• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    貴金屬原子與點(diǎn)缺陷石墨烯的鍵增強(qiáng)作用

    2012-12-05 02:27:52解鵬洋莊桂林呂永安王建國李小年
    物理化學(xué)學(xué)報 2012年2期
    關(guān)鍵詞:點(diǎn)缺陷空位物理化學(xué)

    解鵬洋 莊桂林 呂永安 王建國 李小年

    (浙江工業(yè)大學(xué)化學(xué)工程與材料學(xué)院,杭州310014)

    貴金屬原子與點(diǎn)缺陷石墨烯的鍵增強(qiáng)作用

    解鵬洋 莊桂林*呂永安 王建國*李小年

    (浙江工業(yè)大學(xué)化學(xué)工程與材料學(xué)院,杭州310014)

    通過密度泛函理論研究了Ag、Au、Pt原子在完美和點(diǎn)缺陷(包括N摻雜、B摻雜、空位點(diǎn)缺陷)石墨烯上的吸附以及這些體系的界面性質(zhì).研究表明Ag、Au不能在完美的石墨烯上吸附,N、B摻雜增強(qiáng)了三種金屬與石墨烯之間的相互作用.而空位點(diǎn)缺陷誘發(fā)三種金屬在石墨烯上具有強(qiáng)化學(xué)吸附作用.通過電子結(jié)構(gòu)分析發(fā)現(xiàn),N摻雜增強(qiáng)了Au、Pt與C形成的共價鍵,而Au、Ag與B形成了化學(xué)鍵.空位點(diǎn)缺陷不僅是金屬原子的幾何固定點(diǎn),同時也增加了金屬原子和碳原子之間的成鍵.增強(qiáng)貴金屬原子和石墨烯相互作用的順序是:空位點(diǎn)缺陷>>B摻雜>N摻雜.

    密度泛函理論; 石墨烯;金;鉑;銀

    1 Introduction

    Graphene,as an emerging material,has attracted tremendous attention in different research fields since 2004.1-9Noble metal nanoparticles10-13are of great interests due to their unique catalytic properties.Metal nanoparticles supported on graphene nanocomposites,14-20feature the characteristics of both grahpene and metal nanoparticles,particularly notable because they not only inherit their intrinsic properties but also extract some unique cooperative properties,which exhibit promising applications in nanobiotechnology,nanoelectronics,energy storage,catalysis,etc.Therefore,understanding of the interaction between graphene and metal nanoparticles is the first step to realize these applications.21Meanwhile,the interaction between metal adatoms/clusters and graphene also depends on the preparation methods and determines the properties of the formed nanocomposites.

    For metal clusters/low dimensional carbon(such as carbon nanotubes,graphene,fullerene),chemical or physical methods are commonly used to prepare metal/carbon nanocomposities.22-28For the chemical methods,organic compounds or functional groups25,28,29adsorbed on the surface of carbon materials can serve as the anchoring site of these metal clusters.Therefore,the metal nanoparticles adhere to the graphene via these“l(fā)inkers”.The metal/graphene nanocomposites are generally prepared by depositing metal particles on graphene/graphite oxide23or the chemical functionlized graphene30-36sheets.The physical methods are to grow or deposit metal nanoparticles directly onto the carbon nanotubes(CNTs)or grahite/graphene surface via electron beam evaporation,37or thermal evaporation.38,39At present,few experimental studies have been reported on the preparation of metal/graphene nanocomposites with the physical methods.Independent of the preparation methods, the ultimate purpose of these methods is to modify the inert properties of pristine CNTs/grahene,which can be attributed to two types of modifications.One is to modify the properties by the surface species,36and the other is to substitute the lattice carbon with foreign elements33,40-47or form various vacancies.48-50It is well-known that N,B atoms are the only two foreign elements incorporated into an sp2carbon network of CNTs42,51-54or graphene55,56without significantly affecting their geometric structures.

    Several theoretical studies57-62have been conducted on the interaction between metal adatoms or small clusters and the pristine graphene or the graphene with vacancies.These studies show the ionic bonding for metal adatoms of groups I-III elements and covalent bonding for transition metal atoms with d valence electrons,noble metals,and group IV elements58on the pristine graphene.The very weak interaction between Ag,Au and graphene is identified from the previous study.57

    To the best of our knowledge,no systematic theoretical studies of noble metal adatoms or clusters on the point defected, which include B-,N-doping and a single vacancy defect,graphene have been reported.In this study,we investigated the interactions between three typical noble metal adatoms(Ag,Au, and Pt)and point defected graphene by means of density functional theory(DFT)calculations,which is further compared with these on the pristine graphene.

    2 Calculation methods

    All calculations were carried out under the generalized gradient approximation(GGA)with the Perdew-Burke-Ernzerhof (PBE)63functional,within a plane wave-pseudopotential scheme,by using the PWSCF package in Quantum ESPRESSO.64The ultrasoft pseudopotentials65were used to describe electron-ion interactions.The kinetic energy cutoffs for the smooth part of the electronic wave function and the augmented electron density were 25 and 200 Ry(1 Ry=13.6056923 eV), respectively.In this study,by using the(6,6)graphene,the point-defect concentration is about 2.7% (molar fraction), which represents realistic experimental conditions.The pristine,N-,B-doping graphene,and graphene with vacancies are termed as Gr,N-Gr,B-Gr,and vac-Gr,respectively.The Brillouin zone integration was performed with the k points generated for 6×6×1 Monkhorst-Pack grid,66which were convergent by using 8×8×1,10×10×1,and 12×12×1 Monkhorst-Pack grids.All the atoms involved in calculations were fully relaxed until each component of the residual force on each atom was smaller than 0.3 eV·nm-1.

    The binding energy(Eb)of metal adatom on the graphene was typically calculated as follows:

    where EM1,EGr,and E(M1+Gr)represent the energies of the most stable gas phase metal adatom,the graphene,and the combined systems of metal adatom and graphene,respectively.

