping for Mpro-C:Clues from Molecular Simulations

    HUANG Yong-Qi1,2,3KANG Xue1,4XIA Bin1,4,5LIU Zhi-Rong1,2,3,*
    (1College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P.R.China;2Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,Peking University, Beijing 100871,P.R.China; 3Center for Quantitative Biology,Peking University,Beijing 100871,P.R.China;4Beijing Nuclear Magnetic Resonance Center,Peking University,Beijing 100871,P.R.China; 5School of Life Sciences,Peking University,Beijing 100871,P.R.China)

    SARS coronavirus main protease(Mpro)is a key enzyme involved in the extensive proteolytic processing of the virus?polyproteins.The crystal structure of Mproreveals that the enzyme exists in two differenthomo-dimericforms:a three-dimensional(3D)domain-swapped form;and a non-3D domain-swapped form.The isolated C-terminal domain(Mpro-C)also forms a 3D domain-swapped structure similar to the full-length protein.Unlike conventional 3D domain-swapped structures,in which the swapped regions are located on the surface,Mpro-C swaps a helix at the core of a folded domain.In this work,we used molecular dynamics simulations and 3D domain-swapping predictions to investigate how a highly buried core helix in the helix bundle structure of Mpro-C can be swapped.We found that both structure-and sequence-based methods failed to predict the location of the hinge loop in Mpro-C and Mpro.Extensive molecular dynamics simulations were performed to investigate the structural properties of the unfolded monomer and the 3D domain-swapped dimer of Mpro-C.We found that,although the swapped region was buried in the native state,it was exposed in the unfolded monomer.Our results suggest that the opening of the swapped region in the fully or partially unfolded state may promote interactions between monomers and the formation of domain-swapped dimers.

