• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of Fermentation Media for Enhancing Nitrite-oxidizing Activity by Artificial Neural Network Coupling Genetic Algorithm*

    2012-03-22 10:11:10LUOJianfei羅劍飛LINWeitie林煒鐵CAIXiaolong蔡小龍andLIJingyuan李敬源
    關(guān)鍵詞:小龍

    LUO Jianfei (羅劍飛), LIN Weitie (林煒鐵)**, CAI Xiaolong (蔡小龍) and LI Jingyuan (李敬源)

    School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China

    1 INTRODUCTION

    Biological nitrification is a key reaction in the global nitrogen cycle [1], whichconvertsammonia to

    nitrate in the end ( → →). The process of nitrification involves two important microbial guilds, the ammonia-oxidizing bacteria (AOB) that convert ammonia to nitrite and the nitrite-oxidizing bacteria (NOB) that convert nitrite to nitrate [2]. AOB and NOB are called nitrifying bacteria, which have high activity for degradation of high levels of toxic inorganic nitrogen that is difficult to be assimilated by ecological system itself.

    In aquatic ecosystems, high levels of ammonia,nitrite and nitrate are harmful to aquatic animals, and often result in direct (acute or chronic) toxicity [3].Acute toxicity always occurs in salmonids when the concentration of NH3is above 0.2 mg·L-1, so a maximum permissible level of 0.002 mg·L-1NH3is recommended [4]. The main toxic action of nitrite on aquatic animals, particularly on fish and crayfish, is due to the conversion of oxygen-carrying pigments to the forms that are incapable of carrying oxygen, causing hypoxia and ultimately death [5].

    We designed a biological technique for enhancing degradation of nitrite in aquaculture wastewater, in which nitrite can be rapidly removed by continually adding NOB with high activity. However, the low yield of energy production pathways and the burden of precursor formation through the incorporation of inorganic carbon led to a slow specific growth rate of NOB [6], resulting in a long culture period. To achieve high activity and reduce the investment costs, it is a prerequisite to design a proper fermentation medium by optimizing.

    Many techniques are used to optimize the cultivation medium and product expression, from traditional method of single factor at a time to complex statistical and mathematical approaches, involving experiments with orthogonal array [7, 8], uniform [9],Plackett-Burman [10] and central composite [11] designs, followed by response surface methodology(RSM) [12] and artificial neural networks coupling with genetic algorithms (ANN-GA) [13, 14]. Single factor at a time is the most widely used optimization method, but it is not appropriate for the optimization with more than one factor, because it ignores the interactions among medium components. In the application of RSM in optimization, a model such as full second-order polynomial must be assumed in order to determine the relative influence of each medium component. The number of experiments designed by RSM isLN(Nfactor atLlevels), but in each practice only two or three levels can be applied and the plotting is limited to two variables at a time. Because of the metabolic complexity of microorganisms and usually a large number of variables involved, developing rigorous models to demonstrate the high non-linearity and stability is a critical challenge. Artificial neural networks (ANN) are used commonly as “black box”models of key variables whose relationship to other process entities are neither formally described nor mathematically established, and have been utilized successfully for system design, modeling, optimization and control mainly due to their capacity to learn,filter noisy signals and generalize information through a training procedure [15, 16]. The genetic algorithms(GA) follow the theory of population evolution and base on the principles of “survival-of-the-fittest” and“random exchange of memory during genetic propagation”, which explore large variable spaces to find the specie that fit the best [17]. ANN-GA employs non-linear models to describe the complex interactions and influences among medium components, and bases on a stochastic method for global optimization to reach the optimal medium in a shorter time and a smaller number of experiments.

    In this study, BP neural network (BPNN) is applied to construct a non-linear model and used as the objective function of GA to optimize the fermentation medium of nitrite oxidizing bacteria.

    2 MATERIALS AND METHODS

    2.1 Microorganism

    A nitrite degradation strain of NOB-x4 was isolated from an aquarium in Dong Sheng town of Sun Yat-sen city, and identified asNitrobacter winogradskyi(ATCC 25391) according to the American Type Culture Collection. NOB-x4 was maintained in the vapor phase with liquid nitrogen in our laboratory.

    2.2 Initial medium and cultivation

    The initial medium used for NOB-x4 cultivation was (g·L-1): NaCl 0.3, MgSO4·7H2O 0.14, FeSO4·7H2O 0.03, KH2PO40.136, NaNO20.5, and NaHCO31.6.NaNO2and NaHCO3were the only N source and C source of NOB-x4, respectively, and NaNO2was the only source of energy. NOB-x4 was incubated in 100 ml of medium in 250 ml Erlenmeyer flasks and cultured at 30 °C, initial pH 7.5 on a rotary shaker with rotational speed of 180 r·min-1. After one week of cultivation, the bacterium solution was transferred to a 15 L air-lift bioreactor with fresh medium.

