• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    溶液穩(wěn)定、高導(dǎo)電性波紋狀石墨烯片

    2012-12-11 09:12:22范承偉王海芳曹傲能
    物理化學(xué)學(xué)報 2012年10期
    關(guān)鍵詞:上海大學(xué)導(dǎo)電性波紋

    范承偉 張 新 陳 勝 王海芳 曹傲能

    (上海大學(xué)納米化學(xué)與生物學(xué)研究所,上海200444)

    溶液穩(wěn)定、高導(dǎo)電性波紋狀石墨烯片

    范承偉 張 新 陳 勝 王海芳 曹傲能*

    (上海大學(xué)納米化學(xué)與生物學(xué)研究所,上海200444)

    特殊的單原子層二維sp2碳結(jié)構(gòu)給石墨烯帶來眾多獨特的性能和潛在的應(yīng)用.然而,單層石墨烯容易聚集并會逐漸重新石墨化,這成為其應(yīng)用的一個重要障礙.本文報道了一種新策略來解決這個問題,即通過在石墨烯表面引入sp2碳納米結(jié)構(gòu)作為永久的波紋來阻止石墨烯的聚集和石墨化,并使之在溶液中易于分散和穩(wěn)定.和其他功能化方法不同,該方法沒有引入雜原子,不破壞石墨烯的結(jié)構(gòu)和功能.制得的石墨烯具有優(yōu)異的導(dǎo)電性能(~65000 S·m-1),并具有較好的溶液穩(wěn)定性.

    石墨烯;波紋;碳納米籠;可膨脹石墨;導(dǎo)電性;溶液穩(wěn)定性

    1 Introduction

    Graphene was once regarded unable to exist.1Recent experiments and simulation suggest that it is the transient ripples in three dimension that make the two dimensional(2D)graphene stable.2-4The peculiar 2D structure offers graphene many unique properties and potential applications.5-9Many applications of graphene require solution-processable graphene sheets of high quality in quantity.6,10-20However,one serious obstacle is that graphene is prone to aggregate in suspension and gradually stacks back to graphite.

    Currently,most of the solution-processable graphene is the chemically converted graphene or reduced graphene oxide (rGO).13,14,20-25Graphene oxide(GO)is soluble and can be produced cheaply and massively.GO also has many potential applications,26-28but it is electrically insulating and not suitable for many applications.Various methods have been developed to reduce GO and turn it into conductive rGO,10,15but rGO still has substantial content of oxygen,and no longer stable in solution.In some applications,an effective way to avoid the re-stacking of rGO is to synthesize the final graphene-composite material directly from soluble graphene oxide(GO),skipping the graphene-producing step,as we demonstrated previously.15But for many applications,the graphene-producing step is necessary.Chemical exfoliation of graphite or expanded graphite is a promising method to produce solution-processable high-quality graphene,11,12,29-31yet the suspension is not very stable,and the concentration of graphene is usually very low.To stabilize it in suspension,graphene is usually functionalized by either non-covalent or covalent methods.6,16,17,22These methods introduce heteroatoms and molecules onto graphene that usually deteriorate the structure and properties of graphene.Here we report a facile method to produce high-quality solution-processable graphene sheets.The basic idea is to introduce sp2carbon nano-islands on graphene sheet as permanent ripples to prevent the stacking and graphitization of graphene and to make graphene easy to re-suspend.Unlike most functionalization methods,the sp2carbon decoration does not deteriorate the structure and properties of graphene.Therefore,the obtained permanently rippled graphene sheets show significantly increased solubility as well as excellent electronic conductivity.

    2 Experimental

    2.1 Synthesis

    The procedure to prepare the permanently rippled graphene (denoted as GC)is simple,as depicted in Scheme 1.In a typical experiment,0.2 g expandable graphite(EG,chemical grade,~300 μm,from Qingdao BCSM Co.,Ltd.,China)was mixed with 2 mg ferrocene(98%,chemical grade,Sinopharm Chemical Reagent Co.,Ltd.,China),and heated in a microwave oven (800 W,Galanz,G80D23CN2P-T7(B0),China)for 15 s.After microwaving,the volume of the sample expands to more than 200 times of the original.The entirely expanded graphite was then treated with 1.2 mol·L-1hydrochloric acid(Sinopharm Chemical Reagent Co.,Ltd.,China)at 60°C overnight to remove deposited iron particles,followed by washing with deionized water and ethanol.The sample was then dried at 80°C for 12 h.Five milligram of the above sample was sonicated mildly in 50 mLN-methylpyrrolidone(NMP,analytical grade,Sinopharm Chemical Reagent Co.,Ltd.,China)for 75 min under ambient condition.After centrifugation at 3000 r·min-1for 5 min to remove the unexfoliated graphite,the resulted black GCsuspension was stable for several days.EG was also treated following the above procedure without adding ferrocene,and the obtained graphene was denoted as GP.Nature graphite(chemical grade,Sinopharm Chemical Reagent Co.,Ltd.,China)was exfoliated in NMP at the same conditions,too.rGO was prepared for comparison by hydrazine-reduction as reported previously.15

    Since the microwave reaction completed too quickly to capture the intermediates of the reaction,we also used a conventional chemical vapor deposition(CVD)method to slow down the process.To achieve good mixing,EG was first expanded alone(without ferrocene)by microwaving,then exfoliated in NMP.The suspension was centrifuged at 3000 r·min-1for 5 min,and the supernatant was filtered and dried.Two mg of the dried powder and 200 mg of ferrocene(because of the inefficiency of CVD method,extra ferrocene has to be used)were put in a quartz boat,and heated with CVD method at 600-950°C for a certain period of time.After cooling down to room temperature,the products were suspended in ethanol and examed by transmission electron microscope(TEM).

