• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    貴金屬原子與點(diǎn)缺陷石墨烯的鍵增強(qiáng)作用

    2012-12-05 02:27:52解鵬洋莊桂林呂永安王建國李小年
    物理化學(xué)學(xué)報 2012年2期
    關(guān)鍵詞:點(diǎn)缺陷空位物理化學(xué)

    解鵬洋 莊桂林 呂永安 王建國 李小年

    (浙江工業(yè)大學(xué)化學(xué)工程與材料學(xué)院,杭州310014)

    貴金屬原子與點(diǎn)缺陷石墨烯的鍵增強(qiáng)作用

    解鵬洋 莊桂林*呂永安 王建國*李小年

    (浙江工業(yè)大學(xué)化學(xué)工程與材料學(xué)院,杭州310014)

    通過密度泛函理論研究了Ag、Au、Pt原子在完美和點(diǎn)缺陷(包括N摻雜、B摻雜、空位點(diǎn)缺陷)石墨烯上的吸附以及這些體系的界面性質(zhì).研究表明Ag、Au不能在完美的石墨烯上吸附,N、B摻雜增強(qiáng)了三種金屬與石墨烯之間的相互作用.而空位點(diǎn)缺陷誘發(fā)三種金屬在石墨烯上具有強(qiáng)化學(xué)吸附作用.通過電子結(jié)構(gòu)分析發(fā)現(xiàn),N摻雜增強(qiáng)了Au、Pt與C形成的共價鍵,而Au、Ag與B形成了化學(xué)鍵.空位點(diǎn)缺陷不僅是金屬原子的幾何固定點(diǎn),同時也增加了金屬原子和碳原子之間的成鍵.增強(qiáng)貴金屬原子和石墨烯相互作用的順序是:空位點(diǎn)缺陷>>B摻雜>N摻雜.

    密度泛函理論; 石墨烯;金;鉑;銀

    1 Introduction

    Graphene,as an emerging material,has attracted tremendous attention in different research fields since 2004.1-9Noble metal nanoparticles10-13are of great interests due to their unique catalytic properties.Metal nanoparticles supported on graphene nanocomposites,14-20feature the characteristics of both grahpene and metal nanoparticles,particularly notable because they not only inherit their intrinsic properties but also extract some unique cooperative properties,which exhibit promising applications in nanobiotechnology,nanoelectronics,energy storage,catalysis,etc.Therefore,understanding of the interaction between graphene and metal nanoparticles is the first step to realize these applications.21Meanwhile,the interaction between metal adatoms/clusters and graphene also depends on the preparation methods and determines the properties of the formed nanocomposites.

    For metal clusters/low dimensional carbon(such as carbon nanotubes,graphene,fullerene),chemical or physical methods are commonly used to prepare metal/carbon nanocomposities.22-28For the chemical methods,organic compounds or functional groups25,28,29adsorbed on the surface of carbon materials can serve as the anchoring site of these metal clusters.Therefore,the metal nanoparticles adhere to the graphene via these“l(fā)inkers”.The metal/graphene nanocomposites are generally prepared by depositing metal particles on graphene/graphite oxide23or the chemical functionlized graphene30-36sheets.The physical methods are to grow or deposit metal nanoparticles directly onto the carbon nanotubes(CNTs)or grahite/graphene surface via electron beam evaporation,37or thermal evaporation.38,39At present,few experimental studies have been reported on the preparation of metal/graphene nanocomposites with the physical methods.Independent of the preparation methods, the ultimate purpose of these methods is to modify the inert properties of pristine CNTs/grahene,which can be attributed to two types of modifications.One is to modify the properties by the surface species,36and the other is to substitute the lattice carbon with foreign elements33,40-47or form various vacancies.48-50It is well-known that N,B atoms are the only two foreign elements incorporated into an sp2carbon network of CNTs42,51-54or graphene55,56without significantly affecting their geometric structures.

    Several theoretical studies57-62have been conducted on the interaction between metal adatoms or small clusters and the pristine graphene or the graphene with vacancies.These studies show the ionic bonding for metal adatoms of groups I-III elements and covalent bonding for transition metal atoms with d valence electrons,noble metals,and group IV elements58on the pristine graphene.The very weak interaction between Ag,Au and graphene is identified from the previous study.57

    To the best of our knowledge,no systematic theoretical studies of noble metal adatoms or clusters on the point defected, which include B-,N-doping and a single vacancy defect,graphene have been reported.In this study,we investigated the interactions between three typical noble metal adatoms(Ag,Au, and Pt)and point defected graphene by means of density functional theory(DFT)calculations,which is further compared with these on the pristine graphene.

    2 Calculation methods

    All calculations were carried out under the generalized gradient approximation(GGA)with the Perdew-Burke-Ernzerhof (PBE)63functional,within a plane wave-pseudopotential scheme,by using the PWSCF package in Quantum ESPRESSO.64The ultrasoft pseudopotentials65were used to describe electron-ion interactions.The kinetic energy cutoffs for the smooth part of the electronic wave function and the augmented electron density were 25 and 200 Ry(1 Ry=13.6056923 eV), respectively.In this study,by using the(6,6)graphene,the point-defect concentration is about 2.7% (molar fraction), which represents realistic experimental conditions.The pristine,N-,B-doping graphene,and graphene with vacancies are termed as Gr,N-Gr,B-Gr,and vac-Gr,respectively.The Brillouin zone integration was performed with the k points generated for 6×6×1 Monkhorst-Pack grid,66which were convergent by using 8×8×1,10×10×1,and 12×12×1 Monkhorst-Pack grids.All the atoms involved in calculations were fully relaxed until each component of the residual force on each atom was smaller than 0.3 eV·nm-1.

    The binding energy(Eb)of metal adatom on the graphene was typically calculated as follows:

    where EM1,EGr,and E(M1+Gr)represent the energies of the most stable gas phase metal adatom,the graphene,and the combined systems of metal adatom and graphene,respectively.

