• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARX-NNPLS Model Based Optimization Strategy and Its Application in Polymer Grade Transition Process*

    2012-03-22 10:10:34FEIZhengshun費(fèi)正順HUBin胡斌YELubin葉魯彬andLIANGJun梁軍
    關(guān)鍵詞:胡斌梁軍

    FEI Zhengshun (費(fèi)正順), HU Bin (胡斌), YE Lubin (葉魯彬) and LIANG Jun (梁軍)**

    State Key Lab of Industrial Control Technology, Institute of Industrial Control Technology, Zhejiang University,Hangzhou 310027, China

    1 INTRODUCTION

    Interest in dynamic optimization of chemical processes has increased significantly during the past years. Typical applications include control and scheduling of batch processes, transient and upset analysis,safety study and evaluation of control schemes. The model based dynamic optimization usually relies on the appropriate mathematical representation of the process.The mathematical models can be classified as white-box and data-driven models. White-box or mechanism models are constructed entirely from the first principles together with physical insight into the system behavior.Chemical processes are often modeled dynamically using differential algebraic equations (DAEs), with differential equations describing the dynamic behavior and algebraic equations denoting physical and thermodynamic relations [1]. However, the development of mechanism models based on detailed knowledge of physicochemical phenomena is usually quite difficult and time-consuming. In the manufacturing environment at present, the development of rigorous theoretical models may be impractical, or even infeasible.

    Simplified data-based models from process operation data provide an attractive alternative way to mechanism modeling since less specific knowledge of the process is required. Studies on industrial process modeling suitable for the optimization based on process operation data without the knowledge of underlying mechanism are still at their infancy. The time-series model ARX (AutoRegressive with eXogenous inputs)is one of the common data-based models for capturing the dynamic behavior of the process [2]. An important issue in data-based modeling for a process is the collinearity of process variables, which is particularly serious when modeling data are collected in chemical processes with plenty of variables monitored in each process unit and many of them explain the same process event. One practical solution is to apply multivariate statistical projection based modeling technique of partial least squares (PLS), which takes into account the correlation of data [3]. The PLS approach can also reduce noise disturbances from collected process data.A number of investigations have addressed the data-based approach of PLS. Woldet al. [4] proposed a nonlinear PLS algorithm, which retains the framework of linear PLS but uses quadratic polynomial regression to fit the functional relation between each pair of latent variables. Qin and McAvoy [5] followed another way by incorporating neural networks into the inner mapping between input and output latent variables.Sharminet al. presented an application of PLS to build a soft-sensor to predict melt flow index using routinely measured process variables [6]. Baffiet al. developed a nonlinear dynamic PLS framework for application in model predictive control (MPC) [7] and Huet al. [8, 9]constructed multi-loop internal model control strategies based on the dynamic PLS framework.

    The aim of this study is to provide a direct access for dynamic optimization using input and output data.The PLS method is used to model the process using historical operation data. For representing the dynamic and nonlinear behavior of the process, a structure of ARX cascaded with neural network (ARX-NN) is proposed to describe the inner relation between input and output latent variables. With the new ARX-NNPLS model, there is no need to solve DAEs iteratively for dynamic optimization.

    In this study, a common dynamic optimization formulation is given and a new data-based modeling approach is proposed, in which the ARX-NN structure is used to relate the input and the output latent variables under the PLS framework. Using the developed ARX-NNPLS model, the dynamic optimization scheme is reconstructed and the algorithm for the optimization strategy is detailed. To demonstrate the effectiveness of the ARX-NNPLS model based dynamic optimization strategy, the polyethylene grade transition in gas phase fluidized-bed reactor is considered.

    2 ARX-NNPLS MODEL BASED OPTIMIZATION STRATEGY

    The mathematical expression for a dynamic optimization problem can be formulated as

    wherez(t) is differential state variables,y(t) is algebraic state variables,u(t) is control variables, andz0is initial values for differential state variables, andt0,tfare initial time and final time of the considered process.The process is modeled using differential algebraic Eqs. (2) and (3). Eq. (4) denotes the final point constraint and expression (5) is the inequality constraint.

    To solve this kind of dynamic optimization problem, the control vector parameterization (CVP) approach [10, 11] is usually used, where control variables are discretized and the corresponding state variables are determined by solving DAEs. In the CVP approach the DAEs are solved in each optimization iteration. An outline for this method is shown in Fig. 1. A great deal of mechanism knowledge is needed to obtain the DAEs of the process, but the first principles are often difficult to know. Sometimes the model structure is known but the model parameters are unknown. In these cases, it is difficult to implement the process optimization.

    Figure 1 The scheme of control vector parameterization approach

    To provide an alternative way to achieve the optimization objective when less mechanism knowledge is known on the process, a PLS based dynamic nonlinear model is developed to model the dynamic process using the input and output data, in which the ARX-NN structure is used in the latent space to express the dynamic and nonlinear behavior of the process. Then the dynamic optimization operation can be implemented.

    2.1 ARX-NNPLS modeling

    Partial least squares (PLS) [2, 12], also known as projection to latent structures, is a latent variable based method used for the linear modeling of the relationship between a set of predictor variables and a set of response variables. From a practical view, PLS is a technique that can decompose a multivariate regression problem into a series of univariate regression problems.

    Before PLS modeling, the process data needed for modeling should be properly scaled. The data-based model will be developed with the following assumptions:(1) the process is controlled using a computer with piecewise constant manipulated inputs; (2) measured output trajectories are obtained in the form of data vectors sampled at regular and sufficiently small time intervals; and (3) the historical database for developing the data-based models is sufficiently large. Here,the control variables are used as input and the output consists of differential and algebraic state variables.Two blocks of data samples are collected and properly scaled to start the PLS modeling procedure. LetX(sizen×l) represents the input data set andY(sizen×s)represents the output data set. PLS technique always requires two steps to accomplish the model.