    3 Results and discussion

    3.1 Electronic properties of graphene

    In order to investigate the effect of point defect on the electronic properties of graphene,the band structures,density of states(DOS),and charge differences were calculated,as shown in Fig.1.Inspecting of the band structures and DOS of Fig.1,it can be found that the electronic bands of B-,N-doped graphene feature similar dispersive characteristics to that of pristine one,but both of the Fermi levels are shifted up by-0.57 and+0.53 eV.The obtained band gaps of B-and N-Gr are still zero.Therefore,the B-and N-Gr can be attributed to p-type and n-type semiconductors,comparable to those in the reported studies.67On the other hand,vac-Gr shows different electronic characteristics from others,in which the band gap rises from zero to 0.77 eV.This may be due to that the broken sp2configuration in vac-Gr induces the impurity states consisting of dangling sp3orbitals of carbons,which slightly shift upto conduction band.The charge density differenceswhere the doping is the boron,nitrogen,and carbon of B-,N-Gr and pristine graphene;orwhere c2 is the 2-coordinate carbon in vac-Gr,respectively)induced by the B-or N-doping and vacancies are also shown in Fig.1. The red and blue colors represent the electron accumulation and depletion,respectively.It can be seen that the B,N show the electron deficiency and accumulation.And B-,N-doping also induce the charge redistribution on the graphene,which can be confirmed from L?wdin analysis.The charges of B and N are 0.12e and-0.02e,which is consistent with the analysis of DOS.On the pristine graphene,the charge is uniformly distributed on the carbon atoms.While for vac-Gr,the charge is depleted around the carbon vacancies.

    3.2 Binding of metal adatoms on grapheme

    As the reference systems,we also investigated the adhesion of Ag,Au,and Pt adatoms on the pristine graphene.Due to the very similar adhesion properties of Ag and Au,Fig.2 only shows the binding energies and optimized configurations of the most and the second stable structures of Au and Pt on the investigated graphene.We found that Ag(Eb=0.02 eV)and Au(Eb= 0.20 eV)adatoms are very weakly bound on the pristine graphene,which are in agreement with the available literature.68The geometries of graphene have no obvious changes after the adsorption of Au and Ag.In contrast,Pt shows much stronger adhesion properties.The most and the second stable binding sites are the bridge of two carbons(Eb=1.90 eV)and a top of one carbon(Eb=1.76 eV),respectively.It can be seen that the weak bonding between metal clusters(especially Ag and Au) and graphene must be strengthened in order to utilize these composited nanomaterials.In this study,two kinds of methods, including removing one carbon and substituting one carbon by the B,N elements,have been taken into account.

    Fig.1 Band structures and total density of states(A)and charge density differences(B)of(a)Gr,(b)N-Gr,(c)B-Gr,and(d)vac-Gr

    Fig.2 Optimized geometries and binding energies(in the parentheses)of the most and second stable structures ofAu and Pt adatoms on(a)Gr,(b)N-Gr,(c)B-Gr,and(d)vac-Gr

    3.3 Binding of metal adatoms on N-,B-,vac-Gr

    It can be seen that the weak bonding between Au,Ag and pristine graphene is caused by the inert electronic properties of graphene.On the other hand,the electronic properties of graphene can be modified by the B-,N-doping and vacancies.In this section,we further investigated the adhesion and binding of noble metal adatoms on the B-,N-,and vac-Gr.For N-Gr, the most favorable binding site is the top of o-carbon atoms (ortho-carbon)rather than nitrogen,in which the binding energies are 0.13 and 0.84 eV for Ag and Au adatoms,respectively.For Au adatoms,the physisorption on the pristine graphene turns to weak chemisorption on the N-Gr,in which the distances between Au and carbon are 0.320 and 0.224 nm.The most and the second stable binding sites of Pt adatoms on N-Gr are both bridge of two carbon atoms.The most favorable binding site of Pt1on N-Gr is the bridge of o-and p-carbon atoms(paracarbon)of N.The second favorable binding site of Pt1on N-Gr is the bridge of p-and m-carbon(meta-carbon)atoms of N. The binding energies are 2.25 and 2.05 eV for the most and the second Pt adatoms,which are about 0.35 and 0.15 eV larger than that on pristine graphene,respectively.For Ag and Au on B-Gr,the most favorable binding sites are both top of boron atoms,in which the binding energies are 1.11 and 1.29 eV,re-spectively.For Pt on B-Gr,the most and the second favorable sites prefer the bridge of B and o-carbon and the top of B with the binding energies of 2.65 and 2.43 eV,respectively.On vac-Gr,the most favorable binding sites of metal adatoms are all located directly at the vacancies,in which metal adatoms bond with three carbon atoms.The corresponding bond lengths of M―C(M:metal adatoms)are 0.230,0.209,and 0.194 nm for Ag,Au,and Pt adatoms,respectively.The binding energies of Ag,Au,and Pt adatoms are 1.80,2.36,and 7.53 eV,respectively,which increase at least about four times larger than those on pristine graphene.

    It is observed that the binding energies for the most and the second stable noble metal adatoms on N-,B-,and vac-Gr increase compared with that on the pristine graphene(Fig.2). Moreover,the initial geometries on the different sites of N-, B-,and vac-Gr(as depicted in Fig.3(b))were taken into account,and the resulting binding energies are shown in Fig.3(a). Firstly,we found that the binding energies of these metal adatoms are nearly same when they are located at the forth carbon away from the B,N,and vacancies,which is nearly the same as that on the pristine graphene.Secondly,on the B-and vac-Gra,Au and Pt always move back into the favorable binding site,even when they are initially located at the sites slightly away from the B-and vacancy about two carbons.

    The most stable binding energies of the three kinds of noble metal on four different types of graphene are shown in Fig.4.It can be seen that N-,B-doping,and vacancy enhance bonding between metal adatoms and graphene.The enhanced role increases according to this order:N-doping,B-doping,and vacancy.For Ag and Au,the weak physisorption on the pristine graphene becomes the chemisorption by these modifications. Especially,the point defects(vacancies)increase the binding energies of the three kinds of metal adatoms at least four times larger than that on the pristine graphene.

    Fig.3 (a)Binding energy ofAu and Pt adatoms on the different sites of N-Gr,B-Gr,and vac-Gr;(b)illustration of different binding sites of N-Gr,B-Gr,and vac-Gr

    Fig.4 Binding energy of the most stableAg,Au,and Pt adatoms on the Gr,N-Gr,B-Gr,and vac-Gr

    3.4 Different mechanisms to enhance the bonding of metal adatoms on N-,B-,vac-Gr

    The interactions between three noble metal adatoms and graphene can be enhanced by the B-,N-doping and point-defected carbon vacancy.But the most favorable sites and the enhanced degree are very different.Therefore,it is necessary to investigate the binding mechanisms of the three kinds of metal adatoms on different forms of graphene.

