章 森 董國(guó)忠 周 俊
(西南大學(xué)動(dòng)物科技學(xué)院,重慶市牧草與草食家畜重點(diǎn)實(shí)驗(yàn)室,重慶 400716)
隨著奶牛業(yè)的發(fā)展,為了提高奶牛產(chǎn)奶量,往往在奶牛飼糧中使用大量精飼料,但當(dāng)奶牛采食大量精飼料時(shí),瘤胃代謝會(huì)發(fā)生變化,pH下降,瘤胃微生物區(qū)系發(fā)生變化[1]。尤其是當(dāng)瘤胃液pH下降到一定水平時(shí),奶牛會(huì)發(fā)生瘤胃酸中毒。瘤胃酸中毒是指反芻動(dòng)物采食大量易發(fā)酵碳水化合物的飼料后,瘤胃有機(jī)酸產(chǎn)生過(guò)多而引起瘤胃微生物類型失衡和功能紊亂的一種營(yíng)養(yǎng)代謝?。?]。根據(jù)臨床表現(xiàn),瘤胃酸中毒分為急性瘤胃酸中毒(acute rumen acidosis,ARA)和亞急性瘤胃酸中毒(subacute rumen acidosis,SARA)。ARA 發(fā)生時(shí),瘤胃液pH通常小于5.0,而SARA發(fā)生時(shí),瘤胃液pH大約在5.0~5.6[3]。在實(shí)際生產(chǎn)中 SARA更為常見(jiàn)。在歐美商業(yè)化的奶牛場(chǎng)中,泌乳早期和中期SARA發(fā)病率大于20%[4]。在澳大利亞和愛(ài)爾蘭,即使是在以黑麥草為主的草地上放牧,奶牛中的SARA發(fā)病率也能達(dá)到10% ~15%[5-6]。我國(guó)由于牧草資源較為缺乏,SARA更為普遍。
在奶牛發(fā)生SARA時(shí),瘤胃會(huì)產(chǎn)生許多異常代謝產(chǎn)物,如細(xì)菌內(nèi)毒素脂多糖(LPS)、組胺、酪胺、色胺等[7-9]。其中,瘤胃中產(chǎn)生的 LPS可轉(zhuǎn)運(yùn)至血液中。因此,SARA可使外周血液中的LPS含量顯著升高[10-11]。血液中的 LPS可引起一系列的免疫反應(yīng)和代謝變化。本文著重闡述瘤胃異常代謝產(chǎn)物L(fēng)PS對(duì)奶牛血漿代謝產(chǎn)物和激素水平的影響,并就其機(jī)制進(jìn)行探討。
內(nèi)毒素引起免疫反應(yīng)的同時(shí),也影響機(jī)體的能量代謝,血漿中的有關(guān)代謝產(chǎn)物會(huì)發(fā)生變化。Waldron等[12]對(duì)泌乳期奶牛靜脈注射大腸桿菌內(nèi)毒素后,發(fā)現(xiàn)血液葡萄糖和非酯化脂肪酸含量上升。Khafipour等[11]報(bào)道,谷物飼料誘發(fā)奶牛發(fā)生SARA時(shí),細(xì)菌內(nèi)毒素LPS進(jìn)入血液的量增加,血漿葡萄糖水平顯著升高(圖1)。血漿中葡萄糖和非酯化脂肪酸與奶牛能量代謝密切相關(guān),它們隨著奶牛飼糧精飼料比例增加而升高的原因是飼糧中能量水平過(guò)高或內(nèi)毒素引起的免疫反應(yīng)對(duì)能量的需要增加所致[14]。奶牛在發(fā)生免疫反應(yīng)并產(chǎn)生免疫因子時(shí)需要大量的能量[11],但是發(fā)生SARA的奶牛消化機(jī)能紊亂,因此,為保證機(jī)體泌乳和免疫過(guò)程對(duì)能量的需求,必須動(dòng)員機(jī)體儲(chǔ)備的脂肪和糖元,大量體脂肪被分解為非酯化脂肪酸,然后進(jìn)入肝臟分解為二氧化碳和水,同時(shí)為機(jī)體提供大量的能量,但是脂類代謝過(guò)快,奶牛可能會(huì)患上脂肪肝[14]。盡管LPS對(duì)血漿葡萄糖和非酯化脂肪酸影響的具體機(jī)制有待于進(jìn)一步研究,但是Zebeli等[13]的研究表明,血漿葡萄糖和非酯化脂肪酸含量增高與瘤胃內(nèi)毒素含量升高有很強(qiáng)的相關(guān)性。血漿葡萄糖和非酯化脂肪酸的含量升高可能會(huì)影響奶牛的采食量。在奶牛發(fā)生SARA時(shí),采食量顯著下降,并發(fā)生不規(guī)則起伏變化[15]。Krajcarski-Hunt等[16]指出,患 SARA 的奶牛對(duì)全混合日糧(TMR)的采食量比健康奶牛低25%。Ametaji等[14]給高產(chǎn)奶牛飼喂4種不同大麥含量(0、15%、30%、45%)的 TMR 時(shí),TMR 采食量是一直下降的,但是奶牛的干物質(zhì)采食量(DMI)分別為 13.3、15.3、14.7、16.0 kg/d,呈現(xiàn)曲線變化。由此可見(jiàn),0和15%的大麥含量對(duì)DMI影響不顯著,30%時(shí)則開(kāi)始下降,45%時(shí)有所上升,此時(shí)DMI上升的原因可能是由于含45%大麥的飼糧含有更多的干物質(zhì)。Khafipour等[11]用小麥 -大麥精飼料取代TMR中21%的干物質(zhì)時(shí),發(fā)現(xiàn)DMI下降15%。