    3 Results and discussion

    3.1 Electronic properties of graphene

    In order to investigate the effect of point defect on the electronic properties of graphene,the band structures,density of states(DOS),and charge differences were calculated,as shown in Fig.1.Inspecting of the band structures and DOS of Fig.1,it can be found that the electronic bands of B-,N-doped graphene feature similar dispersive characteristics to that of pristine one,but both of the Fermi levels are shifted up by-0.57 and+0.53 eV.The obtained band gaps of B-and N-Gr are still zero.Therefore,the B-and N-Gr can be attributed to p-type and n-type semiconductors,comparable to those in the reported studies.67On the other hand,vac-Gr shows different electronic characteristics from others,in which the band gap rises from zero to 0.77 eV.This may be due to that the broken sp2configuration in vac-Gr induces the impurity states consisting of dangling sp3orbitals of carbons,which slightly shift upto conduction band.The charge density differenceswhere the doping is the boron,nitrogen,and carbon of B-,N-Gr and pristine graphene;orwhere c2 is the 2-coordinate carbon in vac-Gr,respectively)induced by the B-or N-doping and vacancies are also shown in Fig.1. The red and blue colors represent the electron accumulation and depletion,respectively.It can be seen that the B,N show the electron deficiency and accumulation.And B-,N-doping also induce the charge redistribution on the graphene,which can be confirmed from L?wdin analysis.The charges of B and N are 0.12e and-0.02e,which is consistent with the analysis of DOS.On the pristine graphene,the charge is uniformly distributed on the carbon atoms.While for vac-Gr,the charge is depleted around the carbon vacancies.

    3.2 Binding of metal adatoms on grapheme

    As the reference systems,we also investigated the adhesion of Ag,Au,and Pt adatoms on the pristine graphene.Due to the very similar adhesion properties of Ag and Au,Fig.2 only shows the binding energies and optimized configurations of the most and the second stable structures of Au and Pt on the investigated graphene.We found that Ag(Eb=0.02 eV)and Au(Eb= 0.20 eV)adatoms are very weakly bound on the pristine graphene,which are in agreement with the available literature.68The geometries of graphene have no obvious changes after the adsorption of Au and Ag.In contrast,Pt shows much stronger adhesion properties.The most and the second stable binding sites are the bridge of two carbons(Eb=1.90 eV)and a top of one carbon(Eb=1.76 eV),respectively.It can be seen that the weak bonding between metal clusters(especially Ag and Au) and graphene must be strengthened in order to utilize these composited nanomaterials.In this study,two kinds of methods, including removing one carbon and substituting one carbon by the B,N elements,have been taken into account.

    Fig.1 Band structures and total density of states(A)and charge density differences(B)of(a)Gr,(b)N-Gr,(c)B-Gr,and(d)vac-Gr

    Fig.2 Optimized geometries and binding energies(in the parentheses)of the most and second stable structures ofAu and Pt adatoms on(a)Gr,(b)N-Gr,(c)B-Gr,and(d)vac-Gr

    3.3 Binding of metal adatoms on N-,B-,vac-Gr

    It can be seen that the weak bonding between Au,Ag and pristine graphene is caused by the inert electronic properties of graphene.On the other hand,the electronic properties of graphene can be modified by the B-,N-doping and vacancies.In this section,we further investigated the adhesion and binding of noble metal adatoms on the B-,N-,and vac-Gr.For N-Gr, the most favorable binding site is the top of o-carbon atoms (ortho-carbon)rather than nitrogen,in which the binding energies are 0.13 and 0.84 eV for Ag and Au adatoms,respectively.For Au adatoms,the physisorption on the pristine graphene turns to weak chemisorption on the N-Gr,in which the distances between Au and carbon are 0.320 and 0.224 nm.The most and the second stable binding sites of Pt adatoms on N-Gr are both bridge of two carbon atoms.The most favorable binding site of Pt1on N-Gr is the bridge of o-and p-carbon atoms(paracarbon)of N.The second favorable binding site of Pt1on N-Gr is the bridge of p-and m-carbon(meta-carbon)atoms of N. The binding energies are 2.25 and 2.05 eV for the most and the second Pt adatoms,which are about 0.35 and 0.15 eV larger than that on pristine graphene,respectively.For Ag and Au on B-Gr,the most favorable binding sites are both top of boron atoms,in which the binding energies are 1.11 and 1.29 eV,re-spectively.For Pt on B-Gr,the most and the second favorable sites prefer the bridge of B and o-carbon and the top of B with the binding energies of 2.65 and 2.43 eV,respectively.On vac-Gr,the most favorable binding sites of metal adatoms are all located directly at the vacancies,in which metal adatoms bond with three carbon atoms.The corresponding bond lengths of M―C(M:metal adatoms)are 0.230,0.209,and 0.194 nm for Ag,Au,and Pt adatoms,respectively.The binding energies of Ag,Au,and Pt adatoms are 1.80,2.36,and 7.53 eV,respectively,which increase at least about four times larger than those on pristine graphene.

    It is observed that the binding energies for the most and the second stable noble metal adatoms on N-,B-,and vac-Gr increase compared with that on the pristine graphene(Fig.2). Moreover,the initial geometries on the different sites of N-, B-,and vac-Gr(as depicted in Fig.3(b))were taken into account,and the resulting binding energies are shown in Fig.3(a). Firstly,we found that the binding energies of these metal adatoms are nearly same when they are located at the forth carbon away from the B,N,and vacancies,which is nearly the same as that on the pristine graphene.Secondly,on the B-and vac-Gra,Au and Pt always move back into the favorable binding site,even when they are initially located at the sites slightly away from the B-and vacancy about two carbons.

    The most stable binding energies of the three kinds of noble metal on four different types of graphene are shown in Fig.4.It can be seen that N-,B-doping,and vacancy enhance bonding between metal adatoms and graphene.The enhanced role increases according to this order:N-doping,B-doping,and vacancy.For Ag and Au,the weak physisorption on the pristine graphene becomes the chemisorption by these modifications. Especially,the point defects(vacancies)increase the binding energies of the three kinds of metal adatoms at least four times larger than that on the pristine graphene.

    Fig.3 (a)Binding energy ofAu and Pt adatoms on the different sites of N-Gr,B-Gr,and vac-Gr;(b)illustration of different binding sites of N-Gr,B-Gr,and vac-Gr

    Fig.4 Binding energy of the most stableAg,Au,and Pt adatoms on the Gr,N-Gr,B-Gr,and vac-Gr

    3.4 Different mechanisms to enhance the bonding of metal adatoms on N-,B-,vac-Gr

    The interactions between three noble metal adatoms and graphene can be enhanced by the B-,N-doping and point-defected carbon vacancy.But the most favorable sites and the enhanced degree are very different.Therefore,it is necessary to investigate the binding mechanisms of the three kinds of metal adatoms on different forms of graphene.

