• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adsorption and Desorption of Praseodymium (III) from Aqueous Solution Using D72 Resin*

    2012-03-22 10:12:04XIONGChunhua熊春華ZHUJingfei朱京妃SHENChen沈忱andCHENQing陳青
    關(guān)鍵詞:春華

    XIONG Chunhua (熊春華)**, ZHU Jingfei (朱京妃), SHEN Chen (沈忱) and CHEN Qing (陳青)

    Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310012, China

    1 INTRODUCTION

    During the past decades, lanthanide elements have received great attention owing to their unique properties and wide applications. Praseodymium and its compounds have numerous industrial applications and they are currently used in ceramic industry,atomic batteries, photo catalytically active material and metallurgy [1-3]. The consumption of the materials is increasing with the rapid development of the modern industry in the world. Praseodymium may enter the environment in large quantities and accumulate in the human body via the food chain [4].

    A number of methods including co-precipitation,solvent extraction, ion exchange and solid phase extraction have been employed for the removal of lanthanide elements from industrial effluents [5, 6]. Solvent extraction and ion exchange are the two most common methodologies for the preconcentration and separation of trace elements. However, the main drawback of solvent extraction process is the loss of extractant into the aqueous solution, which may cause environmental hazards and economic limitations. Compared with solvent extraction, ion exchange is simpler to operate and easier to separate. Various adsorbents including chelate resins and ion exchange resins are used in extraction of praseodymium ions [7, 8]. Chelate resins present good features of easy-functional and chemical stability,and shortcomings of poor hydrophilicity, slow adsorption rate and bad elution. Ion exchange resins are solid and suitably insolubilized high molecular weight polyelectrolytes. The resulting ion exchange is reversible and stoichiometric with the displacement of one ionic species by another on the exchanger [9, 10].

    El-Dessouky et al. [11] studied the sorption of praseodymium (III) from nitrate medium using TVEXPHOR resin. However, the literature data concerning the adsorption process of praseodymium (III) onto strong acid ion exchange resin are limited. In this study, a strong acid ion exchange resin (D72) is used, which is a polymeric material containing a functional group(SO3H). It presents remarkable chemical and physical stability for temperatures of interest in treating aqueous solutions, and the functional groups ensure a large pH domain of work. Its principal characteristics are high exchange capacity and good ability of regeneration. Moreover, it is cheaper than imported resins.

    In this work, the adsorption behavior and mechanism of Pr (III) on D72 resin are investigated with various chemical methods and IR spectrometry. Some factors affecting the adsorption, such as initial pH of solution, contact time and temperature, are examined.Adsorption experiments for kinetics and isotherm are carried out. Thermodynamic parameters of adsorption for Pr (III) are calculated. The experimental results may provide a path for the preconcentration and recovery of Pr (III) from aqueous solutions in the environmental protection and hydrometallurgical systems.

    2 MATERIALS AND METHOD

    2.1 Apparatus

    Pr (III) was determined with Shimadzu UV-2550 UV-visible spectrophotometer. The resin dosage was measured by electronic balance of Sartorius BS 224S.Mettler Toledo delta 320 pH meter was used for pH measurement. The sample was shaken in the DSHZ-300 A temperature constant shaking machine. The water used in the present work was purified using Molresearch analysis-type ultra-pure water machine. The sample for IR spectroscopy was described by Nicolet 380 FT-IR.

    2.2 Materials

    D72 resin was supplied by Nankai University and its properties are shown in Table 1. Standard solutions of Pr(III) were prepared from Pr2O3(AR). HAc-NaAc with pH 3.00-6.00 and triethanolamine-nitric acid with pH 7.20 buffer solutions were prepared from the NaAc, HAc, N(C2H4OH)3and HNO3solutions. The chromophoric reagent of 0.1% arsenazo-I solution was obtained by dissolving 0.1000 g arsenazo-I powder into 100 ml deionized water. All other chemicals were of analytical grade and purified water was used throughout.