    SARS coronavirus;Main protease;Molecular simulation;Domain swapping; Protein-protein interaction; Protein unfolding

    10.3866/PKU.WHXB201209072

    ?Corresponding author.Email:LiuZhiRong@pku.edu.cn;Tel:+86-10-62752541;Fax:+86-10-62759595.

    The project was supported by the National Key Basic Research Program of China(973)(2009CB918500,2003CB514104)and National Natural Science Foundation of China(20973016,11021463,31170682).

    國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃項(xiàng)目(973)(2009CB918500,2003CB514104)和國(guó)家自然科學(xué)基金(20973016,11021463,31170682)資助

    O641

    猜你喜歡
    北京大學(xué)機(jī)理二聚體
    隔熱纖維材料的隔熱機(jī)理及其應(yīng)用
    北京大學(xué)首都發(fā)展新年論壇(2021)舉行
    就任北京大學(xué)校長(zhǎng)之演說(shuō)
    煤層氣吸附-解吸機(jī)理再認(rèn)識(shí)
    霧霾機(jī)理之問(wèn)
    Le r?le de la lecture dans la formation desétudiants de langues vivantes
    La solitude
    D-二聚體和BNP與ACS近期不良心血管事件發(fā)生的關(guān)聯(lián)性
    聯(lián)合檢測(cè)D-二聚體和CA153在乳腺癌診治中的臨床意義
    兩種試劑D-二聚體檢測(cè)值與纖維蛋白降解產(chǎn)物值的相關(guān)性研究
    热99久久久久精品小说推荐| 欧美日韩成人在线一区二区| 亚洲欧美一区二区三区黑人 | 亚洲精品日韩在线中文字幕| 欧美日韩一区二区视频在线观看视频在线| 亚洲久久久国产精品| 欧美日韩综合久久久久久| 制服丝袜香蕉在线| 国产极品天堂在线| 免费在线观看黄色视频的| 啦啦啦在线观看免费高清www| 免费观看性生交大片5| 午夜91福利影院| av不卡在线播放| 精品国产超薄肉色丝袜足j| 亚洲美女搞黄在线观看| 午夜影院在线不卡| 少妇的逼水好多| 99re6热这里在线精品视频| 国产av精品麻豆| 在线天堂最新版资源| 成年人免费黄色播放视频| 岛国毛片在线播放| 久久精品熟女亚洲av麻豆精品| 精品人妻在线不人妻| 亚洲第一区二区三区不卡| 国产成人91sexporn| 91精品伊人久久大香线蕉| 国产精品一二三区在线看| 妹子高潮喷水视频| 大片免费播放器 马上看| 欧美最新免费一区二区三区| 看免费成人av毛片| 成年人免费黄色播放视频| videosex国产| 天堂中文最新版在线下载| 婷婷色麻豆天堂久久| 亚洲美女视频黄频| 777米奇影视久久| 久久久久久久久免费视频了| 国产免费一区二区三区四区乱码| 美女国产高潮福利片在线看| 国产无遮挡羞羞视频在线观看| 涩涩av久久男人的天堂| 宅男免费午夜| 香蕉丝袜av| 久久99精品国语久久久| 精品一区二区免费观看| 中国国产av一级| 欧美 亚洲 国产 日韩一| 久久久久久久国产电影| 久热这里只有精品99| 永久免费av网站大全| 亚洲av福利一区| 热99国产精品久久久久久7| 欧美精品高潮呻吟av久久| 成年美女黄网站色视频大全免费| 亚洲欧洲日产国产| 久久久精品区二区三区| 女人久久www免费人成看片| 婷婷色综合大香蕉| av国产久精品久网站免费入址| 欧美成人午夜免费资源| av.