• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    雙光子敏化Eu3+高效發(fā)光活細(xì)胞成像納米生物探針

    2012-12-11 09:34:52符小藝邵光勝韓榮成薛富民帆付立民張建平
    物理化學(xué)學(xué)報 2012年10期
    關(guān)鍵詞:小藝榮成敏化

    符小藝 邵光勝 韓榮成 馬 嚴(yán) 薛富民 楊 帆付立民 張建平 王 遠(yuǎn),*

    (1北京分子科學(xué)國家實(shí)驗(yàn)室,分子動態(tài)與穩(wěn)態(tài)國家重點(diǎn)實(shí)驗(yàn)室,北京大學(xué)化學(xué)與分子工程學(xué)院,北京100871; 2華南理工大學(xué)材料科學(xué)與工程學(xué)院,廣州510640;3中國人民大學(xué)化學(xué)系,北京100872)

    雙光子敏化Eu3+高效發(fā)光活細(xì)胞成像納米生物探針

    符小藝1,2,?邵光勝1,?韓榮成1,?馬 嚴(yán)1薛富民1楊 帆3付立民3張建平3王 遠(yuǎn)1,*

    (1北京分子科學(xué)國家實(shí)驗(yàn)室,分子動態(tài)與穩(wěn)態(tài)國家重點(diǎn)實(shí)驗(yàn)室,北京大學(xué)化學(xué)與分子工程學(xué)院,北京100871;2華南理工大學(xué)材料科學(xué)與工程學(xué)院,廣州510640;3中國人民大學(xué)化學(xué)系,北京100872)

    將Eu(tta)3dpbt(dpbt:2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine;tta: thenoyltrifluoroacetonato)包埋在甲基丙烯酸甲酯-苯乙烯共聚物、正辛基三甲氧基硅及其水解縮合產(chǎn)物組成的雜化基質(zhì)中,制備了Eu(tta)3dpbt質(zhì)量分?jǐn)?shù)為40%的熒光納米粒子,其平均粒徑為45 nm.所制備的發(fā)光納米粒子在水中分散穩(wěn)定性高、光穩(wěn)定性好、細(xì)胞毒性低、長波敏化Eu3+發(fā)光性能優(yōu)良,適宜作為生物分析的發(fā)光標(biāo)記物.所制備的發(fā)光納米粒子的可見區(qū)激發(fā)峰位于415 nm,激發(fā)峰尾部延展至475 nm,其發(fā)光量子產(chǎn)率為0.31 (λex=415 nm,T=23°C),最大雙光子激發(fā)作用截面為5.0×105GM(λex=830 nm,1 GM=10-50cm4·s·photo-1· particle-1).以轉(zhuǎn)鐵蛋白修飾上述發(fā)光納米粒子表面制備的納米生物探針被成功應(yīng)用于活的HeLa腫瘤細(xì)胞的特異性標(biāo)記和雙光子激發(fā)Eu3+發(fā)光成像.

    發(fā)光;銪配合物;雙光子激發(fā);納米生物探針;細(xì)胞成像

    1 Introduction

    Bioprobes based on two-photon-sensitized(TPS)luminescence of Eu3+have been attracting intensive attention in the fields of material science and bioanalysis because of the anticipation that two-photon excitation bioimaging based on such probes will combine the advantages of high sensitivity,high signal-to-noise ratio,deep penetration,as well as low photodamage to living organism.1-5The superior luminescent properties of europium complexes are characterized by the narrow-line emission of Eu3+in the red-light region,with acceptable transparence for many biosamples,large Stokes shifts,and long luminescence lifetimes.3-5Remarkable progresses have been achieved in the design and synthesis of Eu3+complexes with excellent two-photon excitation(TPE)luminescence properties,4,6-17and several ones have been successfully applied in the multi-photon-excitation bio-imaging of cells.8,9,18In comparison with free Eu3+complex molecules,bionanoprobes prepared by encapsulating proper Eu3+complexes into water-dispersible and biocompatible nanoparticles possess the additional benefits of markedly enhanced luminescent brightness, chemical stability and photostability,as well as lower cytotoxicity.4,19,20The previously reported complex Eu(tta)3dpbt21(dpbt:2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine;tta:thenoyltrifluoroacetonato,Scheme S1(see Supporting Information))is one of the most proper dyes for preparing bionanoprobes with desirable two-photon-sensitized Eu3+luminescence properties in view of its high molecular TPE action cross section(δ×Φ,82 GM at 808 nm,1 GM=10-50cm4·s· photon-1·molecule-1),and the excellent TPE luminescent properties of its molecular aggregates.22,23However,the attempts to prepare desired nanoprobes encapsulating Eu(tta)3dpbt or its derivatives16,24by conventional encapsulation methods such as microemulsion polymerization25or St?ber method26failed,due to the dissociation of the complexes and loss of their intrinsic luminescence properties during the encapsulation processes.

    Recently,we reported a co-precipitation-assembly method for preparing nanospheres encapsulating 10%(w)of Eu(tta)3dpbt (EuLNPs)which exhibited fine TPE Eu3+luminescence properties with a maximal δ×Φ value for the nanospheres of 1.2×105GM at 825 nm.Bionanoprobes using EuLNPs as the luminescent marker have been successfully applied in the TPE cell-selective-imaging of live cancer cells.20We believe that the two-photon excitation imaging quality based on nanoprobes encapsulating Eu(tta)3dpbt could be further improved by increasing the particles?TPE action cross section,which could be realized by augmenting the Eu(tta)3dpbt content of the nanospheres.However,with the previously reported experimental conditions,the preparation of nanospheres containing more than 15%(w)of Eu(tta)3dpbt produced a large amount of precipitates.

    Herein we report the preparation and luminescent properties of new hybrid nanospheres with high Eu(tta)3dpbt loading (40%(w))and excellent dispersion-stability in water(EuPHS) which were prepared by a co-precipitation-condensation method.27,28The two-photon-sensitized Eu3+luminescence properties of EuPHS were measured.And the tumor cell targeting behavior of transferrin-modified EuPHS(Tf-EuPHS)was observed using a non-invasive two-photon excited(TPE)luminescence imaging.Receptor-mediated tumor cell targeting behavior of Tf-EuPHS was performed in vitro by inhibition with NaN3and 2-deoxy-D-glucose.In addition,the biocompatibility of EuPHS was also evaluated with cytotoxicity tests.

    2 Materials and methods

    2.1 Materials

    Eu(tta)3dpbt was synthesized according to the method reported previously.21Octyltrimethoxysilane(OTS,97%)was purchased from Alfa Aesar.Poly(styrene-co-methyl methacrylate) (P(ST-co-MMA),40%styrene,Mw~100000-150000)was purchased from Aldrich.Transferrin(>98%)purchased from Sigma,cetyltrimethyl ammonium bromide(≥99%)obtained from Acros Organics,and tris(hydroxymethyl)aminomethane from Amresco were used without further purification.Other chemicals ofAR grade were used as received.