    Table 1 General description and properties of D72

    2.3 Adsorption experiments

    2.3.1Batch studies

    A desired amount of treated D72 resin was weighed and added into a conical flask, in which a desired volume of buffer solution with pH 3.00 was added. After 24 h, a required amount of standard solution of Pr (III) was added. The flask was shaken in a shaker at the constant temperature. Aliquot samples were taken from the flask at appropriate time intervals as necessary. The residual concentration of Pr (III) in the aqueous phases was measured at 580 nm.

    2.3.2Desorption studies

    Desorption of Pr (III) was performed by mixing D72-Pr (III) complexes and HCl-NaCl eluent solution of different concentrations, and shaken at 100 r·min-1for 24 h at 298K. The final Pr (III) concentrations in the aqueous phase were analyzed.

    2.3.3Column studies

    The fixed-bed experiments were carried out in glass columns (4.5 mm×235 mm) wet-packed with 300.0 mg (dry mass) D72 resin. The aqueous solution with known concentrations of Pr (III) was then fed to the top of the bed at 0.152 ml·min-1until the breakthrough curve was completed. The samples in the outlet were taken at the preset time intervals and the concentrations of Pr (III) were determined. In addition,dynamic desorption procedures were also carried out.With respect to the stripping of Pr (III) from the resin,eluent of 1.00 mol·L-1HCl-0.50 mol·L-1NaCl solution was employed.

    2.3.4Analytical method

    A solution containing Pr (III) was accurately added into a 25 ml colorimetric tube, and then 1 ml chromophoric reagent of 0.1% arsenazo-I solution and 10 ml pH 7.2 C6H15O3N-HNO3buffer solution were added. After the addition of purified water to the mark of colorimetric tube, the absorbency was determined in a 1 cm colorimetric vessel at 580 nm and compared with the blank test.

    The adsorption capacity (Q), distribution coefficient (D) and desorption ratio (E) were calculated with the following formulas [12]:

    3 RESULTS AND DISCUSSION

    3.1 Effect of pH on the adsorption for Pr (III)

    The adsorption of Pr (III) from aqueous solutions onto D72 resin is primarily effected by the surface charge of the adsorbent [13]. The effect of pH on the adsorption behavior of D72 resin was tested with Pr(III) in the range of pH 2.6-5.0 for an initial concentration of Pr (III) 0.286 mg·ml-1at 298 K, 100 r·min-1.Fig. 1 shows that the adsorption capacity of D72 resin decreases evidently as the pH of solution increases and the maximum adsorption (1.64 mmol·g-1) is obtained at pH value of 3.0. Therefore, subsequent experiments were carried out at pH 3.0 in the HAc-NaAc system.

    3.2 Effect of contact time

    The equilibrium adsorption time of Pr (III) on D72 resin was investigated. As shown in Fig. 2, a high initial slope for the adsorption curves is observed. It indicates that the initial uptake is rapid, since at the beginning of the adsorption process all the reaction sites are vacant and the extent of adsorption is high.After a rapid initial uptake, there is a transitional phase, in which the rate of uptake is slow with uptake reaching almost a constant value. Consequently, the adsorption is carried out in two distinct stages, a relatively rapid one followed by a slower one. The results also indicate that an increase of temperature enchances the capacity of praseodymium adsorption [14].

    Figure 1 Effect of pH on the distribution coefficient (mass of resin=15.0 mg, C0=0.286 mg·ml-1, T=298 K, r=100 r·min-1)

    Figure 2 Effect of contact time for the adsorption (mass of resin=15.0 mg, C0=0.286 mg·ml-1, pH=3.00, r=100 r·min-1)● 288 K; ○ 298 K; ▲ 308 K

    3.3 Adsorption kinetics study

    The study of adsorption kinetics describes the solute uptake rate and evidently the rate controls the residence time of metal ion uptake at the solid-solution interface including the diffusion process. The mechanism of adsorption depends on the physical and chemical characteristics of the adsorbent as well as on the mass transfer process [15]. The experimental results were used to study the kinetics of metal ion adsorption. The kinetics of Pr (III) adsorption on D72 resin was analyzed using pseudo-first-order and pseudo-second-order models [16]. The conformity between experimental data and the model predicted values was expressed by correlation coefficient (R2).