    Projected density of states(PDOS)of metal adatoms and the atoms directly bonded with metal on pristine,N-Gr,B-Gr,and graphene with vacancies are shown in Fig.5.For the case of pristine graphene,there is no overlap between Au and carbon, while some hybridization between p band of carbon and d band of Pt is found at 1.8 eV above Fermi level.Furthermore, inspection of the PDOS of Au or Pt/N-Gr reveals that the dangling 2p bands of nitrogen anchor at the vicinity of Fermi level.Compared with that on pristine graphene,there is little influence of nitrogen on the PDOS of Pt and carbon.While nitrogen induces some hybridization between carbon p orbital and Au d orbital.It is interesting to observe that there is no overlap between the bands of boron and Au at Fermi level,while the 2p band of boron at Fermi level can overlap with the d band of Pt. It may be explained that the binding energy of Pt/B-Gr is larger than that of Au/B-Gr.In addition,scrutinizing PDOS of Au or Pt/vac-Gr can find that strong hybridization between p band of the carbon and d band of Au or Pt exists on the vac-Gr,resulting in the strong adhesion of metal adatoms.The PDOS differences of Au and Pt/vac-Gr at the Fermi level lead to larger binding energy of Pt/vac-Gr than that of Au/vac-Gr.Generally, it can be concluded that(1)doping N atom,B atom or vacancy defect acting as anchoring site can effectively enhance the interaction between Au or Pt and graphene;(2)among three types of adsorption case,Pt exhibits much stronger interaction with doped graphene than that ofAu.

    The charge density differences induced by the adsorbed metal adatoms on pristine graphene,N-Gr,B-Gr,and graphene with vacancy are shown in Fig.6.We find that Ag adatoms have very similar properties to Au ones.Therefore,only the charge differences of Au/graphene and Pt/graphene system have been shown in Fig.6.Firstly,there are no charge transfers between Au and pristine graphene.The covalent bond is formed between Pt and carbon of pristine graphene.Secondly, N-doping does not change the bond characters between Pt and graphene,but enhances the interaction a little bitter.However, for Au,N-,B-doping plays a more important role than Pt.The covalent bond between Au and o-carbon of N is formed on N-Gr.The bond between Au and B is formed on B-Gr.The formation of these bonds changes the adhesion properties of Au on graphene,which results from the very weak physisorption to moderate chemisorption of Au.Thirdly,the role of vacancies on the enhanced bonding between metal adatoms and graphene is much stronger than N-,B-doping.It is observed that vacancies are not only the geometrically anchoring site but also the electron redistribution sites.However,the N-,B-doping mainly only induces the electron redistribution within the graphene.

    Fig.5 Projected density of states of metal(d orbital)and the bonded atoms(carbon,nitrogen,or boron) (p orbital)in metal adatoms/grapheneZero mark is Fermi level.

    Fig.6 Charge density differences of metal/graphene induced byAu and Pt adatomsThe red and blue colors represent for the electron accumulation and depletion,respectively.

    4 Conclusions

    By means of density functional theory calculations,our study demonstrates that the adhesion of noble metal(Au,Ag, and Pt)adatoms on the graphene can be enhanced either by the N-,B-doping or by the vacancies.For the same metal,the enhanced role in the binding energy increases in this order: N-doping,B-doping,and vacancies.The N-,B-doping leads to the enhancement of the covalent bond between Au and carbon atoms and formation of the chemical bond between Au or Ag and B,respectively.While point vacancies mainly act as the geometrically anchoring sites of metal adatoms and the electron reservoir.On the same graphene,the binding energies of the three kinds of metal adatoms increase in this order:Ag,Au, and Pt.The enhanced bonding between noble metal clusters and graphene will play a vital role in the application of noble metal clusters/graphene composite materials.

    (1) Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.; Zhang,Y.;Dubonos,S.V.;Grigorieva,I.V.;Firsov,A.A. Science 2004,306,666.

    (2) Li,H.;Ma,X.Y.;Dong,J.;Qian,W.P.Anal.Chem.2009,81, 8916.

    (3) Li,Y.F.;Zhou,Z.;Shen,P.W.;Chen,Z.F.ACS Nano 2009,3, 1952.

    (4) Saha,B.;Shindo,S.;Irle,S.;Morokuma,K.ACS Nano 2009,3, 2241.

    (5) Xu,X.L.;Zhou,G.L.;Li,H.X.;Liu,Q.;Zhang,S.;Kong,J. L.Talanta 2009,78,26.

    (6)Yang,Y.H.;Sun,H.J.;Peng,T.J.;Huang,Q.Acta Phys.-Chim. Sin.2011,27,736.[楊勇輝,孫紅娟,彭同江,黃 橋.物理化學(xué)學(xué)報,2011,27,736.]

    (7) Hu,Y.J.;Jin,J.;Zhang,H.;Wu,P.;Cai,C.X.Acta Phys.-Chim.Sin.2010,26,2073.[胡耀娟,金 娟,張 卉,吳 萍,蔡稱心.物理化學(xué)學(xué)報,2010,26,2073.]

    (8) Xu,N.;Kong,F.J.;Wang,Y.Z.Acta Phys.-Chim.Sin.2011, 27,559.[徐 寧,孔凡杰,王延宗.物理化學(xué)學(xué)報,2011,27, 559.]

    (9) Sun,D.L.;Peng,S.L.;Ouyang,J.;Ouyang,F.P.Acta Phys.-Chim.Sin.2011,27,1103.[孫大立,彭盛霖,歐陽俊,歐陽方平.物理化學(xué)學(xué)報,2011,27,1103.]

    (10) Zhang,J.;Sasaki,K.;Sutter,E.;Adzic,R.R.Science 2007,315, 220.

    (11)Yoon,B.;Hakkinen,H.;Landman,U.;Worz,A.S.;Antonietti, J.M.;Abbet,S.;Judai,K.;Heiz,U.Science 2005,307,403.

    (12) Matthey,D.;Wang,J.G.;Wendt,S.;Matthiesen,J.;Schaub,R.; Laegsgaard,E.;Hammer,B.;Besenbacher,F.Science 2007, 315,1692.

    (13) DeVries,G.A.;Brunnbauer,M.;Hu,Y.;Jackson,A.M.;Long, B.;Neltner,B.T.;Uzun,O.;Wunsch,B.H.;Stellacci,F. Science 2007,315,358.