    2.2 Preparation of EuPHS

    A colloidal solution of EuPHS was prepared by a co-precipitation-condensation method.27,28In a typical experiment,2.5 mL of acetone solution containing OTS(1.5×10-3mol·L-1), P(ST-co-MMA)(0.16 g·L-1),and Eu(tta)3dpbt(1.3×10-4mol· L-1)was dropwise added into an aqueous solution of cetyltrimethylammonium bromide(CTAB)(7.0 mL,1.4×10-3mol· L-1)under stirring at room temperature.The mixture was further stirred for about 15 min to produce a yellow colloidal solution.To remove large particles,the as-prepared colloidal solution was centrifuged at 10000 g.The supernate was then treated by centrifuging at 40000 g,and the obtained precipitation was re-dispersed in water of 8 mL to produce a colloidal solution of EuPHS.This process was repeated to remove most of CTAB and produce a stable colloid solution of EuPHS(about 52.5 mg·L-1,corresponding to a yield of EuPHS of 30%(w), see Supporting Information for details)with an average diameter of 45 nm as measured by transmission electron microscopy (TEM).A colloidal solution of nanoparticles(EuHS)was also prepared by the aforementioned processes except for the addition of P(ST-co-MMA).

    2.3 Preparation of bionanoprobes

    The obtained colloidal solution of EuPHS(5 mL)was mixed with a solution of transferrin(0.2 mg in 0.2 mL water),and the mixture was incubated at 25°C for 2 h in a thermomix shaker shaking at 300 r·min-1.After being separated by centrifuging (40000 g,5 min)and washed with Tris-HCl buffer(10 mmol· L-1,pH 7.8)twice,the resulting EuPHS modified with transferrin(Tf-EuPHS)were dispersed in 5 mL of Tris-HCl buffer to obtain a colloid solution which was stored at 4°C for use.

    2.4 Cytotoxicity test

    The cytotoxicity measurements were performed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide)assay.Briefly,HeLa cells were trypsinized and resuspended in Dulbecco?s modified Eagle?s medium(DMEM)containing 10%(V/V)fetal bovine serum(FBS)and 80 U·mL-1gentamycin sulfate.The cells were seeded at a density of 0.2-1.0 million cells per well in a 96-well plate.After 24 h of incubation at 37°C in 5%CO2,the cells were washed 3 times with phosphate buffered solution(PBS,pH 7.4).Colloidal solutions of EuPHS or Tf-EuPHS with different concentrations (100 μL)were added to the wells.After 20 h of incubation at 37°C in 5%CO2,a solution of MTT(20 μL,5.0 mg·mL-1) was added to each well.After 4 h of incubation at 37°C in 5% CO2,the medium was discarded,and the intracellular precipitate of formazan was collected by dimethylsulfoxide(DMSO) (100 μL).The absorbance at 570 nm was measured on a Bio-Rad Model 550 microplate reader.Each data point was collected by averaging the absorbance values of six wells,and the untreated cells were used as controls.Statistical significance was assessed by the two-sample Student?s t-test using SPSS 13.0;P values(level of significance)(<0.01)were considered statistically significant.

    2.5 Cellular uptake

    The effects of NaN3and 2-deoxy-D-glucose on the cellular uptake of Tf-EuPHS were examined.The cells were pre-incubated in PBS buffer solution and supplemented with 10 mmol· L-1NaN3and 50 mmol·L-12-deoxy-D-glucose for 30 min at 37°C followed by incubation in a solution of Tf-EuPHS.

    2.6 Cell culture and imaging

    HeLa cells were propagated in Dulbecco?s modified Eagle?s medium(DMEM)supplemented with 10%(V/V)fetal bovine serum and 80 U·mL-1gentamycin sulfate.Then the cultured cells were trypsinized and re-suspended in this DMEM at a concentration of about 7.5×105mL-1.The cell suspension(100 μL)was transferred to a confocal dish(35 mm).After incubation for 24 h at 37°C in 5%CO2,the cells were carefully rinsed with PBS solution(pH 7.4).Then a colloidal solution of Tf-EuPHS(100 μL,0.2 mg·mL-1)was added.After 3 h incubation at 37°C in 5%CO2,the dish was rinsed three times with PBS solution(pH 7.4)and then 1 mL of fresh serum-free medium was added.The plates were incubated for another 10 min at 37°C and then directly imaged on an upright confocal microscope(Leica TCS SP5)equipped with a femtosecond Ti:sapphire laser and a 20×water immersion objective(Carl Zeiss). The two-photon-excitation luminescence images were taken upon femtosecond 800 nm irradiation(δ×Φ800nm=2.5×105GM) with an average laser power of 10 mW,and integration of Eu3+luminescence in the spectral range from 590 to 620 nm.For comparison,all of the confocal images were taken at the same setting.Transmitted light differential interference contrast (DIC)images were taken on the same instrument.

    2.7 Characterizations

    Transmission electron microscopy(TEM)and high-resolution transmission electron microscopy(HRTEM)images were taken on a transmission electron microscope(JEM 2000FX,Hitachi,Japan)and a field emission microscope(Tecnai F30, FEI,Netherlands),respectively.Energy dispersive X-ray spectroscopy(EDX)measurements and elemental mapping were carried out on a field emission transmission microscope(Tecnai G2F20 U-TWIN,Netherlands)with energy dispersive X-ray spectroscope(EDX,EPMA-1600,Shimadzu,Japan). UV-Vis absorption and photoluminescence measurements were carried out on an absorption spectrometer(CARY 1E,Varian, German)and a fluorescence spectrophotometer(F-4500,Hitachi,Japan).The photoluminescence decay kinetics of EuPHS colloidal nanoparticles was measured by FLS920(Edinburgh Instruments,German).Luminescence quantum yield(Φ)of the prepared nanoparticles was determined according to the method described by Demas and Grosby,29using DCM(4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran)in npropanol(Φ=0.57±0.02)as the reference.The photobleaching experiments were carried out on a fluorescence spectrophotometer using a 150 W xenon lamp as an excitation source.Colloidal solutions of the nanoparticles were continuously irradiated, and the emission intensity was recorded at 8 s intervals.The measurements of TPE action cross sections on the colloidal solution of EuPHS were conducted according to the method reported previously,22using Rhodamine B(RhB)as a standard with known two-photo-absorption cross sections.

    3 Results and discussion

    3.1 Preparation and characterization of EuPHS

    A colloidal solution of luminescent nanoparticles encapsulating Eu(tta)3dpbt was prepared by adding dropwise of an acetone solution containing P(ST-co-MMA),OTS,and Eu(tta)3dpbt to an aqueous solution of CTAB under stirring.The prepared colloidal solution was centrifuged to get a precipitate of Eu-PHS which was re-dispersed in water or a Tris-HCl buffer solution(10 mmol·L-1,pH 7.8)to form colloidal solutions.The finally obtained colloidal solutions were very stable and no precipitate was observed after standing for months(see Experimental Section).The prepared EuPHS were composed of 40% (w)of Eu(tta)3dpbt,10%(w)of OTS,35%(w)of poly(octylsi-loxane),and 15%(w)of P(ST-co-MMA)as estimated from the results of elemental analysis,gas chromatography,and inductively coupled plasma atomic emission spectroscopy (ICP-AES)(see Supporting Information for details).The Eu(tta)3dpbt content of EuPHS is 4 times as high as that in the previously reported EuLNPs nanospheres.20

    Fig.1 Representative TEM image(a)and the size distribution(b) of EuPHS(N=334)The inset shows a higher resolution image of one of EuPHS.