    The first step is to use the NIPALS (nonlinear iterative partial least square) iterative algorithm [12] to break matricesXandYinto a certain number of bilinear terms,

    wheretaandvaare latent score vectors,paandqaare corresponding loading vectors,NEis the number of latent variables,TandVdenote score matrices,PandQrepresent loading matrices forXandYblocks, andEandFare residual matrices ofXandY, respectively.

    The second step is to acquire the PLS inner model.The PLS inner model reveals the algebraic relationship between input and output latent variables,

    wherebais the coefficient determined by least squares method.

    To extend the PLS approach to represent the dynamic and nonlinear characteristics, an ARX time series model cascaded with neutral network structure in the PLS inner relation is developed to obtain arbitrary nonlinear dynamic description for the process. The overall diagram of the model structure is shown in Fig. 2,whereP+denotes the appropriate inverse of the input loading matrixP. The structure is employed to fit the relation between the input latent matrixTand the output latent matrixV.

    For theath PLS latent space, the mathematical formulation of the ARX structure is

    where(k) is the output of the ARX model, which will be served as the input for the next segment of neural network,NaandMaare the time lags for outpuTt and input variables of ARX. The parameter setsθaandx(k) are defined as

    The nonlinearity between output latent variables and transformed input latent variables is represented using neural network as follows (assuming that only one hidden layer is used in the neural network).

    whereF(·) denotes the implicit nonlinear relation of a neural network unit,W1,aandW2,aare the weights in the hidden layer,β1,aandβ2,adenote the bias in the hidden layer, andσ(·) is the centered sigmoid function used in the work of Qin and McAvoy [5]. As each single in single out (SISO) ARX-neural network model in the PLS subspace can be designed and trained without interfering with others, the PLS framework will greatly reduce the computation time to train the neural networks for multivariable processes.

    A neural network with one hidden layer is sufficient in most function approximation problems [13]. In this work, a two-layer network with one centered sigmoidal function hidden layer and one linear function output layer is implemented to represent the nonlinear characteristics in the latent space. The number of hidden units and latent variables are determined by a simplified cross-validation method [5].

    As a result, the following inferential model ofYbased the neural network outputva(k) can be written as

    where ?Yis the inferential output and ?Fis the residual matrix in the final PLS model. Using the ARX-NNPLS model, for arbitrary input variable matrixX, the inferential output ?Ycan be obtained.

    The modeling algorithm based on the ARX-NN structure is as follows.

    Step 1 Scale input and output matricesXandYto have zero mean and unit variance. Set0=EX,0=FYand 1a=.

    Step 2 Call the NIPALS algorithm to extract score vectorstaandva.

    Step 3 Using the ARX-NN structure to build the inner model.

    Step 4 Determine the loading vectors ofXandY.

    Step 5 Calculate the residuals after extracting theath factor.

    Step 6 Seta=a+1 and return to Step 2 until allNEprinciple factors (latent variables) are calculated.Then there is no useful information in residual matricesENEandFNE. The number of latent variablesNEis determined by cross-validation [5].

    2.2 Dynamic optimization using ARX-NNPLS models

    The conventional CVP approach depends on the DAEs model of the process, while with the proposed ARX-NNPLS modeling approach, it is possible to employ the model directly into the CVP based optimization scheme.

    In the ARX-NNPLS model, the control variables are used as the input, while the differential and algebraic state variables are served as output. The input control vector is constructed asu= [u1u2???ul], wherelis the number of input variables. The output vector is constructed asy= [y1y2???ys], wheresis the total number of differential state variables and algebraic state variables. It is assumed thatKsample points are collected in the time horizon [t0,tf] of the dynamic process. With the ARX-NNPLS model developed, for any input vectoru(k) at sample pointk, the corresponding output vectory(k) is deduced as

    Therefore, the dynamic process can be modeled by the ARX-NNPLS approach, and the DAEs in the dynamic optimization problem [Eqs. (1)-(6)] can be substituted by the ARX-NNPLS model when the mechanism model is unavailable. Because the differential and algebraic variables are all treated as output variables,the objective function can be reformulated as

    where Δtis the sampling time interval. BecauseKpoints are sampled in the process, the final values of state variables are those at theKth sample point. The final point constraint can be expressed as

    It is difficult to deal with the inequality constraint in the form of expression (5). Since the input and output trajectories are discretized and implemented as piecewise constant trajectory, it is sufficient to satisfy the constraint condition at each sampling point. The inequality constraint can be formulated as

    Similarly, the upper and lower bounds on input and output trajectories can also be changed into the constraint at sampling instants.

    Hence, the original dynamic optimization problem is reconstructed as

    The aim of the optimization is to choose suitable decision variablesU= [u( 1 )? ??u(k) ? ??u(K)]Tto minimize the objective function. The decision variableUof the new optimization problem, Eq. (25), is the input for the ARX-NNPLS model shown in Eq. (20). Note that the deduced optimization problem is a normal nonlinear programming (NLP) problem, so any standard NLP algorithm [1] (SQP, genetic algorithms, inter point algorithm,etc.) can be used.

    A schematic diagram of the ARX-NNPLS based dynamic optimization algorithm is showed in Fig. 3.The output matrixYcan be obtained from the ARXNNPLS model when input matrixUis given. The objective function is calculated fromYand the input matrixU. A new set of decision variableUis chosen in the NLP solver and the process is repeated until the optimum is achieved.

    Figure 3 The scheme of ARX-NNPLS based approach

    The steps of the ARX-NNPLS based dynamic optimization approach are as follows. A flowchart for this approach is given in Fig. 4.

    Figure 4 A flowchart of ARX-NNPLS dynamic optimization approach

    Step 1 Set the input matrixUto the initial valueU0.

    Step 2 With the input and output loading matricesPandQdetermined in the ARX-NNPLS modeling procedure, compute input scoresTbyUandP,T=UP+.

    Step 3 PassTto the ARX m*odeling part to calculate the dynamic model out*putT.

