• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    溶液穩(wěn)定、高導(dǎo)電性波紋狀石墨烯片

    2012-12-11 09:12:22范承偉王海芳曹傲能
    物理化學(xué)學(xué)報 2012年10期
    關(guān)鍵詞:上海大學(xué)導(dǎo)電性波紋

    范承偉 張 新 陳 勝 王海芳 曹傲能

    (上海大學(xué)納米化學(xué)與生物學(xué)研究所,上海200444)

    溶液穩(wěn)定、高導(dǎo)電性波紋狀石墨烯片

    范承偉 張 新 陳 勝 王海芳 曹傲能*

    (上海大學(xué)納米化學(xué)與生物學(xué)研究所,上海200444)

    特殊的單原子層二維sp2碳結(jié)構(gòu)給石墨烯帶來眾多獨特的性能和潛在的應(yīng)用.然而,單層石墨烯容易聚集并會逐漸重新石墨化,這成為其應(yīng)用的一個重要障礙.本文報道了一種新策略來解決這個問題,即通過在石墨烯表面引入sp2碳納米結(jié)構(gòu)作為永久的波紋來阻止石墨烯的聚集和石墨化,并使之在溶液中易于分散和穩(wěn)定.和其他功能化方法不同,該方法沒有引入雜原子,不破壞石墨烯的結(jié)構(gòu)和功能.制得的石墨烯具有優(yōu)異的導(dǎo)電性能(~65000 S·m-1),并具有較好的溶液穩(wěn)定性.

    石墨烯;波紋;碳納米籠;可膨脹石墨;導(dǎo)電性;溶液穩(wěn)定性

    1 Introduction

    Graphene was once regarded unable to exist.1Recent experiments and simulation suggest that it is the transient ripples in three dimension that make the two dimensional(2D)graphene stable.2-4The peculiar 2D structure offers graphene many unique properties and potential applications.5-9Many applications of graphene require solution-processable graphene sheets of high quality in quantity.6,10-20However,one serious obstacle is that graphene is prone to aggregate in suspension and gradually stacks back to graphite.

    Currently,most of the solution-processable graphene is the chemically converted graphene or reduced graphene oxide (rGO).13,14,20-25Graphene oxide(GO)is soluble and can be produced cheaply and massively.GO also has many potential applications,26-28but it is electrically insulating and not suitable for many applications.Various methods have been developed to reduce GO and turn it into conductive rGO,10,15but rGO still has substantial content of oxygen,and no longer stable in solution.In some applications,an effective way to avoid the re-stacking of rGO is to synthesize the final graphene-composite material directly from soluble graphene oxide(GO),skipping the graphene-producing step,as we demonstrated previously.15But for many applications,the graphene-producing step is necessary.Chemical exfoliation of graphite or expanded graphite is a promising method to produce solution-processable high-quality graphene,11,12,29-31yet the suspension is not very stable,and the concentration of graphene is usually very low.To stabilize it in suspension,graphene is usually functionalized by either non-covalent or covalent methods.6,16,17,22These methods introduce heteroatoms and molecules onto graphene that usually deteriorate the structure and properties of graphene.Here we report a facile method to produce high-quality solution-processable graphene sheets.The basic idea is to introduce sp2carbon nano-islands on graphene sheet as permanent ripples to prevent the stacking and graphitization of graphene and to make graphene easy to re-suspend.Unlike most functionalization methods,the sp2carbon decoration does not deteriorate the structure and properties of graphene.Therefore,the obtained permanently rippled graphene sheets show significantly increased solubility as well as excellent electronic conductivity.

    2 Experimental

    2.1 Synthesis

    The procedure to prepare the permanently rippled graphene (denoted as GC)is simple,as depicted in Scheme 1.In a typical experiment,0.2 g expandable graphite(EG,chemical grade,~300 μm,from Qingdao BCSM Co.,Ltd.,China)was mixed with 2 mg ferrocene(98%,chemical grade,Sinopharm Chemical Reagent Co.,Ltd.,China),and heated in a microwave oven (800 W,Galanz,G80D23CN2P-T7(B0),China)for 15 s.After microwaving,the volume of the sample expands to more than 200 times of the original.The entirely expanded graphite was then treated with 1.2 mol·L-1hydrochloric acid(Sinopharm Chemical Reagent Co.,Ltd.,China)at 60°C overnight to remove deposited iron particles,followed by washing with deionized water and ethanol.The sample was then dried at 80°C for 12 h.Five milligram of the above sample was sonicated mildly in 50 mLN-methylpyrrolidone(NMP,analytical grade,Sinopharm Chemical Reagent Co.,Ltd.,China)for 75 min under ambient condition.After centrifugation at 3000 r·min-1for 5 min to remove the unexfoliated graphite,the resulted black GCsuspension was stable for several days.EG was also treated following the above procedure without adding ferrocene,and the obtained graphene was denoted as GP.Nature graphite(chemical grade,Sinopharm Chemical Reagent Co.,Ltd.,China)was exfoliated in NMP at the same conditions,too.rGO was prepared for comparison by hydrazine-reduction as reported previously.15

    Since the microwave reaction completed too quickly to capture the intermediates of the reaction,we also used a conventional chemical vapor deposition(CVD)method to slow down the process.To achieve good mixing,EG was first expanded alone(without ferrocene)by microwaving,then exfoliated in NMP.The suspension was centrifuged at 3000 r·min-1for 5 min,and the supernatant was filtered and dried.Two mg of the dried powder and 200 mg of ferrocene(because of the inefficiency of CVD method,extra ferrocene has to be used)were put in a quartz boat,and heated with CVD method at 600-950°C for a certain period of time.After cooling down to room temperature,the products were suspended in ethanol and examed by transmission electron microscope(TEM).