    (14) Park,S.;Lee,K.S.;Bozoklu,G.;Cai,W.;Nguyen,S.T.;Ruoff, R.S.ACS Nano 2008,2,572

    (15) Lightcap,I.V.;Kosel,T.H.;Kamat,P.V.Nano Lett.2010,10, 577.

    (16)Li,B.;Lu,G.;Zhou,X.Z.;Cao,X.H.;Boey,F.;Zhang,H. Langmuir 2009,25,10455.

    (17) Klusek,Z.;Dabrowski,P.;Kowalczyk,P.;Kozlowski,W.; Olejniczak,W.;Blake,P.;Szybowicz,M.;Runka,T.Appl.Phys. Lett.2009,95,113114.

    (18) Li,Y.X.;Wei,Z.D.;Zhao,Q.L.;Ding,W.;Zhang,Q.;Chen,S. G.Acta Phys.-Chim.Sin.2011,27,858.[李云霞,魏子棟,趙巧玲,丁 煒,張 騫,陳四國.物理化學(xué)學(xué)報,2011,27,858.]

    (19) Wu,X.Q.;Zong,R.L.;Mu,H.J.;Zhu,Y.F.Acta Phys.-Chim. Sin.2010,26,3002.[吳小琴,宗瑞隆,牟豪杰,朱永法.物理化學(xué)學(xué)報,2010,26,3002.]

    (20)Wen,Z.L.;Yang,S.D.;Song,Q.J.;Hao,L.;Zhang,X.G.Acta Phys.-Chim.Sin.2010,26,1570.[溫祝亮,楊蘇東,宋啟軍,郝 亮,張校剛.物理化學(xué)學(xué)報,2010,26,1570.]

    (21) Sutter,P.;Hybertsen,M.S.;Sadowski,J.T.;Sutter,E.Nano Lett.2009,9,2654.

    (22)Xu,C.;Wang,X.;Zhu,J.W.J.Phys.Chem.C 2008,112,19841.

    (23) Jasuja,K.;Berry,V.ACS Nano 2009,3,2358.

    (24) Fullam,S.;Cottell,D.;Rensmo,H.;Fitzmaurice,D.Adv.Mater. 2000,12,1430.

    (25) Carrillo,A.;Swartz,J.A.;Gamba,J.M.;Kane,R.S.; Chakrapani,N.;Wei,B.Q.;Ajayan,P.M.Nano Lett.2003,3, 1437.

    (26) Li,J.;Moskovits,M.;Haslett,T.L.Chem.Mater.1998,10, 1963.

    (27)Azamian,B.R.;Coleman,K.S.;Davis,J.J.;Hanson,N.; Green,M.L.H.Chem.Commun.2002,366.

    (28) Marsh,D.H.;Rance,G.A.;Whitby,R.J.;Giustiniano,F.; Khlobystov,A.N.J.Mater.Chem.2008,18,2249.

    (29)Liu,L.;Wang,T.X.;Li,J.X.;Guo,Z.X.;Dai,L.M.;Zhang, D.Q.;Zhu,D.B.Chem.Phys.Lett.2003,367,747.

    (30) Li,J.;Liu,C.Y.Eur.J.Inorg.Chem.2010,8,1244.

    (31) Pasricha,R.;Gupta,S.;Srivastava,A.K.Small 2009,5,2253.

    (32) Shen,J.F.;Shi,M.;Li,N.;Yan,B.;Ma,H.W.;Hu,Y.Z.;Ye, M.X.Nano Res.2010,3,339.

    (33)Wen,Y.Q.;Xing,F.F.;He,S.J.;Song,S.P.;Wang,L.H.; Long,Y.T.;Li,D.;Fan,C.H.Chem.Commun.2010,46,2596.

    (34) Liu,S.;Wang,J.Q.;Zeng,J.;Ou,J.F.;Li,Z.P.;Liu,X.H.; Yang,S.R.J.Power Sources 2010,195,4628.

    (35)Liu,W.C.;Lin,H.K.;Chen,Y.L.;Lee,C.Y.;Chiu,H.T.ACS Nano 2010,4,4149.

    (36)Kim,Y.K.;Na,H.K.;Min,D.H.Langmuir 2010,26,13065.

    (37) Zhang,Y.;Franklin,N.W.;Chen,R.J.;Dai,H.J.Chem.Phys. Lett.2000,331,35.

    (38) Gingery,D.;Buhlmann,P.Carbon 2008,46,1966.

    (39) Bittencourt,C.;Felten,A.;Douhard,B.;Ghijsen,J.;Johnson,R. L.;Drube,W.;Pireaux,J.J.Chem.Phys.2006,328,385.

    (40)Wei,D.C.;Liu,Y.Q.;Wang,Y.;Zhang,H.L.;Huang,L.P.;Yu, G.Nano Lett.2009,9,1752.

    (41)Ghosh,K.;Kumar,M.;Maruyama,T.;Ando,Y.J.Mater.Chem. 2010,20,4128.

    (42) Liang,Y.X.;Shui,M.;Li,R.S.Acta Phys.-Chim.Sin.2007, 23,1647.[梁云霄,水 淼,李榕生.物理化學(xué)學(xué)報,2007,23, 1647.]

    (43) Chi,M.;Zhao,Y.P.Comp.Mater.Sci.2009,46,1085.

    (44) Kang,J.;Deng,H.X.;Li,S.S.;Li,J.B.J.Phys.:Condens. Matter 2011,23,346001.

    (45) Jung,N.;Kim,B.;Crowther,A.C.;Kim,N.;Nuckolls,C.; Brus,L.ACS Nano 2011,5,5708.

    (46)Lv,Y.A.;Zhuang,G.L.;Wang,J.G.;Jia,Y.B.;Xie,Q.Phys. Chem.Chem.Phys.2011,13,12472.

    (47) Geng,D.S.;Yang,S.L.;Zhang,Y.;Yang,J.L.;Liu,J.;Li,R. Y.;Sham,T.K.;Sun,X.L.;Ye,S.Y.;Knights,S.Appl.Surf. Sci.2011,257,9193.

    (48) Carlsson,J.M.;Hanke,F.;Linic,S.;Scheffler,M.Phys.Rev. Lett.2009,102,166104.

    (49) Jack,R.;Sen,D.;Buehler,M.J.J.Comput.Theor.Nanos.2010, 7,354.

    (50) Palacios,J.J.;Fernandez-Rossier,J.;Brey,L.Phys.Rev.B 2008,77,195428.