    Step 4 Use the outputTas the input for the neural network to obtain the nonlinear outputV.

    Step 5 Compute the overall outputTYbased the output scoresVof neural networkY=VQ

    Step 6 Calculate the performance index throughUandY.

    Step 7 Calculate the newUin NLP solver.

    Step 8 Check whether two criterionsare satisfied: if yes, go to Step 9, otherwise go to Step 2, whereε1andε2are small tolerance values.

    Step 9 Achieve the optimal valueUopt=U.

    Step 10 Calculate the final optimal outputYoptat the optimal inputUoptusing the ARX-NNPLS model in a similar way.

    Compared to the conventional CVP optimization strategy based on DAEs, neither parameterization nor iterative solving of DAEs is needed in this dynamic optimization structure, as the ARX-NNPLS model gives a proper representation for the dynamic behavior of the process. In other words, ARX-NNPLS modeling uses the discretization treatment for the original dynamic optimization problem, which is converted into a normal nonlinear programming problem. The MATLAB optimization toolbox can be used to solve the NLP problem, where a serial of input sampling points in the dynamic time domain is chosen as the decision variable.

    3 APPLICATION IN POLYETHYLENE GRADE TRANSITION PROCESS

    3.1 Process description

    Here we consider a gas-phase fluidized-bed reactor process as it is a widely used industrial process for ethylene polymerization [14-16]. A simplified gas-phase fluidized-bed reactor is showed in Fig. 5.The gas stream comprised of ethylene, hydrogen, butene and nitrogen is fed at the bottom of the reactor and catalyst particles are continuously fed into the reactor to produce polymer particles. Recycle gases are pumped into the bottom of the reactor after mixing with the fresh gas stream. A heat exchanger is used to remove the polymerization heat from the recycle stream. To remove excessive inert components and impurities, a fraction of recycle gas is vented at the top of the reactor. The polymer product is removed from the bottom of the reactor periodically.

    Figure 5 Diagram of polyethylene fluidized-bed reactor

    Polyethylene has wide applications in industrial products and everyday life. To satisfy diverse market demands, polyolefin companies often produce different grades of polymer products in the same reactor by changing the operating conditions [15]. Melt index (the amount of melted polymer that can be squeezed through a standard orifice in 10 min) and density are often used for the specification of polyolefin products.

    3.2 ARX-NNPLS model for ethylene polymerization

    In an ethylene polymerization reaction, the final product quality index of cumulative melt indexMIcand cumulative densityDcare determined by reactor temperatureT, molar ratio of hydrogen to ethylene in the cycle gas ([H2]/[M1]), and molar ratio of comonomer to ethylene in the cycle gas ([M2]/[M1]). To build the ARX-NNPLS model, reactor temperature is assumed to be uniform in the transition process, and the two ratios [H2]/[M1] and [M2]/[M1] serve as input variables whileMIcandDcserve as output variables for the process. Process data are selected with a sampling interval of 10 min for modeling (while the practical operation data can be collected in a higher frequency).The data from 600 samples are available to build the dynamic nonlinear PLS model, while test data with 600 samples are generated in a similar way. Fig. 6 shows the polymer specifications,MIcandDc, used as the training data. It is important that the data to be used for training cover the possible variation in the domain of the problem. Each neural network is trained separately in PLS latent space without interfering with others. Since the network will go to the nearest local minimum from the initial point as the training proceeds, the best linear model between latent variables is used to initialize the hidden unit in order to find a better minimum with high computational efficiency.

    To regress the relationship between input latent variables and output latent variables, the ARX-NN structure is established, and a complete list of model parameters is demonstrated in Table 1. The modeling result using ARX-NNPLS is showed in Fig. 7.

    Figure 6 Time series plot for MIc and Dc

    Table 1 ARX-NN model parameters in grade transition process

    Figure 7 Comparison of prediction from ARX-NNPLS model with experiment (solid line: actual values; dashed line:predicted values)

    3.3 Grade transition optimization based ARXNNPLS model

    A considerable amount of off-specification polymer is usually produced during grade transitions. It is important to minimize the amount of off-spec polymer in an optimization problem [17-21], so that the optimal operation variables and quality variables can be determined. Here two polyethylene grades are considered in the transition operation, as stated in Table 2.

    Table 2 Two grades considered in transition study

    In order to minimize the off-specification polymer in the grade transition operation, a widely used objective function penalizing the deviations from targets is used [17, 20, 21].

    whereMIfandDfare target values of melt index and density, respectively,ω1andω2denote weighting factors. When the objective function is minimum, the amount of off-specification polymer produced is the least. Based on the ARX-NNPLS model developed,the optimization problem is depicted as

    Figure 8 Optimal profiles for input and output variables (grade A→grade B)

    The grade transition optimization problem is virtually a function optimization problem, the aim of which is to achieve the optimal input operating profiles. While the developed ARX-NNPLS model is used in the optimization scheme, the original function optimization problem is translated into a finite-dimensional optimization problem and common NLP algorithm can be used to solve it directly. For the transition process from grade A to grade B, the weighting factorsω1andω2are all set to 1 and the grade transition optimization problem is solved using the MATLAB optimization toolbox. Then the optimal profiles for the input and output variables can be determined, as shown in Fig. 8.It indicates that the quality indexMIcandDcof polyethylene products will gradually grow to the target values after the transition process, and the least amount of off-specification polymer is produced at the same time when the performance index is minimized.

    In order to confirm that the ARX-NNPLS model can be used in general grade transition optimization problems, a simplified first-principle model for ethylene polymerization proposed by McAuley and Mac-Gregor [14] is used for comparison. For the gas-phase fluidized-bed ethylene polymerization process, DAE model equations are whereMIiandDidenote instantaneous melt index and density,τis the polymer-phase residence time in the reactor,ki(i= 1 ,2,? ? ?,5 ) andpj(j= 1 ,???,4 ) are parameters to be determined.