    2.2 Characterization

    Scheme 1 Synthesis process of the permanently rippled graphene

    High-resolution TEM images and energy dispersive spectrometer(EDS)spectra were taken on a JEM-2010F microscope(JEOL,Japan).Samples were prepared by drop-casting onto holey carbon grids(300 mesh size)and dried at 80°C for 4 h.Field emission scanning electron microscope(FESEM) images were recorded on a JSM-6700F electron microscope (JEOL,Japan).Raman spectra were collected on a Renishaw invia plus laser Raman spectrometer(UK)with an excitation laser wavelength of 514.5 nm(5 mW)at room temperature. Samples for both FESEM and Raman were prepared by spraying the graphene suspensions on SiO2/Si substrate(SiO2thickness of 300 nm)and annealing under nitrogen gas at 400°C for 4 h.Fourier transform infrared(FTIR)spectra were recorded on a Thermo Nicolet Avatar 370 FTIR spectrometer(USA) with a resolution of 2 cm-1.X-ray photoelectron spectroscopy (XPS)data were collected on an AXIS ultra instrument(Kratos,UK)at 293 K,and a binding energy of 284.6 eV for the C 1s level was used as an internal reference.XPS peaks were deconvoluted using XPS peak 4.1.TGA measurement was performed on a TGA-SDT Q600(TA Instruments,USA)under a nitrogen flow(100 mL·min-1),at a rate of 5°C min-1.Electronic conductivity measurements were carried out on a SB100/A Test Unit(Qianfeng Electronic Instrument,China)using a four-point-probe head with a pin-distance of about 3 mm,samples were prepared by compressing graphene powder at 20 mPa into round disks with a diameter of 1.6 cm and thickness of 0.2 mm.X-ray powder diffraction(XRD)patterns were recorded using a D/MAX-2200 diffractometer(Rigaku,Japan), equipped with a rotating anode and with a Cu Kαradiation source(λ=0.154178 nm).UV-Vis absorption spectra were obtained on a HITACHI U-3010 spectrophotometer.The standard UV absorption at 259 nm versus GCconcentration curve was obtained;the concentrations were determined by weighing the graphene in suspension.

    3 Results and discussion

    Fig.1 TEM images of graphene(a,b)TEM images of GPand GC,respectively;(c,d)HRTEM images show the folded edges of single-layer and bi-layer GCsheets,respectively. Black arrow points to single-layer nano graphene meshes,and white ones point to carbon nanocages.

    During the microwaving process,EG absorbed microwave energy efficiently and turned it into heat.Consequently,the temperature of EG rose quickly in a few seconds,and the interspacing between graphite layers was greatly expanded after microwaving(Scheme 1,bottom).Meanwhile,ferrocene in the mixture evaporated and intercalated into the expanded interspace of EG,where it decomposed and deposited iron nanoparticles(NPs)on the hot surface of EG.The typical HRTEM images of the GCsample are shown in Fig.1.As reported previously,11EG can also be expanded by microwaving in the absence of ferrocene,and then be exfoliated to produce graphene(GP) in organic solvents by sonication.For comparsion,the TEM image of GPis enclosed in Fig.1.GP(Fig.1a)shows featureless regions in the graphene sheet as reported,2while plenty of dark dots are observed on the GCsheets(Fig.1b).These scattered dots are pure carbon structure,since only carbon and copper (copper is from the supporting mesh)have been detected on the sheet by electron disperse X-ray spectroscopy(EDS)(see Fig.2).

    The folded edges of GCprovide signatures to indentify the layers of the graphene sheet.2The dark straight lines of the folded graphene in Figs.1c and 1d are signatures of folded single-layer and bi-layer graphene sheets,respectively.Interestingly,the folded edges of GCalso provide a perpendicular view of the decorated carbon islands.Nano graphene meshes(indicated by black arrows in Fig.1)and carbon nanocages(indicated by white arrows in Fig.1)can be identified.All these carbon nano-islands serve as permanent ripples on graphene sheets to stabilize the graphene.These carbon nanocages formed in the presence of small amount of ferrocene(Fig.1d)are single-layer cages.When the amount of ferrocene in the reaction mixture increases,the carbon nanocage grows bigger and consists of multiple layers(Fig.2a).

    Raman spectrum is widely used to determine the number of layers of graphene sheets.Fig.3a shows the Raman spectra of GC,GP,EG,and rGO.The IG/I2D(intensity ratio of G peak to 2D peak)of GPis very similar to that of EG,indicating that GPis not well exfoliated and exists mainly as multiple layers or graphite-like.This is consistent with the TEM investigation that thin-layer sheet of GPis rare.The IG/I2Dratio of GCis significantly smaller than that of GP,corresponding to thin-layer graphene sheets.12Compared with rGO,which shows a big D peak,there is a small D peak for GPand no D peak for GC,suggesting much less defect in GC.

    Fig.2 HRTEM(a,b)and EDS(c)of carbon nanocage on GC(a)carbon nanocage with iron NP inside(before washing with HCl solution); (b)after washing with HCl solution to remove the deposited iron NP, the white square indicates the EDS(c)detection area.

    Fig.3 (a)Raman spectra of expandable graphite(EG),rGO, GP,and GC;and(b)XRD patterns of GPand GC

    The decorated carbon nanoislands can increase the yield of suspensible and thin-layer graphene,and make the suspension more stable.In comparison,after one circle sonication and subsequent centrifugation,the yield we obtained is~17%(mass fraction)for suspensible GP,while up to~35%for GC.And 48 h after the suspension,the concentration of GCin NMP is about 0.045 mg·mL-1,which is about 5-fold more than that of GP(see Fig.4).

    Thermodynamically,the Gibbs free energy difference(ΔG) between the single-layer graphene sheets and the multilayer graphene/graphite can be calculated by ΔG=ΔH-TΔS.The reported transient ripple2on the single-layer graphene is an entropic term favourable for the single-layer graphene state.This might be one reason that graphite can be exfoliated by heating at above 1000°C.10Enthalpically,due to the unsaturated electronic valence,the single-layer graphene is unfavourable compared to the multiple-layer graphene and graphite.Overall, graphite,not the single-layer graphene,is the most stable state, thus graphene sheets tend to stack up.

    Fig.4 UV-Vis absorbance spectra of GCand GPInset shows the photos of the GCand GPsuspension.Curve a corresponds to the 4-fold diluted GPsample of the inset bottle a;Curve b corresponds to the 10-fold diluted GCsample of the inset bottle b.

    When the single-layer graphene sheets stack into bi-to multiple-layer sheets,the strong interactions between graphene layers make the stacked layers more and more rigid.This is why the transient ripples on bi-layer graphene sheets become smaller than that on single-layer ones,and disappear eventually on multiple-layer ones,according to the published results.2For the few-layer graphene,although it is enthalpically more favourable than the single-layer one,it loses the flexibility of the single-layer sheet(entropically unfavourable).