    (51) Liu,X.M.;Romero,H.E.;Gutierrez,H.R.;Adu,K.;Eklund,P. C.Nano Lett.2008,8,2613.

    (52) Williams,Q.L.;Liu,X.;Walters,W.;Zhou,J.G.;Edwards,T. Y.;Smith,F.L.Appl.Phys.Lett.2007,91,143116.

    (53)Lv,Y.A.;Cui,Y.H.;Xiang,Y.Z.;Wang,J.G.;Li,X.N.Comp. Mater.Sci.2010,48,621.

    (54) Lee,D.H.;Lee,W.J.;Kim,S.O.Nano Lett.2009,9,1427.

    (55) Late,D.J.;Ghosh,A.;Subrahmanyam,K.S.;Panchakarla,L. S.;Krupanidhi,S.B.;Rao,C.N.R.Solid State Commun.2010, 150,734.

    (56)Dai,X.Q.;Li,Y.H.;Zhao,J.H.;Tang,Y.N.Acta Phys.-Chim. Sin.2011,27,369.[戴憲起,李艷慧,趙建華,唐亞楠.物理化學(xué)學(xué)報,2011,27,369.]

    (57)Hu,L.B.;Hu,X.R.;Wu,X.B.;Du,C.L.;Dai,Y.C.;Deng,J. B.Phys.B-Condens.Matter 2010,405,3337.

    (58) Chan,K.T.;Neaton,J.B.;Cohen,M.L.Phys.Rev.B 2008,77, 235430.

    (59) Boukhvalov,D.W.;Katsnelson,M.I.Appl.Phys.Lett.2009, 95,023109.

    (60)Akturk,O.U.;Tomak,M.Phys.Rev.B 2009,80,085417

    (61) Valencia,H.;Gil,A.;Frapper,G.J.Phys.Chem.C 2010,114, 14141.

    (62) Rodriguez-Manzo,J.A.;Cretu,O.;Banhart,F.ACS Nano 2010, 4,3422.

    (63) Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.B 1996,77, 3865.

    (64) Giannozzi,P.;Baroni,S.;Bonini,N.;et al.J.Phys.:Condens. Matter 2009,21,395502.

    (65) Vanderbilt,D.Phys.Rev.B 1990,41,7892.

    (66) Monkhorst,H.J.;Pack,J.D.Phys.Rev.B 1976,13,5188.

    (67) Huang,B.Phys.Lett.A 2011,375,845.

    (68)Wang,J.G.;Lv,Y.A.;Li,X.N.;Dong,M.D.J.Phys.Chem.C 2009,113,890.

    July 22,2011;Revised:November 1,2011;Published on Web:November 2,2011.

    Enhanced Bonding between Noble Metal Adatoms and Graphene with Point Defects

    XIE Peng-Yang ZHUANG Gui-Lin*LU¨Yong-An WANG Jian-Guo*LI Xiao-Nian
    (College of Chemical Engineering and Materials Science,Zhejiang University of Technology,Hangzhou 310014,P.R.China)

    The adhesion of Ag,Au,and Pt adatoms on pristine graphene and that containing point defects including N-substitution,B-substitution,and a single vacancy,as well as the interfacial properties of these systems,were investigated using density functional theory.The calculations show that Ag and Au cannot bind to pristine graphene.In contrast,B and N-doping increase the interaction between Ag,Au,or Pt metal adatoms and graphene,while a vacancy defect leads to the strong chemisorption of metal adatoms on graphene.Based on electronic structural analysis,N-doping strengthens the covalent bond between Au or Pt and carbon atoms,while B-doping leads to the formation of a chemical bond between Au or Ag and B. The vacancy defect acts as an anchoring site for metal adatoms and increases the bonding between metal adatoms and carbon atoms.Therefore,three types of point defect can effectively enhance the interaction between noble metal adatoms and graphene in the sequence:vacancy defect>>B-doping>N-doping.

    Density functional theory;Graphene;Au;Pt;Ag

    10.3866/PKU.WHXB201111021www.whxb.pku.edu.cn

    *Corresponding authors.WANG Jian-Guo,Email:jgw@zjut.edu.cn.ZHUANG Gui-Lin,Email:glzhuang@zjut.edu.cn;Tel:+86-571-88871037. The project was supported by the National Natural Science Foundation of China(20906081).