SARA飼糧:用小麥+大麥(50∶50)顆粒料取代精粗比為50∶50的對(duì)照飼糧干物質(zhì)的21%。SARA diet:replacing 21%of the dry matter of the control diet(the forage to concentrate ratio=50∶50)with wheat+barley(50∶50)pellet.圖1 奶牛采食對(duì)照飼糧和亞急性酸中毒飼糧的血液葡萄糖濃度Fig.1 Blood glucose concentrations in dairy cows fed a control diet and a SARA diet[11]
采食量的下降會(huì)加劇奶牛發(fā)生以能量負(fù)平衡為特征的消瘦病,但是內(nèi)毒素引起的慢性炎癥是SARA奶牛體重下降的一個(gè)根本原因。炎癥發(fā)生時(shí),機(jī)體產(chǎn)生的炎性因子[如組胺、花生四烯酸代謝產(chǎn)物、腫瘤壞死因子α(TNF-α)等]抑制體內(nèi)營(yíng)養(yǎng)物質(zhì)的消化代謝,降低DMI,從而抑制動(dòng)物生長(zhǎng)[4]。因此,隨著奶牛飼糧中精飼料比例增加而誘發(fā)SARA以及血漿LPS升高的同時(shí),奶牛會(huì)發(fā)生能量負(fù)平衡[17]。這種負(fù)平衡會(huì)導(dǎo)致脂肪肝的發(fā)生,特別是泌乳階段的奶牛,會(huì)分解大量體脂肪以合成乳脂肪,血液中大量非酯化脂肪酸進(jìn)入肝臟用于氧化供能以及合成三酰甘油,大量三酰甘油積累到肝臟,超過(guò)肝臟轉(zhuǎn)運(yùn)的速度導(dǎo)致了脂肪肝的發(fā)生[17]。另有研究表明,內(nèi)毒素可以活化肝臟的巨噬細(xì)胞,使其產(chǎn)生 TNF-α、白細(xì)胞介素(IL)-1、IL-6 等細(xì)胞因子[18],這些因子可刺激肝臟細(xì)胞產(chǎn)生血清淀粉樣蛋白A(SAA)、結(jié)合珠蛋白(HP)、LPS結(jié)合蛋白(LPB)、C-反應(yīng)蛋白(CRP)等急性期蛋白[11]。其中,血清SAA可以和LPS以及脂蛋白(大多數(shù)高密度脂蛋白)形成復(fù)合物,阻礙脂肪的轉(zhuǎn)運(yùn),從另一個(gè)方面導(dǎo)致脂肪肝的發(fā)生[17]。
隨著奶牛飼糧中精飼料比例增加,奶牛發(fā)生SARA,血漿LPS升高,血漿游離氨基酸的含量也發(fā)生變化。在人工注射LPS引起免疫反應(yīng)時(shí),牛血漿中的蛋氨酸(Met)、賴氨酸(Lys)、亮氨酸(Leu)、異亮氨酸(Ile)、苯丙氨酸(Phe)、色氨酸(Trp)、甘氨酸(Gly)、絲氨酸(Ser)、天冬氨酰(Asn)、谷氨酸(Glu)、蘇氨酸(Thr)、纈氨酸(Val)和鳥(niǎo)氨酸(Orn)的含量下降,而組氨酸(His)、胱氨酸(Cys)、谷氨酰胺(Gln)和天冬氨酸(Asp)的含量基本不受影響[19-20]。當(dāng)動(dòng)物發(fā)生免疫應(yīng)激時(shí),血漿氨基酸優(yōu)先用于合成急性期蛋白而不是體組織蛋白,前者含有較多的 Phe、Trp、Lys、Cys和Ser[21],而支鏈氨基酸(Leu、Val和 Ile)與抗體的生成和能量的產(chǎn)生有關(guān)[22],因此,這可能是血漿中這幾種氨基酸含量下降的原因。Li等[23]也指出,炎癥反應(yīng)動(dòng)物的血漿中的游離氨基酸將用于合成急性期蛋白、抗體、葡萄糖前體、激素和酶,他們還發(fā)現(xiàn)較多的Met轉(zhuǎn)變?yōu)镃ys和S-腺苷甲硫胺酸。而且有研究表明,自由基清除劑和谷胱甘肽的合成需要Cys[24],許多免疫反應(yīng)中的細(xì)胞因子需要S-腺苷甲硫胺酸來(lái)激活[25],所以,這些因素導(dǎo)致了Met在免疫反應(yīng)時(shí)含量下降。