    For GC,the permanent ripples,namely carbon nanoislands, compensate the enthalpy of the single-layer graphene,and the scatterance feature of the nanoislands keeps the graphene sheet flexible.Therefore,GCis entropically favourable compared to GP.This may explain why GCis more stable than GPin suspension.

    It has to be pointed out that,in solution,there is also a big entropical penalty for the single-layer graphene sheet,originated from the ordering of solvent molecules when bounded to graphene sheets.The tighter the binding between the solvent molecule and graphene sheet is,the more ordered the solvent molecules around graphene sheets are,and the larger solvent entropical penalty is.This solvent entropical penalty might be the major driving force for the aggregation of graphene sheets in solution,as the hydrophic effect(solvent entropical penalty originated from the ordering of water molecules around hydrophobic amino acids)is the major driving force for the protein folding.32,33So,currently,there is no solvent that could dissolve graphene into stable solution.Without introducing repulsion force and reducing sticking between graphene sheets by chemical modification,thin-layer graphene sheets will eventually aggregate and precipitate.Therefore,a more realistic approach to prevent the aggregation and stacking of graphene sheet is not trying to find a better solvent,but trying to prevent the graphitization of the aggregates.Adding permanent sp2carbon ripples on graphene sheet is this kind of approach.It is superior to those functionalization methods,because it does not bring in exotic heteroatoms.Moreover,because of the lack of large area of perfect matching surfaces between permanently rippled graphene sheets,the permanent ripples would prevent the graphitization of GCprecipitates.Consequently,GCprecipitates are easily re-suspended by mild sonication,even compressing the GCprecipitates into bulk solid form,as depicted in Scheme 1. XRD results(Fig.3b)show that the area of the(002)peak of solid GCpowder is only about one-sixth of that of GP,indicating much less degree of crystallization(graphitization)for GC.

    One of the most amazing properties of graphene is its excellent electronic conductivity.However,the conductivity of graphene produced by the many reported solution-processable methods is very poor.Due to existence of a lot of oxygen content,the electronic conductivity of rGO is not good,usually in the order of 10-103S·m-1,depending on the reduction procedures.13-15,21,34,35Solvent-exfoliation of natural graphite can produce graphene of relatively high quality.Even so,the conductivity of the obtained graphene is just comparable to some rGO films,12much lower than expected for the“pristine graphene”. This is probably due to the fact that there are strong interactions between the graphene layers in graphite,thus the strong sonication treatment is necessary to exfoliate it.The strong sonication would produce many defects on the exfoliated graphene sheets,and then decrease the conductivity of the graphene.

    The expanded interlayer spacing of expanded graphite makes it easier to be exfoliated.Therefore,only much milder sonication is required to expand it.In comparison,at our mild sonication condition,the yield of suspensible graphene from the sonication of natural graphite powder is less than 2%,and no few-layer graphene has been identified.

    Milder sonication introduces less defect.As expected,GCshows excellent conductivity of~65000 S·m-1,which is about one order of magnitude higher than that of the above reported pristine graphene.12Since the data from different laboratories and different methods might be not comparable,we also prepared the hydrazine-reduced rGO and measured its conductivity as a reference.The measured conductivity for rGO is~140 S·m-1,which is in consistent with the reported values.15,21,34,35Interestingly,the conductivity of GCis also significantly higher than that of GP(~48000 S·m-1),which is produced at the exact sonicating condition.

    Fig.5 TEM image capturing the etching paths(outlined by red dotted-lines)on EG sheet by iron NPs and the formation of carbon nanocages around iron NPs(indicated by blue arrows)

    Since the microwave reaction completes too quickly to capture the intermediates of the reaction,we used a conventional CVD method to slow down the process and investigate the mechanism of the formation of the permanent rippled graphene structure.As shown by TEM image(Fig.5),the deposited iron NPs can etch the EG sheet and leave nano graphene meshes on the graphene sheets.Along the etching paths,those etched carbon atoms are dissolved in the iron NPs and eventually turned into carbon nanocages.During the producing process of GC, iron NPs might preferably deposit on the defects of EG,which are also the sites where the expansion of EG originates,so the defects might be more likely etched or eliminated.This is likely the mechanism for the decrease of defects in GC.

    The decrease of defects has been evidenced by XPS results (Fig.6a).Deconvolution of the C 1s peak shows that there are more than 88%sp2carbon atoms in GC,much higher than that of GP(73%).The rest peaks of GCmainly come from the residual NMP solvent molecules on graphene sample,which is consistent with the literature.12This result indicates little disordered carbon on GC,suggesting that almost all the decorated carbon nanoislands are sp2carbon structures.The defect decrease of GCis also evidenced by the FTIR spectra(Fig.6b) and thermogravimetric analysis(TGA)(Fig.6c).FTIR spectra show that GCis very similar to nature graphite,while GPcontains many oxygen-containing groups such as the peaks around 1090 cm-1(vC―O)and 1260 cm-1(vC―O―C).36TGA shows that GCis the most stable one,with 92%mass remaining after heating to 800°C,while the remained masses for GPand rGO are 86% and 77%,respectively.In addition,the absence of D peak at 1350 cm-1in Raman spectrum of GCindicates the less disordered carbon structure,demonstrating the high-quality of GC.

    Fig.6 Valency and stability of graphene prepared by different methods(a)XPS spectra of rGO,GP,and GC;(b)FTIR spectra of natural graphite,rGO,GP,and GC;(c)TGAcurves of rGO,GP,and GC

    4 Conclusions

    In summary,we report here a facile method to produce solution-processable graphene sheets from EG.The essence of this method is to stabilize graphene sheets and prevent their re-stacking by introducing permanent ripples on the graphene sheet,i.e.,decorating carbon nanoislands on the graphene sheets.Since the decorated nanoislands are sp2carbon structure as that of graphene sheet,they do not deteriorate the graphene and introduce heteroatoms into the system.Thus graphene provides an excellent electronic conductivity up to 65000 S·m-1. The permemantly rippled graphene is readily suspensible in NMP solvent with concentration up to 0.045 mg·mL-1,showing great potential in wide range of solution-processable applications of graphene.