    2.2 Characterization

    Scheme 1 Synthesis process of the permanently rippled graphene

    High-resolution TEM images and energy dispersive spectrometer(EDS)spectra were taken on a JEM-2010F microscope(JEOL,Japan).Samples were prepared by drop-casting onto holey carbon grids(300 mesh size)and dried at 80°C for 4 h.Field emission scanning electron microscope(FESEM) images were recorded on a JSM-6700F electron microscope (JEOL,Japan).Raman spectra were collected on a Renishaw invia plus laser Raman spectrometer(UK)with an excitation laser wavelength of 514.5 nm(5 mW)at room temperature. Samples for both FESEM and Raman were prepared by spraying the graphene suspensions on SiO2/Si substrate(SiO2thickness of 300 nm)and annealing under nitrogen gas at 400°C for 4 h.Fourier transform infrared(FTIR)spectra were recorded on a Thermo Nicolet Avatar 370 FTIR spectrometer(USA) with a resolution of 2 cm-1.X-ray photoelectron spectroscopy (XPS)data were collected on an AXIS ultra instrument(Kratos,UK)at 293 K,and a binding energy of 284.6 eV for the C 1s level was used as an internal reference.XPS peaks were deconvoluted using XPS peak 4.1.TGA measurement was performed on a TGA-SDT Q600(TA Instruments,USA)under a nitrogen flow(100 mL·min-1),at a rate of 5°C min-1.Electronic conductivity measurements were carried out on a SB100/A Test Unit(Qianfeng Electronic Instrument,China)using a four-point-probe head with a pin-distance of about 3 mm,samples were prepared by compressing graphene powder at 20 mPa into round disks with a diameter of 1.6 cm and thickness of 0.2 mm.X-ray powder diffraction(XRD)patterns were recorded using a D/MAX-2200 diffractometer(Rigaku,Japan), equipped with a rotating anode and with a Cu Kαradiation source(λ=0.154178 nm).UV-Vis absorption spectra were obtained on a HITACHI U-3010 spectrophotometer.The standard UV absorption at 259 nm versus GCconcentration curve was obtained;the concentrations were determined by weighing the graphene in suspension.

    3 Results and discussion

    Fig.1 TEM images of graphene(a,b)TEM images of GPand GC,respectively;(c,d)HRTEM images show the folded edges of single-layer and bi-layer GCsheets,respectively. Black arrow points to single-layer nano graphene meshes,and white ones point to carbon nanocages.

    During the microwaving process,EG absorbed microwave energy efficiently and turned it into heat.Consequently,the temperature of EG rose quickly in a few seconds,and the interspacing between graphite layers was greatly expanded after microwaving(Scheme 1,bottom).Meanwhile,ferrocene in the mixture evaporated and intercalated into the expanded interspace of EG,where it decomposed and deposited iron nanoparticles(NPs)on the hot surface of EG.The typical HRTEM images of the GCsample are shown in Fig.1.As reported previously,11EG can also be expanded by microwaving in the absence of ferrocene,and then be exfoliated to produce graphene(GP) in organic solvents by sonication.For comparsion,the TEM image of GPis enclosed in Fig.1.GP(Fig.1a)shows featureless regions in the graphene sheet as reported,2while plenty of dark dots are observed on the GCsheets(Fig.1b).These scattered dots are pure carbon structure,since only carbon and copper (copper is from the supporting mesh)have been detected on the sheet by electron disperse X-ray spectroscopy(EDS)(see Fig.2).

    The folded edges of GCprovide signatures to indentify the layers of the graphene sheet.2The dark straight lines of the folded graphene in Figs.1c and 1d are signatures of folded single-layer and bi-layer graphene sheets,respectively.Interestingly,the folded edges of GCalso provide a perpendicular view of the decorated carbon islands.Nano graphene meshes(indicated by black arrows in Fig.1)and carbon nanocages(indicated by white arrows in Fig.1)can be identified.All these carbon nano-islands serve as permanent ripples on graphene sheets to stabilize the graphene.These carbon nanocages formed in the presence of small amount of ferrocene(Fig.1d)are single-layer cages.When the amount of ferrocene in the reaction mixture increases,the carbon nanocage grows bigger and consists of multiple layers(Fig.2a).

    Raman spectrum is widely used to determine the number of layers of graphene sheets.Fig.3a shows the Raman spectra of GC,GP,EG,and rGO.The IG/I2D(intensity ratio of G peak to 2D peak)of GPis very similar to that of EG,indicating that GPis not well exfoliated and exists mainly as multiple layers or graphite-like.This is consistent with the TEM investigation that thin-layer sheet of GPis rare.The IG/I2Dratio of GCis significantly smaller than that of GP,corresponding to thin-layer graphene sheets.12Compared with rGO,which shows a big D peak,there is a small D peak for GPand no D peak for GC,suggesting much less defect in GC.

    Fig.2 HRTEM(a,b)and EDS(c)of carbon nanocage on GC(a)carbon nanocage with iron NP inside(before washing with HCl solution); (b)after washing with HCl solution to remove the deposited iron NP, the white square indicates the EDS(c)detection area.

    Fig.3 (a)Raman spectra of expandable graphite(EG),rGO, GP,and GC;and(b)XRD patterns of GPand GC

    The decorated carbon nanoislands can increase the yield of suspensible and thin-layer graphene,and make the suspension more stable.In comparison,after one circle sonication and subsequent centrifugation,the yield we obtained is~17%(mass fraction)for suspensible GP,while up to~35%for GC.And 48 h after the suspension,the concentration of GCin NMP is about 0.045 mg·mL-1,which is about 5-fold more than that of GP(see Fig.4).

    Thermodynamically,the Gibbs free energy difference(ΔG) between the single-layer graphene sheets and the multilayer graphene/graphite can be calculated by ΔG=ΔH-TΔS.The reported transient ripple2on the single-layer graphene is an entropic term favourable for the single-layer graphene state.This might be one reason that graphite can be exfoliated by heating at above 1000°C.10Enthalpically,due to the unsaturated electronic valence,the single-layer graphene is unfavourable compared to the multiple-layer graphene and graphite.Overall, graphite,not the single-layer graphene,is the most stable state, thus graphene sheets tend to stack up.

    Fig.4 UV-Vis absorbance spectra of GCand GPInset shows the photos of the GCand GPsuspension.Curve a corresponds to the 4-fold diluted GPsample of the inset bottle a;Curve b corresponds to the 10-fold diluted GCsample of the inset bottle b.

    When the single-layer graphene sheets stack into bi-to multiple-layer sheets,the strong interactions between graphene layers make the stacked layers more and more rigid.This is why the transient ripples on bi-layer graphene sheets become smaller than that on single-layer ones,and disappear eventually on multiple-layer ones,according to the published results.2For the few-layer graphene,although it is enthalpically more favourable than the single-layer one,it loses the flexibility of the single-layer sheet(entropically unfavourable).