    Projected density of states(PDOS)of metal adatoms and the atoms directly bonded with metal on pristine,N-Gr,B-Gr,and graphene with vacancies are shown in Fig.5.For the case of pristine graphene,there is no overlap between Au and carbon, while some hybridization between p band of carbon and d band of Pt is found at 1.8 eV above Fermi level.Furthermore, inspection of the PDOS of Au or Pt/N-Gr reveals that the dangling 2p bands of nitrogen anchor at the vicinity of Fermi level.Compared with that on pristine graphene,there is little influence of nitrogen on the PDOS of Pt and carbon.While nitrogen induces some hybridization between carbon p orbital and Au d orbital.It is interesting to observe that there is no overlap between the bands of boron and Au at Fermi level,while the 2p band of boron at Fermi level can overlap with the d band of Pt. It may be explained that the binding energy of Pt/B-Gr is larger than that of Au/B-Gr.In addition,scrutinizing PDOS of Au or Pt/vac-Gr can find that strong hybridization between p band of the carbon and d band of Au or Pt exists on the vac-Gr,resulting in the strong adhesion of metal adatoms.The PDOS differences of Au and Pt/vac-Gr at the Fermi level lead to larger binding energy of Pt/vac-Gr than that of Au/vac-Gr.Generally, it can be concluded that(1)doping N atom,B atom or vacancy defect acting as anchoring site can effectively enhance the interaction between Au or Pt and graphene;(2)among three types of adsorption case,Pt exhibits much stronger interaction with doped graphene than that ofAu.

    The charge density differences induced by the adsorbed metal adatoms on pristine graphene,N-Gr,B-Gr,and graphene with vacancy are shown in Fig.6.We find that Ag adatoms have very similar properties to Au ones.Therefore,only the charge differences of Au/graphene and Pt/graphene system have been shown in Fig.6.Firstly,there are no charge transfers between Au and pristine graphene.The covalent bond is formed between Pt and carbon of pristine graphene.Secondly, N-doping does not change the bond characters between Pt and graphene,but enhances the interaction a little bitter.However, for Au,N-,B-doping plays a more important role than Pt.The covalent bond between Au and o-carbon of N is formed on N-Gr.The bond between Au and B is formed on B-Gr.The formation of these bonds changes the adhesion properties of Au on graphene,which results from the very weak physisorption to moderate chemisorption of Au.Thirdly,the role of vacancies on the enhanced bonding between metal adatoms and graphene is much stronger than N-,B-doping.It is observed that vacancies are not only the geometrically anchoring site but also the electron redistribution sites.However,the N-,B-doping mainly only induces the electron redistribution within the graphene.

    Fig.5 Projected density of states of metal(d orbital)and the bonded atoms(carbon,nitrogen,or boron) (p orbital)in metal adatoms/grapheneZero mark is Fermi level.

    Fig.6 Charge density differences of metal/graphene induced byAu and Pt adatomsThe red and blue colors represent for the electron accumulation and depletion,respectively.

    4 Conclusions

    By means of density functional theory calculations,our study demonstrates that the adhesion of noble metal(Au,Ag, and Pt)adatoms on the graphene can be enhanced either by the N-,B-doping or by the vacancies.For the same metal,the enhanced role in the binding energy increases in this order: N-doping,B-doping,and vacancies.The N-,B-doping leads to the enhancement of the covalent bond between Au and carbon atoms and formation of the chemical bond between Au or Ag and B,respectively.While point vacancies mainly act as the geometrically anchoring sites of metal adatoms and the electron reservoir.On the same graphene,the binding energies of the three kinds of metal adatoms increase in this order:Ag,Au, and Pt.The enhanced bonding between noble metal clusters and graphene will play a vital role in the application of noble metal clusters/graphene composite materials.

    (1) Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.; Zhang,Y.;Dubonos,S.V.;Grigorieva,I.V.;Firsov,A.A. Science 2004,306,666.

    (2) Li,H.;Ma,X.Y.;Dong,J.;Qian,W.P.Anal.Chem.2009,81, 8916.

    (3) Li,Y.F.;Zhou,Z.;Shen,P.W.;Chen,Z.F.ACS Nano 2009,3, 1952.

    (4) Saha,B.;Shindo,S.;Irle,S.;Morokuma,K.ACS Nano 2009,3, 2241.

    (5) Xu,X.L.;Zhou,G.L.;Li,H.X.;Liu,Q.;Zhang,S.;Kong,J. L.Talanta 2009,78,26.

    (6)Yang,Y.H.;Sun,H.J.;Peng,T.J.;Huang,Q.Acta Phys.-Chim. Sin.2011,27,736.[楊勇輝,孫紅娟,彭同江,黃 橋.物理化學(xué)學(xué)報,2011,27,736.]

    (7) Hu,Y.J.;Jin,J.;Zhang,H.;Wu,P.;Cai,C.X.Acta Phys.-Chim.Sin.2010,26,2073.[胡耀娟,金 娟,張 卉,吳 萍,蔡稱心.物理化學(xué)學(xué)報,2010,26,2073.]

    (8) Xu,N.;Kong,F.J.;Wang,Y.Z.Acta Phys.-Chim.Sin.2011, 27,559.[徐 寧,孔凡杰,王延宗.物理化學(xué)學(xué)報,2011,27, 559.]

    (9) Sun,D.L.;Peng,S.L.;Ouyang,J.;Ouyang,F.P.Acta Phys.-Chim.Sin.2011,27,1103.[孫大立,彭盛霖,歐陽俊,歐陽方平.物理化學(xué)學(xué)報,2011,27,1103.]

    (10) Zhang,J.;Sasaki,K.;Sutter,E.;Adzic,R.R.Science 2007,315, 220.

    (11)Yoon,B.;Hakkinen,H.;Landman,U.;Worz,A.S.;Antonietti, J.M.;Abbet,S.;Judai,K.;Heiz,U.Science 2005,307,403.

    (12) Matthey,D.;Wang,J.G.;Wendt,S.;Matthiesen,J.;Schaub,R.; Laegsgaard,E.;Hammer,B.;Besenbacher,F.Science 2007, 315,1692.

    (13) DeVries,G.A.;Brunnbauer,M.;Hu,Y.;Jackson,A.M.;Long, B.;Neltner,B.T.;Uzun,O.;Wunsch,B.H.;Stellacci,F. Science 2007,315,358.