另外,血漿Orn的含量和血漿Arg的水平有著高度正相關(guān)的關(guān)系[26],Arg可以被巨噬細(xì)胞和單核細(xì)胞作為谷胱甘肽合成的底物[27-28],因此這可能是 Orn含量下降的原因。Thr的下降是因?yàn)槠涫呛铣擅庖咔虻鞍祝勖庖咔虻鞍譍(IgG)、免疫球蛋白A(IgA)和免疫球蛋白M(IgM)]的重要組成成分[29]。當(dāng)機(jī)體發(fā)生免疫反應(yīng)時(shí),能量攝入減少,機(jī)體會(huì)分解自身組織用于免疫反應(yīng),在這個(gè)過(guò)程中,Gln是第一限制性氨基酸[30],所以這可能是Gln含量下降的原因??傊?,血漿氨基酸的變化可能是由LPS引起免疫反應(yīng)時(shí)產(chǎn)生的一種現(xiàn)象。但是,目前對(duì)于奶牛發(fā)生SARA時(shí),LPS對(duì)血漿氨基酸含量影響的報(bào)道較少,對(duì)于氨基酸變化規(guī)律和機(jī)制有待進(jìn)行深入研究。
LPS對(duì)血漿其他代謝產(chǎn)物如乳酸、β-羥丁酸、膽固醇和礦物質(zhì)(鈣、無(wú)機(jī)磷、鐵、鎂、鋅、銅)的含量也有影響。Nagaraja等[31]報(bào)道,飼喂高精飼料飼糧后,奶牛血漿D型乳酸鹽含量伴隨瘤胃液LPS含量升高而升高。在奶牛發(fā)生SARA時(shí),乳酸大量進(jìn)入血液,干擾機(jī)體代謝,造成局部缺血,與LPS一起使反芻動(dòng)物SARA進(jìn)一步加劇[32-33],并且易使奶?;忌现悴?如蹄葉炎)。另有研究指出,增加奶牛飼糧中精飼料比例時(shí),血漿中乳酸鹽含量升高,而β-羥丁酸、膽固醇含量下降[14]。可能是由于血漿LPS誘導(dǎo)產(chǎn)生的急性期蛋白以及血漿乳酸、氨基酸等物質(zhì)的綜合影響而導(dǎo)致膽固醇含量降低[14]。但是,Zebeli等[13]的最近研究結(jié)果表明,奶牛發(fā)生SARA時(shí),瘤胃液LPS大量進(jìn)入血液,引起炎癥反應(yīng)并活化免疫系統(tǒng),進(jìn)而刺激膽固醇衍生為膽酸鹽,隨膽汁排入消化道,中和胃腸道中過(guò)多的LPS,最終導(dǎo)致血漿膽固醇含量的降低。因此,在SARA情況下的各類炎癥(如乳房炎、敗血癥、子宮炎等)中,膽固醇含量的變化規(guī)律可能遵循上述研究結(jié)果,但是非SARA情況下的炎癥反應(yīng)中膽固醇含量變化規(guī)律有待于進(jìn)一步研究。對(duì)于β-羥丁酸含量下降可能有2個(gè)方面的原因:一是由于外周血液高水平的葡萄糖和胰島素影響肝細(xì)胞,使非酯化脂肪酸經(jīng)生酮作用產(chǎn)生的β-羥丁酸的量減少;二是隨著精飼料含量升高,瘤胃產(chǎn)生丁酸的量減少,而丁酸也是β-羥丁酸的前體,所以 β-羥丁酸的量隨之減少[14]。Waldron等[12]對(duì)奶牛注射外源LPS同樣引起血液β-羥丁酸的含量下降,并指出這是由于免疫反應(yīng)而引起肝臟生酮作用下降。因此,在發(fā)生SARA情況下的脂肪肝、肝膿腫等繼發(fā)癥中,由于LPS對(duì)肝臟的影響,肝功能受到損傷,血漿β-羥丁酸量有所下降??傊M管這些代謝產(chǎn)物變化的具體機(jī)制有待于進(jìn)一步研究,但是Zebeli等[13]的最新研究結(jié)果表明,隨著飼糧精飼料比例的增加,血漿β-羥基丁酸、膽固醇含量下降與瘤胃中內(nèi)毒素升高有著高度相關(guān)性,而血漿中的93%乳酸是伴隨著瘤胃中內(nèi)毒素增加而增加的。
在礦物質(zhì)元素方面,Waldron等[34]對(duì)泌乳期的奶牛靜脈注射大腸桿菌內(nèi)毒素后,發(fā)現(xiàn)血漿鈣、磷含量下降,而鎂的含量不變。這種低血鈣、低血磷狀態(tài)易使奶?;忌袭a(chǎn)乳熱和蹄葉炎。Zebeli等[35]分別用含大麥0、15%、30%和45%的飼糧飼喂奶牛時(shí),血漿中鈣、鐵和鋅的含量呈二次曲線變化。采食大麥含量為15%的飼糧的奶牛,其血漿中鈣、鐵和鋅的含量最高;采食大麥含量為45%的飼糧的奶牛,其血漿中鈣、鐵和鋅的含量降至最低,而此時(shí)的內(nèi)毒素含量最高,這說(shuō)明細(xì)菌內(nèi)毒素可影響鈣、鐵、鋅的代謝。Wenz等[36]報(bào)道,泌乳期奶牛血漿鈣含量受到乳房炎的影響,這間接說(shuō)明內(nèi)毒素對(duì)血鈣有著重要的影響。