    The result from the ARX-NNPLS model based optimization is compared to that from the conventional dynamic optimization. The original optimization problem is constructed by substituting the developed ARXNNPLS model with the differential algebraic Eqs.(28)-(31). The mechanism model based optimization problem is solved by the conventional CVP method.The computing notebook platform comprises a T7250(2.0 GHz) processor and 2 GB memory. The CPU time elapse with ARX-NNPLS model based approach is about 28.13 s, which is greatly less than that with the CVP method (about 186.10 s). The final optimal quality profiles determined by the two methods are illustrated in Fig. 9. The quality index grows quickly to the target value using the present data-based model,especially for melt indexMIc. In other words, the transition time for the operation with the present method is less than that with the CVP method.

    As shown in Fig. 8, a quite large overshoot appears in the trajectory of the quality indexDc, which may not be permitted in practical operation. For reducing the overshoot and controlling the cumulative densityDcrigorously in an allowable region, additional constraint condition can be added to the optimization problem. Here the transient process constraintDc(t)<0.98 is added to Eq. (27) and the developed ARX-NNPLS model is used. It is sufficient to ensure the constraint at each sampling point and the added constraint is

    Figure 9 Comparison of optimal profiles from ARX-NNPLS based method with CVP result (dashed: CVP; solid:the present method)

    Figure 10 Optimal profiles for constraint case using ARX-NNPLS model based strategy (dashed: with constraint; solid: without constraint)

    Solving this optimization problem with quality index constraints, the optimal profiles are shown in Fig. 10,which is compared to the results withoutDcconstraints, Eq. (27). The quality indexDcis restricted in the allowable domain, but it takes longer time for all the input and output variables to approach the steady-state values.

    4 CONCLUSIONS

    In order to provide a practical access of dynamic optimization to the case where the DAEs of the process is difficult to obtain, an ARX-NNPLS model based dynamic optimization strategy is proposed, in which a data-based modeling approach using ARX cascade with neural network under the PLS scheme is developed. The ARX-NNPLS model can be used directly in the control vector parameterization based optimization scheme and a normal nonlinear programming problem will be achieved, which can be solved by any standard NLP algorithm.

    The approach is applied in optimization of polyethylene grade transition process. Using the input and output data of the process, a data-based ARX-NNPLS model is built and the optimal grade transition operation profiles are determined. Compared to the results of trajectory optimization based on a simplified first-principle model, optimal trajectories of quality index obtained with the present method move faster to target values while the computing time is much less. The overshoot in optimal profiles of quality index can be reduced by adding some inequality constraints in the optimization.

    1 Biegler, L.T., Grossmann, I.E., “Retrospective on optimization”,Comput.Chem.Eng., 28 (8), 1169-1192 (2004).

    2 Qin, S.J., “Recursive PLS algorithms for adaptive data modeling”,ComputChem Eng, 22 (4-5), 503-514 (1998).

    3 Wold, S., Ruhe, A., Wold, H., Dunn, W.J., “The collinearity problem in linear-regression—The partial least-squares (PLS) approach to generalized inverses”,Siam Journal on Scientific and Statistical Computing, 5 (3), 735-743 (1984).

    4 Wold, S., Kettanehwold, N., Skagerberg, B., “Nonlinear PLS modeling”,Chemometrics and Intelligent Laboratory Systems, 7 (1-2),53-65 (1989).

    5 Qin, S.J., McAvoy, T.J., “Nonlinear PLS modeling using neural networks”,Comput Chem Eng, 16 (4), 379-391 (1992).

    6 Sharmin, R., Sundararaj, U., Shah, S., Griend, L.V., Sun, Y.J., “Inferential sensors for estimation of polymer quality parameters: Industrial application of a PLS-based soft sensor for a LDPE plant”,Chem.Eng.Sci., 61 (19), 6372-6384 (2006).

    7 Baffi, G., Morris, J., Martin, E., “Non-linear model based predictive control through dynamic non-linear partial least squares”,Chem Eng Res Des, 80 (A1), 75-86 (2002).

    8 Hu, B., Zheng, P.Y., Liang, J., “Multi-loop internal model controller design based on a dynamic PLS framework”,Chin.J.Chem.Eng.,18 (2), 277-285 (2010).

    9 Hu, B., Zhao, Z., Liang, J., “Multi-loop nonlinear internal model controller design under nonlinear dynamic PLS framework using ARX-neural network model”,Journal of Process Control, 22 (1),207-217 (2012).

    10 Vassiliadis, V.S., Sargent, R.W.H., Pantelides, C.C., “Solution of a class of multistage dynamic optimization problems (1) Problems without path constraints”,Ind.Eng.Chem.Res., 33 (9), 2111-2122(1994).

    11 Wang, Y., Seki, H., Ohyama, S., Akamatsu, K., Ogawa, M., Ohshima,M., “Optimal grade transition control for polymerization reactors”,Comput.Chem.Eng., 24 (2-7), 1555-1561 (2000).

    12 Geladi, P., Kowalski, B.R., “Partial least-squares regression—A tutorial”,Anal.Chim.Acta, 185, 1-17 (1986).

    13 Basheer, I.A., Hajmeer, M., “Artificial neural networks: Fundamentals, computing, design, and application”,J.Microbiol.Meth., 43 (1),3-31 (2000).

    14 McAuley, K.B., MacGregor, J.F., “Online inference of polymer properties in an industrial polyethylene reactor”,AIChE J, 37 (6),825-835 (1991).

    15 Bonvin, D., Bodizs, L., Srinivasan, B., “Optimal grade transition for polyethylene reactorsviaNCO tracking”,Chem.Eng.Res.Des., 83(A6), 692-697 (2005).

    16 Mostoufi, N., Kiashemshaki, A., Sotudeh-Gharebagh, R., “Two-phase modeling of a gas phase polyethylene fluidized bed reactor”,Chemical Engineering Science, 61 (12), 3997-4006 (2006).