    國家自然科學(xué)基金(20906081)資助項(xiàng)目

    O641

    猜你喜歡
    點(diǎn)缺陷空位物理化學(xué)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    金紅石型TiO2中四種點(diǎn)缺陷態(tài)研究
    Fe-Cr-Ni合金中點(diǎn)缺陷形成及相互作用的第一性原理研究
    GaN中質(zhì)子輻照損傷的分子動力學(xué)模擬研究
    Zn空位缺陷長余輝發(fā)光材料Zn1-δAl2O4-δ的研究
    Chemical Concepts from Density Functional Theory
    空位
    讀者欣賞(2014年6期)2014-07-03 03:00:48
    說者無心,聽者有意——片談?wù)Z言交際中的空位對舉
    語文知識(2014年2期)2014-02-28 21:59:21
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    在线观看66精品国产| 亚州av有码| 精品一区二区三区视频在线观看免费| 波野结衣二区三区在线| 国产亚洲精品综合一区在线观看| av在线老鸭窝| 老女人水多毛片| 亚洲av不卡在线观看| 人妻久久中文字幕网| 久久精品国产亚洲网站| 一边摸一边抽搐一进一小说| 欧美黑人巨大hd| 久久久久久久精品吃奶| 少妇裸体淫交视频免费看高清| 久久久精品欧美日韩精品| 乱人视频在线观看| 久久久精品欧美日韩精品| 嫩草影院精品99| 国产精品日韩av在线免费观看| 亚州av有码| 99久久精品热视频| 婷婷色综合大香蕉| 12—13女人毛片做爰片一| 成人特级黄色片久久久久久久| 国产亚洲精品久久久久久毛片| 欧美日韩综合久久久久久 | 亚洲欧美精品综合久久99| 久久亚洲真实| 夜夜爽天天搞| 观看美女的网站| 男女之事视频高清在线观看| 久久久久久国产a免费观看| 久久久精品欧美日韩精品| 欧美性猛交╳xxx乱大交人| 美女xxoo啪啪120秒动态图| 精品久久国产蜜桃| 色综合站精品国产| 欧美日韩中文字幕国产精品一区二区三区| 免费av毛片视频| 国产伦精品一区二区三区视频9| 黄色女人牲交| www.色视频.com| 久久99热这里只有精品18| 午夜a级毛片| 久久精品久久久久久噜噜老黄 | 成人三级黄色视频| 久久久午夜欧美精品| 不卡一级毛片| 动漫黄色视频在线观看| 三级国产精品欧美在线观看| 欧美日韩黄片免| 一区二区三区高清视频在线| 国产免费一级a男人的天堂| 九九在线视频观看精品| 亚洲av中文av极速乱 | 亚洲国产色片| 可以在线观看的亚洲视频| 国产中年淑女户外野战色| 久久精品国产亚洲网站| 淫秽高清视频在线观看| 国产91精品成人一区二区三区| 99久久中文字幕三级久久日本| 亚洲 国产 在线| 99视频精品全部免费 在线| 亚洲第一电影网av| 蜜桃亚洲精品一区二区三区| 性欧美人与动物交配| 女的被弄到高潮叫床怎么办 | 亚洲乱码一区二区免费版| 村上凉子中文字幕在线| 国产三级在线视频| 国产不卡一卡二| 国产精品一及| 国产私拍福利视频在线观看| 久久久久久国产a免费观看| 91麻豆精品激情在线观看国产| 欧美bdsm另类| 我的女老师完整版在线观看| 亚洲精品粉嫩美女一区| a级毛片a级免费在线| 极品教师在线免费播放| 亚洲av熟女| 一边摸一边抽搐一进一小说| 真人一进一出gif抽搐免费| 三级毛片av免费| 国产成人aa在线观看| 99热网站在线观看| 国产av在哪里看| 深夜a级毛片| 91av网一区二区| 久久精品夜夜夜夜夜久久蜜豆| 久久久成人免费电影| 丰满的人妻完整版| www.色视频.com| 99久久精品热视频| 色综合亚洲欧美另类图片| 国产一区二区亚洲精品在线观看| or卡值多少钱| av视频在线观看入口| 国产亚洲精品久久久com| 三级毛片av免费| 99久国产av精品| 在线播放国产精品三级| 成人综合一区亚洲| 久久久久免费精品人妻一区二区| 亚洲精品一卡2卡三卡4卡5卡| 国产熟女欧美一区二区| 国内少妇人妻偷人精品xxx网站| 美女大奶头视频| 热99在线观看视频| 国产精品免费一区二区三区在线| 久久久久久国产a免费观看| 69人妻影院| 免费观看的影片在线观看| 久久久色成人| 干丝袜人妻中文字幕| 午夜久久久久精精品| 成人综合一区亚洲| 特级一级黄色大片| 一区二区三区激情视频| 欧美一区二区精品小视频在线| 久久久午夜欧美精品| 亚洲成人中文字幕在线播放| 日日撸夜夜添| a级毛片免费高清观看在线播放| 极品教师在线免费播放| 亚洲av熟女| 美女cb高潮喷水在线观看| 一进一出抽搐动态| 特大巨黑吊av在线直播| 亚洲人成网站高清观看| 在线观看舔阴道视频| 亚洲av二区三区四区| 国产精品综合久久久久久久免费| 精品乱码久久久久久99久播| 日本爱情动作片www.在线观看 | av视频在线观看入口| 99九九线精品视频在线观看视频| 午夜福利在线观看吧| 精品人妻熟女av久视频| 亚洲人成网站在线播| 窝窝影院91人妻| 国产毛片a区久久久久| 一个人看的www免费观看视频| 麻豆久久精品国产亚洲av| 午夜福利欧美成人| 十八禁网站免费在线| 欧美激情在线99| 久久久国产成人免费| 久久草成人影院| 亚洲三级黄色毛片| 欧美精品啪啪一区二区三区| 人妻夜夜爽99麻豆av| 国产男靠女视频免费网站| 亚洲精品色激情综合| 久久久精品欧美日韩精品| 亚洲va在线va天堂va国产| 国产成人aa在线观看| 久久精品国产鲁丝片午夜精品 | 国产一区二区在线av高清观看| 免费搜索国产男女视频| 国产麻豆成人av免费视频| 亚洲人成网站在线播| 小蜜桃在线观看免费完整版高清| 老熟妇乱子伦视频在线观看| 久久热精品热| 国产私拍福利视频在线观看| 69av精品久久久久久| 午夜精品久久久久久毛片777| 亚洲国产精品久久男人天堂| 窝窝影院91人妻| 黄色日韩在线| 日韩精品青青久久久久久| 国产精品,欧美在线| 舔av片在线| 亚洲国产精品成人综合色| 亚洲国产色片| 欧美另类亚洲清纯唯美| 免费人成在线观看视频色| 老熟妇乱子伦视频在线观看| 精品一区二区三区人妻视频| 