彭漁露,張賢敏
(1.重慶大學自動化學院,重慶 400030;2.西昌衛(wèi)星發(fā)射中心,四川西昌 615000)
航天測控系統(tǒng)是航天工程的重要組成部分,既是航天運載器和航天器發(fā)射、在軌及返回段的重要支持保障系統(tǒng),又是運行大回路中的重要環(huán)節(jié)。隨著航天科技的快速發(fā)展,測控系統(tǒng)的可靠性工程越來越受到重視[1]。如何快速決策整個測控系統(tǒng)的狀態(tài),保障航天活動的順利完成,是該領(lǐng)域的一個重要課題。目前在該領(lǐng)域中,將專家系統(tǒng)、人工神經(jīng)網(wǎng)絡(luò)以及模糊理論等多種智能技術(shù)結(jié)合起來進行決策評估,是國內(nèi)外智能化診斷研究的一個發(fā)展趨勢。
由于國內(nèi)外測控體制的區(qū)別,國外測控系統(tǒng)的決策方法和經(jīng)驗無法直接應(yīng)用到國內(nèi),而國內(nèi)的相關(guān)文獻資料也比較缺乏,但針對測控設(shè)備的決策評估和火箭安全性等內(nèi)容有一些研究,如針對測控設(shè)備保障體系的評估[2]和測控設(shè)備軟件質(zhì)量控制[3]都有保證設(shè)備可靠性的方法。文獻[4]則研究了對測控系統(tǒng)離線式的診斷決策方法,沒有對實時情況進行決策。文獻[5]則提出建立航天試驗裝備指揮輔助決策系統(tǒng)的結(jié)構(gòu);文獻[6-8]則是針對裝備決策架構(gòu)及火箭本身安全性的決策和診斷,并不針對測控系統(tǒng)本身。
本文基于不確定性推理的專家系統(tǒng)理論,利用聯(lián)調(diào)中測控設(shè)備發(fā)送的信息進行分析計算,提出對測控系統(tǒng)進行實時決策的方法。
測控系統(tǒng)聯(lián)調(diào)活動通常由控制中心和各測控設(shè)備共同參與完成。在聯(lián)調(diào)過程中,各測控設(shè)備向控制中心發(fā)送各類信息,控制中心對接收到的信息進行處理和分析。
測控設(shè)備發(fā)送的信息通常包含2種類型,一是自身工作狀態(tài)的信息,二是對外部目標進行測量的信息。由于第2類信息只在有真實目標的情況下才具有意義,所以本文只考慮第1類信息。
本文用一組無序的數(shù)組元素來描述設(shè)備自身狀態(tài)信息,將狀態(tài)表示成向量(或序列、集合)的形式。一般地,采集設(shè)備的m個狀態(tài),每個狀態(tài)用E描述。
測控系統(tǒng)是由多級層次組成的,較低層的設(shè)備可以集合成較高層的系統(tǒng),較高層的系統(tǒng)也可以分解。按照測控系統(tǒng)的層次性特點,首先將航天測控系統(tǒng)劃分為若干系統(tǒng),然后再根據(jù)各系統(tǒng)本身的功能特性及層次性,劃分為若干分系統(tǒng)、子系統(tǒng)和功能單元,分系統(tǒng)、子系統(tǒng)和功能單元包含了測控設(shè)備。因此,測控設(shè)備是基本的決策對象。
可信度方法是肖特里菲(E.H.Shortliffe)等在確定性理論的基礎(chǔ)上,結(jié)合概率論等提出的一種不確定性推理方法(又稱CF模型)??尚哦仁且粋€為了將相信和不相信合成一個主觀系數(shù),用這個系數(shù)來表示證據(jù)對結(jié)論為真的支持程度,用來處理信任與不信任的問題[9]。
系統(tǒng)中的規(guī)則可以用如下形式的規(guī)則R表示:
其中:E表示狀態(tài)向量組的前提條件;H表示結(jié)論;CF(H,E)表示產(chǎn)生式規(guī)則 R的可信度(CF∈[0,1]),該規(guī)則可以解釋為當前提條件或狀態(tài)E發(fā)生了,結(jié)論H可信程度為CF(H,E),值越大可信度越大。
根據(jù)以上理論,設(shè)備狀態(tài)向量采用適當?shù)牧炕P?,可以將?1)轉(zhuǎn)換為一組可信度的向量,該向量表示設(shè)備各個狀態(tài)正常的可以信任的程度,表達式為
在聯(lián)調(diào)中,由于測量設(shè)備所處的環(huán)境、通信線路質(zhì)量等因素都會造成傳遞信息的錯誤,為了減少此類情況對結(jié)果的影響和不確定因素的傳遞,引入可信度閾值[10-12]??尚哦乳撝涤忙吮硎荆姚恕剩?,1]。于是,產(chǎn)生式規(guī)則的形式可以表示為