    2.3 Analytical methods

    Because of the difficulty and long time needed to count the number of NOB in agar plate [18], the optical density at 600 nm (OD600) was introduced as the measurement of the number of NOB in the solution,based on the correspondence of OD600and mixed liquor suspended solids (MLSS) of bacterium solution.The standard curve between OD600and MLSS is

    The nitrite oxidization rate (NOR) of NOB serves as a response in this paper. NOR is an index for measuring the capability of NOB degradation of nitrite, which also means the specific activity of nitrite oxidoreductase. Its unit is g2NO--N·(g MLSS)-1·d-1.The NOR is determined by spectrophotometric method (ISO 6777-1984), based on a color reaction.At pH 1.8, a reaction occurs between NO2-N and 4-amimobenzenesulfonamide, generating a diazonium salt, which finally couples withN-(1-naphthyl)-1,2-diaminoethane dihydrochloride and generates a red dye, with a maximum absorption at 520 nm. The absorption values of the red dye at time 0t= and 3t= h are detected to determine the NOR, while NOB is incubated with NaNO2as a substrate [19]. The NOR is calculated as follows

    whereA520 is the absorption value at 520 nm, its subscript is the time of detecting,kis the slope of calibration curve of2NO--N, 3 is the time for degrading nitrite, and 24 is the time in one day.

    2.4 Experimental method

    The minimum and maximum concentrations of each medium component in shake-flask are shown in Table 1. The experiments of optimization were carried out in 250 ml Erlenmeyer flasks with inoculation volume 5 %, and cultured at 30 °C, 180 r·min-1, and pH 7.5.

    2.5 Construction of an ANN model

    BPNN is introduced in the optimization because it is a widely used ANN and has good ability for nonlinear mapping. BPNN is a neural network that uses the error back-propagation algorithm, whose learning process consists of feed-forward and feedbackward. Each sample signal in feed-forward process is applied by sigmoid functionf(x)=1/(1+e-x) before it passes to the next layer. The situation of neurons on each layer can only affect the situation of neurons on the next layer. If the output layer does not produce the desired value, the errors will be fed back from the outputs to the inputs through the network, and weights of neurons in each layer will be changed along the way. The algorithm repeats in this way until the error values are sufficiently small. The BPNN is trained as shown in Fig. 1.

    To predict the NOR of NOB, we use a multi-layer BPNN model composed of input, hidden and output layers (Fig. 2). In the structure of BPNN,the concentrations of six medium components ofNaNO2, KH2PO4, MgSO4, NaCl, NaHCO3and FeSO4are applied as the input vectors to the model, and the NOR of NOB is applied as the output vector. The number of neurons in hidden layer is determined by studying the mean square error (mse) and the iteration times with selected different number of neurons in hidden layer. The mean square error is computed by

    Table 1 Medium components and their concentration ranges (g·L-1)

    Figure1 Flowchart of BPNN training

    Figure 2 Topological structure of BP neural network(6-13-1)

    whereytequals the experimental value at timet, ?tyequals the estimated value, andnequals the number of experiment.

    2.6 Optimization process by GA

    Figure 3 Schema of the working principle for ANN coupling GA

    To begin the optimization process of GA, an initial population of candidate solutions is generated,defined as chromosomes. In this paper, the chromosomes consist of six medium components represented by binary strings. After the initial population is generated, the chromosomes are evaluated by an objective function. If the result is not suitable, the process goes to the next step and creates a mating pool using a selection operator. We employ a roulette wheel selection method to select an excellent chromosome in the mating pool. After that, a new population is formed by employing crossover and mutation operators. In the crossover operation, we adopt a single point crossover method: two parent chromosomes are first chosen randomly from the mating pool, then the crossover point in the chromosomes is chosen randomly, and two new chromosomes are finally created by exchanging the excellent genes between the crossover points and the end points of the parent chromosomes. The mutation operation is carried out in such a way that each bit in each chromosome is flipped by a given mutation rate. In addition, we incorporate the elitism strategy into our system. With the selection, crossover,and mutation operations described above, the best chromosomes in the current generation may not be preserved into the next generation. To prevent this situation, the best chromosomes are automatically put in the next generation in the first step. The remaining spots of the next generation are filled by the crossover and the mutation operations. The above procedure is repeated until the predetermined stopping criteria are met or the optimal result is obtained.

    In the optimization by ANN coupling GA, BPNN is introduced to obtain a mathematical model to predict the experimental result, and the model is used as the objective function for GA to find the optimal medium composition through the global optimization by GA. The schema of the working principle for ANN coupling GA is shown in Fig. 3.The experiment designed in this paper is generated using the MATLAB?(http:// www.mathworks.com).

    2.7 Validation of the optimal medium composition

    To validate the performance of the optimal medium optimized by BPNN coupling GA, shake flask validation experiment and scale-up validation experiment were employed. The shake flask experiment was as described in Section 2.4. The scale-up experiment was carried out in a 15 L air-lift bioreactor with a medium volume of 10 L. The culture conditions were controlled at 30 °C, pH 7.5, and dissolved oxygen (DO)2.0-2.5 mg·L-1.

    3 RESULTS AND DISCUSSION

    3.1 Composition of medium components

    Table 2 gives an initial population created with GA as the composition of medium components of experiments. The population is randomly created within the concentration range in Table 1. To evaluate the performance of BPNN, the whole set of experimental results are divided into two groups: a training set and a testing set. The training set is used to build a BPNN model, and the testing set is used to evaluate the model.

