• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    新型螺吡喃衍生物:離子傳感和分子水平的信息處理

    2012-12-11 09:34:40李穎若張洪濤齊傳民郭雪峰
    物理化學(xué)學(xué)報(bào) 2012年10期
    關(guān)鍵詞:吡喃信息處理吸收光譜

    李穎若 張洪濤 齊傳民,* 郭雪峰,3,*

    (1北京師范大學(xué)化學(xué)學(xué)院,放射性藥物教育部重點(diǎn)實(shí)驗(yàn)室,北京100875;2北京大學(xué)化學(xué)與分子工程學(xué)院,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100871;3北京大學(xué)工學(xué)院先進(jìn)材料與納米技術(shù)系,北京100871)

    新型螺吡喃衍生物:離子傳感和分子水平的信息處理

    李穎若1張洪濤2齊傳民1,*郭雪峰2,3,*

    (1北京師范大學(xué)化學(xué)學(xué)院,放射性藥物教育部重點(diǎn)實(shí)驗(yàn)室,北京100875;2北京大學(xué)化學(xué)與分子工程學(xué)院,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100871;3北京大學(xué)工學(xué)院先進(jìn)材料與納米技術(shù)系,北京100871)

    為實(shí)現(xiàn)金屬離子檢測(cè)和分子水平的信息處理,合成了一類(lèi)新型的含有功能配位基團(tuán)的螺吡喃衍生物(SP1-SP4).研究發(fā)現(xiàn):在沒(méi)有UV光照的條件下,金屬離子可以促進(jìn)螺吡喃(SP2和SP4)開(kāi)環(huán)并形成穩(wěn)定可逆的絡(luò)合物(MC-Mn+).紫外-可見(jiàn)吸收光譜研究表明,在UV光照前加入不同的金屬離子會(huì)引起SP2和SP4的光學(xué)性質(zhì)的特征變化,因此提供了一種簡(jiǎn)易的通過(guò)裸眼就能辨別金屬離子的比色方法.熒光光譜研究表明,這類(lèi)化合物能夠高靈敏高選擇性地檢測(cè)鋅離子.此外,基于吸收光譜和熒光光譜的變化,這類(lèi)螺吡喃衍生物可以用于構(gòu)建組合的邏輯門(mén),執(zhí)行分子水平的信息處理,從而展現(xiàn)了其在化學(xué)或環(huán)境傳感和未來(lái)的分子計(jì)算機(jī)領(lǐng)域的潛在應(yīng)用前景.

    螺吡喃;化學(xué)傳感;邏輯門(mén);紫外-可見(jiàn)吸收光譜;熒光光譜

    1 Introduction

    Photochromic compounds have been extensively investigated in recent years for their high potential applications in optically rewritable storage,1optical switching,2chemical3and biological4sensings.In particular,considerable attention has been paid to spiropyran molecules,one of the most promising families of photochromic compounds,because of their unique optical and physical properties.5-10The stimulus-induced transformation of the ring-closed structure of spiropyrans(SPs)into their fully π-conjugated isomeric merocyanine forms(MCs)results not only in the variations of absorption spectra,but also in the profound alterations of other physical and chemical properties of the system,such as the dipole moments,nonlinear optic properties,emission spectra,and macroscopic properties (for example,conductance,rheological property,and surface wettability).By taking advantage of these remarkable characteristics of SPs,a number of spiropyran derivatives containing diverse functional groups have so far been designed and used as molecular sensors and molecular switches.11-17

    Among the remarkable characteristics of SPs,one unique feature is that the photogenerated open merocyanine form processes the charge-separated zwitterionic state with a free negatively-charged oxygen atom,which can further interact with external stimuli through dipole-dipole interactions and coordination chemistry(Scheme 1).Recently,several groups have successfully utilized this for the purpose of optically detecting metal ions,18-20anions,21nucleobases,22amino acids,23and DNA,24etc.In this study,a new class of spirobenzopyrans SP2 and SP4 bearing electron-donating―OMe group and pyridine or quinoline moiety as binding sites were designed and synthesized(Scheme 1).We will explore the changes in their chemical and physical properties upon addition of different metal ions before and after UV irradiation and show the capability of selectively detecting metal ions with high sensitivity and constructing logic gates for information processing at the molecular level.25-31

    2 Experimental

    Functional spirobenzopyran derivatives SP1-SP4 were synthesized as shown in Scheme 2.Compounds 2-1 and 2-2 were prepared by modification of the procedure reported by Raymo and Giordani32bearing―OH as a functional group for the following reaction step.The pyridine or quinoline moiety was then linked to compounds 2-1 and 2-2 using EDCI/DMAP (EDCI:1-ethyl-3-(3-dimethylaminopropyl)carbodiimide,DMAP: 4-dimethylaminopyridine)esterification reaction to give SP1-SP4 as yellow crystals in high yield(~90%).

    2.1 1-(2-hydroxyethyl)-2,3,3-trimethylindoliumbromide(1)

    Under nitrogen atmosphere,a mixture of 2,3,3-trimethyl-3H-indole(4.77 g,30.0 mmol)and 2-bromoethanol(4.50 g, 36.0 mmol)in dry CH3CN(30 mL)was heated under reflux for 12 h.Removal of CH3CN and excess of 2-bromoethanol under the reduced pressure gave a dark purple residue.Repeated washing with anhydrous ether gave compound 1(7.85 g, 92.1%)as a white solid.All the reagents used areAR grade.

    1H NMR(DMSO-d6,400 MHz):1.55(s,6H),3.38(s,3H), 3.87(t,2H,J=6.8 Hz),4.60(t,2H,J=6.8 Hz),7.60-7.64(m, 2H),7.84-7.87(m,1H),7.94-7.98(m,1H).Fourier transform mass spectroscopy(FTMS):m/z=204.1,[M-Br]+.

    2.2 2-(3?,3?-dimethyl-6-nitrospiro[chromene-2,2?-indolin]-1?-yl)ethanol(2-1)

    Scheme 1 Illustrations of the reversible structural transformations of SP2 and SP4 in responses to light,heat,and metal ions

    Under nitrogen atmosphere,Compound 1(1.14 g,4.0 mmol) and 2-hydroxy-5-nitrob-enzaldehyde(0.80 g,4.8 mmol)were dissolved in dry tetrahydrofuran(THF)(25 mL).The solution was heated to reflux then triethylamine(0.49 g,4.8 mmol)in THF(5 mL)was added dropwise.The mixture was refluxed for 4 h.The solvent was removed by evaporation under reduced pressure.The crude residue was recrystallized from absolute ethanol giving compound 2-1(1.30 g,92.2%)as red purple crystals.

    Scheme 2 Synthesis of spirobenzopyrans SP1-SP4

    1H NMR(CDCl3,400 MHz):1.20(s,3H),1.29(s,3H), 3.33-3.50(m,2H),3.68-3.77(m,2H),5.89(d,1H,J=13.6 Hz),6.67(d,1H,J=10.4 Hz),6.76(d,1H,J=12.4 Hz), 6.87-6.93(m,2H),7.10(d,1H,J=9.0 Hz),7.20(t,1H,J=10.0 Hz),7.99-8.04(m,2H).FTMS:m/z=353.1,[M+H]+.

    2.3 2-(8-methoxy-3?,3?-dimethyl-6-nitrospiro [chromene-2,2?-indolin]-1?-yl)ethanol(2-2)

    Compound 2-2 was prepared according to a procedure similar to compound 2-1.After column chromatography on silica gel with ethyl acetate/petroleum(60-90°C)(1:1,V/V)as eluent,compound 2-2 was obtained as dark blue crystals(3.82 g, 91.6%).

    1H NMR(CDCl3,400 MHz):1.18(s,3H),1.29(s,3H), 3.35-3.43(m,2H),3.51-3.63(m,2H),3.78(s,3H),5.82(d, 1H,J=14.0 Hz),6.65(d,1H,J=10.4 Hz),6.84-6.90(m,2H), 7.08(d,1H,J=10.0 Hz),7.15-7.21(m,1H),7.63(d,1H,J=3.6 Hz),7.69(d,1H,J=3.6 Hz).FTMS:m/z=383.2,[M+H]+.