    For GC,the permanent ripples,namely carbon nanoislands, compensate the enthalpy of the single-layer graphene,and the scatterance feature of the nanoislands keeps the graphene sheet flexible.Therefore,GCis entropically favourable compared to GP.This may explain why GCis more stable than GPin suspension.

    It has to be pointed out that,in solution,there is also a big entropical penalty for the single-layer graphene sheet,originated from the ordering of solvent molecules when bounded to graphene sheets.The tighter the binding between the solvent molecule and graphene sheet is,the more ordered the solvent molecules around graphene sheets are,and the larger solvent entropical penalty is.This solvent entropical penalty might be the major driving force for the aggregation of graphene sheets in solution,as the hydrophic effect(solvent entropical penalty originated from the ordering of water molecules around hydrophobic amino acids)is the major driving force for the protein folding.32,33So,currently,there is no solvent that could dissolve graphene into stable solution.Without introducing repulsion force and reducing sticking between graphene sheets by chemical modification,thin-layer graphene sheets will eventually aggregate and precipitate.Therefore,a more realistic approach to prevent the aggregation and stacking of graphene sheet is not trying to find a better solvent,but trying to prevent the graphitization of the aggregates.Adding permanent sp2carbon ripples on graphene sheet is this kind of approach.It is superior to those functionalization methods,because it does not bring in exotic heteroatoms.Moreover,because of the lack of large area of perfect matching surfaces between permanently rippled graphene sheets,the permanent ripples would prevent the graphitization of GCprecipitates.Consequently,GCprecipitates are easily re-suspended by mild sonication,even compressing the GCprecipitates into bulk solid form,as depicted in Scheme 1. XRD results(Fig.3b)show that the area of the(002)peak of solid GCpowder is only about one-sixth of that of GP,indicating much less degree of crystallization(graphitization)for GC.

    One of the most amazing properties of graphene is its excellent electronic conductivity.However,the conductivity of graphene produced by the many reported solution-processable methods is very poor.Due to existence of a lot of oxygen content,the electronic conductivity of rGO is not good,usually in the order of 10-103S·m-1,depending on the reduction procedures.13-15,21,34,35Solvent-exfoliation of natural graphite can produce graphene of relatively high quality.Even so,the conductivity of the obtained graphene is just comparable to some rGO films,12much lower than expected for the“pristine graphene”. This is probably due to the fact that there are strong interactions between the graphene layers in graphite,thus the strong sonication treatment is necessary to exfoliate it.The strong sonication would produce many defects on the exfoliated graphene sheets,and then decrease the conductivity of the graphene.

    The expanded interlayer spacing of expanded graphite makes it easier to be exfoliated.Therefore,only much milder sonication is required to expand it.In comparison,at our mild sonication condition,the yield of suspensible graphene from the sonication of natural graphite powder is less than 2%,and no few-layer graphene has been identified.

    Milder sonication introduces less defect.As expected,GCshows excellent conductivity of~65000 S·m-1,which is about one order of magnitude higher than that of the above reported pristine graphene.12Since the data from different laboratories and different methods might be not comparable,we also prepared the hydrazine-reduced rGO and measured its conductivity as a reference.The measured conductivity for rGO is~140 S·m-1,which is in consistent with the reported values.15,21,34,35Interestingly,the conductivity of GCis also significantly higher than that of GP(~48000 S·m-1),which is produced at the exact sonicating condition.

    Fig.5 TEM image capturing the etching paths(outlined by red dotted-lines)on EG sheet by iron NPs and the formation of carbon nanocages around iron NPs(indicated by blue arrows)

    Since the microwave reaction completes too quickly to capture the intermediates of the reaction,we used a conventional CVD method to slow down the process and investigate the mechanism of the formation of the permanent rippled graphene structure.As shown by TEM image(Fig.5),the deposited iron NPs can etch the EG sheet and leave nano graphene meshes on the graphene sheets.Along the etching paths,those etched carbon atoms are dissolved in the iron NPs and eventually turned into carbon nanocages.During the producing process of GC, iron NPs might preferably deposit on the defects of EG,which are also the sites where the expansion of EG originates,so the defects might be more likely etched or eliminated.This is likely the mechanism for the decrease of defects in GC.

    The decrease of defects has been evidenced by XPS results (Fig.6a).Deconvolution of the C 1s peak shows that there are more than 88%sp2carbon atoms in GC,much higher than that of GP(73%).The rest peaks of GCmainly come from the residual NMP solvent molecules on graphene sample,which is consistent with the literature.12This result indicates little disordered carbon on GC,suggesting that almost all the decorated carbon nanoislands are sp2carbon structures.The defect decrease of GCis also evidenced by the FTIR spectra(Fig.6b) and thermogravimetric analysis(TGA)(Fig.6c).FTIR spectra show that GCis very similar to nature graphite,while GPcontains many oxygen-containing groups such as the peaks around 1090 cm-1(vC―O)and 1260 cm-1(vC―O―C).36TGA shows that GCis the most stable one,with 92%mass remaining after heating to 800°C,while the remained masses for GPand rGO are 86% and 77%,respectively.In addition,the absence of D peak at 1350 cm-1in Raman spectrum of GCindicates the less disordered carbon structure,demonstrating the high-quality of GC.

    Fig.6 Valency and stability of graphene prepared by different methods(a)XPS spectra of rGO,GP,and GC;(b)FTIR spectra of natural graphite,rGO,GP,and GC;(c)TGAcurves of rGO,GP,and GC

    4 Conclusions

    In summary,we report here a facile method to produce solution-processable graphene sheets from EG.The essence of this method is to stabilize graphene sheets and prevent their re-stacking by introducing permanent ripples on the graphene sheet,i.e.,decorating carbon nanoislands on the graphene sheets.Since the decorated nanoislands are sp2carbon structure as that of graphene sheet,they do not deteriorate the graphene and introduce heteroatoms into the system.Thus graphene provides an excellent electronic conductivity up to 65000 S·m-1. The permemantly rippled graphene is readily suspensible in NMP solvent with concentration up to 0.045 mg·mL-1,showing great potential in wide range of solution-processable applications of graphene.