    (14) Park,S.;Lee,K.S.;Bozoklu,G.;Cai,W.;Nguyen,S.T.;Ruoff, R.S.ACS Nano 2008,2,572

    (15) Lightcap,I.V.;Kosel,T.H.;Kamat,P.V.Nano Lett.2010,10, 577.

    (16)Li,B.;Lu,G.;Zhou,X.Z.;Cao,X.H.;Boey,F.;Zhang,H. Langmuir 2009,25,10455.

    (17) Klusek,Z.;Dabrowski,P.;Kowalczyk,P.;Kozlowski,W.; Olejniczak,W.;Blake,P.;Szybowicz,M.;Runka,T.Appl.Phys. Lett.2009,95,113114.

    (18) Li,Y.X.;Wei,Z.D.;Zhao,Q.L.;Ding,W.;Zhang,Q.;Chen,S. G.Acta Phys.-Chim.Sin.2011,27,858.[李云霞,魏子棟,趙巧玲,丁 煒,張 騫,陳四國.物理化學(xué)學(xué)報,2011,27,858.]

    (19) Wu,X.Q.;Zong,R.L.;Mu,H.J.;Zhu,Y.F.Acta Phys.-Chim. Sin.2010,26,3002.[吳小琴,宗瑞隆,牟豪杰,朱永法.物理化學(xué)學(xué)報,2010,26,3002.]

    (20)Wen,Z.L.;Yang,S.D.;Song,Q.J.;Hao,L.;Zhang,X.G.Acta Phys.-Chim.Sin.2010,26,1570.[溫祝亮,楊蘇東,宋啟軍,郝 亮,張校剛.物理化學(xué)學(xué)報,2010,26,1570.]

    (21) Sutter,P.;Hybertsen,M.S.;Sadowski,J.T.;Sutter,E.Nano Lett.2009,9,2654.

    (22)Xu,C.;Wang,X.;Zhu,J.W.J.Phys.Chem.C 2008,112,19841.

    (23) Jasuja,K.;Berry,V.ACS Nano 2009,3,2358.

    (24) Fullam,S.;Cottell,D.;Rensmo,H.;Fitzmaurice,D.Adv.Mater. 2000,12,1430.

    (25) Carrillo,A.;Swartz,J.A.;Gamba,J.M.;Kane,R.S.; Chakrapani,N.;Wei,B.Q.;Ajayan,P.M.Nano Lett.2003,3, 1437.

    (26) Li,J.;Moskovits,M.;Haslett,T.L.Chem.Mater.1998,10, 1963.

    (27)Azamian,B.R.;Coleman,K.S.;Davis,J.J.;Hanson,N.; Green,M.L.H.Chem.Commun.2002,366.

    (28) Marsh,D.H.;Rance,G.A.;Whitby,R.J.;Giustiniano,F.; Khlobystov,A.N.J.Mater.Chem.2008,18,2249.

    (29)Liu,L.;Wang,T.X.;Li,J.X.;Guo,Z.X.;Dai,L.M.;Zhang, D.Q.;Zhu,D.B.Chem.Phys.Lett.2003,367,747.

    (30) Li,J.;Liu,C.Y.Eur.J.Inorg.Chem.2010,8,1244.

    (31) Pasricha,R.;Gupta,S.;Srivastava,A.K.Small 2009,5,2253.

    (32) Shen,J.F.;Shi,M.;Li,N.;Yan,B.;Ma,H.W.;Hu,Y.Z.;Ye, M.X.Nano Res.2010,3,339.

    (33)Wen,Y.Q.;Xing,F.F.;He,S.J.;Song,S.P.;Wang,L.H.; Long,Y.T.;Li,D.;Fan,C.H.Chem.Commun.2010,46,2596.

    (34) Liu,S.;Wang,J.Q.;Zeng,J.;Ou,J.F.;Li,Z.P.;Liu,X.H.; Yang,S.R.J.Power Sources 2010,195,4628.

    (35)Liu,W.C.;Lin,H.K.;Chen,Y.L.;Lee,C.Y.;Chiu,H.T.ACS Nano 2010,4,4149.

    (36)Kim,Y.K.;Na,H.K.;Min,D.H.Langmuir 2010,26,13065.

    (37) Zhang,Y.;Franklin,N.W.;Chen,R.J.;Dai,H.J.Chem.Phys. Lett.2000,331,35.

    (38) Gingery,D.;Buhlmann,P.Carbon 2008,46,1966.

    (39) Bittencourt,C.;Felten,A.;Douhard,B.;Ghijsen,J.;Johnson,R. L.;Drube,W.;Pireaux,J.J.Chem.Phys.2006,328,385.

    (40)Wei,D.C.;Liu,Y.Q.;Wang,Y.;Zhang,H.L.;Huang,L.P.;Yu, G.Nano Lett.2009,9,1752.

    (41)Ghosh,K.;Kumar,M.;Maruyama,T.;Ando,Y.J.Mater.Chem. 2010,20,4128.

    (42) Liang,Y.X.;Shui,M.;Li,R.S.Acta Phys.-Chim.Sin.2007, 23,1647.[梁云霄,水 淼,李榕生.物理化學(xué)學(xué)報,2007,23, 1647.]

    (43) Chi,M.;Zhao,Y.P.Comp.Mater.Sci.2009,46,1085.

    (44) Kang,J.;Deng,H.X.;Li,S.S.;Li,J.B.J.Phys.:Condens. Matter 2011,23,346001.

    (45) Jung,N.;Kim,B.;Crowther,A.C.;Kim,N.;Nuckolls,C.; Brus,L.ACS Nano 2011,5,5708.

    (46)Lv,Y.A.;Zhuang,G.L.;Wang,J.G.;Jia,Y.B.;Xie,Q.Phys. Chem.Chem.Phys.2011,13,12472.

    (47) Geng,D.S.;Yang,S.L.;Zhang,Y.;Yang,J.L.;Liu,J.;Li,R. Y.;Sham,T.K.;Sun,X.L.;Ye,S.Y.;Knights,S.Appl.Surf. Sci.2011,257,9193.

    (48) Carlsson,J.M.;Hanke,F.;Linic,S.;Scheffler,M.Phys.Rev. Lett.2009,102,166104.

    (49) Jack,R.;Sen,D.;Buehler,M.J.J.Comput.Theor.Nanos.2010, 7,354.

    (50) Palacios,J.J.;Fernandez-Rossier,J.;Brey,L.Phys.Rev.B 2008,77,195428.

    (51) Liu,X.M.;Romero,H.E.;Gutierrez,H.R.;Adu,K.;Eklund,P. C.Nano Lett.2008,8,2613.