    2.4 2-(3?,3?-dimethyl-6-nitrospiro[chromene-2,2?-indolin]-1?-yl)ethylpicolinate(SP1)

    Under nitrogen atmosphere,compound 2-1(0.35 g,1.0 mmol),picolinic acid(0.12 g,1.0 mmol),EDCI(0.38 g,2.0 mmol),DMAP(0.01 g,0.1 mmol)were dissolved into dry dichloromethane(15 mL).The reaction mixture was stirred at room temperature overnight.Evaporation of the solvent gave a brown tar.The obtained brown tar was dissolved into ethyl acetate,washed with H2O three times,and dried over anhydrous magnesium sulfate.Evaporation of the solvent gave a light brown residue.The crude residue was recrystallized from ethyl acetate/n-hexane giving SP1(0.82 g,90.5%)as a light yellow crystals.

    1H NMR(CDCl3,400 MHz):1.15(s,3H),1.29(s,3H), 3.55-3.63(m,1H),3.68-3.74(m,1H),4.55-4.58(m,2H), 5.96(d,1H,J=10.4 Hz),6.73(d,1H,J=8.4 Hz),6.79(d,1H, J=8.0 Hz),6.87-6.92(m,2H),7.09(d,1H,J=6.4 Hz), 7.19-7.23(m,1H),7.46-7.49(m,1H),7.80-7.84(m,1H), 7.95-7.98(m,2H),8.06(d,1H,J=7.2 Hz),8.74(d,1H,J=4.8 Hz).13C NMR(CDCl3,100 MHz):165.05,159.32,149.87, 147.72,146.46,141.06,137.03,135.75,128.41,127.92, 127.05,125.92,125.19,122.76,121.86,121.83,119.97, 118.45,115.53,106.78,106.49,63.30,52.87,42.21,25.86, 19.85.FTMS:m/z=458.15,[M+H]+.

    2.5 2-(8-methoxy-3?,3?-dimethyl-6-nitrospiro [chromene-2,2?-indolin]-1?-yl)ethyl picolinate (SP2)

    SP2 was prepared according to a procedure similar to SP1. Compound 2-2 was used instead of compound 2-1.SP2 was obtained as yellow crystals(0.64 g,88.9%).

    1H NMR(CDCl3,400 MHz):1.15(s,3H),1.27(s,3H), 3.58-3.66(m,1H),3.73(s,3H),3.74-3.80(m,1H),4.56(t, 2H,J=6.6 Hz),5.93(d,1H,J=10.4 Hz),6.78(d,1H,J=7.6 Hz),6.83-6.90(m,2H),7.08(d,1H,J=6.4 Hz),7.17-7.21 (m,1H),7.45-7.48(m,1H),7.56(d,1H,J=2.8 Hz),7.66(d, 1H,J=2.4 Hz),7.65-7.66(m,1H),8.02(d,1H,J=7.6 Hz), 8.73(d,1H,J=5.6 Hz).13C NMR(CDCl3,100 MHz):164.10, 149.84,149.03,147.73,147.33,146.42,140.45,136.99, 135.79,128.36,127.73,126.99,125.15,121.88,121.84, 119.68,118.18,115.30,107.72,106.70,106.33,63.27,56.12, 52.84,41.97,25.98,19.79.FTMS:m/z=488.19,[M+H]+.

    2.6 2-(3?,3?-dimethyl-6-nitrospiro[chromene-2,2?-indolin]-1?-yl)ethylisoquinol-ine-3-carboxylate (SP3)

    SP3 was prepared according to a procedure similar to SP1. Quinoline-2-carboxylic was used instead of acid picolinic acid. SP3 was obtained as light yellow crystals(0.69 g,90.6%).

    1H NMR(CDCl3,400 MHz):1.20(s,3H),1.40(s,3H), 3.45-3.54(m,1H),3.81-3.91(m,1H),4.64-4.69(m,2H), 6.37(d,1H,J=14.4 Hz),6.77(d,1H,J=10.4 Hz),6.85-6.90 (m,2H),7.08(d,1H,J=10.0 Hz),7.15-7.19(m,1H),7.22(d, 1H,J=11.6 Hz),7.66-7.71(m,1H),7.81-7.87(m,1H), 7.89-7.93(m,2H),8.02(d,1H,J=4.0 Hz),8.16(d,1H,J= 11.6 Hz),8.28-8.33(m,2H).13C NMR(CDCl3,100 MHz): 165.37,159.41,147.67,147.57,146.46,141.00,137.29, 135.78,130.58,130.44,129.34,128.79,128.28,127.93, 127.64,125.87,122.72,122.27,121.88,120.95,119.94, 118.54,115.52,106.75,106.65,63.54,52.97,42.30,25.88, 19.88.FTMS:m/z=508.17,[M+H]+.

    2.7 2-(8-methoxy-3?,3?-dimethyl-6-nitrospiro [chromene-2,2?-indolin]-1?-yl)ethyl isoquinoline-3-carboxylate(SP4)

    SP4 was prepared according to a procedure similar to SP1. Compound 2-2 was used instead of compound 2-1 and quinoline-2-carboxylic was used instead of acid picolinic acid.SP4 was obtained as yellow crystals(0.72 g,90.1%).

    1H NMR(CDCl3,400 MHz):1.17(s,3H),1.27(s,3H), 3.65-3.70(m,1H),3.72(s,3H),3.80-3.87(m,1H), 4.58-4.66(m,2H),6.10(d,1H,J=10.4 Hz),6.82(d,1H,J= 7.6 Hz),6.86(d,1H,J=10.4 Hz),6.88(t,1H,J=7.4 Hz),7.08 (d,1H,J=6.4 Hz),7.21(t,1H,J=7.6 Hz),7.53(d,1H,J=2.4 Hz),7.64(d,1H,J=2.4 Hz),7.67(t,1H,J=8.0 Hz),7.81(t, 1H,J=7.6 Hz),7.88(d,1H,J=9.2 Hz),8.09(d,1H,J=8.8 Hz), 8.27(d,2H,J=8.4 Hz).13C NMR(CDCl3,100 MHz):165.31, 149.12,147.70,147.54,147.32,146.42,140.40,137.22, 135.82,130.56,130.39,129.28,128.73,128.26,127.73, 127.60,122.33,121.86,120.92,119.64,118.28,115.28, 107.68,106.67,106.51,63.50,56.11,52.95,42.05,25.97, 19.79.FTMS:m/z=538.17,[M+H]+.

    3 Results and discussion

    3.1 Photochromic properties

    Previous reports demonstrated that the introduction of an electron-withdrawing group(e.g.,―NO2,―CF3)into the benzene ring enhances the stability of the open form of SPs33,34whereas an electron-donating group(e.g.,―t-Bu,―OMe)produces a more stable photostationary closed form.35,36To gather the kinetic data of SP1-SP4 to evaluate the effect of―OMe on the properties of spiropyrans,we monitored the evolutions of the absorption spectra and the time dependence of absorbance at λmax(maximum absorption wavelength)of SP1-SP4 in ethanol solution upon UV irradiation,visible irradiation and in the dark(Figs.S1-S4(Supporting Information)).The kinetic of each process can be fit with a single exponential.Using the method from literature,32,11the rate constants and the percent conversions(χe)were calculated and summarized in Table 1. As expected,the rate constants for the conversions of MC2 to SP2 and MC4 to SP4 in the dark were determined to be~(1.4± 0.1)×10-2s-1,which is much larger than those for MC1 to SP1 (~(1.3±0.1)×10-3s-1)and MC3 to SP3(~(1.7±0.1)×10-3s-1). This indicates that MC2 and MC4 can thermally isomerize back to the corresponding SP2 and SP4 faster than the cases of SP1 and SP3.Visible irradiation can accelerate the conversion from MC to SP.Consistently,the rate constants for MC2 to SP2(~(1.1±0.1)×10-1s-1)and MC4 to SP4(~(8.9±0.1)×10-2s-1)under visible irradiation are still larger than those for MC1 to SP1(~(7.2±0.1)×10-3s-1)and MC3 to SP3(~(7.1±0.1)×10-3s-1),separately.On the basis of kinetic data listed in Table 1, the calculated conversions(χe)of SP2 and SP4 are 6.7%and 8.7%,respectively,which are much smaller than the cases for SP1 and SP3(56.4%and 50.3%,respectively),indicating that the introduction of―OMe apparently shifts the SP/MC equilibrium to favor the closed form of spiropyrans and thus decrease the stability of the open form most likely due to the increase of the electron density of the phenoxide ion unit affected by the electron-donating―OMe group.19