在线天堂| 国产精品亚洲av一区麻豆 | 日韩中文字幕欧美一区二区 | 欧美97在线视频| av.在线天堂| 精品国产露脸久久av麻豆| videossex国产| 国产成人免费无遮挡视频| 狂野欧美激情性bbbbbb| 国产野战对白在线观看| 国产成人午夜福利电影在线观看| 伦理电影大哥的女人| 人成视频在线观看免费观看| 精品国产一区二区久久| 久久婷婷青草| 日韩熟女老妇一区二区性免费视频| 人成视频在线观看免费观看| 欧美日韩一级在线毛片| 中文字幕人妻熟女乱码| 寂寞人妻少妇视频99o| 欧美日韩一区二区视频在线观看视频在线| 1024视频免费在线观看| 亚洲av成人精品一二三区| 欧美国产精品一级二级三级| 亚洲国产最新在线播放| 亚洲精品成人av观看孕妇| 极品少妇高潮喷水抽搐| kizo精华| 国产av精品麻豆| 日产精品乱码卡一卡2卡三| 美女主播在线视频| 久久久久国产一级毛片高清牌| 制服人妻中文乱码| 少妇 在线观看| 国产午夜精品一二区理论片| 免费观看a级毛片全部| 亚洲,一卡二卡三卡| 午夜精品国产一区二区电影| 你懂的网址亚洲精品在线观看| 亚洲av福利一区| 中文字幕精品免费在线观看视频| 日韩一区二区视频免费看| 亚洲精品日韩在线中文字幕| av在线播放精品| 国产在线一区二区三区精| 久久国产精品大桥未久av| 一级毛片 在线播放| 免费在线观看视频国产中文字幕亚洲 | 久久久久久人妻| 欧美97在线视频| 精品少妇黑人巨大在线播放| 最近中文字幕2019免费版| a级毛片在线看网站| 国产黄频视频在线观看| 亚洲欧洲日产国产| 在线观看免费高清a一片| 日韩 亚洲 欧美在线| 一边摸一边做爽爽视频免费| 国产日韩欧美亚洲二区| 女人久久www免费人成看片| 91aial.com中文字幕在线观看| 色哟哟·www| av国产久精品久网站免费入址| 国产精品免费视频内射| 欧美成人精品欧美一级黄| 午夜福利乱码中文字幕| 最近最新中文字幕大全免费视频 | 18禁动态无遮挡网站| 一区二区三区激情视频| 国产在视频线精品| 老司机亚洲免费影院| 欧美人与性动交α欧美软件| 欧美 日韩 精品 国产| 国产又色又爽无遮挡免| 日本-黄色视频高清免费观看| 国产国语露脸激情在线看| 黑人欧美特级aaaaaa片| 9热在线视频观看99| 97在线人人人人妻| 大香蕉久久网| 五月伊人婷婷丁香| 久久ye,这里只有精品| 在线 av 中文字幕| 国产日韩欧美亚洲二区| 国产精品一区二区在线观看99| 26uuu在线亚洲综合色| 丰满迷人的少妇在线观看| 在线观看www视频免费| 国产成人精品在线电影| 国产精品 欧美亚洲| 国产亚洲一区二区精品| 午夜福利在线免费观看网站| 搡老乐熟女国产| 18禁动态无遮挡网站| 你懂的网址亚洲精品在线观看| 多毛熟女@视频| 免费看av在线观看网站| 国产av精品麻豆| 丰满乱子伦码专区| av在线app专区| 伊人亚洲综合成人网| 国产综合精华液| 久久人人97超碰香蕉20202| 肉色欧美久久久久久久蜜桃| www.熟女人妻精品国产| 极品少妇高潮喷水抽搐| 如日韩欧美国产精品一区二区三区| 色播在线永久视频| kizo精华| av又黄又爽大尺度在线免费看| 麻豆乱淫一区二区| 亚洲第一区二区三区不卡| 在线观看国产h片| 99久久人妻综合| 国产福利在线免费观看视频| 99久久综合免费| 成年女人在线观看亚洲视频| 国产国语露脸激情在线看| 久久久久网色| 国产白丝娇喘喷水9色精品| 国产男人的电影天堂91| 丝袜在线中文字幕| 电影成人av| 久久 成人 亚洲| 国产色婷婷99| 日韩不卡一区二区三区视频在线| 韩国av在线不卡| 伦理电影大哥的女人| 国产亚洲欧美精品永久| 国产深夜福利视频在线观看| 久久精品亚洲av国产电影网| 国产精品久久久久久精品电影小说| 久久久久精品人妻al黑| √禁漫天堂资源中文www| 飞空精品影院首页| 午夜日本视频在线| av国产久精品久网站免费入址| 两个人免费观看高清视频| 免费在线观看黄色视频的| 在现免费观看毛片| 捣出白浆h1v1| 国产激情久久老熟女| 成年女人毛片免费观看观看9 | 最近最新中文字幕免费大全7| 日韩一区二区三区影片| 国产精品av久久久久免费| 欧美精品av麻豆av| 欧美97在线视频| 69精品国产乱码久久久| 一级a爱视频在线免费观看| 国产精品.