    (52) Williams,Q.L.;Liu,X.;Walters,W.;Zhou,J.G.;Edwards,T. Y.;Smith,F.L.Appl.Phys.Lett.2007,91,143116.

    (53)Lv,Y.A.;Cui,Y.H.;Xiang,Y.Z.;Wang,J.G.;Li,X.N.Comp. Mater.Sci.2010,48,621.

    (54) Lee,D.H.;Lee,W.J.;Kim,S.O.Nano Lett.2009,9,1427.

    (55) Late,D.J.;Ghosh,A.;Subrahmanyam,K.S.;Panchakarla,L. S.;Krupanidhi,S.B.;Rao,C.N.R.Solid State Commun.2010, 150,734.

    (56)Dai,X.Q.;Li,Y.H.;Zhao,J.H.;Tang,Y.N.Acta Phys.-Chim. Sin.2011,27,369.[戴憲起,李艷慧,趙建華,唐亞楠.物理化學(xué)學(xué)報,2011,27,369.]

    (57)Hu,L.B.;Hu,X.R.;Wu,X.B.;Du,C.L.;Dai,Y.C.;Deng,J. B.Phys.B-Condens.Matter 2010,405,3337.

    (58) Chan,K.T.;Neaton,J.B.;Cohen,M.L.Phys.Rev.B 2008,77, 235430.

    (59) Boukhvalov,D.W.;Katsnelson,M.I.Appl.Phys.Lett.2009, 95,023109.

    (60)Akturk,O.U.;Tomak,M.Phys.Rev.B 2009,80,085417

    (61) Valencia,H.;Gil,A.;Frapper,G.J.Phys.Chem.C 2010,114, 14141.

    (62) Rodriguez-Manzo,J.A.;Cretu,O.;Banhart,F.ACS Nano 2010, 4,3422.

    (63) Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.B 1996,77, 3865.

    (64) Giannozzi,P.;Baroni,S.;Bonini,N.;et al.J.Phys.:Condens. Matter 2009,21,395502.

    (65) Vanderbilt,D.Phys.Rev.B 1990,41,7892.

    (66) Monkhorst,H.J.;Pack,J.D.Phys.Rev.B 1976,13,5188.

    (67) Huang,B.Phys.Lett.A 2011,375,845.

    (68)Wang,J.G.;Lv,Y.A.;Li,X.N.;Dong,M.D.J.Phys.Chem.C 2009,113,890.

    July 22,2011;Revised:November 1,2011;Published on Web:November 2,2011.

    Enhanced Bonding between Noble Metal Adatoms and Graphene with Point Defects

    XIE Peng-Yang ZHUANG Gui-Lin*LU¨Yong-An WANG Jian-Guo*LI Xiao-Nian
    (College of Chemical Engineering and Materials Science,Zhejiang University of Technology,Hangzhou 310014,P.R.China)

    The adhesion of Ag,Au,and Pt adatoms on pristine graphene and that containing point defects including N-substitution,B-substitution,and a single vacancy,as well as the interfacial properties of these systems,were investigated using density functional theory.The calculations show that Ag and Au cannot bind to pristine graphene.In contrast,B and N-doping increase the interaction between Ag,Au,or Pt metal adatoms and graphene,while a vacancy defect leads to the strong chemisorption of metal adatoms on graphene.Based on electronic structural analysis,N-doping strengthens the covalent bond between Au or Pt and carbon atoms,while B-doping leads to the formation of a chemical bond between Au or Ag and B. The vacancy defect acts as an anchoring site for metal adatoms and increases the bonding between metal adatoms and carbon atoms.Therefore,three types of point defect can effectively enhance the interaction between noble metal adatoms and graphene in the sequence:vacancy defect>>B-doping>N-doping.

    Density functional theory;Graphene;Au;Pt;Ag

    10.3866/PKU.WHXB201111021www.whxb.pku.edu.cn

    *Corresponding authors.WANG Jian-Guo,Email:jgw@zjut.edu.cn.ZHUANG Gui-Lin,Email:glzhuang@zjut.edu.cn;Tel:+86-571-88871037. The project was supported by the National Natural Science Foundation of China(20906081).