    (1) Mermin,N.D.Phys.Rev.1968,176,250.doi:10.1103/ PhysRev.176.250

    (2)Meyer,J.C.;Geim,A.K.;Katsnelson,M.I.;Novoselov,K.S.; Booth,T.J.;Roth,S.Nature 2007,446,60.doi:10.1038/ nature05545

    (3) Novoselov,K.S.;Jiang,D.;Schedin,F.;Booth,T.J.; Khotkevich,V.V.;Morozov,S.V.;Geim,A.K.Proc.Natl. Acad.Sci.U.S.A.2005,102,10451.doi:10.1073/pnas. 0502848102

    (4) Fasolino,A.;Los,J.H.;Katsnelson,M.I.Nat.Mater.2007,6, 858.doi:10.1038/nmat2011

    (5) Geim,A.K.;Novoselov,K.S.Nat.Mater.2007,6,183.doi: 10.1038/nmat1849

    (6)Huang,X.;Yin,Z.Y.;Wu,S.X.;Qi,X.Y.;He,Q.Y.;Zhang,Q. C.;Yan,Q.Y.;Boey,F.;Zhang,H.Small 2011,7,1876.doi: 10.1002/smll.201002009

    (7) Geim,A.K.Science 2009,324,1530.doi:10.1126/science. 1158877

    (8) Jiang,H.J.Small 2011,7,2413.

    (9)Huang,X.;Qi,X.Y.;Boey,F.;Zhang,H.Chem.Soc.Rev.2012, 41,666.doi:10.1039/c1cs15078b

    (10)Li,X.L.;Zhang,G.Y.;Bai,X.D.;Sun,X.M.;Wang,X.R.; Wang,E.G.;Dai,H.J.Nat.Nanotechnol.2008,3,538.doi: 10.1038/nnano.2008.210

    (11) Liu,Z.;Fan,C.W.;Chen,L.;Cao,A.N.J.Nanosci.Nanotech. 2010,10,7382.doi:10.1166/jnn.2010.2780

    (12) Hernandez,Y.;Nicolosi,V.;Lotya,M.;Blighe,F.;Sun,Z.;De, S.;McGovern,I.T.;Holland,B.;Byrne,M.;Gunko,Y.;Boland, J.;Niraj,P.;Duesberg,G.;Krishnamurti,S.;Goodhue,R.; Hutchison,J.;Scardaci,V.;Ferrari,A.C.;Coleman,J.N.Nat. Nanotechnol.2008,3,563.

    (13) Eda,G.;Fanchini,G.;Chhowalla,M.Nat.Nanotechnol.2008, 3,270.doi:10.1038/nnano.2008.83

    (14) Li,D.;Muller,M.B.;Gilje,S.;Kaner,R.B.;Wallace,G.G. Nat.Nanotechnol.2008,3,101.doi:10.1038/nnano.2007.451

    (15)Cao,A.N.;Liu,Z.;Chu,S.S.;Wu,M.H.;Ye,Z.M.;Cai,Z. W.;Chang,Y.L.;Wang,S.F.;Gong,Q.H.;Liu,Y.F.Adv. Mater.2010,22,103.doi:10.1002/adma.v22:1

    (16) Qi,X.Y.;Pu,K.Y.;Zhou,X.Z.;Li,H.;Liu,B.;Boey,F.; Huang,W.;Zhang,H.Small 2010,6,663.doi:10.1002/ smll.v6:5

    (17) Stankovich,S.;Dikin,D.A.;Dommett,G.H.B.;Kohlhaas,K. M.;Zimney,E.J.;Stach,E.A.;Piner,R.D.;Nguyen,S.T.; Ruoff,R.S.Nature 2006,442,282.doi:10.1038/nature04969

    (18) Choucair,M.;Thordarson,P.;Stride,J.A.Nat.Nanotechnol. 2009,4,30.doi:10.1038/nnano.2008.365

    (19) Qi,X.Y.;Pu,K.Y.;Li,H.;Zhou,X.Z.;Wu,S.;Fan,Q.L.;Liu, B.;Boey,F.;Huang,W.;Zhang,H.Angew.Chem.Int.Edit. 2010,49,9426.doi:10.1002/anie.201004497

    (20) Feng,X.;Hu,G.;Hu,J.Nanoscale 2011,3,2099.doi:10.1039/ c1nr00004g

    (21)Dreyer,D.R.;Park,S.;Bielawski,C.W.;Ruoff,R.S.Chem. Soc.Rev.2010,39,228.doi:10.1039/b917103g

    (22) Park,S.;An,J.;Jung,I.;Piner,R.D.;An,S.J.;Li,X.S.; Velamakanni,A.;Ruoff,R.S.Nano Lett.2009,9,1593.doi: 10.1021/nl803798y

    (23) Dikin,D.A.;Stankovich,S.;Zimney,E.J.;Piner,R.D.; Dommett,G.H.B.;Evmenenko,G.;Nguyen,S.T.;Ruoff,R.S. Nature 2007,448,457.doi:10.1038/nature06016

    (24)Zhou,X.Z.;Huang,X.;Qi,X.Y.;Wu,S.X.;Xue,C.;Boey,F. Y.C.;Yan,Q.Y.;Chen,P.;Zhang,H.J.Phys.Chem.C 2009, 113,10842.doi:10.1021/jp903821n

    (25) Chang,Y.L.;Chen,S.;Cao,A.N.J.Shanghai University (Natural Science)2010,16(6),577.[常艷麗,陳 勝,曹傲能.上海大學(xué)學(xué)報(自然科學(xué)版),2010,16(6),577.]

    (26)Yang,S.T.;Chen,S.;Chang,Y.;Cao,A.;Liu,Y.;Wang,H. J.Colloid Interface Sci.2011,359,24.doi:10.1016/j.jcis. 2011.02.064

    (27)Yang,S.T.;Chang,Y.;Wang,H.;Liu,G.;Chen,S.;Wang,Y.; Liu,Y.;Cao,A.J.Colloid Interface Sci.2010,351,122.doi: 10.1016/j.jcis.2010.07.042

    (28)Chang,Y.;Yang,S.T.;Liu,J.H.;Dong,E.;Wang,Y.;Cao,A.; Liu,Y.;Wang,H.Toxicol Lett.2011,200,201.doi:10.1016/j. toxlet.2010.11.016

    (29)Hao,R.;Qian,W.;Zhang,L.;Hou,Y.Chem.Commun.2008, 6576.