    The adsorption of Pr (III) from a liquid phase to solid phase can be considered as a reversible process with equilibrium between the solution and solid phase.For the pseudo-first-order model, the following relation was used for the variation of adsorbed concentration with respect to time [17].

    wherek1(h-1) is the rate constant of pseudo-first-order adsorption,Qe(mg·g-1) andQt(mg·g-1) denote the amounts of adsorption at equilibrium and at timet,respectively, andQ1(mg·g-1) is the calculated adsorption capacity. The slopes and intercepts of plots of lg(Qe-Qt)versustwere used to determine the pseudo first-order rate constantk1andQ1.

    In addition, a pseudo-second-order equation based on sorption equilibrium capacity may be expressed in the form of [18]

    The constants (k2andQ2) can be experimentally determined by plottingt/Qtversustfrom the intercept and slope, respectively, and there is no need to know any parameter beforehand.

    According to the parameters (Table 2), the experimental results obtained are found to obey the pseudo-second-order model. The theoreticalQ1values estimated from the pseudo-first-order model give significantly different values compared to experimental values, and the correlation coefficients are also found to be lower. These results show that the first-order kinetic model does not describe these adsorption systems. The theoreticalQ2values for the resin are very close to the experimentalQevalues in the case of second-order kinetics. The correlation coefficients for the pseudo-second-order equation are greater than 0.989.The pseudo-second-order equation at different temperatures fits well with the experimental data. The pseudo-second-order model is based on the assumption that the rate-determining step may be a chemical sorption involving valence forces through sharing or exchange of electrons between adsorbent and adsorbate [19]. Thus, successful fitting of this model suggests that chemisorption is the rate-controlling step.

    From Table 2, it is seen that the adsorption capacity increases with temperature, showing an endothermic adsorption process. The activation energy is determined according to the pseudo-second order rate constant, expressed as a function of temperature by the Arrhenius equation [20].

    Value of the activation energy,Ea, can be determined from the slope of lgkversus1/T, and the value is 14.71 kJ·mol-1, which can be considered as a low energy barrier in this study. It can be deduced that the adsorption rate accelerates as temperature increases in the scope of experimental temperature.

    Table 2 The first-order and second-order kinetics parameters

    Figure 3 Langmuir isotherm (mass of resin=15.0 mg,C0=0.286 mg·ml-1, pH=3.00, r=100 r·min-1)● 288 K; ○ 298 K; ▲ 308 K

    3.4 Equilibrium adsorption isotherms

    Equilibrium data, commonly known as adsorption isotherms, are the basic requirements for the design of adsorption systems. Equilibrium data for a specific adsorbate/adsorbent system can be obtained experimentally, with a time-consuming procedure that is incompatible with the growing need for sorption system design. Analysis of equilibrium data is important for developing an equation that can be used to compare different sorbents under different operational conditions and to design and optimize an operating procedure [21, 22]. Langmuir [23, 24] and Freundlich[25] equations are used to reveal the linearity fitting and to describe how solutes interact with the resins.The linear forms of the Langmuir and Freundlich isotherms are represented as follows.

    Langmuir isotherm:

    whereQeis the adsorption capacity in equilibrium state,Ceis the equilibrium Pr (III) concentration in solution,Qmaxis the maximum capacity of the adsorbent andbis the Langmuir constant which reflects quantitatively the affinity between the D72 resin and Pr (III).

    Freundlich isotherm:

    Figure 4 Freundlich isotherm (mass of resin=15.0 mg,C0=0.286 mg·ml-1, pH=3.00, r=100 r·min-1)● 288 K; ○ 298 K; ▲ 308 K

    The Freundlich isotherm constantsKfandnare constants incorporating all factors affecting the adsorption process such as adsorption capacity and intensity of adsorption.