    Fig.1 shows the TEM,HRTEM images(inset),and the size distribution of EuPHS which are spherical and 45 nm in diameter.EDX measurements on individual EuPHS revealed that they were composed of C,Si,Eu,and S(Fig.S1(see Supporting Information)).Elemental mapping conducted by EDX in a scanning transmission electron microscope(STEM)indicated that the C and Eu distributions among the nanospheres were homogeneous,while Si was enriched in the surface layer of the nanoparticles(Fig.2).These results suggest that Eu(tta)3dpbt molecules or small molecular aggregates are well dispersed in the matrix of the encapsulation materials,and hydrolysis products of octyltrimethoxysilane(poly(octylsiloxane))are enriched in the surfaces of the nanoshperes.

    Since the precipitation of P(ST-co-MMA)in the solution was a quick process,while the hydrolysis of OTS in the given conditions was a slow one,we believe that the formation process of the EuPHS consists of two steps.When the acetone solution was added into the aqueous solution of CTAB,nanoparticles of the hydrophobic polymer P(ST-co-MMA)containing hydrophobic Eu(tta)3dpbt and OTS quickly formed by precipitation.Then the hydrolysis of OTS around the surfaces of the preformed nanoparticles occurred,which was accompanied by a condensation reaction of the hydrolysis products to form poly(octylsiloxane)shells covered on the cores.As measured by gas chromatography and ICP-AES(see Supporting Information for details),the molar ratio of OTS to the hydrolyzed OTS in EuPHS was about 1:4.Therefore,it is reasonable to deduce that the cores of EuPHS nanoparticles are mainly composed of P(ST-co-MMA),Eu(tta)3dpbt,and OTS.It was found that OTS played a key role in the formation of the spherical nanoparticles.The nanoparticles prepared in the absence of OTS were random in shape as shown in their TEM images(Fig.S2(see Supporting Information)).

    3.2 Luminescence properties of EuPHS

    Fig.3 shows the excitation and luminescence spectra of Eu(tta)3dpbt in toluene and in EuPHS nanospheres dispersed in an aqueous solution.The excitation peak(λem=614 nm)of Eu(tta)3dpbt in toluene,related to the sensitization effect of coordinated dpbt,locates at 402 nm,while that in EuPHS red-shifts to 415 nm,with an edge of this band extending up to 475 nm.The luminescence spectrum of the toluene solution of Eu(tta)3dpbt displays a small peak centered at 440 nm which is the emitting band of free dpbt derived from the dissociation of Eu(tta)3dpbt.21In contrast,this fluorescence signal of dpbt could not be observed in the luminescence spectrum of EuPHS, indicating the intactness of coordination structure between Eu3+and dpbt in EuPHS.

    The photoluminescence decay kinetics at the probing wavelength of 614 nm could be accounted by a two-exponential decay model function,which yielded the apparent decay time constants of 51μs(8%)and 508μs(92%)(Fig.S3(see Supporting Information)).The phenomena of red-shift in the excitation peak and the multi-exponential decay were also observed in the previously reported nanosized Eu(tta)3dpbt congeries prepared by a precipitation method,22which could be explained by the formation of J-type aggregates of the polar Eu(tta)3dpbt molecules.

    Fig.2 STEM image(a)and the elemental mapping of C(b),Si(c),and Eu(d)of one of EuPHS

    As shown in Fig.4,the UV-Vis absorption spectrum of EuPHS in the colloidal solution shows a maximal absorption peak centered at 415 nm with a molar extinction coefficient(ε) of 2.4×104mol-1·L·cm-1.The luminescence quantum yield(Φ) for the Eu3+emission of the prepared nanoparticles was mea-sured to be 0.31±0.03 upon the excitation at 415 nm at 23°C. Assuming that the nanoparticles have a diameter of 45 nm and the density of the nanoparticles is equal to~1.0 g·cm-3(the densities of P(ST-co-MMA),OTS,and Eu(tta)3dpbt are 1.05, 0.91,and 0.92 g·cm-3,respectively),it is estimated that each nanoparticle contains about 10000 Eu(tta)3dpbt molecules(see Supporting Information for details).The luminescent brightness of EuPHS(defined as ε×Φ)is estimated to be 7.4×107mol-1·L·cm-1under excitation at 415 nm,suggesting a remarkable signal amplification capability of EuPHS in bioanalysis.

    Fig.3 Normalized excitation(dashed line,λem=614 nm)and emission(solid line,λex=415 nm)spectra of Eu(tta)3dpbt in a colloidal solution of EuPHS(upper)and in toluene(lower)

    The maximal TPE action cross section(δ×Φ)of the europium complex molecules in EuPHS was measured to be 50 GM at 23°C at 830 nm(Fig.5).This δ×Φ value was about 62%of that of Eu(tta)3dpbt molecules in toluene,6indicating that the excellent two-photon-sensitized luminescence properties of Eu(tta)3dpbt molecules were maintained mostly in EuPHS. Considering the number of europium complex molecules (~10000)in each nanoparticle having the average diameter,the maximal TPE action cross section of EuPHS(dav=45 nm)was roughly estimated to be 5×105GM,which was about 10 times higher than the highest value reported for CdSe/ZnS core-shell quantum dots(dav≈4.5 nm)determined by a similar method,30and was about 4 times higher than that of our previously reported EuLNPs nanoparticles(52 nm in average diameter).20

    Fig.4 UV-Vis absorption spectrum of EuPHS in water

    Fig.5 Two-photon excitation action cross sections(δ×Φ)of Eu(tta)3dpbt in EuPHSThe experimental uncertainty is about 15%. 1 GM=10-50cm4·s·photon-1·molecule-1

    Fig.6 Photobleaching curves of colloidal solutions of EuPHS(a)and nanoparticles prepared in the absence of P(ST-co-MMA(EuHS)(b)

    Fig.7 Cytotoxicity tests of EuPHS and Tf-EuPHS with HeLa cellsData are represented as mean±SD(standard deviation)(n=6).The untreated cells were used as the control.Statistical significance(Student?s t-test)compared to the control is indicated:**P<0.01

    Photostability is important for luminescent probes.In order to evaluate the photostability of the prepared nanoparticles, photobleaching measurements were carried out on EuPHS and nanoparticles prepared in the absence of the polymer(EuHS) for comparison,using a 150 W xenon lamp as an excitation source(Fig.6).The emission intensities of the EuPHS and EuHS nanoparticles decreased by 10%and 64%,respectively, after irradiation with the lamp for 1 h.The good photostability of EuPHS was derived from the hybrid encapsulation material acting as a barrier to protect Eu(tta)3dpbt molecules from photoreactions with species in the colloidal solution.The photostability of the EuHS nanoparticles was much lower than that of EuPHS,indicating that the polysiloxane in the EuHS nanoparticles could not provide sufficient shield for Eu(tta)3dpbt molecules from the outside environment.

    Fig.8 Images of live HeLa cells incubated with Tf-EuPHS for 3 h at 37°C(a)two-photon-excited luminescence images.The excitation wavelength was fixed at 800 nm with an average laser power of~10 mW on the focal plane,and the luminescence was collected in the spectral range from 590 to 620 nm;(b)differential interference contrast(DIC)images;(c)the overlay of the corresponding luminescence and DIC images.Images shown in panels of a-c have the same scale bar.