    Table 1 Calculated rate constants and conversions of SP1-SP4 at 293 K

    3.2 Sensing properties

    Fig.1 Absorption spectra of SP1(a)and SP2(b)after addition of 1 equivalent of different metal ions in the darkconcentrations of SP1 and SP2:5.0×10-5mol·L-1,solvent:ethanol, temperature:293 K

    Fig.1 and Fig.S5(Supporting Information)show the absorption spectra of SP1-SP4(5.0×10-5mol·L-1)in ethanol in the absence and the presence of 1 equivalent(equiv.)of different metal ions before and after UV irradiation.Interestingly,we found that the spectra for the solutions of SP2 and SP4 after addition of metal ions were significantly changed depending on the kind of metal ions(Figs.1b and S5a)whereas no obvious spectral changes were observed for control compounds SP1 and SP3(Figs.1a and S5b)before UV irradiation.In contrast, after further UV irradiation,SP1/SP3 showed the obvious absorption changes in the presences of different metal ions(Fig. S5(c,d))whereas SP2/SP4 showed the negligible spectral changes(data not shown).Tables 2 and S1 give a summary of the maximum absorption wavelength(λmax)of SP1-SP4 in the absence and the presence of different metal ions after UV irradiation and the corresponding changes in maximum absorption wavelengths(Δλmax).

    On the basis of data in Tables 2 and S1,we found that the absorbance maxima of SP1 and SP3 in the presence of metal ions after UV irradiation showed the hyperchromatic shifts to different extents depending on different metal ions(Summaries of some important parameters for different metal ions can be found in Table S2 and Fig.S6).After separate additions of Fe3+, Cr3+,Cu2+,and Pb2+,the shoulder peaks at~400-450 nm with the large hypsochromic shifts of>100 nm appeared due to the formation of MC-Mn+complexes(Scheme 1),showing that the interactions between metal ions and MC are very strong.In the cases of Zn2+,Ni2+,Co2+,and Cd2+,only slight hypsochromic shifts of 9-14 nm were observed after addition of them,reflecting that the interactions between metal ions and MC are moderate.However,the maximum absorption wavelength(λmax)of MC did not change at all upon addition of Ca2+and Mg2+,showing that the interactions between Ca2+/Mg2+and MC are quite weak.Fig.S7(a,b)shows the corresponding photographs of SP1 upon addition of 1 equiv.of metal ions before and after UV irradiation,respectively,from which the observed color changes are consistent with UV-Vis absorption studies discussed above.Further irradiation of the UV-irradiated solutionsof SP1 and SP3 with visible light can turn all of them back to the original.In conjunction with UV-Vis studies before UV irradiation in Figs.1a and S5b,these results demonstrate that only the addition of metal ions can not lead to the conversion of SP1 and SP3 from the close form to the open form and that upon UV irradiation,metal ions can reversibly interact with the photoreleased negatively-charged phenolate oxygen with the different strengths and form MC-Mn+complexes.

    Table 2 Summaries of the maximum absorption wavelengths (λmax)of SP1 and SP2 in ethanol solution in the absence and presence of different metal ions and the corresponding changes in λmax(Δλmax)after UV irradiation

    Remarkably,we found that only addition of metal ions led to the ring-opening isomerization of SP2 and SP4 with distinct color changes as shown in Figs.1b and S5a.For example,addition of Fe3+and Cr3+produced an immediate color changes from colorless to brilliant yellow.Correspondingly,a shoulder at about 420 nm,a significant hypsochromic shift in comparison with the open form,37was observed,which should be ascribed to MC-Mn+complexes as demonstrated above.Irradiating the colored solution with visible light did not liberate metal ions with regeneration of the original absorbance,showing the strong interactions between metal ions and MC.It is well known that metal ions with high charge density(Z2/r,where Z is the ion charge and r is the ionic radius)tend to form firm combinations with ligands.19,38-40Among metal ions studied here,both Cr3+and Fe3+possessing more charges and relatively smaller ionic radii afford a higher charge density,consistent with the experimental observation.In comparison with SP1 and SP3,we hypothesize that the metal-generated ring opening of SP should be ascribed to the synergistic effect of the strong affinity between metal ions and SP and the presence of the―OMe group that favors the formation of stable chelate complexes(MC-Mn+).When transition metals,such as Cu2+, Zn2+,Ni2+,Co2+and an IVA group metal ion Pb2+were used,the hypsochromic shifts in absorbance maxima in the range of 60-96 nm were detected.From Fig.S6,we can see that these metal ions have smaller but approximate charge density,thus resulting in the moderate binding between metal ions and MC that affords the reversible photochromism upon exposure to visible light.These also led to different hypsochromic shifts of λmaxof the resulted MC-Mn+complexes with the different colors that can be differentiated by a naked eye(Fig.S7(c,d)).For example,an orange color was observed for the Cu2+and Pb2+complexes with λmaxof 490 and 480 nm,respectively,while a pink color was observed for Ni2+and Co2+complexes with λmaxof 512 and 516 nm,respectively.The absorbance maxima of Zn2+complex(497 nm)was situated between them with a pink-orange color.In contrast,in the presence of Ca2+,Mg2+,and Cd2+, the absorption spectra change only slightly whenever spiropyran molecules were closed or open,reflecting that the interactions between metal ions and molecules are weak.For the alkaline-earth metal ions Mg2+and Ca2+,the missing of d electrons may decrease the coordination ability of metal ions with SP. Cd2+is another metal ion of group IIB similar to Zn2+,but the hypsochromic shift in absorbance maxima of Cd2+is smaller than that observed with Zn2+probably because of the larger size of Cd2+(ionic radius=97 pm)relative to Zn2+(ionic radius= 74 pm).The findings demonstrate that the interactions of metal ions with SP2 and SP4 are highly metal ion-dependent,thus potentially providing a useful colorimetric approach for detecting different metal ions with high sensitivity.

    To further detect the capability of ion sensing,we investigated the emission properties of SP1-SP4.When excited at the maximum absorption wavelength of SP1-SP4/MC1-MC4,it was found that the closed forms SP1-SP4 had no emission while the zwitterionic opened forms MC1-MC4 fluoresced with the maximum absorption wavelengths of ca 626,650, 636,and 660 nm(Fig.2a),respectively,consistent with the previous report.41Importantly,addition of 1 equiv.of Zn2+to the SP2 solution led to a dramatic increase in emission intensity at 600 nm excited at λ=493 nm.Similar results were obtained with SP4(Fig.S8).The fluorescence increase is majorly due to the coordination of Zn2+with―OMe and fluorophores(pyridine or quinoline moiety)together with phenolate oxygen.The coordination can decrease the electron densities of the―OMe and the phenolate oxygen and thus increase the π-conjugation degree of the complex.On the other hand,the coordination of the ligands with the diamagnetic Zn2+containing a closed-shell d10electronic configuration would shut down the photoinduced electron-transfer pathway of the excited free ligand upon Zn2+coordination42-44and thus turn on the fluorescence.Another possibility is that the coordination would inhibit the photoinduced tautomerization of the phenolate moiety which leads to nonradiative deexcitation and thus improve the fluorescence by reducing the probability of radiationless relaxation.45,46

    Addition of metal ions such as Pb2+,Mg2+,Cd2+to the solution of SP2 or SP4 also resulted in the fluorescence enhancement.However,the magnitude of the fluorescent enhancement of SP2 or SP4 in the presence of them is smaller than that observed with Zn2+,which could be attributed to the different binding affinities of pyridine and quinoline with them.Ca2+cannot turn on the fluorescence because of the larger ionic size (ionic radius=99 pm)and relative lower ionic electronegativity (1.01).Other metal ions studied,such as Fe3+,Cr3+,Cu2+,Co2+, and Ni2+,were unable to turn on the fluorescent signal of SP2 or SP4,which may be attributed to the proximity of the paramagnetic metal ions to the unpaired electrons of the ligands which lead to spin-orbit coupling and intersystem crossing.47To further explore the selectivity of Zn2+,competition experiments were also conducted in which solutions of SP2 or SP4 was first added with 1 equiv.of other metal ions separately and Zn2+was then added to the mixture.As shown in Figs.2d and S8b,the fluorescence of SP2 or SP4 after addition of Zn2+dramatically increased,demonstrating the excellent selectivity of Zn2+detection.It should be noted that the fluorescence increase was relatively small when Zn2+was added to the solution of SP2 in the presence of 1 equiv.of Fe3+,Cr3+,and Cu2+.This may be ascribed to the stronger coordination of the metal ions with the ligands as is already clear from the absorption spectra analysis.Finally,the bingding mode of the complex was studied by Job?s plot analysis.Fig.3a shows the typical UV-Vis spectroscopic responses of a SP2 ethanolic solution containing Zn2+with the increasing concentrations.The absorbance at 576 nm decreased and the absorbance at 350 and 497 nm increased with the concentration increase.The stoichiometry of the zinc complex has been investigated via Job?s method(Figs.3b and S9)and it has been found to be 1:1.Note that the detection of metal ions should be also performed in water or other polar solvents since SP1-SP4 could be readily soluble in these solvents with aid of ethanol.