久久久| 多毛熟女@视频| 亚洲美女搞黄在线观看| 香蕉国产在线看| 亚洲欧美清纯卡通| av有码第一页| 午夜久久久在线观看| 久久久久久久大尺度免费视频| 国产女主播在线喷水免费视频网站| 亚洲 欧美一区二区三区| 天天影视国产精品| 亚洲美女视频黄频| 老汉色∧v一级毛片| 亚洲欧美精品自产自拍| av卡一久久| 亚洲欧美成人精品一区二区| 午夜久久久在线观看| 日韩制服丝袜自拍偷拍| 国产一区二区三区av在线| 欧美国产精品va在线观看不卡| 精品人妻熟女毛片av久久网站| 午夜激情久久久久久久| 新久久久久国产一级毛片| 国产精品成人在线| 最近2019中文字幕mv第一页| 久久久久久久久久人人人人人人| 亚洲,一卡二卡三卡| 人妻 亚洲 视频| 久久这里只有精品19| 欧美成人午夜精品| 男女免费视频国产| 少妇猛男粗大的猛烈进出视频| 十八禁高潮呻吟视频| 成年av动漫网址| 亚洲国产精品成人久久小说| 国产亚洲av片在线观看秒播厂| 永久网站在线| 精品第一国产精品| 久久精品国产鲁丝片午夜精品| 久久女婷五月综合色啪小说| 国产麻豆69| 王馨瑶露胸无遮挡在线观看| 女人高潮潮喷娇喘18禁视频| 欧美最新免费一区二区三区| 亚洲av.av天堂| 久久久久网色| 亚洲欧美成人精品一区二区| 视频区图区小说| 亚洲国产欧美网| 涩涩av久久男人的天堂| 久久精品国产亚洲av高清一级| 又粗又硬又长又爽又黄的视频| 亚洲五月色婷婷综合| 国产成人一区二区在线| av免费观看日本| 99九九在线精品视频| 波多野结衣av一区二区av| 国产女主播在线喷水免费视频网站| 制服人妻中文乱码| 少妇被粗大的猛进出69影院| 少妇的丰满在线观看| 国产精品久久久久久久久免| 国产精品无大码| 欧美日韩精品网址| 久久99一区二区三区| 亚洲国产欧美网| 在线精品无人区一区二区三| 制服人妻中文乱码| 国产又色又爽无遮挡免| 欧美国产精品一级二级三级| 精品一品国产午夜福利视频| 2018国产大陆天天弄谢| 国产精品久久久av美女十八| 国产国语露脸激情在线看| 精品国产超薄肉色丝袜足j| 人成视频在线观看免费观看| 久久久久网色| 久久99一区二区三区| 欧美日韩国产mv在线观看视频| 日韩,欧美,国产一区二区三区| 中文字幕最新亚洲高清| 考比视频在线观看| 免费久久久久久久精品成人欧美视频| 久久久久久久亚洲中文字幕| 国产97色在线日韩免费| 国产亚洲精品第一综合不卡| 女人精品久久久久毛片| 精品亚洲乱码少妇综合久久| 搡女人真爽免费视频火全软件| 啦啦啦啦在线视频资源| 麻豆av在线久日| 99久国产av精品国产电影| 久久精品人人爽人人爽视色| 国产成人免费无遮挡视频| 伦精品一区二区三区| 亚洲精品国产色婷婷电影| 亚洲国产看品久久| 日韩大片免费观看网站| 久久久a久久爽久久v久久| 最新中文字幕久久久久| 老汉色∧v一级毛片| 久久99精品国语久久久| 少妇熟女欧美另类| 亚洲av国产av综合av卡| 亚洲精品成人av观看孕妇| 欧美精品一区二区大全| 9热在线视频观看99| 午夜福利在线观看免费完整高清在| 男男h啪啪无遮挡| 国产在线视频一区二区| 亚洲国产精品一区三区| 国产成人一区二区在线| 国产日韩一区二区三区精品不卡| 久久av网站| 男女国产视频网站| 考比视频在线观看| 国产视频首页在线观看| 久久亚洲国产成人精品v| 精品一区在线观看国产| 少妇的逼水好多| 亚洲欧洲日产国产| 亚洲人成网站在线观看播放| 国产精品免费大片| 欧美变态另类bdsm刘玥| 国产视频首页在线观看| 