    17 Padhiyar, N., Bhartiya, S., Gudi, R.D., “Optimal grade transition in polymerization reactors: A comparative case study”,Ind.Eng.Chem.Res., 45 (10), 3583-3592 (2006).

    18 McAuley, K.B., MacGregor, J.F., “Optimal grade transitions in a gas-phase polyethylene reactor”,AIChE J, 38 (10), 1564-1576 (1992).

    19 Wang, J.D., Yang, Y.R., “Study on optimal strategy of grade transition in industrial fluidized bed gas-phase polyethylene production process”,Chin.J.Chem.Eng., 11 (1), 1-8 (2003).

    20 Chatzidoukas, C., Perkins, J.D., Pistikopoulos, E.N., Kiparissides, C.,“Optimal grade transition and selection of closed-loop controllers in a gas-phase olefin polymerization fluidized bed reactor”,Chemical Engineering Science, 58 (16), 3643-3658 (2003).

    21 Flores-Tlacuahuac, A., Biegler, L.T., Saldivar-Guerra, E., “Optimal grade transitions in the high-impact polystyrene polymerization process”,Ind.Eng.Chem.Res., 45 (18), 6175-6189 (2006).

    猜你喜歡
    胡斌梁軍
    梁軍:新中國第一位女拖拉機(jī)手
    晚晴(2022年3期)2022-06-01 10:02:55
    新中國第一位女拖拉機(jī)手梁軍
    北方人(2020年5期)2020-07-09 06:18:23
    胡斌作品精選
    聲屏世界(2020年5期)2020-06-11 08:48:39
    封底人物簡介:梁軍
    心聲歌刊(2019年6期)2019-12-07 18:23:53
    梁軍把拖拉機(jī)“開”到人民幣上
    中國工人(2019年9期)2019-09-10 07:22:44
    夫妻互賭100萬,孩子到底是誰的
    好事送上門
    故事會(2019年12期)2019-06-18 04:05:14
    專屬魅力
    車主之友(2016年9期)2016-10-25 07:29:57
    該不該對胡斌終身禁駕
    方圓(2014年10期)2014-04-29 11:39:06
    重訪最紅女拖拉機(jī)手梁軍
    国产精品一区www在线观看| 国产高清激情床上av| 久久中文看片网| av在线天堂中文字幕| 美女cb高潮喷水在线观看| 久久精品国产99精品国产亚洲性色| 国产精品麻豆人妻色哟哟久久 | a级毛片免费高清观看在线播放| 少妇猛男粗大的猛烈进出视频 | 婷婷色综合大香蕉| 国产一区二区三区在线臀色熟女| 国产美女午夜福利| 99久久精品一区二区三区| 99视频精品全部免费 在线| 少妇人妻一区二区三区视频| 欧美一区二区亚洲| 国产精品美女特级片免费视频播放器| 国产欧美日韩精品一区二区| 日本黄色视频三级网站网址| 亚洲综合色惰| 亚洲五月天丁香| 国产精品伦人一区二区| 搞女人的毛片| 免费观看a级毛片全部| 男女边吃奶边做爰视频| 男人的好看免费观看在线视频| 欧美成人免费av一区二区三区| 少妇的逼水好多| 不卡一级毛片| 久久人人爽人人爽人人片va| 国产片特级美女逼逼视频| 国产av一区在线观看免费| 久久久久免费精品人妻一区二区| 免费看a级黄色片| 色综合站精品国产| 久久久久网色| 男女那种视频在线观看| 国产极品精品免费视频能看的| 国产精品av视频在线免费观看| 一个人免费在线观看电影| 欧美xxxx性猛交bbbb| 又黄又爽又刺激的免费视频.