    3.2 Structure of BPNN

    According to the principle of ANN, general nonlinear mapping can be implemented by single hidden layer networks, and the number of neurons in input and output layers bases on the number of input and output vectors. In this paper, there are six input vectors and one output vector, so the number of neurons in input and output layers is six and one, respectively. Selection of the number of neurons for hidden layer is the key to build the structure of ANN. A proper number of neurons in hidden layer can improve the fault tolerance capability, learning rate and generalization ability. Fig. 4 implies that the mean square

    error is close to 0 when the number of neurons is more than 8 in the hidden layer. Fig. 5 implies that the number of epochs reduces as the number of neurons increases in the hidden layer, and becomes stable when the number of neurons is more than or equal to 13. Thus 13 neurons are the most proper number for hidden layer. We construct a BPNN whose topological structure is 6-13-1 (Fig. 2).

    Table 2 The composition of medium components and the nitrite oxidization rates from experiment,prediction and test by BPNN①

    For construction of artificial neural networks, selection of the neurons of layers is crucial. Generally speaking, the numbers of neurons in input and output layers depend upon the number of vectors in input and output. For a selected ANN model, determination of the number of neurons in hidden layer is the most important. The model cannot obtain enough information for the relation between different factors lacking of neurons in the hidden layer, and if the number of neurons in hidden layer is too many, the noise in the training set will be learned by model itself, resulting in over-fitting of the model. Kurkova [20] proved that the number of neurons in hidden layer followed Kolmogorov’s theorem, which is 2n+1, wherenis the number of neurons in input layer. In this paper, we choose 13 as the number of neurons in hidden layer,determined by studying of the mean square error and the iteration times when constructing the BPNN model, according to the Kolmogorov’s theorem.

    Figure 4 Mean square error for different number of neurons in the hidden layer with 0.001 as the goal set for BPNN training

    Figure 5 Iteration times for different number of neurons in the hidden layer for BPNN training

    3.3 Training and testing of BPNN

    Figure 6 shows the parity plot of NOR, constructed with the predicted results of training set and testing set (Table 2). TheR-square of fitting line is 0.95771 and almost all data are in the 95 % confidence limit, which suggests that the BPNN has a good capability to fit the experimental results and is suitable to predict the experimental results.

    3.4 Optimization by using BPNN-GA

    Figure 6 Training and testing for nitrite oxidization rate(training with 40 randomly selected experiments andtesting with the rest 8 experiments)○ training set; △ testing set; fitting line; 95% confidence limits

    An initial population of experiments is created as a starting point for medium optimization. The values of GA-specific parameters used in the optimization simulations are: the length of each medium componentL=20, chromosome lengthl=120, population sizeN=48, ′crossover probabilityp=0.7, mutationprobabilityp=0.05, and the number of generations over which GA evolvesn=500.

    The changes of the maximum value and the mean value of population while optimized by BPNN-GA are shown in Fig. 7. The optimal value is found after 50 generations. For an objective function maximization problem, a thorough exploration of the solution space is necessary to secure a solution that corresponds to the local or global maximum [22]. Accordingly, the GA based optimization simulation is repeated by using a different randomly initialized population of the candidate solutions each time, so that different initial populations ensure that each time the GA begins its search for the optimal solution from a different search sub-space, which helps in locating the local or the global maximum on the objective function surface [17].Accordingly, the best solution obtained after 50 iterations of generation is shown in Fig. 7.

    Figure 7 The maximum value and the mean value of population iterating 500 times created by the software of MATLAB change of the maximum value; change of mean value of population

    3.5 Validation of the optimal medium composition

    After the optimization by BPNN-GA, the optimal cultivation medium was found. To validate the optimal medium, experiments of validation were carried out. In the repeated shake flat experiments, the results of NOR are 0.983, 0.971 and 0.925 g2NO--N·(g MLSS)-1·d-1.One simplettest shows that the experimental results have no significant difference with the optimal result predicted by BPNN-GA. The scale-up experimental result showed that with NOB cultured in the initial medium and in the optimal medium, the nitrite degraded completely at 44 h and 34 h, respectively. It is obvious that the NOB has a higher NOR or higher growth rate when cultured in the optimal medium (Fig. 8), in which the controlled trial indicates that no inoculum with NOB appears in the bioreactor.

    4 CONCLUSIONS

    A BNPP model was constructed on the basis of the data from 40 experiments, and verified as suitable artificial neural networks for describing complex interactions and influences among different medium components. The model of BPNN with the topological structure of 6-13-1 has a strong learning ability and a

    Figure 8 Scale-up experiments when cultured in the initial medium and in the optimum medium (with the inoculums volume of NOB of 5%, about 1.41 g MLSS)■ initial medium; ● optimal medium; ▲ controlledtrial of initial medium; ▼ controlled trial of optimal medium

    generalization ability and is able to predict the experimental results effectively. After optimization, the NOR of NOB obtained is 0.952 g2NO--N·(g MLSS)-1·d-1.A scale-up experiment shows that cultured with the medium optimized by BPNN-GA, the time required for complete nitrite degradation by NOB is 10 h less than that cultured with the initial medium. The optimization by using ANN-GA hybrid methodology improves the nitrite oxidization rate considerably. The approach presented in this paper is general and can be employed for modeling and optimization for other microorganism media, even the bioprocesses.

    NOMENCLATURE

    1 Graham, D.W., Knapp, C.W., van Vleck, E.S., Bloor, K., Lane, T.B.,Graham, C.E., “Experimental demonstration of chaotic instability in biological nitrification”,ISME J., 1, 385-393 (2007).