    3.3 Combinational logic circuits

    As mentioned above,SP2 and SP4 response to the stimuli of metal ions and visible light,accompanying significant changes in physical and chemical properties.By taking use of these features,logic gates and combinational logic circuits can be constructed.It is well known that,the three basic types of logic gates are NOT,AND,and OR gates.The NOT gate is often called inverter which can converts the input signal(I)of 1 into the output signal(O)of 0 and vice versa.In the instant of AND gate,output O is 1 only when both inputs I1and I2are 1.The OR gate also combines the two inputs I1and I2into the output O,when I1and/or I2is 1,O is 1.Combinational logic circuits are assembled connecting NOT,AND,and OR gates.The inhibit(INH)gates are basicAND gates with one of the inputs inverted through a NOT function.Several examples of INH gate based on molecules have been reported in recent years.48-50Fig.4 illustrates that SP2(or SP4)can work as an INH logic gate upon the stimulation of metal ions and visible light.The two inputs signals are I1(Zn2+)and I2(Vis)and the output is O, the absorbance maxima of the complex(A497)or the fluorescence emission intensity at 600 nm(F600).According to the results of the spectral study,the increase in the absorbance maxima of the complex or the emission intensity at 600 nm is observed only in the presence of Zn2+and the absence of visible light.That is to say,only when I1=1 and I2=0,the output signal O=1.O is always 0 in other cases.

    In particular,using the new photochromic compounds SP2 and SP4,we can develop more complicated combinational logic circuits to convert three inputs into two outputs.In the case of the combinational logic circuit shown in Fig.5,the three inputs signals are I1(Zn2+),I2(Ni2+),and I3(Vis)and the two outputs are O1(A497)and O2(F600).Binary digits can be encoded on each signal applying positive logic conventions(low=0,high= 1).Consequently,SP2(or SP4)can read a string of three binary inputs and write two specific optical outputs.The corresponding truth table and equivalent logic circuit are demonstrated in Fig.5.One portion of this logic circuit converts the three inputs I1,I2,and I3into the output O1through OR,NOT, and AND operations.The other fragment transduces the inputs of I1and I3into the output O2through NOT and AND operations.The optical output O1is high(O1=1)when only the input I1is applied(I1=1,I2=0,I3=0)or when only the input I2is ap-plied(I1=0,I2=1,I3=0)or when only the input I3is not applied (I1=1,I2=1,I3=0)(Fig.S10a).The optical output O2is high(O2= 1)when only the input I1is applied(I1=1,I2=0,I3=0)or when only the input I3is not applied(I1=1,I2=1,I3=0).The combinational logic circuit shows that all three inputs determine the output O1,while only I1and I3control the value of O2.

    Fig.2 (a)Fluorescence emission spectra of SP1-SP4/MC1-MC4;(b)fluorescence emission spectra(λex=493 nm)of SP2(5.0×10-5mol·L-1, ethanol,293 K)upon addition of 1 equiv.of metal ions(Zn2+,Fe3+,Cr3+,Cu2+,Ni2+,Co2+,Cd2+,Ca2+,Mg2+,and Pb2+);(c)changes in fluorescence emission spectra(λex=493 nm)of SP2(5.0×10-5mol·L-1,ethanol,293 K)upon addition of different concentrations of Zn2+; (d)detection selectivity of SP2(5.0×10-5mol·L-1,ethanol,293 K)in the presence of various metal ions(λex=493 nm):(black bars) fluorescence emission intensity at 600 nm in the presence of 1 equiv.of Fe3+,Cr3+,Cu2+,Pb2+,Ni2+,Co2+,Cd2+,Ca2+,Mg2+,and Zn2+; (red bars)fluorescence emission intensity at 600 nm after further addition of 1 equiv.of Zn2+

    Fig.3 (a)UV-Vis spectroscopic response of SP2 ethanolsolution containing Zn2+with the increasing concentrations; (b)Job?s plot of SP2 with Zn2+in ethanol solution(b)Total concentration of[SP2]+[Zn2+]was kept constant.The absorbance at 497 nm was used.

    As mentioned above,in the combinational logic circuit illustrated in Fig.5,one of the output O2was not affected by the input I2,while in the instance of the logic circuit shown in Fig.6, both the outputs O1and O2are dependent on the three inputs I1, I2,and I3.The combinational logic circuit also consists of three inputs,two of which are chemical inputs I1(Zn2+)and I2(Cu2+) and the other is optical input I3(Vis),the two outputs are O1(A497)and O2(F600).When positive conventions are applied to all signals,the two independent optical outputs(O1and O2)can be modulated by stimulating the molecular switch(SP2 or SP4) with the three terminal inputs(I1,I2,and I3).According to the fluorescence spectral study,addition of Cu2+to the solution of SP2(or SP4)containing 1 equiv.Zn2+can cause the fluorescence quenching.Then,the output O2is closely related to the presence and the absence of Cu2+.Therefore,the output O2is high when only the input I1is applied(I1=1,I2=0,I3=0),and both I2and I3are inhibiting factors to O2.As for the other output O1,the absorbance maximum of the complex is high upon addition of Zn2+and 1 equiv.Cu2+in the absence of visible light (Fig.S10b).Accordingly,O1is high(O1=1)when only I1is applied(I1=1,I2=0,I3=0)or when only I2is applied(I1=0,I2=1,I3= 0)or when only I3is not applied(I1=1,I2=1,I3=0).It can be seen from the truth table and the corresponding logic circuit, the inputs I1,I2and I3are transmitted into output O1through OR,NOT,and AND operations while the output O2through NOT andAND operations.

    Fig.4 Truth table(bottom)and INH logic gate with two inputs and one output(up)

    Fig.5 Truth table(bottom)and corresponding combinational logic circuits with three inputs and two outputs(up)The three inputs are I1(Zn2+),I2(Ni2+),and I3(Vis)and the two outputs are O1(A497)and O2(F600).

    Fig.6 Truth table(bottom)and the equivalent logic circuits based on SP2 or SP4(up)The three inputs are I1(Zn2+),I2(Cu2+)and I3(Vis)and the two outputs are O1(A497)and O2(F600).

    4 Conclusions

    In this work,we demonstrate the use of spiropyran derivatives incorporating the chelating sites,such as the pyridine or quinoline moiety and methoxy group,into their backbones for creating chemical sensors with high sensitivity and selectivity and combinational logic gates for information processing at the molecular level.The coordination of metal ions with―OMe and pyridine or quinoline moiety facilitates the photoisomerization of spiropyran molecules from the closed form to the open merocyanine form with and even without UV irradiation,accompanying with the significant changes in their chemical and physical properties.UV-Vis absorption studies demonstrated that SP2 and SP4 showed the metal ion-dependent reversible binding affinities that led to the different hypsochromic shifts of the absorption of MC-Mn+complexes with different colors. The color changes can be recognized by a naked eye,thus offering an easy colorimetric method for metal ion detection.On the other hand,the fluorescence measurements proved the unique property of SP2 and SP4 for selectively detecting Zn2+with high sensitivity.In combination with both UV-Vis absorption and fluorescence changes under external stimuli,molecular systems based on SP2 and SP4 have been configured to mimic the functions of several integrated logic gates,suggesting attractive prospects in detecting,elaborating,and transmitting signals at the molecular level or even future molecular computing.