黄片小视频在线播放| 多毛熟女@视频| 青春草视频在线免费观看| 日韩大片免费观看网站| 国产日韩欧美在线精品| 2018国产大陆天天弄谢| 久久久精品免费免费高清| 亚洲综合色网址| 久久久久久久亚洲中文字幕| av网站在线播放免费| 国产一区有黄有色的免费视频| 一区二区av电影网| 精品99又大又爽又粗少妇毛片| 国产精品一国产av| 国产精品久久久久久久久免| 日韩伦理黄色片| 丝袜在线中文字幕| 久久久久精品久久久久真实原创| 国产深夜福利视频在线观看| 少妇人妻 视频| 欧美 日韩 精品 国产| 日本色播在线视频| 中文字幕亚洲精品专区| 日韩不卡一区二区三区视频在线| 老熟女久久久| 最近最新中文字幕免费大全7| videos熟女内射| 性少妇av在线| 精品亚洲成国产av| 日韩三级伦理在线观看| 男女无遮挡免费网站观看| 又粗又硬又长又爽又黄的视频| 国产色婷婷99| 久久久精品94久久精品| 亚洲国产精品999| 亚洲欧洲精品一区二区精品久久久 | 免费日韩欧美在线观看| 精品福利永久在线观看| 秋霞在线观看毛片| av福利片在线| 亚洲美女搞黄在线观看| 久久这里只有精品19| 久久精品国产a三级三级三级| 中文字幕人妻熟女乱码| 国产在线一区二区三区精| 亚洲欧美成人综合另类久久久| 天天躁夜夜躁狠狠躁躁| 免费观看a级毛片全部| 18禁动态无遮挡网站| 欧美bdsm另类| 女人被躁到高潮嗷嗷叫费观| 亚洲国产av影院在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲国产av影院在线观看| 精品人妻一区二区三区麻豆| 国产精品亚洲av一区麻豆 | 深夜精品福利| 日韩成人av中文字幕在线观看| 人妻一区二区av| 久久99热这里只频精品6学生| 亚洲精品美女久久av网站| 久久 成人 亚洲| 国产成人精品在线电影| 免费在线观看视频国产中文字幕亚洲 | 天美传媒精品一区二区| 国产在线免费精品| 一区二区三区乱码不卡18| 免费观看在线日韩| 777久久人妻少妇嫩草av网站| 满18在线观看网站| 国产黄色视频一区二区在线观看| 久久99蜜桃精品久久| 婷婷色av中文字幕| 精品国产一区二区久久| 在线观看一区二区三区激情| 男女高潮啪啪啪动态图| 久久精品国产亚洲av涩爱| 中文字幕av电影在线播放| 看十八女毛片水多多多| 又黄又粗又硬又大视频| 人成视频在线观看免费观看| 三级国产精品片| 成人黄色视频免费在线看| 晚上一个人看的免费电影| 亚洲欧洲国产日韩| 午夜影院在线不卡| 亚洲精品国产色婷婷电影| 伦精品一区二区三区| 日日爽夜夜爽网站| 熟女电影av网| 欧美精品亚洲一区二区| 91国产中文字幕| 中文字幕亚洲精品专区| 亚洲一级一片aⅴ在线观看| 亚洲国产看品久久| 精品第一国产精品| 久久久久久久久久久免费av| 日本欧美国产在线视频| 18在线观看网站| 国产精品久久久久久久久免| 七月丁香在线播放| 青春草视频在线免费观看| 亚洲欧洲精品一区二区精品久久久 | 男女无遮挡免费网站观看| 亚洲精品国产色婷婷电影| 99国产精品免费福利视频| 男男h啪啪无遮挡| 肉色欧美久久久久久久蜜桃| 亚洲欧美日韩另类电影网站| 免费观看a级毛片全部| 亚洲av在线观看美女高潮| 亚洲成国产人片在线观看| 日韩欧美一区视频在线观看| 在线观看美女被高潮喷水网站| 欧美激情极品国产一区二区三区| 天天躁日日躁夜夜躁夜夜| 在线看a的网站| 一级a爱视频在线免费观看| 一区二区三区精品91| 久久久久久久国产电影| 欧美精品人与动牲交sv欧美| 不卡av一区二区三区| 午夜福利在线观看免费完整高清在| 在现免费观看毛片| 婷婷色麻豆天堂久久| 下体分泌物呈黄色| 在线观看国产h片| 纯流量卡能插随身wifi吗| 日韩一本色道免费dvd| 99久国产av精品国产电影| 久久精品国产亚洲av涩爱| 大片电影免费在线观看免费| 久久久久久久国产电影| 青草久久国产| 女性被躁到高潮视频| 久久女婷五月综合色啪小说| 天美传媒精品一区二区| 日韩在线高清观看一区二区三区| 午夜久久久在线观看| 