    2 Rittmann, B.E., McCarty, P.L., Environmental Biotechnology: Principles and Applications, McGraw-Hill, New York (2003).

    3 Camargo, J.A., Alonso, A., “Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment”,Environ.Int., 32, 831-849 (2006).

    4 Haywood, G.P., “Ammonia toxicity in teleost fish: A review”,Can.Tech.Rep.Fish.Aquat.Sci., 1177, 1-35 (1983).

    5 Jensen, F.B., “Nitrite disrupts multiple physiological functions in aquatic animals”,Comp.Biochem.Phys.A, 135, 9-24 (2003).

    6 Hagopian, D.S., Riley, J.G., “A closer look at the bacteriology of nitrification”,Aquacult.Eng., 18, 223-244 (1998).

    7 Revankar, M.S., Lele, S.S., “Synthetic dye decolorization by white rot fungus, Ganoderma sp WR-1”,Bioresource Technol., 98,775-780 (2007).

    8 Silveira, R. G., Kakizono, T., Takemoto, S., Nishio, N., Nagai, S.,“Medium optimization by an orthogonal array design for the growth ofmethanosarcina barkeri”,J.Ferm.Bioeng., 72, 20-25 (1991).

    9 Hu, C., Qin, Q., Gao, P., “Medium optimization for improved ethanol production in very high gravity fermentation”,Chin.J.Chem.Eng., 19, 1017-1022 (2011).

    10 Li, Y., Liu, Z.Q., Cui, F.J., Liu, Z.H., Zhao, H., “Application of Plackett-Burman experimental design and Doehlert design to evaluate nutritional requirements for xylanase production by Alternaria mali ND-16”,Appl.Microbiol.Biot., 77, 285-291 (2007).

    11 Minocha, N., Kaur, P., Satyanarayana, T., Kunze, G., “Acid phosphatase production by recombinantArxula adeninivorans”,Appl.Microbiol.Biot., 76, 387-393 (2007).

    12 Guo, J., Luo, Y., Fan, D., Gao, P., Ma, X., Zhu, C., “Analysis of metabolic products by response surface methodology for production of human-like collagen II”,Chin.J.Chem.Eng., 18, 830-836 (2010).

    13 Fang, B.S., Chen, H.W., Xie, X.L., Wan, N., Hu, Z.D., “Using genetic algorithms coupling neural networks in a study of xylitol production:Medium optimisation”,Process Biochem., 38, 979-985 (2003).

    14 Moreira, G.A., Micheloud, G.A., Beccaria, A.J., Goicoechea, H.C.,“Optimization of the Bacillus thuringiensis var. kurstaki HD-1 delta-endotoxins production by using experimental mixture design and artificial neural networks”,Biochem.Eng.J., 35, 48-55 (2007).

    15 Franco-Lara, E., Link, H., Weuster-Botz, D., “Evaluation of artificial neural networks for modelling and optimization of medium composition with a genetic algorithm”,Process Biochem., 41, 2200-2206(2006).

    16 Montague, G., Morris, J., “Neural-network contributions in biotechnology”,Trend.Biotech., 12, 312-324 (1994).

    17 Desai, K.M., Akolkar, S.K., Badhe, Y.P., Tambe, S.S., Lele, S.S.,“Optimization of fermentation media for exopolysaccharide production from Lactobacillus plantarum using artificial intelligence-based techniques”,Process Biochem., 41, 1842-1848 (2006).

    18 Wilen, B.M., Jin, B., Lant, P., “The influence of key chemical constituents in activated sludge on surface and flocculating properties”,Water Res., 37, 2127-2139 (2003).

    19 Salem, S., Moussa, M.S., van Loosdrecht, M.C.M., “Determination of the decay rate of nitrifying bacteria”,Biotechnol.Bioeng., 94,252-262 (2006).

    20 K?rková, V., “Kolomogorov’s theorem and multilayer neural networks”,Neural Networks, 5, 501-506 (1992).

    21 Ren, J., Lin, W.T., Shen, Y.J., Wang, J.F., Luo, X.C., Xie, M.Q.,“Optimization of fermentation media for nitrite oxidizing bacteria using sequential statistical design”,Bioresource Technol., 99,7923-7927 (2008).

    22 Nandi, S., Ghosh, S., Tambe, S.S., Kulkarni, B.D., “Artificial neuralnetwork-assisted stochastic process optimization strategies”,AIChE J., 47, 126-141 (2001).