    (1) Irie,M.Chem.Rev.2000,100,1685.doi:10.1021/cr980069d

    (2) Irie,M.;Fukaminato,T.;Sasaki,T.;Tamai,N.;Kawai,T.Nature 2002,420,759.doi:10.1038/420759a

    (3) de Silva,A.P.;Gunaratne,H.Q.N.;Gunnlaugsson,T.;Huxley, A.J.M.;McCoy,C.P.;Rademacher,J.T.;Rice,T.E.Chem. Rev.1997,97,1515.doi:10.1021/cr960386p

    (4) Kocer,A.;Walko,M.;Meijberg,W.;Feringa,B.L.Science 2005,309,755.doi:10.1126/science.1114760

    (5) Berkovic,G.;Krongauz,V.;Weiss,V.Chem.Rev.2000,100, 1741.doi:10.1021/cr9800715

    (6) Guo,X.;Zhang,D.;Zhu,D.Adv.Mater.2004,16,125.doi: 10.1002/adma.200306102

    (7) Kawata,S.;Kawata,Y.Chem.Rev.2000,100,1777.doi: 10.1021/cr980073p

    (8) Delaire,J.A.;Nakatani,K.Chem.Rev.2000,100,1817.doi: 10.1021/cr980078m

    (9)Tamai,N.;Miyasaka,H.Chem.Rev.2000,100,1875.doi: 10.1021/cr9800816

    (10)Guo,X.;Zhang,D.;Yu,G.;Wan,M.;Li,J.;Liu,Y.;Zhu,D. Adv.Mater.2004,16,636.doi:10.1002/adma.200305792

    (11) Shen,Q.;Wang,L.;Liu,S.;Cao,Y.;Gan,L.;Guo,X.; Steigerwald,M.L.;Shuai,Z.;Liu,Z.;Nuckolls,C.Adv.Mater. 2010,22,3282.doi:10.1002/adma.201000471

    (12)Guo,X.;Huang,L.;O?Brien,S.;Kim,P.;Nuckolls,C.J.Am. Chem.Soc.2005,127,15045.doi:10.1021/ja054335y

    (13) Lee,H.Y.;Diehn,K.K.;Sun,K.;Chen,T.;Raghavan,S.R. J.Am.Chem.Soc.2011,133,8461.doi:10.1021/ja202412z

    (14) Vlassiouk,I.;Park,C.D.;Vail,S.A.;Gust,D.;Smirnov,S. Nano Lett.2006,6,1013.doi:10.1021/nl060313d

    (15) Guo,X.;Zhang,D.;Tao,H.;Zhu,D.Org.Lett.2004,6,2491. doi:10.1021/ol0494111

    (16) Zhang,H.;Guo,X.;Hui,J.;Hu,S.;Xu,W.;Zhu,D.Nano Lett. 2011,11,4939.doi:10.1021/nl2028798

    (17) Jiang,G.;Song,Y.;Guo,X.;Zhang,D.;Zhu,D.Adv.Mater. 2008,20,2888.doi:10.1002/adma.200800666

    (18)Shao,N.;Zhang,Y.;Cheung,S.;Yang,R.;Chan,W.;Mo,T.;Li, K.;Liu,F.Anal.Chem.2005,77,7294.doi:10.1021/ac051010r (19)Sakamoto,H.;Takagaki,H.;Nakamura,M.;Kimura,K.Anal. Chem.2005,77,1999.doi:10.1021/ac048642i

    (20)Inouye,M.;Akamatsu,K.;Nakazumi,H.J.Am.Chem.Soc. 1997,119,9160.doi:10.1021/ja9707668

    (21) Shiraishi,Y.;Adachi,K.;Itoh,M.;Hirai,T.Org.Lett.2009,11, 3482.doi:10.1021/ol901399a

    (22)Takase,M.;Inouye,M.Chem.Commun.2001,2432.

    (23) Shao,N.;Jin,J.Y.;Cheung,S.M.;Yang,R.H.;Chan,W.H.; Mo,T.Angew.Chem.Int.Edit.2006,45,4944.doi:10.1002/ anie.200600112

    (24)Andersson,J.;Li,S.;Lincoln,P.;Andréasson,J.J.Am.Chem. Soc.2008,130,11836.doi:10.1021/ja801968f

    (25) de Silva,A.P.;Gunaratne,H.Q.N.;McCoy,C.P.Nature 1993, 364,42.doi:10.1038/364042a0

    (26)de Silva,A.P.;Gunaratne,H.Q.N.;McCoy,C.P.J.Am.Chem. Soc.1997,119,7891.doi:10.1021/ja9712229

    (27)de Silva,A.P.;McClenaghan,N.D.J.Am.Chem.Soc.2000, 122,3965.doi:10.1021/ja994080m

    (28) Guo,X.;Zhang,D.;Zhou,Y.;Zhu,D.J.Org.Chem.2003,68, 5681.doi:10.1021/jo034243w

    (29) Raymo,F.M.Adv.Mater.2002,14,401.doi:10.1002/1521-4095(20020318)14:6<401::AID-ADMA401>3.0.CO;2-F

    (30) Guo,X.;Zhang,D.;Zhang,G.;Zhu,D.J.Phys.Chem.B.2004, 108,11942.doi:10.1021/jp047706q

    (31)Guo,X.;Zhang,D.;Wang,T.;Zhu,D.Chem.Commun.2003, 914.

    (32)Raymo,F.M.;Giordani,S.J.Am.Chem.Soc.2001,123,4651. doi:10.1021/ja005699n

    (33) Hirano,M.;Osakada,K.;Nohira,H.;Miyashita,A.J.Org. Chem.2001,67,533.

    (34) Guo,X.;Zhou,Y.;Zhang,D.;Yin,B.;Liu,Z.;Liu,C.;Lu,Z.; Huang,Y.;Zhu,D.J.Org.Chem.2004,69,8924.doi:10.1021/ jo0487799

    (35) Shao,N.;Jin,J.;Wang,H.;Zheng,J.;Yang,R.;Chan,W.; Abliz,Z.J.Am.Chem.Soc.2009,132,725.

    (36) Natali,M.;Soldi,L.;Giordani,S.Tetrahedron 2010,66,7612. doi:10.1016/j.tet.2010.07.035

    (37) Fries,K.H.;Driskell,J.D.;Samanta,S.;Locklin,J.Anal. Chem.2010,82,3306.doi:10.1021/ac1001004

    (38) Paramonov,S.V.;Lokshin,V.;Fedorova,O.A.J.Photochem. Photobiol.C:Photochem.Rev.2011,12,209.doi:10.1016/j. jphotochemrev.2011.09.001

    (39) Poonia,N.S.;Bajaj,A.V.Chem.Rev.1979,79,389.doi: 10.1021/cr60321a002

    (40)Abdullah,A.;Roxburgh,C.J.;Sammes,P.G.Dyes and Pigments 2008,76,319.doi:10.1016/j.dyepig.2006.09.002

    (41) Ipe,B.I.;Mahima,S.;Thomas,K.G.J.Am.Chem.Soc.2003, 125,7174.doi:10.1021/ja0341182

    (42) Nolan,E.M.;Lippard,S.J.Accounts Chem.Res.2008,42,193.

    (43) Huang,S.;Clark,R.J.;Zhu,L.Org.Lett.2007,9,4999.doi: 10.1021/ol702208y

    (44) Kowalczyk,T.;Lin,Z.;Voorhis,T.V.J.Phys.Chem.A 2010, 114,10427.

    (45)Winkler,J.D.;Bowen,C.M.;Michelet,V.J.Am.Chem.Soc. 1998,120,3237.doi:10.1021/ja974181p

    (46) Zhao,J.;Nelson,D.J.J.Inorg.Biochem.2005,99,383.doi: 10.1016/j.jinorgbio.2004.10.005

    (47)Torrado,A.;Walkup,G.K.;Imperiali,B.J.Am.Chem.Soc. 1998,120,609.doi:10.1021/ja973357k

    (48) Saghatelian,A.;V?lcker,N.H.;Guckian,K.M.;Lin,V.S.Y.; Ghadiri,M.R.J.Am.Chem.Soc.2002,125,346.