| 免费无遮挡裸体视频| 美女大奶头视频| 欧美性猛交黑人性爽| 给我免费播放毛片高清在线观看| 亚洲人成网站高清观看| 亚洲一区二区三区色噜噜| 国产精品久久久久久精品电影| 狠狠狠狠99中文字幕| 99热这里只有是精品在线观看| 成人欧美大片| 亚洲精品自拍成人| 国产精品精品国产色婷婷| 日韩 亚洲 欧美在线| 亚洲在线观看片| 人体艺术视频欧美日本| 免费不卡的大黄色大毛片视频在线观看 | 成人美女网站在线观看视频| 亚洲一区二区三区色噜噜| 黑人高潮一二区| 一边摸一边抽搐一进一小说| 最近最新中文字幕大全电影3| 中国美女看黄片| 干丝袜人妻中文字幕| 午夜视频国产福利| 国产乱人视频| 亚洲精品国产成人久久av| 精品欧美国产一区二区三| 国内久久婷婷六月综合欲色啪| 亚洲欧美日韩东京热| 国产精品久久久久久亚洲av鲁大| 我要看日韩黄色一级片| 夜夜夜夜夜久久久久| 亚洲av中文字字幕乱码综合| 午夜福利高清视频| 久久久久久大精品| 麻豆乱淫一区二区| 欧美日韩国产亚洲二区| 国产午夜精品久久久久久一区二区三区| 国产精品日韩av在线免费观看| 日韩欧美精品免费久久| 极品教师在线视频| 99热这里只有是精品50| 日本成人三级电影网站| 99视频精品全部免费 在线| 国内揄拍国产精品人妻在线| 美女内射精品一级片tv| 亚洲天堂国产精品一区在线| 日本-黄色视频高清免费观看| 国产精品免费一区二区三区在线| 给我免费播放毛片高清在线观看| 午夜免费男女啪啪视频观看| 深夜a级毛片| 校园人妻丝袜中文字幕| 校园春色视频在线观看| 国产高清不卡午夜福利| 亚洲一级一片aⅴ在线观看| 亚洲最大成人手机在线| 国产av麻豆久久久久久久| 国产亚洲精品久久久久久毛片| 久久99热这里只有精品18| 嫩草影院入口| 中文字幕人妻熟人妻熟丝袜美| av福利片在线观看| 床上黄色一级片| 国产精品久久久久久精品电影小说 | 久99久视频精品免费| 国产精品麻豆人妻色哟哟久久 | 亚洲色图av天堂| 丰满的人妻完整版| 国产精品一区www在线观看| 97超碰精品成人国产| 国产精品无大码| 成人午夜高清在线视频| 国产色爽女视频免费观看| 日本黄大片高清| 国产国拍精品亚洲av在线观看| 国产精品美女特级片免费视频播放器| 国产精品一区二区三区四区免费观看| 99热网站在线观看| 一进一出抽搐动态| 亚洲性久久影院| 3wmmmm亚洲av在线观看| 久久九九热精品免费| 99精品在免费线老司机午夜| 日韩欧美精品v在线| 两个人视频免费观看高清| 亚洲美女搞黄在线观看| 你懂的网址亚洲精品在线观看 | 国产真实乱freesex| 天堂av国产一区二区熟女人妻| 99国产极品粉嫩在线观看| 天美传媒精品一区二区| 国产又黄又爽又无遮挡在线| 亚洲激情五月婷婷啪啪| 欧美在线一区亚洲| 啦啦啦观看免费观看视频高清| 欧美+亚洲+日韩+国产| 国产黄色小视频在线观看| 别揉我奶头 嗯啊视频| 全区人妻精品视频| 久久久精品欧美日韩精品| 蜜桃亚洲精品一区二区三区| 日本-黄色视频高清免费观看| 成人特级av手机在线观看| 成年免费大片在线观看| 九九在线视频观看精品| 激情 狠狠 欧美| 如何舔出高潮| 国产亚洲精品久久久久久毛片| 麻豆国产97在线/欧美| a级毛色黄片| 国语自产精品视频在线第100页| 在线免费观看的www视频| 能在线免费观看的黄片| 少妇高潮的动态图| 亚洲美女视频黄频| 日韩亚洲欧美综合| 国产探花极品一区二区| 亚洲综合色惰| 午夜激情福利司机影院| 高清午夜精品一区二区三区 | 少妇熟女aⅴ在线视频| 菩萨蛮人人尽说江南好唐韦庄 | 日韩 亚洲 欧美在线| 天天一区二区日本电影三级| 日韩欧美一区二区三区在线观看| 亚洲成a人片在线一区二区| 国产精品一区二区三区四区免费观看| 成人特级av手机在线观看| 老司机福利观看| 久久久久国产网址| 色哟哟·www| 一级av片app| 亚洲中文字幕日韩| 国产精品日韩av在线免费观看| 精品日产1卡2卡| 国产精品久久久久久久电影| 少妇裸体淫交视频免费看高清| 精品人妻一区二区三区麻豆| 欧美精品一区二区大全| 中国美女看黄片| 欧美变态另类bdsm刘玥| 国产一区二区在线观看日韩| 熟女人妻精品中文字幕| .国产精品久久| 亚洲内射少妇av| 成人鲁丝片一二三区免费| 综合色丁香网| 欧美日韩乱码在线| 18禁在线无遮挡免费观看视频| 性插视频无遮挡在线免费观看| 日本撒尿小便嘘嘘汇集6| 免费人成在线观看视频色| 白带黄色成豆腐渣| 免费无遮挡裸体视频| 欧美日韩一区二区视频在线观看视频在线 | 免费黄网站久久成人精品| 国产精品.久久久| 看非洲黑人一级黄片| 亚洲七黄色美女视频| 嘟嘟电影网在线观看| 内射极品少妇av片p| 蜜臀久久99精品久久宅男| 亚洲最大成人av| 人妻少妇偷人精品九色| 国产综合懂色| 在线观看66精品国产| 国产蜜桃级精品一区二区三区| 成人午夜高清在线视频| 成人美女网站在线观看视频| 成人三级黄色视频| 乱系列少妇在线播放| 亚洲国产精品合色在线| 精品久久久久久久久av| 午夜福利成人在线免费观看| 国内精品美女久久久久久| 青青草视频在线视频观看| 男女那种视频在线观看| 草草在线视频免费看| 能在线免费观看的黄片| 欧美日韩一区二区视频在线观看视频在线 | 午夜激情欧美在线| 小说图片视频综合网站| 日本爱情动作片www.