    (30)Qian,W.;Cui,X.;Hao,R.;Hou,Y.;Zhang,Z.ACS Appl.Mater. Interfaces 2011,3(7),2259.doi:10.1021/am200479d

    (31)Qian,W.;Hao,R.;Hou,Y.;Tian,Y.;Shen,C.;Gao,H.;Liang, X.Nano Res.2009,2,706.doi:10.1007/s12274-009-9074-z

    (32) Kauzmann,W.Adv.Protein Chem.1959,14,1.doi:10.1016/ S0065-3233(08)60608-7

    (33) Dill,K.A.Biochemistry 1990,29,7133.doi:10.1021/ bi00483a001

    (34) Jung,I.;Dikin,D.A.;Piner,R.D.;Ruoff,R.S.Nano Lett. 2008,8,4283.doi:10.1021/nl8019938

    (35) Gomez-Navarro,C.;Weitz,R.T.;Bittner,A.M.;Scolari,M.; Mews,A.;Burghard,M.;Kern,K.Nano Lett.2007,7,3499. doi:10.1021/nl072090c

    (36) Si,Y.C.;Samulski,E.T.Nano Lett.2008,8,1679.doi:10.1021/ nl080604h

    July 23,2012;Revised:September 10,2012;Published on Web:September 10,2012.

    Solution-Processable,Highly Conductive,Permanently Rippled Graphene Sheets

    FAN Cheng-Wei ZHANG Xin CHEN Sheng WANG Hai-Fang CAO Ao-Neng*
    (Institute of Nanochemistry and Nanobiology,Shanghai University,Shanghai 200444,P.R.China)

    The single atom thick sp2carbon structure of graphene gives rise to its unique properties and potential applications.However,one serious obstacle for its application is that graphene is prone to aggregate in suspension and gradually stack into graphite.Here,we report a novel approach to solve this problem.The basic idea is to introduce sp2carbon nano-islands on the graphene sheets that act as permanent ripples to prevent the stacking and graphitization of graphene and make it easy to re-suspend. Unlike most functionalization methods,this approach avoids the introduction of heteroatoms.Thus,it does not deteriorate the structure and change the properties of graphene.The carbon-rippled graphene has a remarkable electronic conductivity of~65000 S·m-1,and can be readily suspended in solvent.

    Graphene;Ripple;Carbon nanocage;Expandable graphite;Conductivity; Solution stability

    10.3866/PKU.WHXB201209103

    ?Corresponding author.Email:ancao@shu.edu.cn;Tel:+86-21-66135277.

    The project was supported by the National Natural Science Foundation of China(21073117),National Key Basic Research Program of China(973) (2009CB930200,2011CB933402),and Shanghai LeadingAcademic Disciplines,China(S30109).

    國家自然科學(xué)基金(21073117),國家重點基礎(chǔ)研究發(fā)展規(guī)劃項目(973)(2009CB930200,2011CB933402)和上海市重點學(xué)科(S30109)資助