    3.3 Cytotoxicity of EuPHS

    The cytotoxicity of EuPHS was evaluated by the methyl thiazolyl tetrazolium assay(see Experiment Section for details). Cell viability of HeLa carcinoma cells was record after exposed to EuPHS for 24 h.EuPHS did not show statistically significant toxicity(P<0.01)to HeLa cells at the dosage lower than 25.0 μg·mL-1(9.5 μmol·L-1of Eu(tta)3dpbt)(Fig.7).

    The cytotoxicity of EuPHS is similar to that of previously reported EuLNPs nanoparticles which showed no apparent cytotoxicity to HeLa and Lewis cells when the concentration of EuLNPs was less than 100.0 μg·mL-1(7.4 μmol·mL-1Eu(tta)3dpbt),20while much lower than that of an unpacked complex(Eu(tta)2Cldpbt)labeling material which killed 30%of HeLa cells at a Eu(tta)2Cldpbt concentration of 1.0 μg·mL-1(0.9 μmol·mL-1).18The efficient shielding of Eu(tta)3dpbt molecules by the matrix in EuPHS may be a cause of the low cytotoxicity of EuPHS to the cells.Nanoprobes(Tf-EuPHS)prepared by adsorbing transferrin on the surfaces of EuPHS exhibited the similar behavior in the cytotoxicity tests(Fig.7).It should be mentioned that in the preparation of the present bionanoprobes,most of CTAB added for preparing EuPHS nanospheres has been removed.Therefore, the contribution of CTAB to the cytotoxicity is negligible in the aforementioned experiments.

    3.4 Two-photon-excitation imaging of live cell

    Transferrin receptor,over-expressed in many cancer types, provides an opportunity for designing receptor-targeted approaches for cancer cell labeling and imaging.31Tf-EuPHS were used as luminescent labels in the two-photon-excitation imaging of live HeLa cells.As shown in Fig.8,the receptor-mediated endocytosis of Tf-EuPHS by the cells occurred smoothly and high quality two-photon-excitation imaging of the labeled cells were achieved due to the high Eu3+luminescence capacity(δ×Φ)of EuPHS upon TPE.

    It is well documented that transferrin can be internalized through clathrin-dependent endocytosis.32We performed the control experiments,in which the cells were pre-treated with NaN3and 2-deoxy-D-glucose that can block the clathrin-dependent endocytosis.33,34As shown in Fig.S4(see Supporting Information),this pretreatment drastically reduced the uptake level of Tf-EuPHS.These results confirmed that the internalization of Tf-EuPHS occurred through a transferrin receptor-mediated clathrin-dependent pathway,implying that other biomolecules (such as antibody and peptide)with receptor-target recognizability could also be used to conjugate with EuPHS for preparing target-recognizable TPE nanoprobes.The high TPE action cross section(δ×Φ)and the characteristic Eu3+emission,the good dispersibility in water,high photostability,and excellent biocompatibility of EuPHS make them promising for a wide variety of potential biomedical applications based on two-photon excitation or visible light excitation imaging of live cells.

    4 Conclusions

    In summary,luminescent nanospheres EuPHS(dav=45 nm) with a markedly enhanced TPE Eu3+luminescence capacity have been prepared by encapsulating Eu(tta)3dpbt in an in situ formed hybrid material composed of P(ST-co-MMA),OTS, and poly(octylsiloxane)through a co-precipitation-condensation encapsulation method.EuPHS containing 40%(w)of Eu(tta)3dpbt exhibited good stability and dispersibility in aqueous solutions,high photostability,and low cytotoxicity.The Eu3+luminescence excitation peak centered at 415 nm with a red-edge extending up to 475 nm,and the quantum yield for Eu3+luminescence of 0.31 under excitation at 415 nm of EuPHS reflect their excellent visible-light-excitation luminescence properties.The high TPE action cross section of EuPHS (5×105GM at 830 nm and 23°C)is promising for the application in bioimaging in vivo.

    Supporting Information: Experimental details for the EuPHS composition analysis and estimation of the molecule number of Eu(tta)3dpbt in one of EuPHS with the average diameter,molecular structure of Eu(tta)3dpbt(Scheme S1),EDX analysis of EuPHS(Fig.S1),TEM image of the nanoparticles prepared in the absence of OTS(Fig.S2),the photoluminescence decay curve of EuPHS(Fig.S3).Images of Hela cells pre-treated with NaN3and 2-deoxy-D-glucose(Fig.S4).The Information is available free of charge via the internet at http:// www.whxb.pku.edu.cn.

    (1) Helmchen,F.;Denk,W.Nat.Methods 2005,2,932.doi: 10.1038/nmeth818

    (2) Denk,W.;Strickler,J.H.;Webb,W.W.Science 1990,248,73. doi:10.1126/science.2321027

    (3) Eliseeva,S.V.;Bunzli,J.C.G.Chem.Soc.Rev.2010,39,189. doi:10.1039/b905604c

    (4)Ma,Y.;Wang,Y.Coord.Chem.Rev.2010,254,972.doi: 10.1016/j.ccr.2010.02.013

    (5)Andraud,C.;Maury,O.Eur.J.Inorg.Chem.2009,4357.

    (6)Fu,L.M.;Wen,X.F.;Ai,X.C.;Sun,Y.;Wu,Y.S.;Zhang,J.P.; Wang,Y.Angew.Chem.Int.Edit.2005,44,747.doi:10.1002/ (ISSN)1521-3773

    (7) Piszczek,G.;Maliwal,B.P.;Gryczynski,I.;Dattelbaum,J.; Lakowicz,J.R.J.Fluoresc.2001,11,101.doi:10.1023/A: 1016673300913

    (8) Picot,A.;D?Aleo,A.;Baldeck,P.L.;Grichine,A.;Duperray,A.; Andraud,C.;Maury,O.J.Am.Chem.Soc.2008,130,1532.doi: 10.1021/ja076837c

    (9) Eliseeva,S.V.;Aubock,G.;van Mourik,F.;Cannizzo,A.; Song,B.;Deiters,E.;Chauvin,A.S.;Chergui,M.;Bunzli,J.C. G.J.Phys.Chem.B 2010,114,2932.doi:10.1021/jp9090206

    (10)Shi,M.;Ding,C.R.;Dong,J.W.;Wang,H.Z.;Tian,Y.P.;Hu, Z.J.Phys.Chem.Chem.Phys.2009,11,5119.

    (11) Lakowicz,J.R.;Piszczek,G.;Maliwal,B.P.;Gryczynski,I. ChemPhysChem 2001,2,247.doi:10.1002/(ISSN)1439-7641

    (12)Werts,M.H.V.;Nerambourg,N.;Pelegry,D.;Le Grand,Y.; Blanchard-Desce,M.Photochem.Photobiol.Sci.2005,4,531. doi:10.1039/b504495b

    (13) Picot,A.;Malvolti,F.;Le Guennic,B.;Baldeck,P.L.;Williams, J.A.G.;Andraud,C.;Maury,O.Inorg.Chem.2007,46,2659. doi:10.1021/ic062181x

    (14) D?Aleo,A.;Picot,A.;Baldeck,P.L.;Andraud,C.;Maury,O. Inorg.Chem.2008,47,10269.doi:10.1021/ic8012975

    (15) D?Aleo,A.;Allali,M.;Picot,A.;Baldeck,P.L.;Toupet,L.; Andraud,C.;Maury,O.C.R.Chimie 2010,13,681.doi: 10.1016/j.crci.2010.01.008

    (16)Xue,F.M.;Ma,Y.;Fu,L.M.;Hao,R.;Shao,G.S.;Tang,M. X.;Zhang,J.P.;Wang,Y.Phys.Chem.Chem.Phys.2010,12, 3195.