事實(shí)上血鈣的作用是穩(wěn)定急性期蛋白的結(jié)構(gòu),尤其是穩(wěn)定SAA的結(jié)構(gòu),并促進(jìn)SAA聚集在組織器官上,然后進(jìn)一步加強(qiáng)機(jī)體的中合作用,最終消除血漿過(guò)量的內(nèi)毒素[35-38]。而鐵的減少一方面與 CRP的增加密切相關(guān),另一方面與鐵調(diào)素(hepcidin)的增加有關(guān),鐵調(diào)素也是一種急性期蛋白,它通過(guò)專門(mén)的位點(diǎn)與鐵元素結(jié)合,進(jìn)而發(fā)揮免疫作用[37]。另外,在LPS誘導(dǎo)的急性期反應(yīng)中,銅和鋅的相互作用共同維持急性期蛋白的二級(jí)和三級(jí)結(jié)構(gòu)的穩(wěn)定性[38],這可能是鋅含量下降的一個(gè)原因,而另一個(gè)原因是由于促炎因子IL-6釋放金屬硫蛋白,結(jié)合血漿的鋅元素,使其濃度下降[39]。但是,在Zebeli等[35]的研究中,血漿中銅含量卻不受飼糧精飼料比例的影響??傊谀膛0l(fā)生SARA時(shí),內(nèi)毒素影響礦物質(zhì)元素代謝的機(jī)制需要進(jìn)一步研究。對(duì)于奶牛在SARA發(fā)生時(shí)的血漿錳、碘、硒等礦物質(zhì)元素含量的變化鮮見(jiàn)報(bào)道,有待于進(jìn)一步研究。
當(dāng)奶牛發(fā)生SARA時(shí),血漿高濃度LPS對(duì)血漿各種激素水平也有一定的影響(表1)。Waldron等[12]向奶牛血液注入 LPS后,血漿生長(zhǎng)激素(GH)、瘦素和胰島樣生長(zhǎng)因子1(IGF-1)基本不受影響,而胰島素和胰高血糖素含量升高并且二者的比值降低,他們認(rèn)為這是因?yàn)槊庖叻磻?yīng)影響了能量代謝相關(guān)激素的變化。Waggoner等19用內(nèi)毒素誘導(dǎo)肉牛發(fā)生一系列臨床和代謝變化后,發(fā)現(xiàn)血漿催乳素和胰島素含量升高,而三碘甲腺原氨酸(T3)、四碘甲腺原氨酸(T4)和IGF-1的含量卻下降,這在他們隨后的研究中再次得到證實(shí),他們還指出內(nèi)毒素也導(dǎo)致皮質(zhì)醇含量升高[40]。有關(guān)生殖方面的激素,如促黃體素(LH)、雌二醇(E2)、孕酮(P4)等都在一定程度上受LPS的影響,內(nèi)毒素可以降低LH的釋放頻率,推遲LH的峰值,增加P4的含量而降低E2的含量[41]。
表1 脂多糖對(duì)牛科動(dòng)物血漿激素水平的影響Table 1 Effects of lipopolysaccharide on plasma hormone levels in Bovidae animals
內(nèi)毒素影響內(nèi)分泌激素的機(jī)制多種多樣。牛科動(dòng)物的生長(zhǎng)激素水平受到內(nèi)毒素的影響很小,但是 IGF-1 下降明顯[42-44],這主要有 2 個(gè)方面的原因:一是內(nèi)毒素引起的免疫反應(yīng)所產(chǎn)生的細(xì)胞因子改變了 IGF-1的酸性不穩(wěn)定亞基的表達(dá)[45-46];二是可能與 IGF 結(jié)合蛋白(IGFBP-2)的含量下降有關(guān)[47]。生長(zhǎng)激素與IGF-1的這種變化機(jī)制在機(jī)體在發(fā)生炎癥性疾病(乳房炎、子宮炎)時(shí),可保證營(yíng)養(yǎng)物質(zhì)較少用于生產(chǎn)(如產(chǎn)奶)和生長(zhǎng),而較多用于免疫反應(yīng)[48]。
胰島素和胰高血糖素受到內(nèi)毒素的影響后含量都升高,但是,具體機(jī)制尚不十分清楚[12]。Steiger等[49]在1999年就曾報(bào)道,在奶牛接受LPS注射后,胰島素含量升高。在應(yīng)激和內(nèi)毒素感染的情況下,由于細(xì)胞因子對(duì)胰島素受體的作用,牛的外周組織對(duì)胰島素的抵抗能力提高[19]。因此,這些反應(yīng)可以限制外周組織對(duì)葡萄糖的利用,同時(shí)保證對(duì)免疫組織的能量供給[50]??傊?,高濃度的胰島素有利于免疫反應(yīng)。