    O641

    猜你喜歡
    上海大學(xué)導(dǎo)電性波紋
    加入超高分子量聚合物的石墨烯纖維導(dǎo)電性優(yōu)異
    基于NACA0030的波紋狀翼型氣動特性探索
    小波紋的童話
    《上海大學(xué)學(xué)報(自然科學(xué)版)》征稿簡則
    上海大學(xué)學(xué)報(自然科學(xué)版)征稿簡則
    《上海大學(xué)學(xué)報(自然科學(xué)版)》征稿簡則
    為什么水面波紋蕩漾
    學(xué)與玩(2017年5期)2017-02-16 07:06:26
    PPy/Ni/NanoG復(fù)合材料的制備及導(dǎo)電性能研究
    中國塑料(2016年3期)2016-06-15 20:30:00
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    TiO2對硫正極材料導(dǎo)電性能的影響
    中文字幕色久视频| 美女午夜性视频免费| 水蜜桃什么品种好| 搡老熟女国产l中国老女人| 少妇猛男粗大的猛烈进出视频| 可以免费在线观看a视频的电影网站| 亚洲国产av影院在线观看| 久久这里只有精品19| 精品国产乱码久久久久久小说| 制服诱惑二区| 国产成人精品久久二区二区91| 久久av网站| 欧美激情 高清一区二区三区| 欧美在线黄色| 日韩制服丝袜自拍偷拍| 纯流量卡能插随身wifi吗| 久久久精品区二区三区| 麻豆乱淫一区二区| 老熟妇乱子伦视频在线观看| av电影中文网址| 一级毛片女人18水好多| 黄色a级毛片大全视频| 在线播放国产精品三级| 一级片'在线观看视频| 成人三级做爰电影| 777米奇影视久久| 精品一区二区三区四区五区乱码| 免费观看a级毛片全部| 久久九九热精品免费| 久久精品91无色码中文字幕| 久久久久久久久久久久大奶| 18禁美女被吸乳视频| 精品国产一区二区三区久久久樱花| 国产精品九九99| 色94色欧美一区二区| 日本黄色日本黄色录像| 亚洲精品美女久久av网站| 捣出白浆h1v1| 国产一区二区激情短视频| 一本一本久久a久久精品综合妖精| av在线播放免费不卡| 国产成人系列免费观看| 丁香六月天网| 欧美+亚洲+日韩+国产| 每晚都被弄得嗷嗷叫到高潮| 成人特级黄色片久久久久久久 | 亚洲欧美日韩高清在线视频 | 精品亚洲乱码少妇综合久久| 嫩草影视91久久| 老汉色∧v一级毛片| 不卡一级毛片| 国产无遮挡羞羞视频在线观看| 国产高清视频在线播放一区| 国产精品久久久久久精品古装| 丝袜在线中文字幕| 免费在线观看影片大全网站| 999久久久精品免费观看国产| 建设人人有责人人尽责人人享有的| 一边摸一边做爽爽视频免费| 久久久精品区二区三区| 老汉色∧v一级毛片| 一个人免费看片子| 99国产极品粉嫩在线观看| 日韩免费av在线播放| 婷婷成人精品国产| 老司机靠b影院| 午夜视频精品福利| av线在线观看网站| 在线亚洲精品国产二区图片欧美| 每晚都被弄得嗷嗷叫到高潮| 午夜视频精品福利| 午夜免费成人在线视频| 一个人免费看片子| 久久国产精品男人的天堂亚洲| 精品亚洲乱码少妇综合久久| 男女午夜视频在线观看| 国产成人系列免费观看| 国产精品香港三级国产av潘金莲| 蜜桃在线观看..| 国产欧美日韩一区二区三| 国产精品久久久人人做人人爽| 亚洲精品美女久久久久99蜜臀| 在线天堂中文资源库| 人人妻人人澡人人爽人人夜夜| 日韩欧美免费精品| 日韩欧美免费精品| 精品免费久久久久久久清纯 | 叶爱在线成人免费视频播放| 麻豆乱淫一区二区| 热re99久久精品国产66热6| 国产深夜福利视频在线观看| 在线观看人妻少妇| 亚洲第一av免费看| 色在线成人网| 精品人妻在线不人妻| 国产精品二区激情视频| 亚洲中文av在线| 久久人妻福利社区极品人妻图片| 男女免费视频国产| 国产精品偷伦视频观看了| 在线观看免费午夜福利视频| 99热国产这里只有精品6| 日韩大片免费观看网站| 可以免费在线观看a视频的电影网站| 精品午夜福利视频在线观看一区 | 女性被躁到高潮视频| 水蜜桃什么品种好| 精品一区二区三区视频在线观看免费 | av网站在线播放免费| 午夜激情久久久久久久| 男女高潮啪啪啪动态图| 黄色怎么调成土黄色| 一区二区三区乱码不卡18| 国产精品国产高清国产av | www日本在线高清视频| 在线观看66精品国产| 丝袜在线中文字幕| 丁香六月天网| 考比视频在线观看| 十八禁网站免费在线| 大香蕉久久网| 狠狠狠狠99中文字幕| 国产黄色免费在线视频| 欧美日韩视频精品一区| 老司机午夜十八禁免费视频| 美女扒开内裤让男人捅视频| 日本av手机在线免费观看| 9191精品国产免费久久| 亚洲午夜精品一区,二区,三区| 精品国产亚洲在线| 天天影视国产精品| 国产高清激情床上av| 日本黄色日本黄色录像| 天堂中文最新版在线下载| 久久久久久久久久久久大奶| 精品国产乱码久久久久久小说| 狂野欧美激情性xxxx| 制服人妻中文乱码| 99精品在免费线老司机午夜| 国产精品久久久久成人av| 国产精品久久久久成人av| 天堂俺去俺来也www色官网| 国产精品影院久久| 亚洲精品久久成人aⅴ小说| 99re6热这里在线精品视频| 黄色视频,在线免费观看| 国产成人精品久久二区二区91| 国产成人影院久久av| 成人黄色视频免费在线看| 国产97色在线日韩免费| 搡老乐熟女国产| 一本综合久久免费| 天堂俺去俺来也www色官网| 无遮挡黄片免费观看| 宅男免费午夜| 免费高清在线观看日韩| 汤姆久久久久久久影院中文字幕| 女人精品久久久久毛片| 久久久国产一区二区| 久久青草综合色| 国产精品99久久99久久久不卡| 三上悠亚av全集在线观看| 18禁国产床啪视频网站| 91成年电影在线观看| 18禁美女被吸乳视频| 久久精品成人免费网站| 成年人黄色毛片网站| 亚洲伊人久久精品综合| av天堂久久9| 咕卡用的链子| 亚洲熟女毛片儿| 亚洲国产毛片av蜜桃av| 一二三四社区在线视频社区8| 国产男女超爽视频在线观看| 99riav亚洲国产免费| av片东京热男人的天堂| 国产一区二区 视频在线| 亚洲精品av麻豆狂野| 国产老妇伦熟女老妇高清| 伊人久久大香线蕉亚洲五| 久久狼人影院| 色94色欧美一区二区| 久久天躁狠狠躁夜夜2o2o| 老司机午夜福利在线观看视频 | 国产精品1区2区在线观看. | 