    猜你喜歡
    小龍
    El regreso del dragón
    Erratum to“Floquet bands and photon-induced topological edge states of graphene nanoribbons”
    Contagion dynamics on adaptive multiplex networks with awareness-dependent rewiring*
    小小小小龍
    新書架
    河南電力(2017年1期)2017-11-30 03:04:23
    劉小龍
    中國篆刻(2016年5期)2016-09-26 07:40:04
    董小龍赴寶雞市宣講黨的十八屆六中全會精神
    可怕的綠怪蛙
    讓“數(shù)”“形”結(jié)合更暢通
    風(fēng)中的祈禱詞
    詩選刊(2015年4期)2015-10-26 08:45:28
    三级男女做爰猛烈吃奶摸视频| 国产高清不卡午夜福利| 欧美一区二区精品小视频在线| 99久久精品热视频| 免费搜索国产男女视频| 亚洲av不卡在线观看| 麻豆一二三区av精品| 在线a可以看的网站| 五月伊人婷婷丁香| 欧美性感艳星| 久久精品国产99精品国产亚洲性色| 国产精品麻豆人妻色哟哟久久 | 日本一二三区视频观看| 九九爱精品视频在线观看| 国产亚洲精品av在线| 一进一出抽搐gif免费好疼| 久久中文看片网| 亚洲七黄色美女视频| 成人性生交大片免费视频hd| 日韩一区二区视频免费看| 日本黄大片高清| av免费在线看不卡| 亚洲四区av| 午夜久久久久精精品| 亚洲色图av天堂| 3wmmmm亚洲av在线观看| 一区二区三区四区激情视频 | 99久久精品热视频| 日本一二三区视频观看| 日本一本二区三区精品| av在线蜜桃| 久久精品夜夜夜夜夜久久蜜豆| 国产精品日韩av在线免费观看| 欧美性感艳星| 欧美成人免费av一区二区三区| 成人永久免费在线观看视频| 国产精品久久久久久亚洲av鲁大| 久久综合国产亚洲精品| 99久国产av精品| 欧美激情国产日韩精品一区| 美女大奶头视频| 97在线视频观看| 简卡轻食公司| 赤兔流量卡办理| 男女啪啪激烈高潮av片| 久久久久久大精品| 色视频www国产| 国产精品人妻久久久久久| 日韩一本色道免费dvd| 国产av不卡久久| 午夜老司机福利剧场| 亚洲国产精品国产精品| 在线天堂最新版资源| 九九久久精品国产亚洲av麻豆| 欧美在线一区亚洲| 国产亚洲av片在线观看秒播厂 | 久久精品久久久久久噜噜老黄 | 日本色播在线视频| 久久99精品国语久久久| 婷婷色综合大香蕉| 在线观看一区二区三区| 国产精品免费一区二区三区在线| 精品久久国产蜜桃| 亚洲av第一区精品v没综合| 亚洲精品久久国产高清桃花| 乱系列少妇在线播放| 国产单亲对白刺激| 日本在线视频免费播放| 欧美变态另类bdsm刘玥| 国产精品.久久久| 日韩精品青青久久久久久| 免费av毛片视频| 综合色av麻豆| 成人特级av手机在线观看| 少妇熟女aⅴ在线视频| 亚洲在久久综合| 亚洲电影在线观看av| 五月伊人婷婷丁香| 久久精品影院6| 一级二级三级毛片免费看| 青春草亚洲视频在线观看| 亚洲自偷自拍三级| 亚洲在久久综合| 在线观看av片永久免费下载| 深夜a级毛片| 国产伦精品一区二区三区视频9| 亚洲国产欧美在线一区| 精品午夜福利在线看| 午夜视频国产福利| 2022亚洲国产成人精品| 少妇熟女aⅴ在线视频| 欧美潮喷喷水| 午夜久久久久精精品| 不卡视频在线观看欧美| 亚洲色图av天堂| 一区二区三区高清视频在线| 国产伦精品一区二区三区视频9| 欧美日韩乱码在线| 日韩亚洲欧美综合| 成人二区视频| 又黄又爽又刺激的免费视频.| 欧美+日韩+精品| 国产午夜福利久久久久久| 亚洲美女视频黄频| 日韩人妻高清精品专区| 人人妻人人澡人人爽人人夜夜 | 小说图片视频综合网站| 国产精品一区二区性色av| 成人毛片60女人毛片免费| 26uuu在线亚洲综合色| 天堂√8在线中文| 美女xxoo啪啪120秒动态图| 99热只有精品国产| 国产一区二区在线av高清观看| 一区二区三区四区激情视频 | 人人妻人人澡人人爽人人夜夜 | 99久国产av精品国产电影| 女人被狂操c到高潮| 日本在线视频免费播放| 午夜免费男女啪啪视频观看| av天堂中文字幕网| 欧美激情国产日韩精品一区| 国产精品一区二区性色av| 91aial.com中文字幕在线观看| 久久精品久久久久久噜噜老黄 | 国模一区二区三区四区视频| 日本欧美国产在线视频| 99久久精品一区二区三区| 日产精品乱码卡一卡2卡三| 