    (49)Qu,D.H.;Ji,F.Y.;Wang,Q.C.;Tian,H.Adv.Mater.2006,18, 2035.doi:10.1002/adma.200600235

    (50) de Sousa,M.;Kluciar,M.;Abad,S.;Miranda,M.A.;de Castro, B.;Pischel,U.Photochem.Photobiol.Sci.2004,3,639.doi: 10.1039/b406415a

    March 31,2012;Revised:May 14,2012;Published on Web:May 15,2012.

    New Spiropyran Derivatives:Ion Sensing and Information Processing at the Molecular Level

    LI Ying-Ruo1ZHANG Hong-Tao2QI Chuan-Min1,*GUO Xue-Feng2,3,*
    (1Key Laboratory of Radiopharmaceuticals,College of Chemistry,Beijing Normal University,Beijing 100875,P.R.China;2Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P.R.China;3Department of Advanced Materials and Nanotechnology,College of Engineering,Peking University,Beijing 100871,P.R.China)

    We have designed and synthesized a new class of spiropyran derivatives(SP1-SP4)with functional chelating groups,such as pyridine or quinoline moieties and a methoxy group(―OMe),for use in metal ion sensing and information processing at the molecular level.It is notable that metal ions can favor coordination with chelating groups and facilitate the photoisomerization of spiropyran molecules from the closed form to the open merocyanine form without UV irradiation,thus leading to significant changes in their chemical and physical properties.UV-Vis absorption studies indicated that SP2 and SP4 exhibited metal ion-dependent reversible binding affinities that result in different hypsochromic shifts for the MC-Mn+complexes.These changes in color can be recognized by eye,thus offering an easy colorimetric method for metal ion detection.Further emission studies distinguished them as promising candidates for Zn2+detection with good sensitivity and selectivity.Moreover,on the basis of their absorption and fluorescence spectra,several combinational logic gates were constructed for information processing at the molecular level.These results demonstrate that spiropyran derivatives with desired functionalities show great potential not only for chemical or environmental sensors,but also for future molecular computing.

    Spiropyran;Chemical sensor;Logic gate;UV-Vis absorption spectrum;Fluorescent spectrum

    10.3866/PKU.WHXB201205155

    ?Corresponding authors.GUO Xue-Feng,Email:guoxf@pku.edu.cn.QI Chuan-Min,Email:qichuanmin@bnu.edu.cn.

    The project was supported by the National Key Basic Research Program of China(973)(2009CB623703,2012CB921404),National Natural Science Foundation of China(20833001,51121091,2112016,21071022),and Foundation for theAuthor of National Excellent Doctoral Dissertation of Higher Education,China(2007B21).

    國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2009CB623703,2012CB921404),國(guó)家自然科學(xué)基金(20833001,51121091,2112016,21071022)及全國(guó)高等學(xué)校優(yōu)秀博士論文作者專(zhuān)項(xiàng)基金(2007B21)資助