亚洲中文日韩欧美视频| 曰老女人黄片| 成人av一区二区三区在线看| 久久亚洲精品不卡| 极品教师在线免费播放| 国产欧美日韩综合在线一区二区| 精品国产乱码久久久久久男人| 人成视频在线观看免费观看| 国产精品美女特级片免费视频播放器 | 妹子高潮喷水视频| 国产成人系列免费观看| 99国产精品免费福利视频| 亚洲精品中文字幕一二三四区 | 亚洲国产欧美日韩在线播放| 久久国产精品男人的天堂亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品久久久久久精品古装| 新久久久久国产一级毛片| 亚洲精品美女久久久久99蜜臀| 一边摸一边抽搐一进一小说 | 菩萨蛮人人尽说江南好唐韦庄| 91老司机精品| 一本综合久久免费| 悠悠久久av| 热99久久久久精品小说推荐| 免费观看人在逋| 亚洲国产av影院在线观看| 一级毛片精品| 丰满饥渴人妻一区二区三| 搡老岳熟女国产| 一个人免费在线观看的高清视频| 丝袜人妻中文字幕| 老司机午夜十八禁免费视频| 黄色a级毛片大全视频| 黑人巨大精品欧美一区二区mp4| 国产又爽黄色视频| 日韩熟女老妇一区二区性免费视频| 国产精品 国内视频| 日韩一卡2卡3卡4卡2021年| 亚洲人成伊人成综合网2020| 久久久水蜜桃国产精品网| 欧美日韩福利视频一区二区| 老熟妇乱子伦视频在线观看| 亚洲av电影在线进入| 国产xxxxx性猛交| 亚洲av美国av| 国产伦人伦偷精品视频| 亚洲人成伊人成综合网2020| 黄色a级毛片大全视频| 在线观看66精品国产| 午夜福利欧美成人| 免费高清在线观看日韩| 一区在线观看完整版| av一本久久久久| 国产精品99久久99久久久不卡| 免费看a级黄色片| 亚洲精品美女久久久久99蜜臀| 亚洲欧美一区二区三区黑人| 一区二区av电影网| 大码成人一级视频| 国产精品久久久久成人av| 欧美av亚洲av综合av国产av| 捣出白浆h1v1| 十八禁人妻一区二区| 国产高清videossex| 手机成人av网站| 欧美精品高潮呻吟av久久| 亚洲av电影在线进入| 热99re8久久精品国产| 久久国产亚洲av麻豆专区| 少妇粗大呻吟视频| 在线永久观看黄色视频| 男女下面插进去视频免费观看| 狂野欧美激情性xxxx| 搡老熟女国产l中国老女人| 午夜免费成人在线视频| 精品久久久久久久毛片微露脸| 在线观看免费午夜福利视频| 日日爽夜夜爽网站| 超碰97精品在线观看| 亚洲,欧美精品.| 亚洲人成电影观看| 欧美国产精品一级二级三级| 午夜福利视频精品| 亚洲国产成人一精品久久久| 国产av一区二区精品久久| 日韩人妻精品一区2区三区| 色综合欧美亚洲国产小说| 不卡av一区二区三区| 在线观看人妻少妇| 国产精品一区二区在线观看99| 亚洲人成电影免费在线| 色视频在线一区二区三区| 久久久久久免费高清国产稀缺| 午夜福利欧美成人| 天堂中文最新版在线下载| 亚洲人成伊人成综合网2020| 一级毛片精品| 美女视频免费永久观看网站| 亚洲精品美女久久久久99蜜臀| 国产av又大| 两个人看的免费小视频| 精品一区二区三区视频在线观看免费 | 国产又爽黄色视频| 国产伦人伦偷精品视频| 最新在线观看一区二区三区| 91九色精品人成在线观看| www.自偷自拍.com| 叶爱在线成人免费视频播放| 国产精品成人在线| 亚洲情色 制服丝袜| 久久久久久免费高清国产稀缺| 99在线人妻在线中文字幕 | 国产av国产精品国产| 亚洲国产成人一精品久久久| kizo精华| 国产精品偷伦视频观看了| 看免费av毛片| 人人妻,人人澡人人爽秒播| 欧美日韩亚洲综合一区二区三区_| 99久久国产精品久久久| 亚洲中文日韩欧美视频| 91成人精品电影| 大陆偷拍与自拍| 国产成人av教育| 亚洲av成人一区二区三| 嫩草影视91久久| 亚洲欧美一区二区三区黑人| 亚洲国产中文字幕在线视频| 亚洲精品成人av观看孕妇| 老汉色av国产亚洲站长工具| 视频区图区小说| 中文字幕高清在线视频| 十八禁高潮呻吟视频| 久久国产精品大桥未久av| 桃花免费在线播放| 欧美国产精品va在线观看不卡| 欧美黑人精品巨大| 最新的欧美精品一区二区| 久久热在线av| 亚洲国产欧美日韩在线播放| 视频区欧美日本亚洲| 两人在一起打扑克的视频| 欧美 亚洲 国产 日韩一| 国产欧美日韩一区二区三| 国产av又大| 一区二区三区国产精品乱码| 国产精品影院久久| 亚洲av第一区精品v没综合| av一本久久久久| 精品国产超薄肉色丝袜足j| 国产一区二区三区综合在线观看| 极品人妻少妇av视频| 免费在线观看视频国产中文字幕亚洲| 国产不卡一卡二| 成人手机av| 日日夜夜操网爽| 天天躁狠狠躁夜夜躁狠狠躁| cao死你这个sao货| 国产aⅴ精品一区二区三区波| 亚洲精品国产区一区二| 日韩视频一区二区在线观看| 桃花免费在线播放| 麻豆成人av在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久久大尺度免费视频| 午夜福利免费观看在线| av网站在线播放免费| 精品福利观看| 啦啦啦 在线观看视频| 精品久久蜜臀av无| 亚洲欧美激情在线| 五月开心婷婷网| 久久精品国产99精品国产亚洲性色 | 亚洲av第一区精品v没综合| 一级毛片电影观看| 一二三四在线观看免费中文在| 亚洲精品美女久久久久99蜜臀| 99热网站在线观看| 亚洲一区中文字幕在线| 国产一卡二卡三卡精品| 99精品久久久久人妻精品| 色综合婷婷激情| 欧美在线黄色| 亚洲人成电影观看| 亚洲中文日韩欧美视频| 精品国产一区二区三区四区第35| 亚洲一码二码三码区别大吗| 午夜激情久久久久久久| 亚洲三区欧美一区| 国产精品自产拍在线观看55亚洲 | 亚洲综合色网址| 亚洲精品中文字幕在线视频| 国内毛片毛片毛片毛片毛片| 欧美另类亚洲清纯唯美| 亚洲欧美激情在线| videosex国产| 国产精品亚洲av一区麻豆| 一边摸一边做爽爽视频免费| 亚洲精品国产精品久久久不卡| 成人国语在线视频| 国产精品久久久久久精品电影小说| 亚洲男人天堂网一区| 国产精品秋霞免费鲁丝片| 欧美国产精品va在线观看不卡| 欧美黄色片欧美黄色片| 亚洲人成伊人成综合网2020| 欧美精品啪啪一区二区三区| 亚洲精品美女久久av网站| 日本一区二区免费在线视频| 午夜福利视频精品| 精品国产一区二区三区四区第35| 嫁个100分男人电影在线观看| 国产1区2区3区精品| 