對(duì)于胰高血糖素來(lái)說(shuō),在動(dòng)物發(fā)生免疫反應(yīng)時(shí),在所有的有關(guān)能量代謝的激素中胰高血糖素并不是最先發(fā)生變化的一種[51],顯然胰高血糖素的濃度還受其他激素如胰島素的調(diào)節(jié)。另外,雖然在??苿?dòng)物上鮮有報(bào)道,但在其他物種體內(nèi)已有報(bào)道,免疫反應(yīng)產(chǎn)生的細(xì)胞因子和其他炎癥產(chǎn)物(如一氧化氮)影響胰腺的結(jié)構(gòu)和功能[52-53],從而影響這些胰腺激素的分泌。至于胰島素對(duì)胰高血糖素的比例降低,可能與皮質(zhì)醇含量升高以及肝臟糖原異生作用的改變有關(guān)。
對(duì)于血漿催乳素、皮質(zhì)醇、T3和T4來(lái)說(shuō),催乳素是一種下丘腦激素,它的升高有利于淋巴細(xì)胞的增殖,有利于免疫反應(yīng)的發(fā)生[54],而皮質(zhì)醇有利于機(jī)體抵抗應(yīng)激反應(yīng),特別是乳房炎、敗血癥、子宮炎等炎癥應(yīng)激反應(yīng)。Sapolsky等[55]報(bào)道,LPS引起的免疫反應(yīng)產(chǎn)生的細(xì)胞因子對(duì)下丘腦以及下丘腦-垂體-腎上腺的影響而導(dǎo)致催乳素和皮質(zhì)醇的升高。另外,Kahl等[56]也證實(shí),隨著血漿內(nèi)毒素的增加,血漿T3和T4含量下降,并指出這是因?yàn)榧谞钕贆C(jī)能的衰退以及肝臟5'-去碘酶產(chǎn)生量減少,5'-去碘酶減少是由于內(nèi)毒素改變肝功能使其產(chǎn)生免疫相關(guān)物質(zhì)增多。而在內(nèi)毒素引起的脂肪肝和肝膿腫疾病中,肝功能受到極大損害,5'-去碘酶產(chǎn)生量更少。
對(duì)于生殖激素來(lái)說(shuō),Suzuki等[41]指出,內(nèi)毒素可推遲母牛LH的峰值長(zhǎng)達(dá)6 h之久,他們還認(rèn)為P4含量的增加是短暫的,其歸結(jié)于腎上腺皮質(zhì)激素過(guò)多的分泌。雖然有學(xué)者在母羊上也得到了類似的試驗(yàn)結(jié)果[57-58],但是對(duì)于 LH和 P4含量的變化的具體機(jī)制有待于進(jìn)一步的研究。由于IGF-1和T3在調(diào)整和恢復(fù)卵巢的周期方面有重要作用[59],因此內(nèi)毒素對(duì)IGF-1和 T3的影響也間接影響到生殖激素。在實(shí)際生產(chǎn)中,能量負(fù)平衡類的疾病(如脂肪肝)、乳房炎與生殖能力下降之間有著密切關(guān)系[60],而且臨床以及亞臨床狀態(tài)的乳房炎可以導(dǎo)致子宮畸形[61],從而影響生殖能力,這些現(xiàn)象似乎都可以用內(nèi)毒素對(duì)生殖激素的影響來(lái)解釋。
總之,隨著血漿內(nèi)毒素的增加,奶牛血漿激素變化的一些機(jī)制以及各個(gè)激素之間的相互關(guān)系尚需進(jìn)一步的研究,而且許多試驗(yàn)中內(nèi)毒素是通過(guò)人工注射的而不是通過(guò)SARA誘導(dǎo)而產(chǎn)生的。因此,對(duì)在SARA情形下血漿內(nèi)毒素對(duì)各種激素的影響還有待于進(jìn)一步深入研究。
當(dāng)奶牛飼糧中精飼料水平提高時(shí),奶牛易發(fā)生瘤胃酸中毒,其中SARA在實(shí)際生產(chǎn)中更為常見(jiàn)。當(dāng)奶牛發(fā)生SARA時(shí),血漿LPS引起一系列免疫反應(yīng)和代謝變化,葡萄糖、非酯化脂肪酸含量會(huì)升高,血漿氨基酸、β-羥基丁酸、膽固醇和礦物質(zhì)(鈣、鐵、鋅等)的含量會(huì)發(fā)生變化。隨著酸中毒的發(fā)生,血漿中的各種激素(IGF-1、T3、T4、皮質(zhì)醇、胰島素、LH等)分泌也會(huì)發(fā)生變化。這些變化會(huì)對(duì)奶牛健康和生產(chǎn)性能產(chǎn)生不良影響。
[1] KEUNEN J E,PLAIZIER J C,KYRIAZAKIS L,et al.Effects of a subacute ruminal acidosis model on the diet selection of dairy cows[J].Journal of Dairy Science,2002,85:3304 -3313.