久久狼人影院| 亚洲国产欧美在线一区| 亚洲精品一二三| 久久97久久精品| 免费观看av网站的网址| 国产成人aa在线观看| av免费观看日本| 黑人巨大精品欧美一区二区蜜桃| 成年女人毛片免费观看观看9 | 免费在线观看黄色视频的| 自线自在国产av| 中国三级夫妇交换| 伊人久久国产一区二区| 一本色道久久久久久精品综合| 在线观看免费视频网站a站| 亚洲情色 制服丝袜| 亚洲精品美女久久av网站| 日韩欧美精品免费久久| 寂寞人妻少妇视频99o| 一二三四在线观看免费中文在| av免费观看日本| 国产精品麻豆人妻色哟哟久久| 国产亚洲最大av| 成人免费观看视频高清| 日韩免费高清中文字幕av| freevideosex欧美| 18禁动态无遮挡网站| 国产精品亚洲av一区麻豆 | 丝袜人妻中文字幕| 亚洲图色成人| www.熟女人妻精品国产| 亚洲成色77777| 久久久久精品性色| 看非洲黑人一级黄片| 少妇精品久久久久久久| 欧美精品国产亚洲| 国产探花极品一区二区| 91精品伊人久久大香线蕉| 成人毛片a级毛片在线播放| 18禁动态无遮挡网站| 中文精品一卡2卡3卡4更新| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 在线观看免费视频网站a站| 久久精品久久精品一区二区三区| 寂寞人妻少妇视频99o| 成人二区视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人一区二区在线| 超碰成人久久| av免费观看日本| 美女午夜性视频免费| 久久精品久久精品一区二区三区| 亚洲一码二码三码区别大吗| 18禁动态无遮挡网站| 欧美日韩亚洲国产一区二区在线观看 | 国产日韩欧美在线精品| 校园人妻丝袜中文字幕| 最近最新中文字幕大全免费视频 | 亚洲欧美日韩另类电影网站| 极品人妻少妇av视频| 热99久久久久精品小说推荐| 午夜91福利影院| 亚洲人成电影观看| 日本91视频免费播放| 亚洲国产精品一区三区| 肉色欧美久久久久久久蜜桃| 999精品在线视频| 欧美精品国产亚洲| 国产欧美亚洲国产| 国产 精品1| 久久久精品国产亚洲av高清涩受| 热99久久久久精品小说推荐| 咕卡用的链子| av在线观看视频网站免费| 精品亚洲成a人片在线观看| 精品第一国产精品| 久久人妻熟女aⅴ| 飞空精品影院首页| 亚洲欧洲日产国产| 午夜福利在线免费观看网站| 黄网站色视频无遮挡免费观看| 美女国产视频在线观看| kizo精华| 久久国内精品自在自线图片| 婷婷色综合大香蕉| 久久这里有精品视频免费| 亚洲成人手机| 日产精品乱码卡一卡2卡三| 一个人免费看片子| 看免费av毛片| 国产精品 国内视频| 亚洲精品一区蜜桃| 两个人看的免费小视频| 久久精品国产亚洲av高清一级| 久久久久久人人人人人| av一本久久久久| 久久久久久久久久人人人人人人| 激情视频va一区二区三区| 久久久久视频综合| www.av在线官网国产| 97人妻天天添夜夜摸| 日韩一卡2卡3卡4卡2021年| 国产毛片在线视频| 欧美国产精品va在线观看不卡| 最黄视频免费看| 少妇被粗大的猛进出69影院| 午夜福利影视在线免费观看| 五月伊人婷婷丁香| 国产午夜精品一二区理论片| 亚洲欧美清纯卡通| av福利片在线| 18+在线观看网站| 亚洲综合精品二区| 婷婷色综合大香蕉| 国产成人午夜福利电影在线观看| 中文字幕精品免费在线观看视频| 婷婷色综合大香蕉| 18+在线观看网站| 不卡av一区二区三区| 人人妻人人澡人人看| 熟女av电影| 成年人午夜在线观看视频| 精品一区二区三区四区五区乱码 | 欧美成人精品欧美一级黄| 夫妻午夜视频| 欧美日韩一区二区视频在线观看视频在线| 晚上一个人看的免费电影| 亚洲精品国产色婷婷电影| 亚洲欧美精品自产自拍| 九九爱精品视频在线观看| 久久久久人妻精品一区果冻| 亚洲国产精品一区二区三区在线| 国产深夜福利视频在线观看| 在线观看美女被高潮喷水网站| 久久久久久久久久久久大奶| 国产野战对白在线观看| 免费观看无遮挡的男女| 18在线观看网站|