    O641

    猜你喜歡
    吡喃信息處理吸收光譜
    小分子螺吡喃光致變色化合物合成研究進(jìn)展*
    東營(yíng)市智能信息處理實(shí)驗(yàn)室
    基于Revit和Dynamo的施工BIM信息處理
    地震烈度信息處理平臺(tái)研究
    CTCS-3級(jí)列控系統(tǒng)RBC與ATP結(jié)合部異常信息處理
    原子吸收光譜分析的干擾與消除應(yīng)用研究
    淺析原子吸收光譜法在土壤環(huán)境監(jiān)測(cè)中的應(yīng)用
    茶油氧化過(guò)程中紫外吸收光譜特性
    3-疊氮基丙基-β-D-吡喃半乳糖苷的合成工藝改進(jìn)
    1-O-[3-(2-呋喃基)丙烯?;鵠-β-D-吡喃果糖的合成及應(yīng)用
    煙草科技(2015年8期)2015-12-20 08:27:14
    国产真实乱freesex| 别揉我奶头 嗯啊视频| 日本三级黄在线观看| 成人永久免费在线观看视频| 波多野结衣高清无吗| 十八禁网站免费在线| 久久久久久久精品吃奶| 女人被狂操c到高潮| av专区在线播放| 日本-黄色视频高清免费观看| 热99在线观看视频| 日本爱情动作片www.在线观看 | 99久久成人亚洲精品观看| 亚洲,欧美,日韩| 欧美+亚洲+日韩+国产| 久久99热这里只有精品18| 亚洲狠狠婷婷综合久久图片| 久久99热6这里只有精品| 日韩一区二区视频免费看| 亚洲电影在线观看av| 国产伦精品一区二区三区视频9| 少妇裸体淫交视频免费看高清| 欧美xxxx性猛交bbbb| 午夜精品一区二区三区免费看| 又紧又爽又黄一区二区| 国产精品,欧美在线| 夜夜爽天天搞| 午夜福利成人在线免费观看| 看十八女毛片水多多多| 久久国产乱子免费精品| 欧美日韩乱码在线| 欧美极品一区二区三区四区| 成人国产综合亚洲| 国产不卡一卡二| 国产黄色小视频在线观看| 在线看三级毛片| 午夜视频国产福利| 久久精品人妻少妇| 国内毛片毛片毛片毛片毛片| 特大巨黑吊av在线直播| 国语自产精品视频在线第100页| eeuss影院久久| 观看美女的网站| 在线免费观看不下载黄p国产 | or卡值多少钱| 欧美3d第一页| 亚洲国产精品合色在线| 黄色女人牲交| 俺也久久电影网| 久久久久精品国产欧美久久久| 免费无遮挡裸体视频| 精品久久久久久久久亚洲 | 国产老妇女一区| 黄色女人牲交| 亚洲国产色片| 亚洲国产日韩欧美精品在线观看| 成人三级黄色视频| 免费搜索国产男女视频| 人妻久久中文字幕网| 欧美激情久久久久久爽电影| 国产精品久久久久久精品电影| 亚洲国产精品成人综合色| 女的被弄到高潮叫床怎么办 | 俺也久久电影网| 一本精品99久久精品77| 12—13女人毛片做爰片一| 丰满人妻一区二区三区视频av| 日韩欧美精品免费久久| 啦啦啦韩国在线观看视频| 色哟哟哟哟哟哟| 91麻豆精品激情在线观看国产| 久久久久国内视频| 国产精品电影一区二区三区| 最好的美女福利视频网| 国产伦人伦偷精品视频| 国产精品久久久久久久久免| 国产精品1区2区在线观看.| 久久这里只有精品中国| 久久九九热精品免费| 99热这里只有是精品50| 亚洲精品亚洲一区二区| 国产伦人伦偷精品视频| 老女人水多毛片| 亚洲中文字幕日韩| 欧美一区二区国产精品久久精品| 欧美成人免费av一区二区三区| 看十八女毛片水多多多| 少妇的逼好多水| 人妻少妇偷人精品九色| 国产伦一二天堂av在线观看| 97人妻精品一区二区三区麻豆| 男女之事视频高清在线观看| 日韩欧美国产在线观看| 22中文网久久字幕| 观看美女的网站| 欧美日韩亚洲国产一区二区在线观看| 欧美区成人在线视频| 国产精品免费一区二区三区在线| 午夜激情欧美在线| 国产免费男女视频| 国产免费av片在线观看野外av| 久久久久国内视频| 小蜜桃在线观看免费完整版高清| 美女免费视频网站| 男插女下体视频免费在线播放| 成人美女网站在线观看视频| 午夜福利高清视频| 在线观看美女被高潮喷水网站| 性欧美人与动物交配| 日韩,欧美,国产一区二区三区 | 国产私拍福利视频在线观看| 精品一区二区三区av网在线观看| 精品久久久久久久人妻蜜臀av| 亚洲va日本ⅴa欧美va伊人久久| 女同久久另类99精品国产91| 色综合亚洲欧美另类图片| 99国产精品一区二区蜜桃av| 啦啦啦啦在线视频资源| 在线播放无遮挡| 男人舔奶头视频| 色哟哟·www| 久久久国产成人免费| 亚洲欧美日韩高清在线视频| 国产精品久久久久久久电影| 九九久久精品国产亚洲av麻豆| 精品人妻视频免费看| 亚洲熟妇中文字幕五十中出| 我要看日韩黄色一级片| 午夜精品久久久久久毛片777| 成人综合一区亚洲| 免费av不卡在线播放| 18禁黄网站禁片免费观看直播| 国产一区二区三区在线臀色熟女| 国产精品嫩草影院av在线观看 | 麻豆一二三区av精品| 变态另类成人亚洲欧美熟女| 丰满的人妻完整版| 亚洲aⅴ乱码一区二区在线播放| 女的被弄到高潮叫床怎么办 | 免费看美女性在线毛片视频| 99热这里只有是精品在线观看| 亚洲无线观看免费| 亚洲专区中文字幕在线| 99热网站在线观看| 成人特级av手机在线观看| 嫩草影院新地址| 成年女人毛片免费观看观看9| 中文字幕高清在线视频| 日韩人妻高清精品专区| 亚洲国产欧洲综合997久久,| 性插视频无遮挡在线免费观看| 日本黄色片子视频| 亚洲精华国产精华液的使用体验 | 老司机福利观看| av专区在线播放| 日本成人三级电影网站| 在线观看一区二区三区| 亚洲狠狠婷婷综合久久图片| 欧美xxxx黑人xx丫x性爽| 国产精品久久久久久久久免| 欧美日韩国产亚洲二区| 日本免费一区二区三区高清不卡| 亚洲自偷自拍三级| 能在线免费观看的黄片| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美在线乱码| 熟女电影av网| 少妇人妻一区二区三区视频| 88av欧美| 亚洲五月天丁香| 最新在线观看一区二区三区| 亚洲人成网站高清观看| 波野结衣二区三区在线| 国产一区二区在线观看日韩| 欧美性猛交黑人性爽| 搡老妇女老女人老熟妇| 久久亚洲真实| 亚洲五月天丁香| 老司机午夜福利在线观看视频| 九九爱精品视频在线观看| 国产精品永久免费网站| 观看免费一级毛片| 男女啪啪激烈高潮av片| 亚洲va在线va天堂va国产| 日韩一区二区视频免费看| 欧美日韩精品成人综合77777| 18禁裸乳无遮挡免费网站照片| 国产欧美日韩精品一区二区| 久久亚洲精品不卡| 亚洲人与动物交配视频| 全区人妻精品视频| 日本a在线网址| 最近最新中文字幕大全电影3| 一进一出抽搐gif免费好疼| 欧美日韩乱码在线| a级一级毛片免费在线观看| 成人三级黄色视频| 能在线免费观看的黄片| 日韩精品中文字幕看吧| АⅤ资源中文在线天堂| 国产久久久一区二区三区| 成人av一区二区三区在线看| 嫩草影院入口| 搡老熟女国产l中国老女人| 草草在线视频免费看| 狂野欧美白嫩少妇大欣赏| 色综合色国产| 天堂动漫精品| 欧洲精品卡2卡3卡4卡5卡区| 97碰自拍视频| 毛片女人毛片| 亚洲性久久影院| 99热网站在线观看| 久久久国产成人精品二区| 国产老妇女一区| 露出奶头的视频| 内地一区二区视频在线| 国产高清视频在线播放一区| a在线观看视频网站| 国产精品人妻久久久久久| 99热网站在线观看| 校园春色视频在线观看| 2021天堂中文幕一二区在线观| 两个人视频免费观看高清| 午夜精品一区二区三区免费看| 亚洲精品在线观看二区| 国产精品嫩草影院av在线观看 | 亚洲一级一片aⅴ在线观看| 在线看三级毛片| 成人特级黄色片久久久久久久| 极品教师在线免费播放| 日韩大尺度精品在线看网址| 男人舔女人下体高潮全视频| 欧美色欧美亚洲另类二区| 精品不卡国产一区二区三区| 一个人免费在线观看电影| 久久久久久久亚洲中文字幕| 成人国产麻豆网| 国产美女午夜福利| 亚洲电影在线观看av| 日本a在线网址| 窝窝影院91人妻| 一a级毛片在线观看| 人妻少妇偷人精品九色| 午夜福利在线观看免费完整高清在 | 久久精品国产亚洲av涩爱 | 国产免费av片在线观看野外av| x7x7x7水蜜桃| 老熟妇仑乱视频hdxx| 啪啪无遮挡十八禁网站| 亚洲国产日韩欧美精品在线观看| 成年女人永久免费观看视频| 国内精品久久久久精免费| 色噜噜av男人的天堂激情| 久99久视频精品免费| 三级男女做爰猛烈吃奶摸视频| 久久精品综合一区二区三区| bbb黄色大片| 亚洲无线观看免费| 国产男人的电影天堂91| 很黄的视频免费| 国产极品精品免费视频能看的| 欧美成人性av电影在线观看| 亚洲国产日韩欧美精品在线观看| 亚洲精品日韩av片在线观看| 极品教师在线免费播放| 精华霜和精华液先用哪个| 国产黄a三级三级三级人| 国产精品久久视频播放| 亚洲va在线va天堂va国产| 美女xxoo啪啪120秒动态图| 51国产日韩欧美| 麻豆一二三区av精品| 老熟妇仑乱视频hdxx| 免费大片18禁| 国产综合懂色| 精品一区二区三区人妻视频| 国产一区二区在线av高清观看| 在线看三级毛片| 婷婷亚洲欧美| 国产精品国产三级国产av玫瑰| 最近中文字幕高清免费大全6 | 欧美高清性xxxxhd video| 亚洲色图av天堂| 国产精品免费一区二区三区在线| 