    (1) Mermin,N.D.Phys.Rev.1968,176,250.doi:10.1103/ PhysRev.176.250

    (2)Meyer,J.C.;Geim,A.K.;Katsnelson,M.I.;Novoselov,K.S.; Booth,T.J.;Roth,S.Nature 2007,446,60.doi:10.1038/ nature05545

    (3) Novoselov,K.S.;Jiang,D.;Schedin,F.;Booth,T.J.; Khotkevich,V.V.;Morozov,S.V.;Geim,A.K.Proc.Natl. Acad.Sci.U.S.A.2005,102,10451.doi:10.1073/pnas. 0502848102

    (4) Fasolino,A.;Los,J.H.;Katsnelson,M.I.Nat.Mater.2007,6, 858.doi:10.1038/nmat2011

    (5) Geim,A.K.;Novoselov,K.S.Nat.Mater.2007,6,183.doi: 10.1038/nmat1849

    (6)Huang,X.;Yin,Z.Y.;Wu,S.X.;Qi,X.Y.;He,Q.Y.;Zhang,Q. C.;Yan,Q.Y.;Boey,F.;Zhang,H.Small 2011,7,1876.doi: 10.1002/smll.201002009

    (7) Geim,A.K.Science 2009,324,1530.doi:10.1126/science. 1158877

    (8) Jiang,H.J.Small 2011,7,2413.

    (9)Huang,X.;Qi,X.Y.;Boey,F.;Zhang,H.Chem.Soc.Rev.2012, 41,666.doi:10.1039/c1cs15078b

    (10)Li,X.L.;Zhang,G.Y.;Bai,X.D.;Sun,X.M.;Wang,X.R.; Wang,E.G.;Dai,H.J.Nat.Nanotechnol.2008,3,538.doi: 10.1038/nnano.2008.210

    (11) Liu,Z.;Fan,C.W.;Chen,L.;Cao,A.N.J.Nanosci.Nanotech. 2010,10,7382.doi:10.1166/jnn.2010.2780

    (12) Hernandez,Y.;Nicolosi,V.;Lotya,M.;Blighe,F.;Sun,Z.;De, S.;McGovern,I.T.;Holland,B.;Byrne,M.;Gunko,Y.;Boland, J.;Niraj,P.;Duesberg,G.;Krishnamurti,S.;Goodhue,R.; Hutchison,J.;Scardaci,V.;Ferrari,A.C.;Coleman,J.N.Nat. Nanotechnol.2008,3,563.

    (13) Eda,G.;Fanchini,G.;Chhowalla,M.Nat.Nanotechnol.2008, 3,270.doi:10.1038/nnano.2008.83

    (14) Li,D.;Muller,M.B.;Gilje,S.;Kaner,R.B.;Wallace,G.G. Nat.Nanotechnol.2008,3,101.doi:10.1038/nnano.2007.451

    (15)Cao,A.N.;Liu,Z.;Chu,S.S.;Wu,M.H.;Ye,Z.M.;Cai,Z. W.;Chang,Y.L.;Wang,S.F.;Gong,Q.H.;Liu,Y.F.Adv. Mater.2010,22,103.doi:10.1002/adma.v22:1

    (16) Qi,X.Y.;Pu,K.Y.;Zhou,X.Z.;Li,H.;Liu,B.;Boey,F.; Huang,W.;Zhang,H.Small 2010,6,663.doi:10.1002/ smll.v6:5

    (17) Stankovich,S.;Dikin,D.A.;Dommett,G.H.B.;Kohlhaas,K. M.;Zimney,E.J.;Stach,E.A.;Piner,R.D.;Nguyen,S.T.; Ruoff,R.S.Nature 2006,442,282.doi:10.1038/nature04969

    (18) Choucair,M.;Thordarson,P.;Stride,J.A.Nat.Nanotechnol. 2009,4,30.doi:10.1038/nnano.2008.365

    (19) Qi,X.Y.;Pu,K.Y.;Li,H.;Zhou,X.Z.;Wu,S.;Fan,Q.L.;Liu, B.;Boey,F.;Huang,W.;Zhang,H.Angew.Chem.Int.Edit. 2010,49,9426.doi:10.1002/anie.201004497

    (20) Feng,X.;Hu,G.;Hu,J.Nanoscale 2011,3,2099.doi:10.1039/ c1nr00004g

    (21)Dreyer,D.R.;Park,S.;Bielawski,C.W.;Ruoff,R.S.Chem. Soc.Rev.2010,39,228.doi:10.1039/b917103g

    (22) Park,S.;An,J.;Jung,I.;Piner,R.D.;An,S.J.;Li,X.S.; Velamakanni,A.;Ruoff,R.S.Nano Lett.2009,9,1593.doi: 10.1021/nl803798y

    (23) Dikin,D.A.;Stankovich,S.;Zimney,E.J.;Piner,R.D.; Dommett,G.H.B.;Evmenenko,G.;Nguyen,S.T.;Ruoff,R.S. Nature 2007,448,457.doi:10.1038/nature06016

    (24)Zhou,X.Z.;Huang,X.;Qi,X.Y.;Wu,S.X.;Xue,C.;Boey,F. Y.C.;Yan,Q.Y.;Chen,P.;Zhang,H.J.Phys.Chem.C 2009, 113,10842.doi:10.1021/jp903821n

    (25) Chang,Y.L.;Chen,S.;Cao,A.N.J.Shanghai University (Natural Science)2010,16(6),577.[常艷麗,陳 勝,曹傲能.上海大學(xué)學(xué)報(自然科學(xué)版),2010,16(6),577.]

    (26)Yang,S.T.;Chen,S.;Chang,Y.;Cao,A.;Liu,Y.;Wang,H. J.Colloid Interface Sci.2011,359,24.doi:10.1016/j.jcis. 2011.02.064

    (27)Yang,S.T.;Chang,Y.;Wang,H.;Liu,G.;Chen,S.;Wang,Y.; Liu,Y.;Cao,A.J.Colloid Interface Sci.2010,351,122.doi: 10.1016/j.jcis.2010.07.042

    (28)Chang,Y.;Yang,S.T.;Liu,J.H.;Dong,E.;Wang,Y.;Cao,A.; Liu,Y.;Wang,H.Toxicol Lett.2011,200,201.doi:10.1016/j. toxlet.2010.11.016

    (29)Hao,R.;Qian,W.;Zhang,L.;Hou,Y.Chem.Commun.2008, 6576.