在线观看| 十八禁国产超污无遮挡网站| 欧美日韩在线观看h| 给我免费播放毛片高清在线观看| 国产精品乱码一区二三区的特点| 欧美一区二区国产精品久久精品| 一卡2卡三卡四卡精品乱码亚洲| 边亲边吃奶的免费视频| 一边摸一边抽搐一进一小说| 大香蕉久久网| 青春草亚洲视频在线观看| 高清在线视频一区二区三区 | 男人舔女人下体高潮全视频| 国产成人aa在线观看| 国产精品国产高清国产av| 色综合站精品国产| 国内精品久久久久精免费| 少妇丰满av| 熟女人妻精品中文字幕| 国产成人精品久久久久久| 一夜夜www| 国产精品麻豆人妻色哟哟久久 | 日本五十路高清| 亚洲va在线va天堂va国产| 18+在线观看网站| 久久久久久伊人网av| 干丝袜人妻中文字幕| 99久久久亚洲精品蜜臀av| 91久久精品国产一区二区成人| 国产精品野战在线观看| 长腿黑丝高跟| 国产av一区在线观看免费| 久久人人精品亚洲av| 麻豆成人午夜福利视频| 美女脱内裤让男人舔精品视频 | 免费一级毛片在线播放高清视频| 美女黄网站色视频| 别揉我奶头 嗯啊视频| 亚洲乱码一区二区免费版| 久久九九热精品免费| 欧美不卡视频在线免费观看| 久久久久久大精品| 久久这里有精品视频免费| 久久精品国产清高在天天线| 亚洲欧美精品综合久久99| 大型黄色视频在线免费观看| 国产成人影院久久av| 国产精品99久久久久久久久| 长腿黑丝高跟| 午夜精品一区二区三区免费看| 热99在线观看视频| 国产91av在线免费观看| www日本黄色视频网| 国产麻豆成人av免费视频| 99视频精品全部免费 在线| 日本爱情动作片www.在线观看| 国产在线男女| 国产av不卡久久| 天堂影院成人在线观看| 精品国产三级普通话版| 午夜激情福利司机影院| 免费看光身美女| 久久精品国产清高在天天线| av女优亚洲男人天堂| 日韩欧美在线乱码| 午夜a级毛片| 国产黄色视频一区二区在线观看 | 国产成人aa在线观看| 国产av一区在线观看免费| 成人毛片a级毛片在线播放| 丰满乱子伦码专区| 欧美xxxx黑人xx丫x性爽| 在线观看美女被高潮喷水网站| 国产片特级美女逼逼视频| 大又大粗又爽又黄少妇毛片口| 天堂av国产一区二区熟女人妻| 三级国产精品欧美在线观看| 精品久久国产蜜桃| 日本黄色片子视频| 国产黄片美女视频| 国产精品人妻久久久影院| 人妻系列 视频| 国产毛片a区久久久久| 免费电影在线观看免费观看| 欧美色视频一区免费| 中国美白少妇内射xxxbb| 色噜噜av男人的天堂激情| 国产精华一区二区三区| 欧美潮喷喷水| 国产午夜精品久久久久久一区二区三区| 六月丁香七月| 联通29元200g的流量卡| 中文欧美无线码| 久久国内精品自在自线图片| 波多野结衣巨乳人妻| 三级经典国产精品| 欧美xxxx黑人xx丫x性爽| 免费看av在线观看网站| 免费无遮挡裸体视频| 我要看日韩黄色一级片| 中文字幕久久专区| 亚洲国产精品sss在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲无线观看免费| 99久久精品热视频| 简卡轻食公司| 欧美又色又爽又黄视频| 九九热线精品视视频播放| 乱码一卡2卡4卡精品| 免费观看a级毛片全部| 久久国内精品自在自线图片| 亚洲国产精品合色在线| 淫秽高清视频在线观看| 丝袜喷水一区| 色噜噜av男人的天堂激情| 国产成人aa在线观看| 全区人妻精品视频| 我要看日韩黄色一级片| 精品久久久噜噜| av天堂在线播放| 免费人成视频x8x8入口观看| 日韩一区二区视频免费看| 日产精品乱码卡一卡2卡三| 99久久无色码亚洲精品果冻| 国产欧美日韩精品一区二区| 国产不卡一卡二| 国产精品美女特级片免费视频播放器| 黄色一级大片看看| 99在线人妻在线中文字幕| 人妻久久中文字幕网| 久久精品91蜜桃| 免费大片18禁| 精品久久久久久久久久免费视频| 只有这里有精品99| 日韩高清综合在线| 亚洲成av人片在线播放无| 免费电影在线观看免费观看| 日本黄色片子视频| 成年女人看的毛片在线观看| 国产精品爽爽va在线观看网站| 亚洲第一电影网av| 国产极品天堂在线| 午夜老司机福利剧场| 看片在线看免费视频| 国产蜜桃级精品一区二区三区| 日本在线视频免费播放| 免费观看a级毛片全部| 国产亚洲精品久久久com| 99精品在免费线老司机午夜| 大香蕉久久网| 伦理电影大哥的女人| 亚洲自偷自拍三级| 又爽又黄a免费视频| 97人妻精品一区二区三区麻豆| 国内精品宾馆在线| 波野结衣二区三区在线| 在线观看美女被高潮喷水网站| 免费人成在线观看视频色| av免费在线看不卡| 久久久久性生活片| 婷婷亚洲欧美| av在线天堂中文字幕| 最近最新中文字幕大全电影3| 看非洲黑人一级黄片| 亚洲成人久久爱视频| 免费av不卡在线播放| 亚洲国产精品成人综合色| av在线亚洲专区| 色综合站精品国产| 免费一级毛片在线播放高清视频| 又粗又硬又长又爽又黄的视频 | 久久精品国产亚洲av天美| 久久久久久九九精品二区国产| 在线观看午夜福利视频| 91精品一卡2卡3卡4卡| 久久婷婷人人爽人人干人人爱| 能在线免费看毛片的网站| 亚洲av成人精品一区久久| 久久久午夜欧美精品| 国产成人影院久久av| 人妻制服诱惑在线中文字幕| 亚洲内射少妇av| 高清在线视频一区二区三区 | 国产高清不卡午夜福利| 校园人妻丝袜中文字幕| 美女被艹到高潮喷水动态| 99热网站在线观看| 亚洲欧美精品综合久久99| 亚洲精品乱码久久久久久按摩| 亚洲精品久久国产高清桃花| 国产伦在线观看视频一区| 长腿黑丝高跟| 午夜久久久久精精品| 深夜a级毛片| 欧美xxxx性猛交bbbb| 最好的美女福利视频网| 女的被弄到高潮叫床怎么办| 国产私拍福利视频在线观看| 天堂网av新在线| 国产av不卡久久| 亚洲人成网站在线观看播放| 亚洲av第一区精品v没综合| 岛国毛片在线播放| 春色校园在线视频观看| 成人毛片a级毛片在线播放| 非洲黑人性xxxx精品又粗又长| 国产精品无大码| 亚洲久久久久久中文字幕| 亚洲va在线va天堂va国产| 国产精品1区2区在线观看.