    (17) Palsson,L.O.;Pal,R.;Murray,B.S.;Parker,D.;Beeby,A. Dalton Trans.2007,5726.

    (18)Law,G.L.;Wong,K.L.;Man,C.W.Y.;Tsao,S.W.;Wong,W. T.J.Biophotonics 2009,2,718.doi:10.1002/jbio.v2:12

    (19)Wu,J.;Ye,Z.Q.;Wang,G.L.;Jin,D.Y.;Yuan,J.L.;Guan,Y. F.;Piper,J.J.Mater.Chem.2009,19,1258.doi:10.1039/ b815999h

    (20)Shao,G.S.;Han,R.C.;Ma,Y.;Tang,M.X.;Xue,F.M.;Sha, Y.L.;Wang,Y.Chem.Eur.J.2010,16,8647.doi:10.1002/ chem.201001367

    (21)Yang,C.;Fu,L.M.;Wang,Y.;Zhang,J.P.;Wong,W.T.;Ai,X. C.;Qiao,Y.F.;Zou,B.S.;Gui,L.L.Angew.Chem.Int.Edit. 2004,43,5010.doi:10.1002/(ISSN)1521-3773

    (22)Wen,X.F.;Li,M.Y.;Wang,Y.;Zhang,J.P.;Fu,L.M.;Hao,R.; Ma,Y.;Ai,X.C.Langmuir 2008,24,6932.doi:10.1021/ la800903s

    (23)Shao,G.S.;Xue,F.M.;Han,R.C.;Tang,M.X.;Wang,Y.Acta Phys.-Chim.Sin.2010,26,2031.[邵光勝,薛富民,韓榮成,湯敏賢,王 遠(yuǎn).物理化學(xué)學(xué)報,2010,26,2031.]doi:10.3866/ PKU.WHXB20100715

    (24)Hao,R.;Li,M.;Wang,Y.;Zhang,J.;Ma,Y.;Fu,L.;Wen,X.; Wu,Y.;Ai,X.;Zhang,S.;Wei,Y.Adv.Funct.Mater.2007,17, 3663.doi:10.1002/(ISSN)1616-3028

    (25) Arriagada,F.J.;Osseo-Asare,K.J.Colloid Interface Sci.1999, 211,210.doi:10.1006/jcis.1998.5985

    (26) St?ber,W.;Fink,A.;Bohn,E.J.Colloid Interface Sci.1968,26, 62.doi:10.1016/0021-9797(68)90272-5

    (27)Wang,Y.;Fu,X.Y.;Shao,G.S.Photoluminescent nanoparticle, preparation,and application thereof.CN Patent, 200910203407.3,2009-05-05.[王 遠(yuǎn),符小藝,邵光勝.熒光納米粒子及其制備方法和應(yīng)用:中國,CN200910203407.3[P] 2009-05-05.]

    (28) Peng,H.S.;Stich,M.I.J.;Yu,J.B.;Sun,L.N.;Fischer,L.H.; Wolfbeis,O.S.Adv.Mater.2010,22,716.doi:10.1002/adma. v22:6

    (29) Demas,J.N.;Crosby,G.A.J.Phys.Chem.1971,75,991.doi: 10.1021/j100678a001

    (30) Larson,D.R.;Zipfel,W.R.;Williams,R.M.;Clark,S.W.; Bruchez,M.P.;Wise,F.W.;Webb,W.W.Science 2003,300, 1434.doi:10.1126/science.1083780

    (31)Chan,W.C.W.;Nie,S.M.Science 1998,281,2016.doi: 10.1126/science.281.5385.2016

    (32) Richard,J.P.;Melikov,K.;Brooks,H.;Prevot,P.;Lebleu,B.; Chernomordik,L.V.J.Biol.Chem.2005,280,15300.doi: 10.1074/jbc.M401604200

    (33) Kam,N.W.S.;Liu,Z.A.;Dai,H.J.Angew.Chem.Int.Edit. 2006,45,577.doi:10.1002/(ISSN)1521-3773

    (34) Zhang,B.L.;Li,Y.Q.;Fang,C.Y.;Chang,C.C.;Chen,C.S.; Chen,Y.Y.;Chang,H.C.Small 2009,5,2716.doi:10.1002/ smll.v5:23

    June 20,2012;Revised:August 16,2012;Published on Web:August 16,2012.

    Nanoprobes with Enhanced Two-Photon-Sensitized Eu3+Luminescence Properties for Live Cell Imaging

    FU Xiao-Yi1,2,?SHAO Guang-Sheng1,?HAN Rong-Cheng1,?MA Yan1XUE Fu-Min1YANG Fan3FU Li-Min3ZHANG Jian-Ping3WANG Yuan1,*
    (1Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P.R.China;2School of Materials Science and Engineering,South China University of Technology,Guangzhou 510640,P.R.China;3Department of Chemistry,Renmin University of China,Beijing 100872,P.R.China)

    Luminescent nanospheres(EuPHS,dav=45 nm)containing 40%(w)of Eu(tta)3dpbt(tta= thenoyltrifluoroacetonato;dpbt=2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine) were prepared by encapsulating Eu(tta)3dpbt in a hybrid matrix formed in situ from poly(styrene-co-methyl methacrylate),octyltrimethoxysilane,and poly(octylsiloxane).The EuPHS are promising luminescent markers for bioanalysis because of their good dispersibility in aqueous solutions,high photostability,low cytotoxicity,and bright Eu3+luminescence under excitation at long wavelengths.EuPHS exhibited excellent visible light-sensitized and near-infrared two-photon-sensitized Eu3+luminescence properties,with a visible-light excitation peak at 415 nm and an excitation window extending up to 475 nm.The quantum yield for Eu3+luminescence was 0.31(λex=415 nm,T=23°C),and the two-photon excitation(TPE)action cross section was 5.0×105GM(1 GM=10-50cm4·s·photon-1·particle-1)at 830 nm.Bionanoprobes prepared by adsorbing transferrin on the surfaces of EuPHS were successfully applied in target-specific labeling and two-photon-excitation imaging of live HeLa cells.

    Luminescence;Europium complex;Two-photon excitation;Bio-nanoprobe; Cell Imaging

    10.3866/PKU.WHXB201208161

    ?Corresponding author.Email:wangy@pku.edu.cn;Tel:+86-10-62751491.?These authors contributed equally to this work.

    The project was supported by the National Natural Science Foundation of China(21073002,21133001,21227803,51121091)and National Key Basic Research Special Foundation of China(2011CB808702).