    國家自然科學(xué)基金(20906081)資助項(xiàng)目

    O641

    猜你喜歡
    點(diǎn)缺陷空位物理化學(xué)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    金紅石型TiO2中四種點(diǎn)缺陷態(tài)研究
    Fe-Cr-Ni合金中點(diǎn)缺陷形成及相互作用的第一性原理研究
    GaN中質(zhì)子輻照損傷的分子動力學(xué)模擬研究
    Zn空位缺陷長余輝發(fā)光材料Zn1-δAl2O4-δ的研究
    Chemical Concepts from Density Functional Theory
    空位
    讀者欣賞(2014年6期)2014-07-03 03:00:48
    說者無心,聽者有意——片談?wù)Z言交際中的空位對舉
    語文知識(2014年2期)2014-02-28 21:59:21
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    女的被弄到高潮叫床怎么办| 深夜a级毛片| 国产爱豆传媒在线观看| 国产一级毛片七仙女欲春2| 又粗又爽又猛毛片免费看| 国内揄拍国产精品人妻在线| 一边亲一边摸免费视频| 最近中文字幕高清免费大全6| 欧美成人a在线观看| 变态另类丝袜制服| 久久久久久国产a免费观看| 熟女电影av网| 日本黄色片子视频| 免费看日本二区| 中文字幕亚洲精品专区| 老女人水多毛片| 亚洲人成网站在线播| 青春草国产在线视频| 美女高潮的动态| 中文字幕精品亚洲无线码一区| 亚洲国产精品成人久久小说| 欧美另类亚洲清纯唯美| 久久久久久久久中文| 99久久九九国产精品国产免费| 久久久久免费精品人妻一区二区| 纵有疾风起免费观看全集完整版 | 老师上课跳d突然被开到最大视频| 人妻少妇偷人精品九色| 精品久久久久久久末码| 国产成人精品婷婷| 97人妻精品一区二区三区麻豆| 一个人看视频在线观看www免费| 国产伦一二天堂av在线观看| 国产 一区 欧美 日韩| 高清毛片免费看| 亚洲国产精品国产精品| 国产成人aa在线观看| 看黄色毛片网站| 成人亚洲精品av一区二区| 久久草成人影院| 99热6这里只有精品| 国产精华一区二区三区| 晚上一个人看的免费电影| 国产精品麻豆人妻色哟哟久久 | 久久精品国产鲁丝片午夜精品| 国产免费又黄又爽又色| 熟妇人妻久久中文字幕3abv| 成年女人看的毛片在线观看| 国产av码专区亚洲av| 亚洲激情五月婷婷啪啪| 欧美日韩在线观看h| 国产69精品久久久久777片| 亚洲欧美中文字幕日韩二区| 欧美xxxx黑人xx丫x性爽| 插阴视频在线观看视频| 国产精品久久久久久久久免| 国产伦精品一区二区三区四那| 日本黄色视频三级网站网址| 国产一区二区在线观看日韩| 国产亚洲5aaaaa淫片| 精品久久久久久电影网 | 欧美性感艳星| 六月丁香七月| 欧美3d第一页| 联通29元200g的流量卡| 夫妻性生交免费视频一级片| 日本午夜av视频| 欧美一区二区国产精品久久精品| 久久午夜福利片| 午夜免费激情av| 极品教师在线视频| 国产精品99久久久久久久久| 欧美一区二区精品小视频在线| av免费观看日本| 午夜日本视频在线| 国产精品久久久久久精品电影| 女人十人毛片免费观看3o分钟| 国产黄片视频在线免费观看| 精品久久久久久久末码| 日韩亚洲欧美综合| 老司机影院成人| 一级黄片播放器| 最新中文字幕久久久久| 日韩一区二区视频免费看| 波多野结衣巨乳人妻| 日韩,欧美,国产一区二区三区 | 91aial.com中文字幕在线观看| 亚洲精品,欧美精品| 精品国产三级普通话版| 久久精品影院6| 床上黄色一级片| 久久韩国三级中文字幕| 国产乱来视频区| 国产在线一区二区三区精 | 一边摸一边做爽爽视频免费| 精品人妻偷拍中文字幕| 亚洲av欧美aⅴ国产| 国产极品天堂在线| 国产一区二区三区av在线| 精品久久久久久电影网| xxx大片免费视频| 国产黄色免费在线视频| 国产精品久久久久久久久免| 久久久久久人人人人人| 久久久a久久爽久久v久久| 18禁国产床啪视频网站| 久久鲁丝午夜福利片| 久久精品国产亚洲av涩爱| 日韩,欧美,国产一区二区三区| 看十八女毛片水多多多| 另类亚洲欧美激情| 久久青草综合色| 美女xxoo啪啪120秒动态图| 日日爽夜夜爽网站| 人妻少妇偷人精品九色| 亚洲国产欧美日韩在线播放| 天天躁夜夜躁狠狠躁躁| 欧美变态另类bdsm刘玥| 美女视频免费永久观看网站| 久久精品久久久久久噜噜老黄| 欧美日韩视频精品一区| 成人国语在线视频| 在线观看三级黄色| 一本—道久久a久久精品蜜桃钙片| 精品午夜福利在线看| 亚洲国产精品一区三区| 成人无遮挡网站| 久久99热6这里只有精品| 亚洲少妇的诱惑av| 天天影视国产精品| 欧美 日韩 精品 国产| 777米奇影视久久| 亚洲欧洲日产国产| √禁漫天堂资源中文www| 久久午夜综合久久蜜桃| 国产免费一区二区三区四区乱码| 欧美精品亚洲一区二区| 国产成人欧美| 成人二区视频| www.色视频.com| 成人国产av品久久久| 丰满少妇做爰视频| www日本在线高清视频| 一个人免费看片子| 老司机影院毛片| 两性夫妻黄色片 | 男女国产视频网站| 美国免费a级毛片| 乱码一卡2卡4卡精品| 欧美激情 高清一区二区三区| 1024视频免费在线观看| 亚洲国产av新网站| 国产激情久久老熟女| 天美传媒精品一区二区| 久久国产精品大桥未久av| 国产成人精品无人区| 日本免费在线观看一区| 2022亚洲国产成人精品| 制服诱惑二区| 少妇人妻 视频| 18禁裸乳无遮挡动漫免费视频| xxx大片免费视频| 王馨瑶露胸无遮挡在线观看| 国产亚洲最大av| www日本在线高清视频| 国产乱人偷精品视频| 99re6热这里在线精品视频| 久久久亚洲精品成人影院| 男人操女人黄网站| 在线观看美女被高潮喷水网站| 国产精品久久久久成人av| 18禁在线无遮挡免费观看视频| 中文字幕人妻熟女乱码| 男的添女的下面高潮视频| 搡女人真爽免费视频火全软件| 大片电影免费在线观看免费| 欧美日韩视频高清一区二区三区二| 久久99热这里只频精品6学生| 