| 春色校园在线视频观看| 日韩人妻高清精品专区| 美女高潮的动态| 最新中文字幕久久久久| 一卡2卡三卡四卡精品乱码亚洲| 日本与韩国留学比较| 99在线人妻在线中文字幕| 最近手机中文字幕大全| 国产免费男女视频| 中文字幕熟女人妻在线| 天堂av国产一区二区熟女人妻| 久久中文看片网| 精品久久久久久久久久久久久| 成人三级黄色视频| 在线免费观看不下载黄p国产| 永久网站在线| 性色avwww在线观看| 我的老师免费观看完整版| 99热全是精品| 精品国产三级普通话版| 成人综合一区亚洲| 黄色视频,在线免费观看| 大香蕉久久网| 在现免费观看毛片| 国产精品福利在线免费观看| 亚洲第一电影网av| 成年女人永久免费观看视频| 欧美人与善性xxx| 性插视频无遮挡在线免费观看| 亚洲欧美精品自产自拍| 99热这里只有是精品在线观看| 少妇丰满av| 久久久久久久亚洲中文字幕| 黄色视频,在线免费观看| 国产精品.久久久| 给我免费播放毛片高清在线观看| 蜜臀久久99精品久久宅男| 亚洲人成网站在线播| 深夜精品福利| 国产亚洲精品av在线| 日韩av在线大香蕉| 天堂中文最新版在线下载 | 国产精品久久久久久精品电影| 久久久久久久亚洲中文字幕| 青春草亚洲视频在线观看| 免费无遮挡裸体视频| 日韩亚洲欧美综合| 少妇人妻一区二区三区视频| 最近最新中文字幕大全电影3| 丰满乱子伦码专区| 三级经典国产精品| 国产精品一区www在线观看| 美女大奶头视频| 国产又黄又爽又无遮挡在线| 中文字幕熟女人妻在线| 波野结衣二区三区在线| 可以在线观看的亚洲视频| 精华霜和精华液先用哪个| 久久人妻av系列| 欧美一区二区国产精品久久精品| 大香蕉久久网| 国产精品久久久久久精品电影小说 | 久久人人精品亚洲av| 亚洲第一电影网av| 亚洲精品国产成人久久av| 少妇高潮的动态图| 日韩高清综合在线| 成人毛片60女人毛片免费| 桃色一区二区三区在线观看| 91麻豆精品激情在线观看国产| 中文字幕av在线有码专区| 亚洲七黄色美女视频| 国产极品精品免费视频能看的| 夜夜夜夜夜久久久久| 亚洲欧美成人综合另类久久久 | 91久久精品电影网| 男人狂女人下面高潮的视频| 五月玫瑰六月丁香| 成人永久免费在线观看视频| 最后的刺客免费高清国语| 久久欧美精品欧美久久欧美| 直男gayav资源| 欧美性猛交黑人性爽| 久久久久久久久久久免费av| 亚洲人与动物交配视频| 婷婷六月久久综合丁香| 久久久久久久久中文| 美女内射精品一级片tv| 波多野结衣高清无吗| 日本在线视频免费播放| 国产精品爽爽va在线观看网站| 黄色日韩在线| 一进一出抽搐动态| 99久久精品热视频| 免费av观看视频| 一边摸一边抽搐一进一小说| 国产av在哪里看| 天堂影院成人在线观看| 18禁在线播放成人免费| 精品熟女少妇av免费看| 久久精品久久久久久久性| 99热只有精品国产| 亚洲性久久影院| 国产精华一区二区三区| 成人三级黄色视频| 精品国内亚洲2022精品成人| 国产高清有码在线观看视频| 一进一出抽搐gif免费好疼| 中文字幕免费在线视频6| АⅤ资源中文在线天堂| 白带黄色成豆腐渣| 非洲黑人性xxxx精品又粗又长| 日韩欧美一区二区三区在线观看| 亚洲成av人片在线播放无| 一级毛片我不卡| 国产极品天堂在线| 国产色爽女视频免费观看| 欧美日韩乱码在线| 悠悠久久av| 亚洲久久久久久中文字幕| 久久久精品94久久精品| .国产精品久久| 国产日本99.免费观看| 亚洲一级一片aⅴ在线观看| 欧美激情国产日韩精品一区| 国产老妇伦熟女老妇高清| 免费观看a级毛片全部| 国产精品电影一区二区三区| 日日摸夜夜添夜夜爱| 大型黄色视频在线免费观看| 99久久成人亚洲精品观看| 欧美性感艳星| av.在线天堂| 国产单亲对白刺激| 亚洲精品粉嫩美女一区| 看十八女毛片水多多多| 久久精品国产亚洲网站| 日韩三级伦理在线观看| 日韩国内少妇激情av| 国产人妻一区二区三区在| 久久精品国产亚洲av香蕉五月| 91精品一卡2卡3卡4卡| 给我免费播放毛片高清在线观看| 黄片wwwwww| 99久久精品一区二区三区| av卡一久久| 国产精品久久久久久亚洲av鲁大| 久久人妻av系列| av在线播放精品| 亚洲精品亚洲一区二区| 国产 一区 欧美 日韩| 免费观看人在逋| 麻豆久久精品国产亚洲av| 亚洲av电影不卡..在线观看| a级毛片a级免费在线| av.在线天堂| 午夜精品国产一区二区电影 | 亚洲人成网站高清观看| 嫩草影院新地址| 久久精品人妻少妇| 天堂影院成人在线观看| 亚洲av第一区精品v没综合| 中文字幕av成人在线电影| 国产大屁股一区二区在线视频| 搡老妇女老女人老熟妇| 天天躁夜夜躁狠狠久久av| 国产乱人偷精品视频| 午夜亚洲福利在线播放| 99久久久亚洲精品蜜臀av| 在线播放国产精品三级| 校园人妻丝袜中文字幕| 日韩av不卡免费在线播放| 精品人妻一区二区三区麻豆| 日本爱情动作片www.在线观看| 亚洲精品自拍成人| 国产 一区 欧美 日韩| 亚洲aⅴ乱码一区二区在线播放| 91午夜精品亚洲一区二区三区| av在线老鸭窝| 女人十人毛片免费观看3o分钟|