    國家自然科學(xué)基金(21073002,21133001,21227803,51121091)及國家重點(diǎn)基礎(chǔ)研究專項(xiàng)經(jīng)費(fèi)(2011CB808702)資助

    O648

    猜你喜歡
    小藝榮成敏化
    冠心病穴位敏化現(xiàn)象與規(guī)律探討
    《蘭臺見證:榮成70年大事記》出版發(fā)行
    山東檔案(2021年3期)2021-11-28 05:39:44
    近5年敏化態(tài)與非敏化態(tài)關(guān)元穴臨床主治規(guī)律的文獻(xiàn)計(jì)量學(xué)分析
    榮成“天鵝湖”
    金橋(2021年8期)2021-08-23 01:06:50
    陪伴成長,一路花開
    ——記榮成雪梅讀書寫作團(tuán)隊(duì)創(chuàng)立人楊雪梅
    教書育人(2019年25期)2019-09-12 11:14:22
    轉(zhuǎn)讓來的相親對象
    晚報文萃(2017年2期)2017-07-01 22:36:18
    小藝的夢工廠
    轉(zhuǎn)讓來的相親對象
    晚報文萃(2016年3期)2016-05-03 00:40:15
    耦聯(lián)劑輔助吸附法制備CuInS2量子點(diǎn)敏化太陽電池
    5種天然染料敏化太陽電池的性能研究
    国产午夜福利久久久久久| 久久ye,这里只有精品| 真实男女啪啪啪动态图| 美女视频免费永久观看网站| 国产av不卡久久| 美女国产视频在线观看| 免费电影在线观看免费观看| 国产精品秋霞免费鲁丝片| av免费在线看不卡| 中文精品一卡2卡3卡4更新| 激情五月婷婷亚洲| 超碰av人人做人人爽久久| 卡戴珊不雅视频在线播放| 插阴视频在线观看视频| 51国产日韩欧美| 欧美3d第一页| 涩涩av久久男人的天堂| 在线a可以看的网站| 精品久久久久久久久亚洲| 欧美一区二区亚洲| 免费看av在线观看网站| 国产精品一区二区三区四区免费观看| 国产一区二区三区av在线| 日韩强制内射视频| 超碰97精品在线观看| 在线播放无遮挡| 久久精品人妻少妇| 美女xxoo啪啪120秒动态图| 少妇人妻精品综合一区二区| 国产精品国产av在线观看| 22中文网久久字幕| 久久影院123| 人妻少妇偷人精品九色| 在线播放无遮挡| 婷婷色麻豆天堂久久| 久久精品综合一区二区三区| 秋霞在线观看毛片| 精品少妇黑人巨大在线播放| 亚洲天堂av无毛| 国产欧美另类精品又又久久亚洲欧美| 女人十人毛片免费观看3o分钟| 91精品国产九色| 内射极品少妇av片p| av在线观看视频网站免费| 舔av片在线| 在线免费观看不下载黄p国产| 精品一区在线观看国产| 久久久久精品性色| 欧美老熟妇乱子伦牲交| 日本午夜av视频| 久久99热这里只频精品6学生| 热re99久久精品国产66热6| av在线亚洲专区| 日产精品乱码卡一卡2卡三| 男女边吃奶边做爰视频| 在线免费观看不下载黄p国产| 亚洲精品国产av成人精品| 国产精品嫩草影院av在线观看| 色播亚洲综合网| 国产成人aa在线观看| 亚洲久久久久久中文字幕| 人人妻人人爽人人添夜夜欢视频 | 2021天堂中文幕一二区在线观| 国产男人的电影天堂91| 日本av手机在线免费观看| videossex国产| 水蜜桃什么品种好| 国产91av在线免费观看| 亚洲人成网站高清观看| 国产在线男女| 特级一级黄色大片| 熟女电影av网| 亚洲精品,欧美精品| 看非洲黑人一级黄片| 成人国产av品久久久| 国产69精品久久久久777片| 亚洲天堂国产精品一区在线| 麻豆成人av视频| 天天躁夜夜躁狠狠久久av| 中国三级夫妇交换| 80岁老熟妇乱子伦牲交| 国产 精品1| 建设人人有责人人尽责人人享有的 | 亚洲成人一二三区av| 如何舔出高潮| 九九爱精品视频在线观看| 精品一区二区三卡| 少妇高潮的动态图| 男女啪啪激烈高潮av片| 成人国产av品久久久| 日本欧美国产在线视频| 国产精品伦人一区二区| 尤物成人国产欧美一区二区三区| 国产伦理片在线播放av一区| 国内精品美女久久久久久| 少妇丰满av| 自拍欧美九色日韩亚洲蝌蚪91 | a级一级毛片免费在线观看| 三级经典国产精品| 国产永久视频网站| 精品国产乱码久久久久久小说| 啦啦啦在线观看免费高清www| 国精品久久久久久国模美| 三级国产精品片| 成人综合一区亚洲| 九九在线视频观看精品| 日韩av不卡免费在线播放| 国产成人免费观看mmmm| 嫩草影院新地址| 亚洲国产色片| 又黄又爽又刺激的免费视频.| www.av在线官网国产| 婷婷色麻豆天堂久久| 亚洲一级一片aⅴ在线观看| 啦啦啦中文免费视频观看日本| 99热6这里只有精品| 一级二级三级毛片免费看| 亚洲怡红院男人天堂| 最近中文字幕高清免费大全6| 国产美女午夜福利| 亚洲三级黄色毛片| 欧美区成人在线视频| 久久99精品国语久久久| 久久影院123| 国产美女午夜福利| 亚洲图色成人| 亚洲av在线观看美女高潮| 久久久欧美国产精品| 国产熟女欧美一区二区| 3wmmmm亚洲av在线观看| 听说在线观看完整版免费高清| 久久人人爽人人片av| 亚洲国产精品999| 亚洲欧美一区二区三区黑人 | 国国产精品蜜臀av免费| 嫩草影院入口| 亚洲av在线观看美女高潮| 久久久久久久久久人人人人人人| 精品国产三级普通话版| 久久6这里有精品| 国产精品一区二区三区四区免费观看| 看十八女毛片水多多多| 交换朋友夫妻互换小说| 99久久精品热视频| 久久久精品欧美日韩精品| 亚洲最大成人手机在线| 蜜桃久久精品国产亚洲av| av在线亚洲专区| 男的添女的下面高潮视频| 最新中文字幕久久久久| 一级二级三级毛片免费看| 国产精品一区www在线观看| 在线观看人妻少妇| 亚洲最大成人中文| 亚洲av中文av极速乱| 欧美精品国产亚洲| 禁无遮挡网站| 欧美丝袜亚洲另类| 波多野结衣巨乳人妻| 97人妻精品一区二区三区麻豆| 能在线免费看毛片的网站| 欧美潮喷喷水| 深夜a级毛片| 亚洲婷婷狠狠爱综合网| 美女被艹到高潮喷水动态| 2022亚洲国产成人精品| 国语对白做爰xxxⅹ性视频网站| 成人欧美大片| 欧美日韩视频精品一区| 成年人午夜在线观看视频| 另类亚洲欧美激情| 久久精品久久久久久噜噜老黄| 国产亚洲av嫩草精品影院| 亚洲精品一二三| 日本wwww免费看| 国产精品久久久久久精品电影小说 | 国产精品国产av在线观看| eeuss影院久久| 春色校园在线视频观看| 久久鲁丝午夜福利片| 国产精品一及| 超碰97精品在线观看| 美女脱内裤让男人舔精品视频| 久久精品综合一区二区三区| 18禁动态无遮挡网站| 国产午夜福利久久久久久| 欧美性猛交╳xxx乱大交人| 久久精品国产a三级三级三级| 国产女主播在线喷水免费视频网站| 一级毛片久久久久久久久女| 联通29元200g的流量卡| 九九久久精品国产亚洲av麻豆| 人妻少妇偷人精品九色| 人体艺术视频欧美日本| 日本爱情动作片www.