[2] ELAM C J.Acidosis in feedlot cattle:practical observations[J].Journal of Animal Science,1976,43:898-901.
[3] NAGARAJA T G,TOWN G.Ciliated protozoa in relation to ruminal acidosis and lactic acid metabolism[C]//ONEORA R,MINATO H,ITABASHI H,et al.Rumen ecosystem:microbial metabolism and regulation.New York:Springer-Verlag,1990:187 - 194.
[4] OETZEL G R.Clinical aspects of ruminal acidosis in dairy cattle[C]//Proceedings of the 33rd annua1 convention of the American association of bovine practitioner.Rapid City:[s.n.],2000:46 -53.
[5] BRAMLEY E,LEAN I J,COSTA N D,et al.Acidosis in pasture fed dairy cows:risk factors and outcomes[J].Journal of Dairy Science,2005,88:95 -103.
[6] O’GRADY L,DOHERTY M L,MULLIGAN F J.Subacute ruminal acidosis(SARA)in grazing dairy cows[J].Veterinary Journal,2008,176:44 - 49.
[7] ANDERSEN P H,JARLOV N.Investigation of the possible role of endotoxin,TXA2,PG1 and PGE2 in experimentally induced rumen acidosis in cattle[J].Acta Veterinaria Scandinavica,1990,31(1):27 -38.
[8] ASCHENBACH J R,ROBBY O,GOTTHOLD G.Transport catabolism and release of histamine in the ruminal epithelium of sheep[J].Journal of Physiology,2000,440(1):171 -178.
[9] NAGARAJA T G,TITGEMEYER E C.Ruminal acidosis in beef cattle:The current microbiological and nutritional outlook[J].Journal of Dairy Science,2007,90(Suppl.):E17 -E38.
[10] DOUGHERTY RW,COBURN K S,COOK H M,et al.A preliminary study of the appearance of endotoxin in the circulatory system of sheep and cattle after induced grain engorgement[J].American Journal of Veterinary Research,1975,36:181.
[11] KHAFIPOUR E,KRAUSE D O,PLAIZIER J C.A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation[J].Journal of Dairy Science,2009,92:1060-1070.
[12] WALDRON M R,NISHIDA T,NONNECKE B J,et al.Effect of lipopolysaccharide on indices of peripheral and hepatic metabolism in lactating cows[J].Journal of Dairy Science,2003,86:3447 -3459.
[13] ZEBELI Q,DUNN S M,AMETAJ B N.Perturbations of plasma metabolites correlated with the rise of rumen endotoxin in dairy cows fed diets rich in easily degradable carbohydrates[J].Journal of Dairy Science,2011,94(5):2374 -2382.
[14] AMETAJ B N,EMMANUEL D G V,ZEBELI Q,et al.Feeding high proportions of barley grain in a total mixed ration perturbs diurnal patterns of plasma metabolites in lactating dairy cows[J].Journal of Dairy Science,2009,92:1084 -1091.
[15] 李祥輝,苗樹(shù)君,連學(xué)昭,等.反芻動(dòng)物瘤胃酸中毒的防治[J].黑龍江畜牧獸醫(yī),2006(6):72-73.
[16] KRAJCARSKI-HUNT H,PLAIZIR J C,WALTON J P.Effect of subacute ruminal acidosis on institute fiber digestion in lactating dairy cows[J].Journal of Dairy Science,2005,85:570 -573.