久久人人97超碰香蕉20202| 精品国产露脸久久av麻豆| 国产精品人妻久久久影院| 亚洲国产最新在线播放| 亚洲成人一二三区av| 国产淫语在线视频| 精品国产一区二区三区久久久樱花| 欧美日韩视频精品一区| 亚洲精品久久午夜乱码| 中文字幕制服av| 日韩,欧美,国产一区二区三区| 国产精品久久久久久久电影| 国产精品一区二区在线观看99| 满18在线观看网站| 日韩中字成人| 中国美白少妇内射xxxbb| 飞空精品影院首页| 日韩精品免费视频一区二区三区 | 免费观看在线日韩| 精品国产一区二区久久| 色吧在线观看| 国产免费视频播放在线视频| 久久午夜综合久久蜜桃| 永久网站在线| 超色免费av| 激情五月婷婷亚洲| 美女xxoo啪啪120秒动态图| 国产精品一区www在线观看| 午夜影院在线不卡| 99re6热这里在线精品视频| 汤姆久久久久久久影院中文字幕| 亚洲欧洲日产国产| 春色校园在线视频观看| 亚洲国产av新网站| 中文字幕另类日韩欧美亚洲嫩草| 最新的欧美精品一区二区| 日本vs欧美在线观看视频| 国产精品久久久久久av不卡| 久久精品国产鲁丝片午夜精品| 日韩熟女老妇一区二区性免费视频| 国产极品天堂在线| 久久久久精品久久久久真实原创| 成人亚洲精品一区在线观看| 97在线人人人人妻| 国产成人一区二区在线| 在线看a的网站| 观看av在线不卡| 亚洲综合色网址| 久久 成人 亚洲| 国产黄色视频一区二区在线观看| 丝袜喷水一区| 国产精品.久久久| 欧美日韩成人在线一区二区| 女人精品久久久久毛片| 超色免费av| 免费av中文字幕在线| 狂野欧美激情性bbbbbb| 免费黄频网站在线观看国产| 香蕉丝袜av| 日韩中文字幕视频在线看片| 春色校园在线视频观看| 性色av一级| 午夜福利在线观看免费完整高清在| 午夜福利在线观看免费完整高清在| 搡女人真爽免费视频火全软件| 国产欧美另类精品又又久久亚洲欧美| 亚洲四区av| 成人午夜精彩视频在线观看| 九九在线视频观看精品| 99久久中文字幕三级久久日本| 九色成人免费人妻av| 日韩av在线免费看完整版不卡| 日韩av不卡免费在线播放| 欧美性感艳星| 美女视频免费永久观看网站| 久久久久久久久久成人| 国产精品一区二区在线观看99| 午夜久久久在线观看| 亚洲国产成人一精品久久久| 男女免费视频国产| 国产精品一区二区在线不卡| 三上悠亚av全集在线观看| 你懂的网址亚洲精品在线观看| 男女高潮啪啪啪动态图| 另类精品久久| 69精品国产乱码久久久| 一级毛片电影观看| 国产精品蜜桃在线观看| 成人亚洲精品一区在线观看| 十分钟在线观看高清视频www| 亚洲婷婷狠狠爱综合网| 亚洲av综合色区一区| 亚洲av在线观看美女高潮| 90打野战视频偷拍视频| 五月伊人婷婷丁香| 黄片播放在线免费| 精品人妻一区二区三区麻豆| 男女下面插进去视频免费观看 | 纯流量卡能插随身wifi吗| av视频免费观看在线观看| 久久99一区二区三区| 成人国语在线视频| videossex国产| 国产深夜福利视频在线观看| 男女下面插进去视频免费观看 | 国产色婷婷99| 永久免费av网站大全| www.熟女人妻精品国产 | 如日韩欧美国产精品一区二区三区| 看免费av毛片| 久久久国产欧美日韩av| 视频在线观看一区二区三区| 色视频在线一区二区三区| 亚洲少妇的诱惑av| 国产精品一区二区在线观看99| 久久久久精品人妻al黑| 哪个播放器可以免费观看大片| 国产精品久久久久久av不卡| 免费人成在线观看视频色| 国产 一区精品| 高清不卡的av网站| 亚洲伊人色综图| 一级毛片黄色毛片免费观看视频| 欧美精品国产亚洲| 国产精品熟女久久久久浪| 热99久久久久精品小说推荐| 天天操日日干夜夜撸| 日本wwww免费看| 我要看黄色一级片免费的| 国产色婷婷99| 1024视频免费在线观看| 在线观看免费高清a一片| 久久久a久久爽久久v久久| 午夜福利在线观看免费完整高清在| 男女边吃奶边做爰视频| 王馨瑶露胸无遮挡在线观看| 国产在线一区二区三区精| 90打野战视频偷拍视频| 91国产中文字幕| 精品第一国产精品| 亚洲精品国产av蜜桃| 在线天堂最新版资源| 国产精品欧美亚洲77777| 国产精品国产三级国产专区5o| 久久久国产精品麻豆| 亚洲成国产人片在线观看| 美女国产高潮福利片在线看| 精品人妻在线不人妻| 成人手机av| 男男h啪啪无遮挡| 一个人免费看片子| 国产极品天堂在线| 亚洲高清免费不卡视频| 在线观看一区二区三区激情| 国产黄色免费在线视频| 春色校园在线视频观看| 久久人人爽人人片av| 久久久国产精品麻豆| 色吧在线观看| 国产精品国产三级国产专区5o| 免费av不卡在线播放| 久久人人爽av亚洲精品天堂| 天天躁夜夜躁狠狠躁躁| 国产极品天堂在线| 国产亚洲精品久久久com| 国产精品不卡视频一区二区| 亚洲av男天堂| 亚洲欧美日韩另类电影网站| 亚洲,欧美精品.| 国产国语露脸激情在线看| 亚洲欧美清纯卡通| 国产不卡av网站在线观看| 国产国语露脸激情在线看| 久久久久精品性色| 黄色配什么色好看| 一级片'在线观看视频| 国产精品久久久久久久久免| 色网站视频免费| av天堂久久9| 成年av动漫网址| 精品福利永久在线观看| 中国国产av一级| 中文字幕制服av| 日本-黄色视频高清免费观看| 亚洲色图 男人天堂 中文字幕 | 国产麻豆69| 久久午夜福利片| 一区二区日韩欧美中文字幕 | av卡一久久| 久久精品国产a三级三级三级| 看十八女毛片水多多多| 桃花免费在线播放| 亚洲五月色婷婷综合| 国产av一区二区精品久久| 免费观看a级毛片全部| 日本欧美国产在线视频| 少妇的逼水好多| 视频区图区小说| 我要看黄色一级片免费的| 亚洲在久久综合| √禁漫天堂资源中文www| 少妇精品久久久久久久| 日韩伦理黄色片| 曰老女人黄片| 成年女人在线观看亚洲视频| 少妇人妻 视频| 黄色 视频免费看| 亚洲av欧美aⅴ国产| 卡戴珊不雅视频在线播放| 考比视频在线观看| 精品一区二区三区四区五区乱码 | 国产男女内射视频| 一二三四在线观看免费中文在 | 国产黄色免费在线视频| 在线观看免费高清a一片| 蜜桃在线观看..