综合色丁香网| 亚洲人成网站高清观看| 蜜臀久久99精品久久宅男| 我要搜黄色片| 欧美极品一区二区三区四区| 在线观看av片永久免费下载| av卡一久久| 最近最新中文字幕大全电影3| 日韩 亚洲 欧美在线| 午夜精品一区二区三区免费看| 久久精品人妻少妇| 两个人视频免费观看高清| 99久久人妻综合| 寂寞人妻少妇视频99o| 噜噜噜噜噜久久久久久91| 特大巨黑吊av在线直播| 不卡一级毛片| 免费观看人在逋| 如何舔出高潮| 男的添女的下面高潮视频| 青青草视频在线视频观看| 99热这里只有精品一区| 在线天堂最新版资源| 欧美一区二区国产精品久久精品| 亚洲国产精品久久男人天堂| 日日啪夜夜撸| 成人无遮挡网站| 青春草视频在线免费观看| 2022亚洲国产成人精品| 丝袜美腿在线中文| 在线国产一区二区在线| 国产成人91sexporn| 欧美色视频一区免费| 在线播放无遮挡| 久久精品国产亚洲av香蕉五月| 国内精品宾馆在线| 熟妇人妻久久中文字幕3abv| 国产成人精品婷婷| 成熟少妇高潮喷水视频| 不卡一级毛片| 国产精品久久久久久av不卡| 国产精品野战在线观看| 久久人人精品亚洲av| 天天躁日日操中文字幕| 国产色婷婷99| 身体一侧抽搐| 91久久精品国产一区二区三区| 中文字幕精品亚洲无线码一区| 国产又黄又爽又无遮挡在线| av在线观看视频网站免费| 国产一区二区激情短视频| 一级黄片播放器| 少妇熟女aⅴ在线视频| 97超视频在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 免费观看在线日韩| 欧美性感艳星| 啦啦啦韩国在线观看视频| 只有这里有精品99| 麻豆成人午夜福利视频| 欧美不卡视频在线免费观看| 亚洲精品国产成人久久av| 欧美高清性xxxxhd video| 成人毛片60女人毛片免费| 最近中文字幕高清免费大全6| 丝袜喷水一区| 欧美日韩在线观看h| 午夜福利在线观看吧| 成人美女网站在线观看视频| 在线观看一区二区三区| 国产精品一二三区在线看| 99久久九九国产精品国产免费| 亚洲自偷自拍三级| 日本在线视频免费播放| 亚洲精品久久久久久婷婷小说 | 成人性生交大片免费视频hd| 欧美区成人在线视频| 国产精品爽爽va在线观看网站| 久久精品国产亚洲av天美| 精品一区二区三区人妻视频| 亚洲婷婷狠狠爱综合网| 男插女下体视频免费在线播放| 老女人水多毛片| 国产精品福利在线免费观看| 毛片女人毛片| 白带黄色成豆腐渣| 日韩强制内射视频| 日韩大尺度精品在线看网址| 99热网站在线观看| 少妇熟女欧美另类| 国产午夜福利久久久久久| 一夜夜www| 联通29元200g的流量卡| 国产精品一及| 欧美丝袜亚洲另类| 永久网站在线| 亚洲高清免费不卡视频| 日韩在线高清观看一区二区三区| avwww免费| 亚洲人与动物交配视频| 国产老妇女一区| 成人漫画全彩无遮挡| 国产大屁股一区二区在线视频| 日产精品乱码卡一卡2卡三| 午夜老司机福利剧场| 国产伦一二天堂av在线观看| 日韩欧美一区二区三区在线观看| 成人二区视频| 日本五十路高清| 欧美xxxx黑人xx丫x性爽| 久久久久久久久中文| 色综合亚洲欧美另类图片| 麻豆乱淫一区二区| 你懂的网址亚洲精品在线观看 | 男人狂女人下面高潮的视频| 日韩av不卡免费在线播放| videossex国产| 亚洲成av人片在线播放无| 久久中文看片网| 99久国产av精品| 大型黄色视频在线免费观看| 毛片女人毛片| 99视频精品全部免费 在线| av在线天堂中文字幕| 国产av一区在线观看免费| 99国产极品粉嫩在线观看| 99久久精品国产国产毛片| 91狼人影院| 亚洲av成人av| 老师上课跳d突然被开到最大视频| 91aial.com中文字幕在线观看| 麻豆国产av国片精品| 欧美不卡视频在线免费观看| 最近中文字幕高清免费大全6| 看片在线看免费视频| 一区福利在线观看| 色视频www国产| 一边亲一边摸免费视频| 精品99又大又爽又粗少妇毛片| 午夜福利高清视频| 久久九九热精品免费| 九草在线视频观看| 免费大片18禁| 成人一区二区视频在线观看| 国产高清激情床上av| 麻豆av噜噜一区二区三区| 12—13女人毛片做爰片一| 97热精品久久久久久| 成人永久免费在线观看视频| 中国国产av一级| 亚洲在线观看片| 亚洲美女视频黄频| 免费黄网站久久成人精品| 欧美日本亚洲视频在线播放| 非洲黑人性xxxx精品又粗又长| 午夜福利在线观看免费完整高清在 | 嫩草影院精品99| 日韩大尺度精品在线看网址| 深夜精品福利| 久久久a久久爽久久v久久| 午夜a级毛片| 99热6这里只有精品| 日本五十路高清| 