    (30)Qian,W.;Cui,X.;Hao,R.;Hou,Y.;Zhang,Z.ACS Appl.Mater. Interfaces 2011,3(7),2259.doi:10.1021/am200479d

    (31)Qian,W.;Hao,R.;Hou,Y.;Tian,Y.;Shen,C.;Gao,H.;Liang, X.Nano Res.2009,2,706.doi:10.1007/s12274-009-9074-z

    (32) Kauzmann,W.Adv.Protein Chem.1959,14,1.doi:10.1016/ S0065-3233(08)60608-7

    (33) Dill,K.A.Biochemistry 1990,29,7133.doi:10.1021/ bi00483a001

    (34) Jung,I.;Dikin,D.A.;Piner,R.D.;Ruoff,R.S.Nano Lett. 2008,8,4283.doi:10.1021/nl8019938

    (35) Gomez-Navarro,C.;Weitz,R.T.;Bittner,A.M.;Scolari,M.; Mews,A.;Burghard,M.;Kern,K.Nano Lett.2007,7,3499. doi:10.1021/nl072090c

    (36) Si,Y.C.;Samulski,E.T.Nano Lett.2008,8,1679.doi:10.1021/ nl080604h

    July 23,2012;Revised:September 10,2012;Published on Web:September 10,2012.

    Solution-Processable,Highly Conductive,Permanently Rippled Graphene Sheets

    FAN Cheng-Wei ZHANG Xin CHEN Sheng WANG Hai-Fang CAO Ao-Neng*
    (Institute of Nanochemistry and Nanobiology,Shanghai University,Shanghai 200444,P.R.China)

    The single atom thick sp2carbon structure of graphene gives rise to its unique properties and potential applications.However,one serious obstacle for its application is that graphene is prone to aggregate in suspension and gradually stack into graphite.Here,we report a novel approach to solve this problem.The basic idea is to introduce sp2carbon nano-islands on the graphene sheets that act as permanent ripples to prevent the stacking and graphitization of graphene and make it easy to re-suspend. Unlike most functionalization methods,this approach avoids the introduction of heteroatoms.Thus,it does not deteriorate the structure and change the properties of graphene.The carbon-rippled graphene has a remarkable electronic conductivity of~65000 S·m-1,and can be readily suspended in solvent.

    Graphene;Ripple;Carbon nanocage;Expandable graphite;Conductivity; Solution stability

    10.3866/PKU.WHXB201209103

    ?Corresponding author.Email:ancao@shu.edu.cn;Tel:+86-21-66135277.

    The project was supported by the National Natural Science Foundation of China(21073117),National Key Basic Research Program of China(973) (2009CB930200,2011CB933402),and Shanghai LeadingAcademic Disciplines,China(S30109).

    國家自然科學(xué)基金(21073117),國家重點基礎(chǔ)研究發(fā)展規(guī)劃項目(973)(2009CB930200,2011CB933402)和上海市重點學(xué)科(S30109)資助