[17] AMETAJ B N.A new understanding of the causes of fatty liver in dairy cows[J].Advances in Dairy Technology,2005,17:97.
[18] GABAY C,KUSHNER I.Acute-phase proteins and other systemic responses to inflammation[J].The New England Journal of Medicine,1999,340:448 -454.
[19] WAGGONER J W,L?EST C A,TURNER J L,et al.Effects of bacterial endotoxin and dietary protein on serum hormones and plasma amino acids in growing steers[J].American Society of Animal Science,2007,58:348 -351.
[20] WAGGONER J W,LOEST C A,MATHIS C P,et al.Effects of rumen-protected methionine supplementation and bacterial lipopolysaccharide infusion on nitrogen metabolism and hormonal responses of growing beef steers[J].Journal of Animal Science.2009,87:681-692.
[21] REEDS P J,JAHOOR F.The amino acid requirements of disease[J].Clinical Nutrition,2001,20:15 - 22.
[22] CALDER P C.Branched-chain amino acids and immunity[J].Journal of Nutrition,2006,136:288S -293S.
[23] LI P,YIN Y,LI D.Amino acids and immune function[J].British Journal of Nutrition,2007,98:237 - 252.
[24] WU G,F(xiàn)ANG Y,YANG S,et al.Glutathione metabolism and its implications for health[J].Journal of Nutrition,2004,134:489 -492.
[25] GRIMBLE R F,GRIMBLE G K.Immunonutrition:role of sulfur amino acids,related amino acids and polyamines[J].Nutrition,1998,14:605 - 610.
[26] MALTBY S A,REYNOLDS C K,LOMAX M A,et al.Splanchnic metabolism of nitrogenous compounds and urinary nitrogen excretion in steers fed alfalfa under conditions of increased absorption of ammonia and L-arginine supply across the portal-drained viscera[J].Journal of Animal Science,2005,83:1075 -1087.
[27] CALDER P C,YAQOOB P.Amino acids and immune function[C]//CYNOBER L A.Metabolic and therapeutic aspects of amino acids in clinical nutrition.Boca Raton:CRC Press,2004:305 -319.
[28] MAHONEY E J,ALBINA J E.Nitric oxide[C]//CYNOBER L A.Metabolic and therapeutic aspects of amino acids in clinical nutrition.Boca Raton:CRC Press,2004:211 -239.
[29] TENENHOUSE H S,DEUTSCH H F.Some physicalchemical properties of chicken gamma-globulinsa and their pepsins and pepsins digestion product[J].Immunochemistry,1996,20(3):211 -214.
[30] YEH S L,SHANG H F,LIN M T,et al.Effects of dietary glutamine on antioxidant enzyme activity and immune response in burned mice[J].Nutrition,2003,19:880-885.
[31] NAGARAJA T G,BARTLEY E E,F(xiàn)INA L R,et al.Relationship of rumen gram-negative bacteria and free endotoxin to lactic acidosis in cattle[J].Journal of Animal Science,1978,47:1329 -1336.
[32] AYERS J L,OLIVOS C A.Grain overload[M].Universtity Park:Pensylvanla State University Press,1992:63.
[33] WALL B M,MATLFLOLTR N,COOK C R.Acute fulminant lactic acidosis compheating metastatic clmlangiocarcinom[J].American Journal of the Medical Sciences,2000,319(2):126 -129.
[34] WALDRON M R,NONNECKE B J,ISHIDA T N,et al.Effect of lipopolysaccharide infusion on serum macromineral and vitamin D concentrations in dairy cows[J].Journal of Dairy Science,2003,86:3440 -3446.
[35] ZEBELI Q,DUNN S M,AMETAJ B N.Strong associations among rumen endotoxin and acute phase proteins with plasma minerals in lactating cows fed graded amounts of concentrate[J].Journal of Animal Science,2010,88:1545 -1553.
[36] WENZ J R,BARRINGTON G M,GARRY F B,et al.Bacteremia associated with naturally occurring acute coliform mastitis in dairy cows[J].Journal of the American Veterinary Medical Association,2001,219:976-981.
[37] BLACK S,KUSHNER I,SAMOLS D,et al.C-reactive protein[J].Journal of Biological Chemistry,2004,279:487 -490.
[38] WANG L,COLON W.Effect of zinc,copper,and calciumon the structure and stability of serum amyloid A[J].Biochemistry,2007,46:5562 -5569.
[39] SCHROEDER J J,COUSINS R J.Interleukin-6 regulates metallothionein gene expression and zinc metabolism in hepatocyte monolayer cultures[J].Proceedings of the National Academy of Sciences,1990,87:3137-3141.
[40] WAGGONER J W,L?EST C A,TURNER J L,et al.Effects of dietary protein and bacterial lipopolysaccharide infusion on nitrogen metabolism and hormonal responses of growing beef steers[J].Journal of Animal Science,2009,87:3656 -3668.