亚洲aⅴ乱码一区二区在线播放| 国产精品人妻久久久久久| 国产亚洲91精品色在线| 中文在线观看免费www的网站| av国产免费在线观看| 简卡轻食公司| 边亲边吃奶的免费视频| 日韩亚洲欧美综合| 国产精品一区二区性色av| 能在线免费看毛片的网站| 婷婷亚洲欧美| 国产高清有码在线观看视频| 久久鲁丝午夜福利片| 国产一区二区亚洲精品在线观看| 精品久久久久久久久久免费视频| 国产成年人精品一区二区| 免费黄网站久久成人精品| 国产女主播在线喷水免费视频网站 | 亚洲成人精品中文字幕电影| 99热这里只有是精品在线观看| 国内少妇人妻偷人精品xxx网站| 欧美在线一区亚洲| 成年版毛片免费区| 欧美成人a在线观看| 国产精品99久久久久久久久| 综合色丁香网| 在线国产一区二区在线| 国产一区二区激情短视频| 精品久久久久久久久久免费视频| 五月玫瑰六月丁香| 国产日韩欧美在线精品| 国产一区亚洲一区在线观看| 国产在线精品亚洲第一网站| 亚洲av.av天堂| 99热这里只有精品一区| 草草在线视频免费看| 嘟嘟电影网在线观看| 亚洲精品久久久久久婷婷小说 | 啦啦啦啦在线视频资源| 国产一区二区三区av在线 | 精品一区二区免费观看| 国产久久久一区二区三区| 3wmmmm亚洲av在线观看| 国产精品久久电影中文字幕| 久久精品国产亚洲av香蕉五月| 午夜福利成人在线免费观看| 一区福利在线观看| 亚洲国产精品国产精品| 色吧在线观看| 久久人妻av系列| 高清日韩中文字幕在线| 国产 一区 欧美 日韩| 婷婷六月久久综合丁香| 日韩欧美国产在线观看| 99久久中文字幕三级久久日本| 内地一区二区视频在线| 久久婷婷人人爽人人干人人爱| 欧美日韩综合久久久久久| 九色成人免费人妻av| 啦啦啦观看免费观看视频高清| 日韩三级伦理在线观看| 国产日韩欧美在线精品| 亚洲内射少妇av| 99热精品在线国产| 亚洲欧洲日产国产| 久久久久久久久中文| 成人特级av手机在线观看| 麻豆一二三区av精品| 国产精品日韩av在线免费观看| 亚洲丝袜综合中文字幕| 淫秽高清视频在线观看| 亚洲,欧美,日韩| 我要搜黄色片| 欧美激情久久久久久爽电影| 毛片一级片免费看久久久久| 在线观看免费视频日本深夜| 免费观看的影片在线观看| 高清午夜精品一区二区三区 | 日韩av不卡免费在线播放| 国产精品一区www在线观看| 三级国产精品欧美在线观看| 国产精品美女特级片免费视频播放器| 大型黄色视频在线免费观看| 青春草国产在线视频 | 熟女人妻精品中文字幕| 亚洲精品乱码久久久久久按摩| 日韩 亚洲 欧美在线| 91午夜精品亚洲一区二区三区| 久久精品夜色国产| 村上凉子中文字幕在线| 成人亚洲精品av一区二区| 国产不卡一卡二| 国产精品蜜桃在线观看 | 少妇熟女欧美另类| 深夜a级毛片| 特大巨黑吊av在线直播| 菩萨蛮人人尽说江南好唐韦庄 | 欧美变态另类bdsm刘玥| 欧美一区二区亚洲| 婷婷亚洲欧美| 最近手机中文字幕大全| 欧美精品一区二区大全| 热99re8久久精品国产| 国产av在哪里看| 干丝袜人妻中文字幕| 国产 一区精品| 老司机福利观看| 国产高清激情床上av| 精品人妻一区二区三区麻豆| 国产成人精品婷婷| 日韩在线高清观看一区二区三区| 最近中文字幕高清免费大全6| 大香蕉久久网| 一级毛片我不卡| 插逼视频在线观看| 好男人在线观看高清免费视频| 12—13女人毛片做爰片一| 最近2019中文字幕mv第一页| 欧美日韩在线观看h| 中文字幕制服av| 国产精品av视频在线免费观看| 亚洲精品乱码久久久v下载方式| 久久久久久伊人网av| 国产 一区 欧美 日韩| 亚洲av成人av| 国产亚洲精品av在线| 精品免费久久久久久久清纯| 夫妻性生交免费视频一级片| 亚洲欧美日韩高清专用| 亚洲激情五月婷婷啪啪| 又爽又黄无遮挡网站| 在线观看一区二区三区| av在线老鸭窝| 亚洲无线在线观看| 亚洲在久久综合| av卡一久久| 欧美日韩一区二区视频在线观看视频在线 | 日韩欧美国产在线观看| 久久人人爽人人爽人人片va| 91精品一卡2卡3卡4卡| 亚洲av一区综合| 白带黄色成豆腐渣| 日本欧美国产在线视频| 午夜福利在线在线| 如何舔出高潮| 丰满人妻一区二区三区视频av| 亚洲欧美日韩高清在线视频| 久久久精品欧美日韩精品| 伊人久久精品亚洲午夜| 日韩高清综合在线| 国产高潮美女av| 久久精品夜色国产| 久久精品国产自在天天线| 日韩欧美国产在线观看| 国产一区二区亚洲精品在线观看| 国产探花极品一区二区| 一本久久精品| 男人舔奶头视频| 中出人妻视频一区二区| 久久精品国产清高在天天线| 美女被艹到高潮喷水动态| 乱人视频在线观看| 亚洲av二区三区四区| 