在线观看| 男女那种视频在线观看| 亚洲天堂av无毛| 亚洲va在线va天堂va国产| 少妇的逼水好多| 日韩不卡一区二区三区视频在线| 熟女人妻精品中文字幕| 九九在线视频观看精品| 91在线精品国自产拍蜜月| 成人综合一区亚洲| 国产精品久久久久久精品电影| 国产中年淑女户外野战色| 亚洲色图av天堂| 国产精品三级大全| 久久久a久久爽久久v久久| 欧美亚洲 丝袜 人妻 在线| 亚洲国产最新在线播放| 国产成人一区二区在线| 欧美国产精品一级二级三级 | 国产精品久久久久久精品古装| 亚洲第一区二区三区不卡| 偷拍熟女少妇极品色| 99久久人妻综合| 久久精品人妻少妇| 婷婷色综合www| 伦精品一区二区三区| 各种免费的搞黄视频| 热re99久久精品国产66热6| 九九在线视频观看精品| 欧美zozozo另类| 成年女人在线观看亚洲视频 | 老师上课跳d突然被开到最大视频| 亚洲精品久久久久久婷婷小说| 97热精品久久久久久| 在线播放无遮挡| 中国三级夫妇交换| 日韩一区二区三区影片| 欧美精品一区二区大全| 亚洲精品国产av成人精品| kizo精华| 日本猛色少妇xxxxx猛交久久| 99热这里只有精品一区| 国产精品偷伦视频观看了| 插阴视频在线观看视频| 高清视频免费观看一区二区| 国产一区二区在线观看日韩| 久久精品久久精品一区二区三区| 高清日韩中文字幕在线| 日韩大片免费观看网站| 欧美日韩国产mv在线观看视频 | 三级国产精品片| 91狼人影院| 国产 一区精品| 欧美性感艳星| 美女视频免费永久观看网站| 人妻一区二区av| 少妇被粗大猛烈的视频| av国产精品久久久久影院| 熟妇人妻不卡中文字幕| 夫妻性生交免费视频一级片| 日韩大片免费观看网站| 五月天丁香电影| 一级毛片aaaaaa免费看小| 午夜日本视频在线| 日韩免费高清中文字幕av| 日韩国内少妇激情av| 日韩av免费高清视频| 久久精品国产亚洲av天美| 只有这里有精品99| 亚洲成人久久爱视频| 欧美最新免费一区二区三区| 久久综合国产亚洲精品| kizo精华| 国产亚洲91精品色在线| 男女那种视频在线观看| 草草在线视频免费看| 欧美丝袜亚洲另类| 日韩一本色道免费dvd| 王馨瑶露胸无遮挡在线观看| 色综合色国产| 亚洲色图综合在线观看| 亚洲在久久综合| 97在线视频观看| av黄色大香蕉| 亚洲国产av新网站| 亚洲人成网站在线播| 亚洲真实伦在线观看| 国产日韩欧美在线精品| 久久久久久久久大av| 边亲边吃奶的免费视频| 久久午夜福利片| 内射极品少妇av片p| 97在线视频观看| 国产高清三级在线| 亚洲美女视频黄频| 欧美日韩亚洲高清精品| 免费观看a级毛片全部| 乱系列少妇在线播放| 色网站视频免费| 超碰av人人做人人爽久久| 久久这里有精品视频免费| 日日撸夜夜添| 久久精品国产亚洲av天美| 少妇人妻一区二区三区视频| 久久精品国产亚洲网站| 亚洲av欧美aⅴ国产| 性色avwww在线观看| 黄色配什么色好看| 久久人人爽av亚洲精品天堂 | 亚州av有码| 国产男人的电影天堂91| 狂野欧美激情性bbbbbb| 搞女人的毛片| 国产成人免费观看mmmm| 国语对白做爰xxxⅹ性视频网站| 精品一区二区三卡| 男的添女的下面高潮视频| 国产男女内射视频| 老司机影院成人| 97超碰精品成人国产| 久久精品国产自在天天线| 毛片女人毛片| 日韩欧美一区视频在线观看 | 国产黄色视频一区二区在线观看| 伦精品一区二区三区| 久久99热这里只有精品18| 国产精品嫩草影院av在线观看| 中国美白少妇内射xxxbb| 少妇丰满av| 禁无遮挡网站| 在线播放无遮挡| 亚洲精品成人久久久久久| 亚洲综合精品二区| 久久久精品免费免费高清| 少妇被粗大猛烈的视频| 在线 av 中文字幕| 欧美+日韩+精品| av又黄又爽大尺度在线免费看| 色视频www国产| 波野结衣二区三区在线| 精品一区在线观看国产| 高清在线视频一区二区三区| 午夜福利高清视频| 大片免费播放器 马上看| 直男gayav资源| 精品熟女少妇av免费看| 久久久精品94久久精品| 极品教师在线视频| 国产成人精品久久久久久| 舔av片在线| 伊人久久国产一区二区| 日韩av不卡免费在线播放| 国产成人免费无遮挡视频| 国产色婷婷99| 亚洲天堂av无毛| 国产亚洲精品久久久com| 免费av观看视频| 久久久成人免费电影| 亚洲精品第二区| 亚洲成人av在线免费| 在线观看国产h片| 少妇的逼水好多| 欧美国产精品一级二级三级 | av线在线观看网站| 免费电影在线观看免费观看| 国产成人精品一,二区| 国产欧美另类精品又又久久亚洲欧美| av黄色大香蕉| 五月玫瑰六月丁香| 99久久精品一区二区三区| 99热网站在线观看| 99热这里只有是精品50| 亚洲一级一片aⅴ在线观看| 精品亚洲乱码少妇综合久久| 国产精品国产三级国产av玫瑰| 又爽又黄a免费视频| 国产精品av视频在线免费观看| 如何舔出高潮| 男女下面进入的视频免费午夜| 亚洲精品国产av蜜桃| 国内揄拍国产精品人妻在线| 极品少妇高潮喷水抽搐| 国产男人的电影天堂91| 亚洲丝袜综合中文字幕| 亚洲欧美成人综合另类久久久| 五月天丁香电影| 国产综合精华液| 精品人妻一区二区三区麻豆| 婷婷色麻豆天堂久久| 性插视频无遮挡在线免费观看| 精品视频人人做人人爽| 欧美bdsm另类| 乱系列少妇在线播放| 久久女婷五月综合色啪小说 | 天天躁日日操中文字幕| 在线播放无遮挡| 日韩大片免费观看网站| 干丝袜人妻中文字幕| 国产免费福利视频在线观看| 午夜福利视频精品| 日日摸夜夜添夜夜添av毛片| 日韩大片免费观看网站| 特大巨黑吊av在线直播| 