設(shè)備自身狀態(tài)可信度向量,表示為
在此前的基于規(guī)則的專家系統(tǒng)中,大多都是在假定前提條件之間,具有相同重要性的基礎(chǔ)上實現(xiàn)的。然而在測控設(shè)備狀態(tài)可信度向量中,因設(shè)備自身狀態(tài)重要程度的不同,不能一概而論。為此,根據(jù)文獻[13]在推理規(guī)則的前提條件中引入加權(quán)因子,不同狀態(tài)對應(yīng)不同的權(quán)值,體現(xiàn)測控設(shè)備自身狀態(tài)之間的重要程度。設(shè)權(quán)值為ω,規(guī)則為
設(shè)備自身狀態(tài)可信度向量,表示為
根據(jù)文獻[13],得到多個條件下可信度的計算方法。例如有2個相同結(jié)論的產(chǎn)生式規(guī)則同時被觸發(fā)時,計算公式為
通過以上方法,可以計算出設(shè)備自身狀態(tài)的可信度CFm。但可信度是采用統(tǒng)計的方法獲得的概率形式,在復合條件的可信度計算中,需要排除前提條件可信度之間的相對相互重迭。為此,采用文獻[14-15]中相對權(quán)重的方法進行計算。具體改進算法為:
在式(7)中,取設(shè)備自身狀態(tài)權(quán)重的最大值ωmax=max{ω1,ω2,…,ωm},則條件 E1相對權(quán)重為ω1/ωmax,條件 E2相對權(quán)重為 ω2/ωmax,條件 Em相對權(quán)重為 ωm/ωmax。
條件E1與條件E2可信度之間的近似相對重迭條件E1與條件E3可信度之間的近似相對重迭為,以此類推則復合條件的可信度為
根據(jù)本文描述的對象層級模型,假設(shè)測控系統(tǒng)的結(jié)構(gòu)如圖1所示。
圖1 測控系統(tǒng)模型
整個測控系統(tǒng)的狀態(tài)由子系統(tǒng)和設(shè)備C決定,子系統(tǒng)的狀態(tài)由設(shè)備A和設(shè)備B的狀態(tài)決定,要決策整個測控系統(tǒng)的工作狀態(tài),只需按照自底向上的順序先決策設(shè)備自身狀態(tài),后決策系統(tǒng)狀態(tài)。
現(xiàn)隨機產(chǎn)生圖1中設(shè)備和子系統(tǒng)的狀態(tài)信息,如表1至表4所示,其中表1至表3的閾值表示可信度超過閾值后有效,表4的閾值表示可信度超過閾值后設(shè)備或子系統(tǒng)的狀態(tài)是正常的。
表1 設(shè)備A信息
表2 設(shè)備B信息
表3 設(shè)備C信息
表4 測控系統(tǒng)信息
根據(jù)式(7),設(shè)備A、B和C的狀態(tài)向量為:
設(shè)備A、B、C和子系統(tǒng)權(quán)重分別為
通過改變某個不同權(quán)重的可信度,將未包含權(quán)重和包含權(quán)重的可信度的計算結(jié)果的變化趨勢進行對比,驗證計算結(jié)果的正確性。使用CFA這組可信度向量進行計算。
3.2.1 改變單個權(quán)重的仿真
①改變單個權(quán)重較小的可信度
由圖2可知,有權(quán)重的計算方法在計算時,明顯受到了權(quán)重值的影響,含權(quán)重小的曲線變化范圍明顯小于不包含權(quán)重的曲線,符合實際情況。
圖2 單個權(quán)重較小的可信度仿真結(jié)果
②改變單個權(quán)重較大的可信度
由圖3可知,當輸入的可信度增加時,含有權(quán)重的可信度增加幅度大于不含權(quán)重的可信度,與事實相符。
圖3 單個權(quán)重較大的可信度仿真結(jié)果
3.2.2 改變2個權(quán)重的仿真
仿真①:改變2個權(quán)重較小的可信度,輸入可信度1和輸入可信度2對應(yīng)CFA的狀態(tài)2和狀態(tài)5。
仿真②:改變2個權(quán)重較大的可信度,輸入可信度1和輸入可信度2對應(yīng)CFA的狀態(tài)1和狀態(tài)4。
仿真③:分別改變一個權(quán)重大的和權(quán)重小的可信度,輸入可信度1和輸入可信度2對應(yīng)CFA的狀態(tài)4和狀態(tài)5。
圖4 不含權(quán)重的可信度
在仿真②和③中,未包含在權(quán)重的可信度仿真計算中,結(jié)果與圖4類似。
由以上仿真結(jié)果可知:
1)在①中輸入可信度1與輸入可信度2均為較小權(quán)重的可信度,它們的改變對結(jié)果的影響較小,且可信度1對應(yīng)的權(quán)重大于可信度2對應(yīng)的權(quán)重,可信度1增長幅度大于可信度2;
2)在②中輸入可信度1與輸入可信度2均為較大權(quán)重,它們的改變對結(jié)果的影響較大,且的輸入可信度2的權(quán)重大于輸入可信度1對應(yīng)的權(quán)重,可信度2增長幅度大于可信度1;
3)在③輸入的可信度1的權(quán)重遠遠大于輸入可信度2對應(yīng)的權(quán)重,從仿真結(jié)果可以看出,在混合不同大小權(quán)重的可信度后,權(quán)重大的可信度對結(jié)果影響非常明顯。
在改變更多的輸入可信度個數(shù)后,同樣可以得出上述仿真結(jié)果。
使用式(10)的計算方法,計算出圖1中的測控系統(tǒng)模型中各設(shè)備、子系統(tǒng)的可信度:
由于CFC小于正常狀態(tài)的閾值,故設(shè)備C是異常的,令CFC=0并代入圖1模型進行計算:
子系統(tǒng)可信度為
測控系統(tǒng)可信度為
結(jié)果小于表4中測控系統(tǒng)正常狀態(tài)的閾值,決策結(jié)果為測控系統(tǒng)異常。
將使用基于不確定性推理的專家系統(tǒng)理論實現(xiàn)整個系統(tǒng)的實時決策。該方法能夠?qū)⑼评磙D(zhuǎn)化為一系列的代數(shù)計算,滿足實時決策的需求,同時區(qū)別對待了不同狀態(tài)的重要程度,符合真實情況。根據(jù)狀態(tài)的重要程度賦予不同的權(quán)重,無需考慮其大小、含義,適合航天測控系統(tǒng)這種大規(guī)模的復雜系統(tǒng),在實際運用中取得了較好的效果。
[1]曲衛(wèi),賈鑫.我國航天測控系統(tǒng)體制與技術(shù)現(xiàn)狀以及發(fā)展[J].科技信息,2010(4):481-482.
[2]曹裕華,廖興禾,胡曉楓等.航天測控設(shè)備保障體系綜合能力評估研究[J].裝備指揮技術(shù)學院學報,2009,20(5):45 -49.
[3]張靈,張瑞國,邢偉.測控設(shè)備軟件現(xiàn)狀及其質(zhì)量控制[J].飛行器測控學報,2007,26(5):88 -90.
[4]楊奕飛,周江,周承斌.航天測控設(shè)備智能故障診斷系統(tǒng)設(shè)計[J].電視技術(shù),2009,49(8):54 -59.
[6]李婭,張建勛,楊欣.不確定推理模型的火箭安全決策系統(tǒng)[J].重慶大學學報,2010,33(10):118 -123.
[7]李偉,李婭.基于知識的火箭安控決策研究[J].微計算機信息,2007(26):276-278.
[8]陳璐璐,劉成瑞,張慶振,等.分布式故障診斷專家系統(tǒng)在運載火箭發(fā)射決策中的應(yīng)用研究[J].航天控制,2009,27(1):80 -93.
[9]秦映波.不確定性推理[J].邵陽學院學報:自然科學版,2007(3):8-10.
[10]吳泉源,劉江寧.人工智能與專家系統(tǒng)[M].長沙:國防科技大學出版社,1995.
[11]陸汝鈴.人工智能[M].北京:科學出版社,2000.
[12]尹朝慶,尹皓.人工智能與專家系統(tǒng)[M].北京:北京水利水電出版社,2002:224-228.
[13]葉清,吳曉平,宋業(yè)新.引入權(quán)重因子的證據(jù)合成方法[J].火力與指揮控制,2007,6(32):21 -24.
[14]吳英,蔣雯,王棟,等.一種最優(yōu)沖突證據(jù)組合方法[J].電機與控制學報,2009,11(13):178 -182.
[15]鄧勇,施文康,朱振福.一種有效處理沖突證據(jù)的組合方法[J].紅外與毫米波學報,2004,23(2):27-32.
[16]熊慶輝,張幽彤,劉光聰,等.高壓共軌壓電堆執(zhí)行器測控系統(tǒng)開發(fā)研究[J].壓電與聲光,2011,33(1):79-83.
[17]陳里里,甘平,胡雪,等.基于普通USB采集卡的血管壁動態(tài)信息遠程測控系統(tǒng)[J].激光雜志,2009,30(1):49-50.
[18]楊慶江.基于模糊PID技術(shù)的壓電式氣體壓力測控系統(tǒng)[J].壓電與聲光,2008,30(5):652 -654.