男人的好看免费观看在线视频| 99久久久亚洲精品蜜臀av| 少妇熟女欧美另类| 国内揄拍国产精品人妻在线| 亚洲在线观看片| 国产一区二区三区在线臀色熟女| 白带黄色成豆腐渣| 亚洲国产色片| 2021天堂中文幕一二区在线观| 成人亚洲精品av一区二区| 丰满人妻一区二区三区视频av| 久久这里有精品视频免费| 欧美一区二区亚洲| 小说图片视频综合网站| 最近的中文字幕免费完整| 九色成人免费人妻av| 成人欧美大片| 午夜亚洲福利在线播放| 夫妻性生交免费视频一级片| 精品人妻熟女av久视频| 五月伊人婷婷丁香| 国产成人精品一,二区 | 一级黄色大片毛片| 亚洲欧美中文字幕日韩二区| 亚洲国产精品sss在线观看| 精品人妻一区二区三区麻豆| 久久久久久大精品| 国产黄片美女视频| 国产人妻一区二区三区在| 亚洲欧美精品专区久久| 99久久人妻综合| 精品久久久久久久久av| 久久精品国产亚洲av涩爱 | 午夜福利在线在线| 日本三级黄在线观看| 免费电影在线观看免费观看| 久久这里有精品视频免费| 亚洲av第一区精品v没综合| 高清午夜精品一区二区三区 | 亚洲欧美成人综合另类久久久 | 中文字幕av成人在线电影| 极品教师在线视频| 深夜精品福利| 亚洲在久久综合| 最近手机中文字幕大全| 免费看a级黄色片| 国产乱人偷精品视频| 久久精品综合一区二区三区| 色综合色国产| 国产老妇伦熟女老妇高清| 亚洲自拍偷在线| 日本在线视频免费播放| 国产国拍精品亚洲av在线观看| 色5月婷婷丁香| 18禁在线无遮挡免费观看视频| 久久久久久九九精品二区国产| 中出人妻视频一区二区| 亚洲熟妇中文字幕五十中出| 两性午夜刺激爽爽歪歪视频在线观看| 国产亚洲精品久久久com| 国产精品福利在线免费观看| 国产亚洲av片在线观看秒播厂 | 亚洲欧美精品专区久久| 老女人水多毛片| 最近视频中文字幕2019在线8| 伦理电影大哥的女人| 男人和女人高潮做爰伦理| 深夜a级毛片| 亚洲人成网站高清观看| 搡老妇女老女人老熟妇| 国产成人精品久久久久久| 夜夜夜夜夜久久久久| 亚洲av.av天堂| 亚洲国产日韩欧美精品在线观看| 成人无遮挡网站| 2022亚洲国产成人精品| 99久久成人亚洲精品观看| 淫秽高清视频在线观看| 国产老妇女一区| 人妻系列 视频| 九九久久精品国产亚洲av麻豆| 少妇的逼水好多| 午夜福利在线观看吧| 亚洲精品久久久久久婷婷小说 | 亚洲精华国产精华液的使用体验 | 中文字幕av成人在线电影| 免费黄网站久久成人精品| 久久久久久国产a免费观看| 国语自产精品视频在线第100页| 国产真实乱freesex| 国产不卡一卡二| 国产探花在线观看一区二区| 欧美在线一区亚洲| 欧美+亚洲+日韩+国产| 嘟嘟电影网在线观看| 婷婷六月久久综合丁香| 国产色爽女视频免费观看| 亚洲熟妇中文字幕五十中出| 亚洲av中文字字幕乱码综合| 青春草亚洲视频在线观看| 国内精品一区二区在线观看| 一区二区三区四区激情视频 | 日韩强制内射视频| 搞女人的毛片| 少妇猛男粗大的猛烈进出视频 | 免费电影在线观看免费观看| 成人一区二区视频在线观看| 成人特级av手机在线观看| 国产伦理片在线播放av一区 | 成年免费大片在线观看| 美女大奶头视频| 成人亚洲精品av一区二区| 色综合亚洲欧美另类图片| 啦啦啦观看免费观看视频高清| 久久精品综合一区二区三区| 国产精品野战在线观看| 一级毛片久久久久久久久女| 婷婷亚洲欧美| 午夜福利视频1000在线观看| 成人毛片a级毛片在线播放| 国产亚洲欧美98| 久久精品国产亚洲av香蕉五月| 成人美女网站在线观看视频| 国产一区二区三区在线臀色熟女| 久久精品国产亚洲av涩爱 | 国语自产精品视频在线第100页| 午夜福利视频1000在线观看| 国产极品精品免费视频能看的| 午夜精品在线福利| 亚洲激情五月婷婷啪啪| 国产精品久久久久久久久免| 久久久久久久久大av| 99热精品在线国产| 18禁在线播放成人免费| 波野结衣二区三区在线| 亚洲av免费高清在线观看| av天堂在线播放| 青春草国产在线视频 | 我要搜黄色片| 欧美+日韩+精品| or卡值多少钱| 一级毛片aaaaaa免费看小| 91久久精品国产一区二区三区| 99久久精品一区二区三区| 亚洲精品色激情综合| 别揉我奶头 嗯啊视频| 五月玫瑰六月丁香| 国产亚洲精品av在线| 99久久无色码亚洲精品果冻| 国产极品精品免费视频能看的| 秋霞在线观看毛片| 亚洲成人中文字幕在线播放| 精品人妻一区二区三区麻豆| 男女边吃奶边做爰视频| 国产成人午夜福利电影在线观看| 亚洲无线在线观看| 国产成人freesex在线| 久久久久九九精品影院| 22中文网久久字幕| 成人亚洲精品av一区二区|