| 香蕉国产在线看| 久热这里只有精品99| 一区在线观看完整版| 免费黄色在线免费观看| 欧美日本中文国产一区发布| av又黄又爽大尺度在线免费看| 亚洲婷婷狠狠爱综合网| 考比视频在线观看| 久久久亚洲精品成人影院| 亚洲成人手机| tube8黄色片| 美女脱内裤让男人舔精品视频| 青春草亚洲视频在线观看| 午夜激情av网站| 18禁国产床啪视频网站| 日韩三级伦理在线观看| 国产成人欧美| 国产免费一级a男人的天堂| 中文字幕av电影在线播放| 两个人免费观看高清视频| 国产一区二区三区av在线| 我要看黄色一级片免费的| 伦精品一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品中文字幕在线视频| 国产成人精品无人区| 亚洲av福利一区| 亚洲精品成人av观看孕妇| 寂寞人妻少妇视频99o| 天美传媒精品一区二区| 亚洲三级黄色毛片| 国产麻豆69| 久久久久久人人人人人| av在线观看视频网站免费| 免费日韩欧美在线观看| 久久久国产精品麻豆| 午夜激情久久久久久久| 久久人人97超碰香蕉20202| 人妻人人澡人人爽人人| 久久亚洲国产成人精品v| 2018国产大陆天天弄谢| 国产高清三级在线| 我的女老师完整版在线观看| 中文字幕免费在线视频6| 亚洲av国产av综合av卡| 狂野欧美激情性bbbbbb| 高清黄色对白视频在线免费看| 亚洲av免费高清在线观看| 成人综合一区亚洲| 久久久久视频综合| 在线观看一区二区三区激情| 亚洲伊人久久精品综合| 欧美 日韩 精品 国产| 日本av免费视频播放| 9热在线视频观看99| 午夜福利网站1000一区二区三区| 性色avwww在线观看| 22中文网久久字幕| av国产久精品久网站免费入址| 国产成人精品一,二区| 美女国产视频在线观看| 男人舔女人的私密视频| 香蕉国产在线看| 久久99热6这里只有精品| 天天躁夜夜躁狠狠久久av| 51国产日韩欧美| 男女下面插进去视频免费观看 | 久久久国产欧美日韩av| 亚洲色图 男人天堂 中文字幕 | 欧美激情 高清一区二区三区| av播播在线观看一区| 黑人猛操日本美女一级片| tube8黄色片| 久久久久久伊人网av| 女的被弄到高潮叫床怎么办| 欧美亚洲 丝袜 人妻 在线| 最后的刺客免费高清国语| 精品人妻熟女毛片av久久网站| 黑人欧美特级aaaaaa片| 亚洲av在线观看美女高潮| 免费人妻精品一区二区三区视频| 亚洲欧美清纯卡通| 女性生殖器流出的白浆| 亚洲 欧美一区二区三区| 久久亚洲国产成人精品v| 国国产精品蜜臀av免费| av在线老鸭窝| 久久久久久伊人网av| 国产深夜福利视频在线观看| 少妇人妻 视频| 久久精品久久久久久久性| 国产精品国产三级专区第一集| 国产 精品1| 亚洲一码二码三码区别大吗| 欧美国产精品va在线观看不卡| 欧美日韩一区二区视频在线观看视频在线| 精品少妇内射三级| 国产精品.久久久| 最近中文字幕高清免费大全6| 国产成人一区二区在线| av天堂久久9| 日韩在线高清观看一区二区三区| 精品久久国产蜜桃| 亚洲丝袜综合中文字幕| 高清av免费在线| 国产免费又黄又爽又色| 一本色道久久久久久精品综合| 国产日韩欧美亚洲二区| 国产精品国产三级国产av玫瑰| av在线app专区| 少妇人妻久久综合中文| 成年av动漫网址| 五月伊人婷婷丁香| 国产成人欧美| 免费观看a级毛片全部| 丝袜在线中文字幕| 蜜桃在线观看..| 国产综合精华液| 在线精品无人区一区二区三| 色视频在线一区二区三区| 99国产精品免费福利视频| xxxhd国产人妻xxx| 亚洲国产日韩一区二区| 一二三四中文在线观看免费高清| 人人妻人人澡人人爽人人夜夜| 亚洲国产最新在线播放| 欧美xxⅹ黑人| 2021少妇久久久久久久久久久| 亚洲av日韩在线播放| 九色亚洲精品在线播放| 久久99一区二区三区| 九色亚洲精品在线播放| freevideosex欧美| 亚洲精品第二区| 丝袜人妻中文字幕| 天堂俺去俺来也www色官网| 男人操女人黄网站| 免费黄网站久久成人精品| 亚洲欧美成人综合另类久久久| av在线app专区| 久久人人爽人人爽人人片va| 18+在线观看网站| 国国产精品蜜臀av免费| 国产成人一区二区在线| 美女福利国产在线| 国产有黄有色有爽视频| 9热在线视频观看99| av在线观看视频网站免费| 女人被躁到高潮嗷嗷叫费观| 国产精品秋霞免费鲁丝片| 一个人免费看片子| 夫妻午夜视频| 久久亚洲国产成人精品v| 久久 成人 亚洲| 全区人妻精品视频| 久久久久精品性色| 国产精品成人在线| 18禁观看日本| 久久久久久伊人网av| 国产高清三级在线| 欧美国产精品一级二级三级| 97超碰精品成人国产| 人人妻人人添人人爽欧美一区卜| 黄色配什么色好看| 一本久久精品| 久久免费观看电影| 国产无遮挡羞羞视频在线观看| av福利片在线| 日韩制服丝袜自拍偷拍| 成人国产av品久久久| 亚洲国产最新在线播放| 天堂中文最新版在线下载| 欧美日韩av久久| 制服诱惑二区| 高清在线视频一区二区三区| 亚洲精品色激情综合| 另类亚洲欧美激情| 免费大片18禁| 日韩熟女老妇一区二区性免费视频| 午夜福利视频精品| 你懂的网址亚洲精品在线观看| 水蜜桃什么品种好| 欧美精品一区二区免费开放| 精品亚洲成a人片在线观看| 国产激情久久老熟女| 国产不卡av网站在线观看| 亚洲精品av麻豆狂野| 五月开心婷婷网| 青青草视频在线视频观看| 精品国产露脸久久av麻豆| 51国产日韩欧美| 26uuu在线亚洲综合色| av黄色大香蕉| 国产亚洲最大av| 久久久久久久久久久免费av| 99久国产av精品国产电影| 亚洲精品久久久久久婷婷小说| 午夜精品国产一区二区电影| 我的女老师完整版在线观看| 久久这里有精品视频免费| 啦啦啦中文免费视频观看日本| 中文字幕另类日韩欧美亚洲嫩草| 久久精品夜色国产| 久久久久精品久久久久真实原创| 一级爰片在线观看| 制服人妻中文乱码| 久久久久久久久久人人人人人人| av国产久精品久网站免费入址| 精品人妻偷拍中文字幕| a级毛色黄片| 亚洲伊人久久精品综合| 久久精品国产亚洲av天美| 免费观看av网站的网址| 美女福利国产在线| 永久免费av网站大全| 亚洲精品中文字幕在线视频| 亚洲av男天堂| 亚洲精华国产精华液的使用体验| 国精品久久久久久国模美| 香蕉丝袜av| 少妇熟女欧美另类|