亚洲国产精品sss在线观看| 亚洲狠狠婷婷综合久久图片| 成年人黄色毛片网站| 女人被狂操c到高潮| 亚洲av美国av| 亚洲av中文av极速乱 | 中文字幕久久专区| 日韩精品中文字幕看吧| 少妇人妻一区二区三区视频| 美女xxoo啪啪120秒动态图| 男人和女人高潮做爰伦理| 特大巨黑吊av在线直播| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲真实伦在线观看| 国产一区二区在线av高清观看| 日韩亚洲欧美综合| 久久草成人影院| 日韩国内少妇激情av| 美女大奶头视频| 亚洲七黄色美女视频| 亚洲欧美激情综合另类| 久久草成人影院| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美日韩无卡精品| 日本免费a在线| 欧美成人免费av一区二区三区| av福利片在线观看| 国内揄拍国产精品人妻在线| 免费人成视频x8x8入口观看| 国产综合懂色| 亚洲国产精品sss在线观看| 久久午夜福利片| 国产探花在线观看一区二区| 一区福利在线观看| 免费看av在线观看网站| 国产高清视频在线播放一区| 久久久久九九精品影院| 亚洲无线观看免费| 麻豆国产97在线/欧美| 女的被弄到高潮叫床怎么办 | 免费看日本二区| 日本成人三级电影网站| 乱人视频在线观看| 乱码一卡2卡4卡精品| av在线蜜桃| 69av精品久久久久久| 国产在视频线在精品| 国产三级在线视频| 一本一本综合久久| 日本成人三级电影网站| 69av精品久久久久久| a级一级毛片免费在线观看| 热99在线观看视频| 亚洲精品456在线播放app | 国产视频内射| 欧美一区二区精品小视频在线| 国产精品久久久久久av不卡| 日韩一区二区视频免费看| 精华霜和精华液先用哪个| 简卡轻食公司| 国产精品久久久久久久电影| 日韩av在线大香蕉| 国产成人一区二区在线| 久久精品影院6| 欧洲精品卡2卡3卡4卡5卡区| av中文乱码字幕在线| 久久久久九九精品影院| 国产精品1区2区在线观看.| 国产精品自产拍在线观看55亚洲| av在线老鸭窝| 九九久久精品国产亚洲av麻豆| 国内精品久久久久久久电影| 国产高清视频在线播放一区| 成人无遮挡网站| av在线亚洲专区| 亚洲自偷自拍三级| 亚洲不卡免费看| 亚洲真实伦在线观看| 日本欧美国产在线视频| 国产视频一区二区在线看| 免费大片18禁| 国产亚洲精品综合一区在线观看| 国产成人福利小说| 亚洲欧美日韩高清在线视频| 婷婷六月久久综合丁香| 老司机福利观看| 国产精品久久久久久亚洲av鲁大| 精品一区二区三区视频在线| 国产极品精品免费视频能看的| 99国产精品一区二区蜜桃av| 国产成人一区二区在线| 我要看日韩黄色一级片| 老女人水多毛片| 午夜福利欧美成人| 99久国产av精品| 国产三级中文精品| 乱系列少妇在线播放| 熟女电影av网| 一区二区三区四区激情视频 | 日本在线视频免费播放| www日本黄色视频网| 亚洲成人久久爱视频| 成人特级黄色片久久久久久久| 岛国在线免费视频观看| 亚洲av中文字字幕乱码综合| 有码 亚洲区| 亚洲精品乱码久久久v下载方式| 最好的美女福利视频网| 亚洲成人久久爱视频| 国产老妇女一区| 国产精品人妻久久久影院| 99热这里只有是精品在线观看| 日韩精品中文字幕看吧| 国产高清视频在线观看网站| 中文字幕免费在线视频6| 国产精品福利在线免费观看| 97超级碰碰碰精品色视频在线观看| 人妻夜夜爽99麻豆av| 日韩欧美精品免费久久| 麻豆成人av在线观看| 偷拍熟女少妇极品色| 尤物成人国产欧美一区二区三区| 婷婷六月久久综合丁香| 一卡2卡三卡四卡精品乱码亚洲| 国产精品亚洲一级av第二区| 岛国在线免费视频观看| 不卡视频在线观看欧美| 亚洲av第一区精品v没综合| 91在线观看av| 久久久久久大精品| 中文字幕av在线有码专区| 亚洲精品色激情综合| 亚洲第一电影网av| 色综合亚洲欧美另类图片| 日韩精品中文字幕看吧| 97碰自拍视频| 午夜爱爱视频在线播放| 日韩中文字幕欧美一区二区| videossex国产| 看免费成人av毛片| 久久6这里有精品| 午夜久久久久精精品| 亚洲美女视频黄频| 中文字幕精品亚洲无线码一区| 我的老师免费观看完整版| 成人无遮挡网站| 看十八女毛片水多多多| 亚洲精华国产精华精| 欧美绝顶高潮抽搐喷水| 免费观看人在逋| 人人妻人人看人人澡| 少妇的逼好多水| 国产高清三级在线| 日本精品一区二区三区蜜桃| 免费看日本二区| 亚洲精品在线观看二区| 麻豆国产av国片精品| 搡老熟女国产l中国老女人| 欧美一区二区国产精品久久精品| 看片在线看免费视频| 日本精品一区二区三区蜜桃| 国产色婷婷99| 少妇的逼好多水| 国产色婷婷99| 99在线人妻在线中文字幕| 亚洲国产精品久久男人天堂| 久久亚洲精品不卡| 欧美高清性xxxxhd video| 婷婷色综合大香蕉| 成人亚洲精品av一区二区| 日韩欧美精品v在线| 精品无人区乱码1区二区| 91午夜精品亚洲一区二区三区 | 日日啪夜夜撸| 热99re8久久精品国产| 国产高清视频在线播放一区| 人妻少妇偷人精品九色| 97碰自拍视频| 很黄的视频免费| 22中文网久久字幕| 一级黄片播放器| 嫩草影视91久久| 国产真实乱freesex| 动漫黄色视频在线观看| 精品一区二区三区视频在线| 精品人妻偷拍中文字幕| 国内精品久久久久久久电影| 亚洲乱码一区二区免费版| 国产亚洲欧美98| 身体一侧抽搐| 精品一区二区三区视频在线| 国产精品1区2区在线观看.