国产又色又爽无遮挡免费看| 中文欧美无线码| 两性午夜刺激爽爽歪歪视频在线观看 | 老汉色∧v一级毛片| 叶爱在线成人免费视频播放| 正在播放国产对白刺激| 久久人人97超碰香蕉20202| 99国产精品一区二区蜜桃av | 最新美女视频免费是黄的| 女人高潮潮喷娇喘18禁视频| 亚洲人成电影观看| 91九色精品人成在线观看| 日韩精品免费视频一区二区三区| 99精品久久久久人妻精品| 99国产精品一区二区三区| a级片在线免费高清观看视频| 麻豆国产av国片精品| 欧美精品啪啪一区二区三区| 日本精品一区二区三区蜜桃| 精品久久久久久电影网| 亚洲欧美精品综合一区二区三区| 国产欧美日韩精品亚洲av| av又黄又爽大尺度在线免费看| 激情视频va一区二区三区| 91av网站免费观看| 亚洲欧洲精品一区二区精品久久久| 精品亚洲乱码少妇综合久久| 一级片免费观看大全| 一级毛片精品| 亚洲精品久久成人aⅴ小说| 久久ye,这里只有精品| 丰满饥渴人妻一区二区三| 99国产综合亚洲精品| 色视频在线一区二区三区| 精品视频人人做人人爽| 国产精品美女特级片免费视频播放器 | 欧美老熟妇乱子伦牲交| 多毛熟女@视频| 成人18禁高潮啪啪吃奶动态图| 丁香六月天网| 国产av又大| 国产老妇伦熟女老妇高清| 国产精品九九99| 久久久久精品国产欧美久久久| 女人高潮潮喷娇喘18禁视频| 中文欧美无线码| www日本在线高清视频| 国产精品九九99| 91大片在线观看| 国产一区有黄有色的免费视频| 99热国产这里只有精品6| 亚洲专区国产一区二区| 亚洲av电影在线进入| 一级毛片女人18水好多| 精品一品国产午夜福利视频| e午夜精品久久久久久久| 亚洲国产欧美日韩在线播放| 男女边摸边吃奶| 757午夜福利合集在线观看| 国产三级黄色录像| √禁漫天堂资源中文www| 久久久国产欧美日韩av| 一区在线观看完整版| 国产精品99久久99久久久不卡| 日韩欧美免费精品| 国产av国产精品国产| 蜜桃在线观看..| 成人三级做爰电影| 97在线人人人人妻| 国产欧美日韩一区二区精品| 侵犯人妻中文字幕一二三四区| 精品国产乱码久久久久久男人| 国精品久久久久久国模美| 人妻一区二区av| 国产精品一区二区在线不卡| 国产又爽黄色视频| 亚洲国产av新网站| 不卡一级毛片| 久久亚洲真实| 高清欧美精品videossex| 大香蕉久久网| 两个人看的免费小视频| 久热这里只有精品99| 精品欧美一区二区三区在线| 嫩草影视91久久| 免费观看a级毛片全部| 欧美 亚洲 国产 日韩一| 久久国产精品大桥未久av| 啦啦啦视频在线资源免费观看| a级片在线免费高清观看视频| 久久久国产一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 无人区码免费观看不卡 | 精品福利永久在线观看| 一本大道久久a久久精品| 国产成人精品在线电影| 午夜免费鲁丝| 国产精品国产av在线观看| 亚洲综合色网址| 韩国精品一区二区三区| 99香蕉大伊视频| 另类精品久久| 夜夜爽天天搞| 免费日韩欧美在线观看| 香蕉丝袜av| 黑人操中国人逼视频| 性高湖久久久久久久久免费观看| 亚洲欧美日韩高清在线视频 | 在线播放国产精品三级| 国产淫语在线视频| 老司机午夜福利在线观看视频 | 久久久国产精品麻豆| 高潮久久久久久久久久久不卡| 亚洲av美国av| 中文字幕最新亚洲高清| 日韩欧美一区二区三区在线观看 | 天天操日日干夜夜撸| 在线 av 中文字幕| 天天添夜夜摸| 一区二区三区国产精品乱码| 国产欧美亚洲国产| 国产在线精品亚洲第一网站| 精品乱码久久久久久99久播| 久久久精品94久久精品| 久热这里只有精品99| 亚洲精品国产一区二区精华液| 在线观看一区二区三区激情| 亚洲成a人片在线一区二区| 亚洲av成人不卡在线观看播放网| 日本av免费视频播放| 精品少妇一区二区三区视频日本电影| 另类亚洲欧美激情| www.精华液| 日韩欧美一区视频在线观看| 精品午夜福利视频在线观看一区 | 天堂中文最新版在线下载| 亚洲自偷自拍图片 自拍| 久久中文字幕人妻熟女| 在线观看舔阴道视频| 国产精品av久久久久免费| 色综合婷婷激情| 亚洲人成77777在线视频| av国产精品久久久久影院| 国产欧美日韩精品亚洲av| 国产99久久九九免费精品| 国产一区二区激情短视频| 一级毛片精品| 国产亚洲欧美在线一区二区| 国产成人精品久久二区二区免费| 视频区欧美日本亚洲| 一区二区三区国产精品乱码| 国产午夜精品久久久久久| 啦啦啦在线免费观看视频4| 亚洲精品国产精品久久久不卡| 黄色毛片三级朝国网站| 亚洲熟妇熟女久久| 久久青草综合色| 国产在线免费精品| 真人做人爱边吃奶动态| 90打野战视频偷拍视频| 欧美日韩国产mv在线观看视频| 一个人免费在线观看的高清视频| 在线观看舔阴道视频| 香蕉丝袜av| 国产精品国产高清国产av | cao死你这个sao货| 99九九在线精品视频| 免费观看av网站的网址| 在线 av 中文字幕| 母亲3免费完整高清在线观看| 亚洲精品成人av观看孕妇| 亚洲人成电影观看| 精品国产亚洲在线| 91国产中文字幕| 亚洲精品在线美女| 两性夫妻黄色片| 三上悠亚av全集在线观看| 国产成人av教育| 十八禁高潮呻吟视频| 久久久久久亚洲精品国产蜜桃av| 波多野结衣一区麻豆| 欧美亚洲日本最大视频资源| 精品熟女少妇八av免费久了| 久久人人97超碰香蕉20202| 老司机午夜十八禁免费视频| 少妇精品久久久久久久| 亚洲欧洲日产国产| 国产伦理片在线播放av一区| 亚洲 欧美一区二区三区| 国产一区二区三区在线臀色熟女 | 在线看a的网站| 国产精品98久久久久久宅男小说| 高清毛片免费观看视频网站 | 久久精品国产亚洲av高清一级| 国产精品98久久久久久宅男小说| 桃红色精品国产亚洲av| 久久久久久人人人人人| 99久久精品国产亚洲精品| 亚洲欧美色中文字幕在线| 色尼玛亚洲综合影院| 91精品三级在线观看| 热re99久久国产66热| 国产伦人伦偷精品视频| 777久久人妻少妇嫩草av网站| 国产黄色免费在线视频| 飞空精品影院首页| 亚洲国产av新网站| 国产真人三级小视频在线观看| 亚洲精品国产色婷婷电影| www.999成人在线观看| netflix在线观看网站| 日本a在线网址| 又紧又爽又黄一区二区| 99精品久久久久人妻精品| 丁香六月天网| 色尼玛亚洲综合影院|