    O641

    猜你喜歡
    上海大學(xué)導(dǎo)電性波紋
    加入超高分子量聚合物的石墨烯纖維導(dǎo)電性優(yōu)異
    基于NACA0030的波紋狀翼型氣動特性探索
    小波紋的童話
    《上海大學(xué)學(xué)報(自然科學(xué)版)》征稿簡則
    上海大學(xué)學(xué)報(自然科學(xué)版)征稿簡則
    《上海大學(xué)學(xué)報(自然科學(xué)版)》征稿簡則
    為什么水面波紋蕩漾
    學(xué)與玩(2017年5期)2017-02-16 07:06:26
    PPy/Ni/NanoG復(fù)合材料的制備及導(dǎo)電性能研究
    中國塑料(2016年3期)2016-06-15 20:30:00
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    TiO2對硫正極材料導(dǎo)電性能的影響
    熟妇人妻不卡中文字幕| 青青草视频在线视频观看| 亚洲av成人精品一区久久| 国产亚洲欧美精品永久| 日本与韩国留学比较| 在线观看av片永久免费下载| 国产精品偷伦视频观看了| 亚洲经典国产精华液单| 少妇精品久久久久久久| 美女中出高潮动态图| 久久久欧美国产精品| 久久久久久久久久久丰满| 97精品久久久久久久久久精品| 久久久久网色| 午夜福利,免费看| 日韩成人伦理影院| 欧美老熟妇乱子伦牲交| 亚洲欧美成人精品一区二区| 亚洲经典国产精华液单| 免费av不卡在线播放| 交换朋友夫妻互换小说| 久久久午夜欧美精品| 国产有黄有色有爽视频| 纵有疾风起免费观看全集完整版| 日韩一本色道免费dvd| 欧美xxⅹ黑人| 边亲边吃奶的免费视频| 亚洲欧美精品自产自拍| 两个人的视频大全免费| 婷婷色麻豆天堂久久| 中文欧美无线码| 亚洲真实伦在线观看| 69精品国产乱码久久久| 又大又黄又爽视频免费| 国产欧美另类精品又又久久亚洲欧美| 亚洲自偷自拍三级| 男女边吃奶边做爰视频| 极品人妻少妇av视频| 嫩草影院新地址| 有码 亚洲区| 国产男女内射视频| 777米奇影视久久| 欧美另类一区| 久久久久视频综合| 3wmmmm亚洲av在线观看| 亚洲国产av新网站| 国产一区二区三区av在线| 亚洲中文av在线| 另类亚洲欧美激情| 国产高清不卡午夜福利| 最近中文字幕2019免费版| 久久国产精品大桥未久av | 国产精品国产三级国产av玫瑰| 成人亚洲欧美一区二区av| 欧美精品高潮呻吟av久久| 亚洲图色成人| 久久久国产欧美日韩av| 一级爰片在线观看| 美女cb高潮喷水在线观看| 国语对白做爰xxxⅹ性视频网站| 春色校园在线视频观看| 国模一区二区三区四区视频| 春色校园在线视频观看| 国产精品熟女久久久久浪| 狂野欧美白嫩少妇大欣赏| 欧美丝袜亚洲另类| 特大巨黑吊av在线直播| 国产在线一区二区三区精| 青春草视频在线免费观看| a级一级毛片免费在线观看| 日韩,欧美,国产一区二区三区| 男女啪啪激烈高潮av片| 大码成人一级视频| 成年人午夜在线观看视频| tube8黄色片| 国产免费福利视频在线观看| 日本wwww免费看| 99九九线精品视频在线观看视频| 男人爽女人下面视频在线观看| 乱码一卡2卡4卡精品| 久久久久久久久久人人人人人人| 爱豆传媒免费全集在线观看| 六月丁香七月| 久热久热在线精品观看| 一级毛片aaaaaa免费看小| 国产男女超爽视频在线观看| 成人国产av品久久久| 国产精品国产三级国产专区5o| 欧美高清成人免费视频www| 男女边摸边吃奶| 免费久久久久久久精品成人欧美视频 | 精品亚洲成国产av| 国产一区二区三区综合在线观看 | av在线app专区| 一级黄片播放器| 晚上一个人看的免费电影| 天堂俺去俺来也www色官网| 最近2019中文字幕mv第一页| av不卡在线播放| 99热全是精品| 晚上一个人看的免费电影| 精品人妻一区二区三区麻豆| 一级爰片在线观看| 成人午夜精彩视频在线观看| 青春草视频在线免费观看| 国产一区二区三区综合在线观看 | h日本视频在线播放| 最新中文字幕久久久久| 亚洲精品国产av成人精品| 黑人巨大精品欧美一区二区蜜桃 | 亚洲无线观看免费| 国产一区二区在线观看日韩| 我要看黄色一级片免费的| 少妇精品久久久久久久| 我的老师免费观看完整版| 午夜久久久在线观看| 简卡轻食公司| 国产成人freesex在线| 这个男人来自地球电影免费观看 | 人妻系列 视频| 欧美精品高潮呻吟av久久| 日本-黄色视频高清免费观看| 亚洲av成人精品一二三区| 9色porny在线观看| 精品亚洲乱码少妇综合久久| 亚洲电影在线观看av| av免费在线看不卡| av不卡在线播放| 男女无遮挡免费网站观看| 91久久精品电影网| 人人澡人人妻人| 国产欧美日韩一区二区三区在线 | 视频区图区小说| 午夜福利影视在线免费观看| 人人妻人人看人人澡| 深夜a级毛片| av卡一久久| 蜜桃久久精品国产亚洲av| 少妇高潮的动态图| 一本—道久久a久久精品蜜桃钙片| 夜夜骑夜夜射夜夜干| 日韩电影二区| 午夜av观看不卡| 亚洲,一卡二卡三卡| 高清在线视频一区二区三区| 91午夜精品亚洲一区二区三区| 久久久国产一区二区| 免费黄色在线免费观看| 亚洲性久久影院| 亚洲精品日韩在线中文字幕| 嫩草影院新地址| 国产深夜福利视频在线观看| 制服丝袜香蕉在线| 9色porny在线观看| 日本欧美视频一区| 亚洲真实伦在线观看| 中文字幕av电影在线播放| av黄色大香蕉| 一级,二级,三级黄色视频| 人人妻人人添人人爽欧美一区卜| 99久久人妻综合| av天堂中文字幕网| 国产精品欧美亚洲77777| 一级黄片播放器| 欧美+日韩+精品| 少妇人妻 视频| av国产精品久久久久影院| 最后的刺客免费高清国语| 欧美精品亚洲一区二区| 亚洲精品国产成人久久av| 偷拍熟女少妇极品色| 美女福利国产在线| 极品少妇高潮喷水抽搐| 国产欧美亚洲国产| 少妇人妻 视频| 国产精品免费大片| 少妇 在线观看| 国产av一区二区精品久久| 美女脱内裤让男人舔精品视频| freevideosex欧美| 亚洲内射少妇av| 热99国产精品久久久久久7| 高清毛片免费看| 久久久久久人妻| 欧美高清成人免费视频www| 国产女主播在线喷水免费视频网站| 久久国产乱子免费精品| 看非洲黑人一级黄片| 午夜久久久在线观看| 亚洲一级一片aⅴ在线观看| 91aial.com中文字幕在线观看| 免费播放大片免费观看视频在线观看| 18禁在线播放成人免费| 亚洲国产精品成人久久小说| 欧美3d第一页| 午夜免费观看性视频| av.