    The Langmuir and Freundlich isotherms are shown in Figs. 3 and 4, and the parameters are listed in Table 3. It is evident that the adsorption of Pr (III)onto D72 resin fits the Langmuir isotherm model better than the Freundlich isotherm model, as indicated by theR2values and the adsorption capacity values in Table 3. Since the Langmuir isotherm assumes a monolayer coverage and uniform activity distribution on the adsorbent surface, this is an expected result.

    The maximum adsorption capacity of the D72 for Pr (III) is evaluated to be 294 mg·g-1(2.09 mmol·g-1)for the Langmuir model at 298 K and the adsorption molar ratio (metal/functional group) of D72 resin for Pr (III) is 0.523. It means that the complex ratio of the functional group (SO3H) to Pr (III) is about 2∶1.

    The essential features of a Langmuir isotherm can be expressed in terms of a dimensionless constant,separation factor or equilibrium parameterRL, which is used to predict that an adsorption system is “favorable” or “unfavorable” [26].

    TheRLvalues for the adsorption on clarified sludge at initial concentration of 0.3 mg·ml-1are listed in Table 3. The results reveal that the adsorption of Pr(III) on D72 resin is a favorable adsorption.

    Table 3 Langmuir and Freundlich parameters

    3.5 Thermodynamic parameters

    In order to evaluate the feasibility and the effect of temperature better, thermodynamic parameters such as standard free energy change (ΔG?), standard enthalpy change (ΔH?) and standard entropy change (ΔS?) are also evaluated [27]:

    From the slope and intercept of the plot (Fig. 5),the values of ΔH?and ΔS?are computed, while ΔG?is calculated using Eq. (11). The values of these parameters thus calculated are recorded in Table 4. It may be concluded from the positive values of ΔH?that the sorption process is endothermic while the positive value of ΔS?is an indicative of increased randomness at the adsorbent-absorbate interface during the adsorption. The negative value of ΔG?confirms the feasibility and spontaneous nature of the adsorption process [28].

    Figure 5 Relationship between lgD and T-1 (mass of resin=15.0 mg, C0=0.286 mg·ml-1, pH=3.00, r=100 r·min-1)

    Table 4 Thermodynamic parameters for Pr (III) on D72 resin

    3.6 Desorption studies

    The economic feasibility of using an adsorbent to absorb metal ions from wastewater relies on its regeneration ability during multiple adsorption/desorption cycles. Adsorption of metal ions on any adsorbent can be by physical, chemical bonding, ion exchange or combination of all. Desorption study can give a clear idea about the mechanism of adsorption and is useful in recycling of the adsorbent and recovery of metals.In this work, desorption of Pr(III) with various concentrations of eluent solution are carried out. The results presented in Table 5 show that the elution ratio is different when the eluent concentration changes. Maximum recovery of Pr(III), at 100%, is achieved with the 1 mol·L-1HCl-0.5 mol·L-1NaCl eluent solution.The results show that the Pr (III) adsorbed by the D72 resin can easily be desorbed, which indicates that the resin can be employed repeatedly in Pr (III) adsorption.

    Table 5 The elution test of Pr (III)

    3.7 Dynamic adsorption and desorption

    3.7.1Dynamic adsorption curve

    The performance of packed beds is described through the concept of the breakthrough curve. The breakthrough curve shows the loading behavior of Pr (III) to be removed from solution in a fixed bed and is usually expressed in terms of adsorbed Pr (III) concentration or normalized concentration defined as the ratio of effluent Pr (III) concentration to inlet Pr (III)concentration (Ce/C0) as a function of time or volume of effluent for a given bed height. The area under the breakthrough curve obtains by integrating the adsorbed concentrationversusthe throughput volume plot could be used to find the total adsorbed Pr (III)quantity (maximum column capacity). Total adsorbed Pr (III) quantity in the column for a given feed concentration and flow rate is calculated as follows [29]