| 偷拍熟女少妇极品色| 国产色婷婷99| 久久精品国产自在天天线| 午夜激情欧美在线| 国产高清不卡午夜福利| 色哟哟·www| 久久久久久久久久久丰满 | 久久精品综合一区二区三区| xxxwww97欧美| 成人特级黄色片久久久久久久| 18禁在线播放成人免费| 九色国产91popny在线| 少妇人妻一区二区三区视频| 最近在线观看免费完整版| 国产伦在线观看视频一区| 美女黄网站色视频| 色视频www国产| 国产午夜福利久久久久久| 亚洲精品粉嫩美女一区| 亚洲久久久久久中文字幕| 国产精品综合久久久久久久免费| 久久天躁狠狠躁夜夜2o2o| 日韩一区二区视频免费看| 精品国产三级普通话版| 成人av在线播放网站| 波野结衣二区三区在线| av在线天堂中文字幕| 国产探花在线观看一区二区| 久久精品夜夜夜夜夜久久蜜豆| 美女 人体艺术 gogo| 麻豆成人av在线观看| 丰满乱子伦码专区| 色尼玛亚洲综合影院| 色在线成人网| 18禁裸乳无遮挡免费网站照片| 免费人成在线观看视频色| 男人舔女人下体高潮全视频| 别揉我奶头~嗯~啊~动态视频| 日韩欧美在线乱码| 男人舔女人下体高潮全视频| 久久九九热精品免费| 欧美人与善性xxx| 变态另类丝袜制服| 欧美成人免费av一区二区三区| av在线蜜桃| 少妇猛男粗大的猛烈进出视频 | 国产 一区精品| 久久精品国产亚洲网站| 国产高清视频在线播放一区| 在线观看午夜福利视频| 人妻制服诱惑在线中文字幕| 麻豆国产97在线/欧美| 在线播放国产精品三级| 亚洲精品亚洲一区二区| 午夜精品在线福利| 国产探花极品一区二区| 亚洲av免费在线观看| 欧美中文日本在线观看视频| 国产免费一级a男人的天堂| 欧美性感艳星| 成人美女网站在线观看视频| 婷婷六月久久综合丁香| 亚洲成a人片在线一区二区| 欧美三级亚洲精品| 国内毛片毛片毛片毛片毛片| 欧美一级a爱片免费观看看| 久久精品国产自在天天线| 日本黄色片子视频| 国产精品综合久久久久久久免费| 欧美xxxx黑人xx丫x性爽| 国产午夜精品论理片| 有码 亚洲区| 真实男女啪啪啪动态图| 精华霜和精华液先用哪个| 久久久久性生活片| 网址你懂的国产日韩在线| 偷拍熟女少妇极品色| 可以在线观看毛片的网站| 久久久久久久久大av| 欧美成人免费av一区二区三区| 欧美又色又爽又黄视频| 可以在线观看的亚洲视频| 三级国产精品欧美在线观看| 九九热线精品视视频播放| 国产v大片淫在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 直男gayav资源| 亚洲国产欧洲综合997久久,| 91在线观看av| 欧美zozozo另类| 日韩中文字幕欧美一区二区| 国产美女午夜福利| 午夜福利18| 久久久久久久久久久丰满 | 内地一区二区视频在线| 国产高清视频在线观看网站| 亚洲精华国产精华液的使用体验 | 91久久精品国产一区二区三区| 韩国av一区二区三区四区| av视频在线观看入口| 免费av观看视频| 悠悠久久av| 高清毛片免费观看视频网站| 中国美白少妇内射xxxbb| a级毛片免费高清观看在线播放| 成人综合一区亚洲| 日本 av在线| 久久久国产成人精品二区| 日日啪夜夜撸| 99在线视频只有这里精品首页| 欧美区成人在线视频| 国产伦人伦偷精品视频| 亚洲国产日韩欧美精品在线观看| 国产成年人精品一区二区| 日韩欧美国产在线观看| 久久这里只有精品中国| 精品午夜福利视频在线观看一区| 自拍偷自拍亚洲精品老妇| 久久久久久久久中文| 免费高清视频大片| 亚洲欧美日韩高清在线视频| 免费高清视频大片| 国产精品电影一区二区三区| 免费高清视频大片| 免费在线观看日本一区| 亚洲熟妇中文字幕五十中出| 亚洲欧美日韩高清在线视频| 深夜精品福利| 国内久久婷婷六月综合欲色啪| 国产一区二区三区av在线 | 黄色女人牲交| 尤物成人国产欧美一区二区三区| 国产蜜桃级精品一区二区三区| 色av中文字幕| 日本色播在线视频| 美女高潮的动态| 国产精品福利在线免费观看| 久久久久性生活片| 午夜影院日韩av| 可以在线观看的亚洲视频| 91久久精品电影网| 99在线视频只有这里精品首页| 国内精品美女久久久久久| a在线观看视频网站| 精品一区二区三区视频在线观看免费| 久久久久国内视频| 九九在线视频观看精品| 禁无遮挡网站| 一级黄色大片毛片| 性插视频无遮挡在线免费观看| 一个人看视频在线观看www免费| 亚洲av一区综合| 欧美日韩国产亚洲二区| 听说在线观看完整版免费高清| av在线亚洲专区| 在线观看美女被高潮喷水网站| 中文资源天堂在线| 18禁在线播放成人免费| 日日摸夜夜添夜夜添av毛片 | 麻豆一二三区av精品| 久久精品综合一区二区三区| 午夜日韩欧美国产| 日韩强制内射视频| 亚洲成av人片在线播放无| 超碰av人人做人人爽久久| 亚洲性久久影院| 国产黄色小视频在线观看| 天天一区二区日本电影三级| 亚洲aⅴ乱码一区二区在线播放| 日韩,欧美,国产一区二区三区 | 国产亚洲欧美98| 91麻豆精品激情在线观看国产| 欧美日本视频| 嫁个100分男人电影在线观看| 免费看a级黄色片| 男女那种视频在线观看| 制服丝袜大香蕉在线| 日本黄大片高清| 欧美中文日本在线观看视频| 欧美精品国产亚洲| 国产精品乱码一区二三区的特点| 亚洲欧美日韩高清专用| 久久精品国产自在天天线| 欧美潮喷喷水| 中亚洲国语对白在线视频| 亚洲精品亚洲一区二区| 亚洲第一电影网av| 18禁在线播放成人免费| 亚洲国产高清在线一区二区三| 男人狂女人下面高潮的视频| 十八禁网站免费在线| 日本熟妇午夜| 在线免费十八禁| 一a级毛片在线观看| 真人做人爱边吃奶动态| 欧美激情在线99| 成人国产一区最新在线观看| 久久精品国产亚洲av天美| or卡值多少钱| 成人特级黄色片久久久久久久| 久久久国产成人精品二区| 久久精品影院6| 国产精品一区二区三区四区免费观看 | 亚洲精品日韩av片在线观看| 亚洲三级黄色毛片| 99国产精品一区二区蜜桃av| 国产三级中文精品| 中文字幕人妻熟人妻熟丝袜美| 露出奶头的视频| 在线天堂最新版资源| 亚洲成a人片在线一区二区| 亚洲18禁久久av| 久久精品国产亚洲av涩爱 | 亚洲黑人精品在线| 欧美+亚洲+日韩+国产| 最近最新中文字幕大全电影3| 一个人免费在线观看电影| 人妻夜夜爽99麻豆av| 国产久久久一区二区三区| 国产成人福利小说| 欧美日韩综合久久久久久 | 国产爱豆传媒在线观看| 成人亚洲精品av一区二区| 久久久久久久午夜电影| 小说图片视频综合网站| 久久精品国产99精品国产亚洲性色| 久久精品影院6| 在线观看66精品国产| 国产亚洲欧美98| 哪里可以看免费的av片| 两性午夜刺激爽爽歪歪视频在线观看| 在现免费观看毛片| 久久婷婷人人爽人人干人人爱| 免费av观看视频| 精品欧美国产一区二区三| 搡老岳熟女国产| 色综合婷婷激情| 午夜免费激情av| eeuss影院久久| 在线播放无遮挡| 久久九九热精品免费| 国产精品av视频在线免费观看|