在线天堂| 欧美精品一区二区免费开放| 免费久久久久久久精品成人欧美视频 | 久久 成人 亚洲| 18禁动态无遮挡网站| 夜夜爽夜夜爽视频| 精品酒店卫生间| 纵有疾风起免费观看全集完整版| 99久久精品热视频| 亚洲av电影在线观看一区二区三区| 大片免费播放器 马上看| 一本一本综合久久| 国产亚洲精品久久久com| 亚洲不卡免费看| 亚洲av二区三区四区| 看非洲黑人一级黄片| 一级a做视频免费观看| 午夜福利影视在线免费观看| 老熟女久久久| 少妇高潮的动态图| 久久久国产欧美日韩av| 精品少妇黑人巨大在线播放| 亚洲精品视频女| 国产一区二区在线观看av| 视频中文字幕在线观看| 国模一区二区三区四区视频| 亚洲精品456在线播放app| 国产一区有黄有色的免费视频| 五月开心婷婷网| 欧美日韩视频精品一区| 多毛熟女@视频| 老司机影院成人| 如何舔出高潮| 精品人妻熟女毛片av久久网站| 美女大奶头黄色视频| 亚洲精品乱久久久久久| 久久97久久精品| 欧美3d第一页| 亚洲精品一二三| 国产永久视频网站| 亚洲av.av天堂| 啦啦啦视频在线资源免费观看| 99热这里只有是精品在线观看| 国产欧美日韩一区二区三区在线 | 亚洲中文av在线| 看非洲黑人一级黄片| 国产精品女同一区二区软件| 免费观看的影片在线观看| 久久久久久久亚洲中文字幕| av有码第一页| 一级毛片 在线播放| 午夜老司机福利剧场| 亚洲丝袜综合中文字幕| 大话2 男鬼变身卡| 搡女人真爽免费视频火全软件| 国产精品一区二区在线不卡| 国产精品99久久99久久久不卡 | 日韩亚洲欧美综合| 青春草视频在线免费观看| 久久国产精品大桥未久av | 免费黄频网站在线观看国产| 插逼视频在线观看| freevideosex欧美| 亚洲国产精品一区三区| 伊人久久国产一区二区| 成人免费观看视频高清| 国产有黄有色有爽视频| 大片电影免费在线观看免费| 在现免费观看毛片| 国产精品国产av在线观看| 国产av码专区亚洲av| 国产免费一级a男人的天堂| 久久久久久伊人网av| 久久午夜综合久久蜜桃| 国产日韩欧美视频二区| 亚洲,欧美,日韩| 少妇被粗大猛烈的视频| 国产综合精华液| 晚上一个人看的免费电影| 国产在线视频一区二区| 成人国产麻豆网| 免费av中文字幕在线| 最近的中文字幕免费完整| 免费人成在线观看视频色| 伊人亚洲综合成人网| 久久午夜综合久久蜜桃| 亚洲精品中文字幕在线视频 | 日本与韩国留学比较| 久久 成人 亚洲| 美女中出高潮动态图| av在线观看视频网站免费| 在线观看美女被高潮喷水网站| 久久久久国产精品人妻一区二区| 亚洲国产日韩一区二区| 久久久久久伊人网av| 国产精品女同一区二区软件| 亚洲欧美一区二区三区国产| 日本91视频免费播放| 岛国毛片在线播放| 国产精品福利在线免费观看| 99久久精品热视频| 高清不卡的av网站| 欧美精品高潮呻吟av久久| 在线观看免费日韩欧美大片 | 午夜91福利影院| 成人综合一区亚洲| 欧美日韩综合久久久久久| 日日撸夜夜添| 免费观看性生交大片5| 欧美成人精品欧美一级黄| av福利片在线观看| 色吧在线观看| 我要看黄色一级片免费的| 久久国产精品男人的天堂亚洲 | 国产在视频线精品| 免费黄色在线免费观看| 精品亚洲成a人片在线观看| 性高湖久久久久久久久免费观看| 99久久精品热视频| 日韩亚洲欧美综合| 人妻一区二区av| 看非洲黑人一级黄片| 免费观看无遮挡的男女| 国产在线一区二区三区精| 精品熟女少妇av免费看| 亚洲av.av天堂| 乱系列少妇在线播放| 男人添女人高潮全过程视频| 久久热精品热| 久久青草综合色| 亚洲精品一区蜜桃| 亚洲成色77777| 亚洲欧洲国产日韩| 久久久久国产精品人妻一区二区| 日本免费在线观看一区| 免费观看性生交大片5| 成年女人在线观看亚洲视频| 久久久久视频综合| 国产高清三级在线| 一本—道久久a久久精品蜜桃钙片| 成年av动漫网址| 男人舔奶头视频| 成年人午夜在线观看视频| 你懂的网址亚洲精品在线观看| 老司机影院毛片| 十分钟在线观看高清视频www | 日韩av不卡免费在线播放| 免费观看无遮挡的男女| 十八禁网站网址无遮挡 | 免费大片黄手机在线观看| 成人漫画全彩无遮挡| 成人综合一区亚洲| 国产熟女午夜一区二区三区 | 97超碰精品成人国产| 国产极品粉嫩免费观看在线 | 中文在线观看免费www的网站| 久久精品久久久久久噜噜老黄| 亚洲成人一二三区av| 大话2 男鬼变身卡| 成人无遮挡网站| 免费大片黄手机在线观看| 免费观看性生交大片5| 99久久精品一区二区三区| 日韩大片免费观看网站| 精品亚洲乱码少妇综合久久| 十分钟在线观看高清视频www | 国产 一区精品| 亚洲欧美中文字幕日韩二区| 国产av码专区亚洲av| 国精品久久久久久国模美| 中国美白少妇内射xxxbb| 777米奇影视久久| 在线观看人妻少妇| 各种免费的搞黄视频| av在线app专区| 极品人妻少妇av视频| 久久久久久久国产电影| 国产真实伦视频高清在线观看| av女优亚洲男人天堂| 国产成人精品久久久久久| 91精品国产国语对白视频| 中国美白少妇内射xxxbb| 国产亚洲91精品色在线| 精品亚洲乱码少妇综合久久| 99久久精品热视频| av在线app专区| 极品人妻少妇av视频| 丝瓜视频免费看黄片| 久久精品久久久久久噜噜老黄| 亚洲av不卡在线观看| av播播在线观看一区| 国产片特级美女逼逼视频| 夫妻性生交免费视频一级片| 亚洲,一卡二卡三卡| 国产在线免费精品| 免费观看无遮挡的男女| 久久女婷五月综合色啪小说| 国产精品久久久久成人av| 欧美区成人在线视频| 国产成人免费无遮挡视频| 欧美激情极品国产一区二区三区 | 午夜久久久在线观看| 日韩精品免费视频一区二区三区 | 男女啪啪激烈高潮av片| 中文乱码字字幕精品一区二区三区| 国产免费一级a男人的天堂| 五月天丁香电影| 国产成人精品无人区| 精品一区二区三区视频在线| 天天躁夜夜躁狠狠久久av| 免费观看的影片在线观看| av.