    The capacity valueQis obtained by graphical integration as 201 mg·g-1. Successful design of a column adsorption process requires prediction of the concentrationversustime profile or breakthrough curve for the effluent. The maximum sorption capacity of resin is also needed in design. Traditionally, the Thomas model is used to fulfill the purpose, which is [30]

    The kinetic coefficientKTand the adsorption capacity of the bedQ0can be determined from a plot of ln[(C0/Ce)-1]versustat a certain flow rate as shown in Fig. 6. The Thomas equation coefficients for Pr (III)adsorption areKT=1.42×10-2ml·min-1·mg-1andQ0=203 mg·g-1. The theoretical predictions based on the model parameters are compared with the experimental data as shown in Fig. 7.

    Figure 6 Linear plots of ln(C0/Ce-1) versus t by application of Thomas model (mass of resin=300 mg, pH=3.00,C0=0.10 mg·ml-1, θ =0.152 ml·min-1)

    Figure 7 Dynamic adsorption curve (mass of resin=300 mg,pH=3.00, C0=0.10 mg·ml-1, θ =0.152 ml·min-1)● experimental data; △ Thomas model

    The Thomas model is found in a relatively good fitness with breakthrough curves for adsorption of Pr (III) on D72 resin with a highR2value (0.9725),and the theoreticalQ0value is very close to the experimental one. Therefore, the experimental data fits well to the Thomas model.

    3.7.2Dynamic desorption curve

    Efficient elution of adsorbed solute from D72 resin in column is essential to ensure the reuse of resin for repeated adsorption/desorption cycles. With respect to the stripping of Pr (III) from D72 resin, 1.0 mol·L-1HCl-0.5 mol·L-1NaCl eluant is employed. Desorption curve is plotted with the effluent concentration (Ce)versuselution volume from the column at a certain flow rate. It can be seen from Fig. 8 that the adsorption flow rate is less so that the volume of elution is less, which helps in easy handling and high concentration for economical recovery of Pr (III). It is observed that the total volume of eluent is 150 ml, after which further desorption is negligible. Therefore, the 1.0 mol·L-1HCl-0.5 mol·L-1NaCl eluant is appropriate.

    Figure 8 Dynamic desorption curve (mass of resin=300 mg, θ =0.10 ml·min-1)

    3.8 IR spectra

    From the results above, it can be deduced that the adsorption of Pr (III) by D72 resin is assigned to a chemical adsorption. Therefore, the functional group of D72 resin, SO3H, and Pr (III) are supposed to form chemical bonds. To identify this possibility, IR spectra are obtained for D72 resin before and after Pr (III) adsorption, as shown in Fig. 9. In general, significant changes are observed. The IR spectra of D72 resin exhibit major band at 3433 cm-1for OH stretching vibration. Medium broad vibrations observed in the IR spectrum in the range 1740-2786 cm-1are assigned to overtones/combinations of hydrogen bonded

    OH bending modes from proton tunneling and Fermi resonance interactions [31-33]. The SO2asymmetric vibration is found to be at 1221 cm-1as a medium band in the IR spectrum [34]. The symmetric SO2stretching vibration appears around 1179 cm-1in both IR and Raman spectra. By comparison with SOH bending frequencies in sulfuric acid and other sulfonic acids, the band at ~1127 cm-1is assigned to SOH bend. A comparison of the spectra for free D72 resin with that of Pr loaded D72 resin reveals characteristic changes ofνOH,νasSO2andνsSO2, which shifts from 3433, 1221 and 1179 cm-1before Pr (III) adsorption to 3409, 1223 and 1156 cm-1Pr (III) after adsorption.These findings may suggest that there are coordination bonds between Pr (III) ion and oxygen atoms in the OH and S O groups in the adsorption.