[41] SUZUKI C,YOSHIOKA K,IWAMURA S,et al.Endotoxin induces delayed ovulation following endocrine aberration during the prooestrus phase in Holstein heifers[J].Domestic Animal Endocrinology,2001,20:267-278.
[42] ELSASSER T H,CAPERNA T J,RUMSEY T S.Endotoxin administration decreases plasma insulin-like growth factor(IGF)-1 and IGF-binding protein-2 in Angusx Hereford steers independent of changes in nutritional intake[J].Journal of Endocrinology,1995,144:109-117.
[43] ELSASSER T H,RICHARDS M,COLLIER R,et al.Physiological responses to repeat endotoxin challenge are selectively affected by recombinant bovine somatotropin administration to calves[J].Domestic Animal Endocrinology,1996,13:91 -103.
[44] NIKOLIC J A,KULCSAR M,KATAI L,et al.Periparturient endocrine and metabolic changes in healthy cows and in those affected by various forms of mastitis[J].Journal of Veterinary Medicine,2003,50:22 -29.
[45] MAO Y,LING P,F(xiàn)ITZGIBBONS T P,et al.Endotoxin-induced inhibition of growth hormone receptor signaling in rat liver in vivo[J].Endocrinol,1999,140:5505-5515.
[46] BOISCLAIR Y R,WANG J,SHI K,et al.Role of the suppressor of cytokine signaling-3 in mediating the inhibitory effects of interleukin-1β on the growth hormone-dependent transcription of the acid-labile subunit gene in liver cells[J].Biological Chemistry,2000,275:3841-3847.
[47] HUSZENICZA A G,JANOSI B S,GASPARDY A A,et al.Endocrine aspects in pathogenesis of mastitis in postpartum dairy cows[J].Animal Reproduction Science,2004,82:389 -400.
[48] BURVENICH C,PAAPE M J,HOEBEN D,et al.Modulation of the inflammatory reaction and neutrophil defense of the bovine lactating mammary gland by growth hormone[J].Domestic Animal Endocrinology,1999,17:149 -159.
[49] STEIGER M,SENN M,ALTREUTHER G,et al.Effect of prolonged low -doselipopolysaccharide infusion on feed intake and metabolism in heifers[J].Journal of Animal Science,1999,77:2523 -2532.
[50] SPURLOCK M E.Regulation of metabolism and growth,during immune challenge:an overview of cytokine function[J].Journal of Animal Science,1997,75:1773-1783.
[51] CORNELL R P.Role of the liver in endotoxin-induced hyperinsulinemia and hyperglucagonemia in rats[J].Hepatology,1983,3:188 - 192.
[52] ANDERSSON A K,F(xiàn)LODSTROM M,SANDLER S.Cytokineinduced inhibition of insulin release from mouse pancreatic β-cells deficient in inducible nitric oxide synthase[J].Biochemical and Biophysical Research Communications,2001,281:396 -403.
[53] SPINAS G A.The dual role of nitric oxide in islet βcells[J].News in Physiological Sciences,1999,14:49-54.
[54] ARKINS S,DANZER R,KELLEY K W.Somatolactogens,somatomedins,and immunity[J].Journal of Dairy Science,1993,76:2437 -2450.
[55] SAPOLSKY R M,ROMERO L M,MUNCK A U.How do glucocorticoids influence stress responses?Integrating permissive suppressive stimulatory and preparative actions[J].Endocrine Reviews,2000,21:55-89.
[56] KAHL S,ELSASSER T H,BLUM J W.Effect of endotoxin challenge on hepatic 5'-deiodinase activity in cattle[J].Domestic Animal Endocrinology,2000,18:133-143.
[57] BATTAGLIA D F,KRASA H B,PADMANABHAN V,et al.Endocrine alterations that underline endotoxin-induced disruption of the follicular phase in ewes[J].Biology of Reproduction,2000,62:45 - 53.
[58] DANIEL J A,WHITLOCK B K,WAGNER C G,et al.Regulation of the growth hormone and luteinizing hormone response to endotoxin in sheep[J].Domestic Animal Endocrinology,2002,23:361 -370.
[59] BUTLER W R.Nutritional interactions with reproductive performance in dairy cattle[J].Animal Reproduction Science,2000,60:449 -457.
[60] WASHBURN S P,WHITE S L,GREEN J R,et al.Reproduction,mastitis,and body condition of seasonally calved Holstein and Jersey cows in confinement or pasture systems[J].Journal of Dairy Science,2002,85:105-111.
[61] HOCKETT M E,HOPKINS F M,LEWIS M J,et al.Endocrine profiles of dairy cows following experimentally induced clinical mastitis during early lactation[J].Animal Reproduction Science,2000,58:241 -251.