在线天堂| 热re99久久国产66热| 国产精品一区二区在线观看99| 午夜91福利影院| 99视频精品全部免费 在线| 精品久久久精品久久久| 九九在线视频观看精品| 一本大道久久a久久精品| 插逼视频在线观看| 精品卡一卡二卡四卡免费| 久久国产精品大桥未久av | a级毛片在线看网站| 51国产日韩欧美| 亚洲精品日韩在线中文字幕| 99热6这里只有精品| 日产精品乱码卡一卡2卡三| 久久国内精品自在自线图片| 高清黄色对白视频在线免费看 | 亚洲熟女精品中文字幕| 免费黄网站久久成人精品| 成人黄色视频免费在线看| 国产无遮挡羞羞视频在线观看| av福利片在线| 亚洲图色成人| 一区二区av电影网| 一级爰片在线观看| 久久久久视频综合| 久久这里有精品视频免费| 日韩av免费高清视频| 国产av一区二区精品久久| 国产精品一区二区在线不卡| 黄色一级大片看看| 精品久久久精品久久久| 永久网站在线| 麻豆乱淫一区二区| 日韩av在线免费看完整版不卡| 国产免费一区二区三区四区乱码| 国产av码专区亚洲av| 国模一区二区三区四区视频| 久久人妻熟女aⅴ| 曰老女人黄片| 日本av免费视频播放| 嘟嘟电影网在线观看| 99视频精品全部免费 在线| 五月天丁香电影| 男女啪啪激烈高潮av片| 亚洲欧美中文字幕日韩二区| 这个男人来自地球电影免费观看 | 亚洲精华国产精华液的使用体验| 男女国产视频网站| 欧美+日韩+精品| 中文字幕av电影在线播放| 久久久久久久久久人人人人人人| 下体分泌物呈黄色| 2022亚洲国产成人精品| 亚洲人与动物交配视频| 日本av免费视频播放| 国产爽快片一区二区三区| 女人精品久久久久毛片| 国产日韩欧美在线精品| 亚洲综合色惰| 国产欧美日韩精品一区二区| 久久久国产一区二区| 国产乱来视频区| 男女边摸边吃奶| 国产无遮挡羞羞视频在线观看| 国产精品秋霞免费鲁丝片| 精品人妻一区二区三区麻豆| 色婷婷av一区二区三区视频| 国产免费又黄又爽又色| 一本—道久久a久久精品蜜桃钙片| 久久精品熟女亚洲av麻豆精品| 97在线视频观看| 国产欧美日韩精品一区二区| 天堂8中文在线网| 大香蕉久久网| 99久久综合免费| 国产成人精品久久久久久| 在现免费观看毛片| 亚洲精品,欧美精品| 欧美日韩亚洲高清精品| 国产极品粉嫩免费观看在线 | 久久这里有精品视频免费| 精品久久国产蜜桃| 精品人妻熟女毛片av久久网站| 精品少妇内射三级| 国产成人精品无人区| 国产视频内射| 国产伦精品一区二区三区视频9| 在线观看人妻少妇| 日本猛色少妇xxxxx猛交久久| 在线观看免费视频网站a站| 人人妻人人添人人爽欧美一区卜| 全区人妻精品视频| 亚洲欧美日韩另类电影网站| 亚洲天堂av无毛| 99热这里只有精品一区| xxx大片免费视频| 国产午夜精品一二区理论片| 99九九线精品视频在线观看视频| 欧美日本中文国产一区发布| 午夜老司机福利剧场| 国内少妇人妻偷人精品xxx网站| 少妇熟女欧美另类| 免费高清在线观看视频在线观看| 亚洲不卡免费看| 亚州av有码| 蜜桃在线观看..| 美女福利国产在线| 交换朋友夫妻互换小说| 中文字幕亚洲精品专区| 亚洲熟女精品中文字幕| 国产色爽女视频免费观看| 中国国产av一级| 99国产精品免费福利视频| 能在线免费看毛片的网站| 国产精品一区二区性色av| 国产精品一二三区在线看| 亚洲天堂av无毛| av在线app专区| 国产高清国产精品国产三级| 成人亚洲精品一区在线观看| 久久久久精品性色| av在线观看视频网站免费| 丝瓜视频免费看黄片| 777米奇影视久久| 久久精品国产亚洲av涩爱| 精品少妇久久久久久888优播| 三级经典国产精品| 丰满少妇做爰视频| 久久久国产精品麻豆| 日本欧美国产在线视频| 中文天堂在线官网| 嘟嘟电影网在线观看| 草草在线视频免费看| 免费黄频网站在线观看国产| 青青草视频在线视频观看| 精品酒店卫生间| 久久国内精品自在自线图片| 精品人妻偷拍中文字幕| 国产爽快片一区二区三区| 高清av免费在线| 国产伦在线观看视频一区| 99九九在线精品视频 | 免费看av在线观看网站| 亚洲欧洲国产日韩| 男人添女人高潮全过程视频| 啦啦啦视频在线资源免费观看| 人妻夜夜爽99麻豆av| 91精品国产九色| av免费在线看不卡| 人人妻人人看人人澡| 91精品国产国语对白视频| 男女边摸边吃奶| 99久久人妻综合| 国产亚洲91精品色在线| 蜜桃在线观看..| 午夜老司机福利剧场| 国产精品国产三级专区第一集| 在线亚洲精品国产二区图片欧美 | 大香蕉97超碰在线| 成年美女黄网站色视频大全免费 | 亚洲,欧美,日韩| 国产亚洲精品久久久com| 如日韩欧美国产精品一区二区三区 | 久久韩国三级中文字幕| 国产av精品麻豆| 国产精品一二三区在线看| 亚洲怡红院男人天堂| 一级毛片aaaaaa免费看小| 校园人妻丝袜中文字幕| 国产精品一区二区三区四区免费观看| 国产免费一区二区三区四区乱码| 精品人妻偷拍中文字幕| 欧美 日韩 精品 国产| 日韩中文字幕视频在线看片| 国产精品不卡视频一区二区| 综合色丁香网| 色网站视频免费| 国产美女午夜福利| av免费观看日本| 高清在线视频一区二区三区| 国产精品欧美亚洲77777| 日韩,欧美,国产一区二区三区| 热99国产精品久久久久久7| 免费人妻精品一区二区三区视频| 久久久久久久久久久丰满| 色婷婷av一区二区三区视频| 成年女人在线观看亚洲视频| 日韩成人av中文字幕在线观看| 成人免费观看视频高清| 在现免费观看毛片| 亚洲美女黄色视频免费看| 内地一区二区视频在线| 多毛熟女@视频| 国产精品一区二区三区四区免费观看| 精品少妇内射三级| 久久热精品热| 亚洲精品国产av蜜桃| 黑人高潮一二区| 久久久欧美国产精品| 色视频在线一区二区三区| 黑丝袜美女国产一区| 三级国产精品片| 久久精品国产自在天天线| 99热这里只有是精品50| 日本av手机在线免费观看| 欧美日本中文国产一区发布|