精品人妻熟女av久视频| 搞女人的毛片| 国产伦精品一区二区三区视频9| 在现免费观看毛片| 成人综合一区亚洲| 亚洲乱码一区二区免费版| 日日干狠狠操夜夜爽| 午夜久久久久精精品| 午夜福利高清视频| а√天堂www在线а√下载| 老司机福利观看| 日本-黄色视频高清免费观看| 亚洲精品国产成人久久av| 观看美女的网站| xxxwww97欧美| 欧美不卡视频在线免费观看| 国产主播在线观看一区二区| 亚洲av日韩精品久久久久久密| 国产视频内射| 成人永久免费在线观看视频| 国产男靠女视频免费网站| 我要搜黄色片| 别揉我奶头 嗯啊视频| 国产极品精品免费视频能看的| 嫩草影院精品99| 老司机午夜福利在线观看视频| 婷婷精品国产亚洲av| 国产精品,欧美在线| 99精品久久久久人妻精品| 国产免费男女视频| 国产精品久久久久久精品电影| 精品欧美国产一区二区三| 搡老熟女国产l中国老女人| 国产一区二区在线观看日韩| 成年免费大片在线观看| 欧美最新免费一区二区三区| 亚洲精品粉嫩美女一区| 一进一出抽搐动态| 久久久久久久亚洲中文字幕| 欧美又色又爽又黄视频| 国产伦人伦偷精品视频| 99久国产av精品| 夜夜看夜夜爽夜夜摸| 亚洲aⅴ乱码一区二区在线播放| 尾随美女入室| 久久精品综合一区二区三区| 在线国产一区二区在线| 亚洲性夜色夜夜综合| 赤兔流量卡办理| 有码 亚洲区| 亚洲三级黄色毛片| АⅤ资源中文在线天堂| 国产 一区 欧美 日韩| 久久这里只有精品中国| 国产av一区在线观看免费| 热99在线观看视频| 尤物成人国产欧美一区二区三区| 久久99热这里只有精品18| 欧美高清性xxxxhd video| www日本黄色视频网| 色视频www国产| 神马国产精品三级电影在线观看| 99热6这里只有精品| 一进一出抽搐gif免费好疼| 一本一本综合久久| 我的老师免费观看完整版| 俺也久久电影网| 变态另类成人亚洲欧美熟女| 高清毛片免费观看视频网站| 999久久久精品免费观看国产| 性色avwww在线观看| 麻豆成人av在线观看| 色播亚洲综合网| 欧美精品啪啪一区二区三区| 99久久无色码亚洲精品果冻| 国产精品98久久久久久宅男小说| a在线观看视频网站| 99视频精品全部免费 在线| 夜夜爽天天搞| 久久香蕉精品热| 一本久久中文字幕| 我的老师免费观看完整版| 好男人在线观看高清免费视频| 麻豆久久精品国产亚洲av| 久久国内精品自在自线图片| 欧美日韩黄片免| 免费观看的影片在线观看| 熟女电影av网| 久久久国产成人免费| 一区二区三区高清视频在线| 无人区码免费观看不卡| 亚洲美女黄片视频| 极品教师在线视频| www日本黄色视频网| 欧美另类亚洲清纯唯美| 男女做爰动态图高潮gif福利片| 欧美极品一区二区三区四区| 九九久久精品国产亚洲av麻豆| 亚洲第一电影网av| 日本精品一区二区三区蜜桃| 联通29元200g的流量卡| 噜噜噜噜噜久久久久久91| 日韩在线高清观看一区二区三区 | 国产在线精品亚洲第一网站| 波多野结衣高清作品| 久久久久久久亚洲中文字幕| 女生性感内裤真人,穿戴方法视频| 午夜视频国产福利| 亚洲av一区综合| 免费看光身美女| 亚洲七黄色美女视频| 少妇熟女aⅴ在线视频| 91在线精品国自产拍蜜月| 欧美精品啪啪一区二区三区| 精品久久久久久久末码| 日本黄色视频三级网站网址| 麻豆国产av国片精品| 久久热精品热| 干丝袜人妻中文字幕| 少妇被粗大猛烈的视频| 乱码一卡2卡4卡精品| 精品午夜福利在线看| 日日夜夜操网爽| a级毛片a级免费在线| 亚洲精华国产精华液的使用体验 | 丰满乱子伦码专区| 中文资源天堂在线| 91久久精品国产一区二区成人| 亚洲专区国产一区二区| 毛片女人毛片| 男人舔奶头视频| 女人被狂操c到高潮| 一a级毛片在线观看| 国内久久婷婷六月综合欲色啪| 丰满人妻一区二区三区视频av| 国产色婷婷99| 综合色av麻豆| 国内精品一区二区在线观看| 午夜老司机福利剧场| 免费观看在线日韩| 在线免费观看不下载黄p国产 | 日韩欧美国产在线观看| 色在线成人网| 国产久久久一区二区三区| 美女黄网站色视频| 精品久久久久久久人妻蜜臀av| 国产精品自产拍在线观看55亚洲| 日本熟妇午夜| 久久久久久久精品吃奶| 欧美三级亚洲精品| 午夜激情福利司机影院| 成人三级黄色视频| 中文在线观看免费www的网站| 亚洲自偷自拍三级| 日韩在线高清观看一区二区三区 | 国产精品人妻久久久久久| 观看美女的网站| 一个人看的www免费观看视频| 国产精华一区二区三区| 精品人妻偷拍中文字幕| 神马国产精品三级电影在线观看| 俺也久久电影网| 国产精品1区2区在线观看.| 观看美女的网站| 午夜久久久久精精品| 亚洲欧美日韩无卡精品| 精品一区二区三区视频在线| av福利片在线观看| 此物有八面人人有两片| 长腿黑丝高跟| 亚洲av不卡在线观看| 成人av一区二区三区在线看| 欧美成人一区二区免费高清观看| 久久久久国产精品人妻aⅴ院| 国产精品爽爽va在线观看网站| 精品久久久噜噜| 99久久精品热视频| 亚洲av电影不卡..在线观看| 欧美又色又爽又黄视频| 日韩 亚洲 欧美在线| 女同久久另类99精品国产91| 亚洲av熟女| 国产伦在线观看视频一区| 少妇的逼好多水| 成人综合一区亚洲| 亚洲18禁久久av| 国产大屁股一区二区在线视频| 日本 av在线| 欧美极品一区二区三区四区| 五月伊人婷婷丁香| 老司机福利观看| 国产精品免费一区二区三区在线| 日韩欧美在线乱码| 日本 欧美在线| 12—13女人毛片做爰片一| 欧美丝袜亚洲另类 | 女人被狂操c到高潮| 久久99热这里只有精品18| 日日夜夜操网爽| 国产黄色小视频在线观看| 99视频精品全部免费 在线| 国产美女午夜福利| 久久精品久久久久久噜噜老黄 | 国产精品精品国产色婷婷| 亚洲经典国产精华液单| 熟女人妻精品中文字幕| 搡老岳熟女国产| 国产色爽女视频免费观看| 久久精品综合一区二区三区| 伦理电影大哥的女人| 给我免费播放毛片高清在线观看| 人人妻,人人澡人人爽秒播| 成人亚洲精品av一区二区| 国产精品国产三级国产av玫瑰| 国产精品人妻久久久久久| 色播亚洲综合网| 悠悠久久av| 91精品国产九色| 国产私拍福利视频在线观看| 91在线观看av| 俺也久久电影网| 午夜免费成人在线视频| av黄色大香蕉| 亚洲无线在线观看| 看十八女毛片水多多多| 日韩 亚洲 欧美在线| 男人舔女人下体高潮全视频| 窝窝影院91人妻| av视频在线观看入口| 欧美三级亚洲精品| 又爽又黄无遮挡网站| 久久久久久伊人网av| 18+在线观看网站| 国产精品久久视频播放| 久久久午夜欧美精品| 久久精品国产鲁丝片午夜精品 | 看免费成人av毛片| 国产精品嫩草影院av在线观看 | 一级黄片播放器| 久久99热这里只有精品18| 波多野结衣巨乳人妻| 国产精品女同一区二区软件 | 亚洲av免费在线观看| 免费观看人在逋| 99久久精品一区二区三区| 久久99热这里只有精品18| 一卡2卡三卡四卡精品乱码亚洲| 热99在线观看视频| 亚洲人成网站在线播| 五月伊人婷婷丁香| 久久精品国产亚洲av天美| 国产精品av视频在线免费观看| 国产单亲对白刺激| 日日啪夜夜撸| 在线免费观看不下载黄p国产 | 国产一区二区激情短视频| 中文字幕av在线有码专区| 久久精品影院6| 可以在线观看毛片的网站| 国产精品日韩av在线免费观看| 亚洲国产日韩欧美精品在线观看| 亚洲自偷自拍三级| 精品久久久久久久久久免费视频| 国产私拍福利视频在线观看| 人妻丰满熟妇av一区二区三区| 亚洲精品粉嫩美女一区| 免费观看精品视频网站| 国产一区二区在线av高清观看| 人人妻人人看人人澡| 极品教师在线免费播放| 免费看光身美女| 精品久久久久久久末码| 久久精品91蜜桃| 久9热在线精品视频| 午夜福利高清视频| 99热这里只有是精品在线观看| 亚洲国产精品sss在线观看| 99热这里只有精品一区| 国产精品一及| 窝窝影院91人妻| 18禁在线播放成人免费| 婷婷亚洲欧美| 国产精华一区二区三区| 欧美一区二区精品小视频在线| 非洲黑人性xxxx精品又粗又长| 久久国产乱子免费精品| 别揉我奶头 嗯啊视频| 久久久久久久久久黄片| 人妻制服诱惑在线中文字幕| 国产真实乱freesex| 99久久精品热视频| 色5月婷婷丁香| 1024手机看黄色片| 婷婷六月久久综合丁香| 亚洲成av人片在线播放无| 久久九九热精品免费| 一a级毛片在线观看| 在线国产一区二区在线| 国产亚洲av嫩草精品影院| 黄片wwwwww| 真人做人爱边吃奶动态| 中亚洲国语对白在线视频| 午夜影院日韩av| 久久久精品大字幕| 国产精品久久久久久av不卡| av天堂在线播放| 久久久精品大字幕| 男女视频在线观看网站免费| 国产三级在线视频| 国产色婷婷99| 国产精品久久视频播放| 国产一区二区三区av在线 | 尤物成人国产欧美一区二区三区| 在线观看美女被高潮喷水网站| 91久久精品电影网| 欧美国产日韩亚洲一区| 观看美女的网站| 亚洲专区中文字幕在线| 最近最新中文字幕大全电影3| 亚洲欧美日韩卡通动漫| 欧美又色又爽又黄视频| 亚洲在线观看片| 亚洲国产精品成人综合色| 自拍偷自拍亚洲精品老妇| 99精品在免费线老司机午夜| 嫩草影院入口| 国产真实伦视频高清在线观看 | av视频在线观看入口| 人人妻,人人澡人人爽秒播| 日韩大尺度精品在线看网址|