日韩人妻高清精品专区| 男男h啪啪无遮挡| kizo精华| 丰满人妻一区二区三区视频av| 亚洲天堂国产精品一区在线| av又黄又爽大尺度在线免费看| 日韩电影二区| 欧美性猛交╳xxx乱大交人| 欧美日本视频| 欧美精品国产亚洲| av黄色大香蕉| 97超视频在线观看视频| av专区在线播放| 嫩草影院精品99| 高清视频免费观看一区二区| 国产成人a∨麻豆精品| 美女脱内裤让男人舔精品视频| 亚洲四区av| 在线观看av片永久免费下载| 婷婷色av中文字幕| 亚洲伊人久久精品综合| 国产探花在线观看一区二区| av在线天堂中文字幕| 日韩,欧美,国产一区二区三区| 69av精品久久久久久| 久久久久久久久久人人人人人人| 五月天丁香电影| 日韩av在线免费看完整版不卡| 久久精品久久久久久久性| 3wmmmm亚洲av在线观看| 国产综合懂色| 一级毛片电影观看| 看免费成人av毛片| 美女cb高潮喷水在线观看| 欧美精品人与动牲交sv欧美| 女人被狂操c到高潮| 久久精品久久久久久噜噜老黄| 直男gayav资源| 精品午夜福利在线看| 人妻 亚洲 视频| 免费大片18禁| 久久女婷五月综合色啪小说 | 久久久久久久久久久免费av| 亚洲最大成人手机在线| 国产极品天堂在线| 蜜桃久久精品国产亚洲av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品国产自在天天线| 日日啪夜夜爽| 国产精品三级大全| 十八禁网站网址无遮挡 | 国产极品天堂在线| 18禁动态无遮挡网站| 一级毛片 在线播放| 成人欧美大片| 国产黄片视频在线免费观看| 国产精品久久久久久久电影| 亚洲精品第二区| 精华霜和精华液先用哪个| 高清在线视频一区二区三区| 国产亚洲午夜精品一区二区久久 | 美女内射精品一级片tv| 91久久精品电影网| 国产v大片淫在线免费观看| 美女国产视频在线观看| 欧美潮喷喷水| 最近中文字幕高清免费大全6| 在线a可以看的网站| 亚洲国产色片| 国产黄色免费在线视频| 欧美高清性xxxxhd video| 精品午夜福利在线看| 亚洲欧美成人精品一区二区| 久久人人爽av亚洲精品天堂 | 交换朋友夫妻互换小说| 国产精品久久久久久精品古装| 免费看不卡的av| 欧美一区二区亚洲| 国产高清不卡午夜福利| 国产黄色视频一区二区在线观看| 成人黄色视频免费在线看| 日日啪夜夜爽| 久久久久久国产a免费观看| 搞女人的毛片| 禁无遮挡网站| 国产精品福利在线免费观看| av在线app专区| 97在线视频观看| 国产欧美亚洲国产| 在线 av 中文字幕| 97人妻精品一区二区三区麻豆| 乱码一卡2卡4卡精品| av一本久久久久| 大香蕉久久网| 久久久久精品性色| 黄片wwwwww| 黄色欧美视频在线观看| 天美传媒精品一区二区| 免费观看在线日韩| 韩国高清视频一区二区三区| 高清日韩中文字幕在线| 91精品一卡2卡3卡4卡| 91精品伊人久久大香线蕉| 国产女主播在线喷水免费视频网站| 成人鲁丝片一二三区免费| 一级毛片 在线播放| 免费av观看视频| 亚洲高清免费不卡视频| 中文字幕av成人在线电影| 午夜精品国产一区二区电影 | av黄色大香蕉| 激情 狠狠 欧美| 人人妻人人澡人人爽人人夜夜| 国产 精品1| 在线观看一区二区三区| 国产欧美日韩精品一区二区| 国产免费视频播放在线视频| 午夜福利高清视频| 欧美成人午夜免费资源| 丰满乱子伦码专区| 女人久久www免费人成看片| 亚洲国产精品成人久久小说| 黄片wwwwww| 大又大粗又爽又黄少妇毛片口| 精品少妇久久久久久888优播| 免费观看在线日韩| 亚洲精品456在线播放app| 亚洲av免费在线观看| 伦精品一区二区三区| 午夜福利视频1000在线观看| 国产精品无大码| 又黄又爽又刺激的免费视频.| 国产精品女同一区二区软件| 免费观看在线日韩| 免费看日本二区| 国产男人的电影天堂91| 日韩,欧美,国产一区二区三区| 色婷婷久久久亚洲欧美| 国产一区二区在线观看日韩| 可以在线观看毛片的网站| 亚洲aⅴ乱码一区二区在线播放| 边亲边吃奶的免费视频| 熟妇人妻不卡中文字幕| 精品一区在线观看国产| 99视频精品全部免费 在线| 建设人人有责人人尽责人人享有的 | 一区二区三区精品91| 老师上课跳d突然被开到最大视频| 欧美性猛交╳xxx乱大交人| 高清午夜精品一区二区三区| 超碰97精品在线观看| 777米奇影视久久| 黄色配什么色好看| 国产 精品1| 国产精品秋霞免费鲁丝片| 国产又色又爽无遮挡免| 亚洲综合精品二区| 神马国产精品三级电影在线观看| 日本黄色片子视频| 国产精品av视频在线免费观看| 另类亚洲欧美激情| 亚洲va在线va天堂va国产| 黄片无遮挡物在线观看| 男人添女人高潮全过程视频| 在线观看免费高清a一片| 亚洲一区二区三区欧美精品 | 亚洲精品国产色婷婷电影| 最近中文字幕2019免费版| 热re99久久精品国产66热6| 丰满人妻一区二区三区视频av| 国产精品不卡视频一区二区| 亚洲婷婷狠狠爱综合网| 神马国产精品三级电影在线观看| 别揉我奶头 嗯啊视频| 激情五月婷婷亚洲| 夫妻性生交免费视频一级片| 欧美xxxx性猛交bbbb| 国产伦精品一区二区三区视频9| 久久久精品免费免费高清| 天天躁日日操中文字幕| 国产黄色免费在线视频| 极品少妇高潮喷水抽搐| 一级二级三级毛片免费看| 99视频精品全部免费 在线| 青春草国产在线视频| 日日撸夜夜添| 人妻一区二区av| 亚洲最大成人手机在线| 亚洲精品日韩av片在线观看| 男人添女人高潮全过程视频| 亚洲aⅴ乱码一区二区在线播放| 交换朋友夫妻互换小说| 99久久人妻综合| 大片电影免费在线观看免费| 美女被艹到高潮喷水动态| 91久久精品国产一区二区三区| kizo精华| 深爱激情五月婷婷| 日韩在线高清观看一区二区三区| 丰满乱子伦码专区| 国产毛片在线视频| 一区二区三区四区激情视频| 成年版毛片免费区| 欧美成人一区二区免费高清观看| 免费观看av网站的网址| 水蜜桃什么品种好| 午夜福利在线在线| 欧美成人精品欧美一级黄| 亚洲av成人精品一二三区| 久久久a久久爽久久v久久| 欧美国产精品一级二级三级 | 日韩av免费高清视频| 亚洲精品一二三| 欧美激情在线99| 国产精品.久久久| 久久精品久久精品一区二区三区| 久久亚洲国产成人精品v| 免费观看性生交大片5|