    Figure 9 Infrared spectra1—before adsorption; 2—after Pr (III) adsorption

    4 CONCLUSIONS

    In this study, the adsorption characteristics are investigated at different pH values, temperatures and contact time by batch and column experiments. We conclude that D72 resin can be used for preconcentration of Pr (III) very effectively. It is observed that Pr (III) adsorption is highly dependent on pH. In addition,D72 resin dosage and initial Pr (III) concentration are effective on Pr (III) adsorption process. Kinetic studies show that the adsorption process obeys pseudo-secondorder kinetics, and the adsorption behavior can be modeled using the Langmuir isotherm. The maximum adsorption capacity of Pr (III) is estimated to be 294 mg·g-1by batch method at 298 K. The apparent activation energy is 14.71 kJ·mol-1. The adsorption parameters of thermodynamic are ΔH?=8.89 kJ·mol-1,ΔG?=-38.80 kJ·mol-1, ΔS?=100 J·mol-1·K-1, which indicates that the adsorption of Pr (III) on the D72 resin is endothermic in nature. Column experiments show that it is possible to adsorb Pr (III) from aqueous solutions dynamically. In summary, D72 resin have many advantages to adsorb Pr (III) in the solution and it has a potential for the treatment of industrial effluents containing rare earth elements.

    NOMENCLATURE

    1 El-Dessouky, S.I., El-Sofany, E.A., Daoud, J.A., “Studies on the sorption of praseodymium (III), holmium (III) and cobalt (II) from nitrate medium using TVEX-PHOR resin”,J.Hazard.Mater., 143(1-2), 17-23 (2007).

    2 Hwang, D.W., Lee, J.S., Li, W., Oh, S.H., “Electronic band structure and photocatalytic activity of Ln2Ti2O7(Ln=La, Pr, Nd)”,J.Phys.Chem.B., 107 (21), 4963-4970 (2003).

    3 Corradi, A.B., Bondioli, F., Ferrari, A.M., “Role of praseodymium on zirconia phases stabilization”,Chem.Mater., 13 (12), 4550-4554(2001).

    4 Xu, H., Hu, X.L., Zhang, L.Z., “Generalized low-temperature synthesis of nanocrystalline rare-earth orthoferrites LnFeO3(Ln=La, Pr,Nd, Sm, Eu, Gd)”,Cryst.GrowthDes., 8 (7), 2061-2065 (2008).

    5 Liang, P., Liu, Y., Guo, L., “Determination of trace rare earth elements by inductively coupled plasma atomic emission spectrometry after preconcentration with multiwalled carbon nanotubes”,Spectrochimica Acta Part B, 60 (1), 125-129 (2005).

    6 Shi, Y.W., Tian, J., Hao, H., Xia, Z.D., Lei, Y.P., Guo, F., “Effects of small amount addition of rare earth Er on microstructure and property of SnAgCu solder”,J.Alloy Compd., 453 (1-2), 180-184 (2008).

    7 Waqar, F., Jan, S., Mohammad, B., Hakim, M., Alam, S., Yawar, W.,“Preconcentration of rare earth elements in seawater with chelating resin having fluorinated β-diketone immobilized on styrene divinyl benzene for their determination by ICP-OES”,J.Chin.Chem.Soc.,56 (2), 335-340 (2009).

    8 Schijf, J., Byrne, R.H., “Stability constants for mono- and dioxalato-complexes of Y and the REE, potentially important species in groundwaters and surface freshwaters”,Geochimica et Cosmochimica Acta, 65 (7), 1037-1046 (2001).

    9 E

    ofl-

    CKsa+m

    aansdhS,

    rA2+. Mi

    o.n,s“

    E

    frvo

    aml

    u

    aaqt

    iuoe

    no

    uosf szoelou

    ltii

    toen

    A

    s

    ufsoinr

    gth

    bea tscohr pa

    tni

    vde

    f i

    rxeemd

    o

    bveadl column operations”,J.Hazard.Mater., 151 (2-3), 432-445 (2008).

    10 El-Sofany, E.A., “Removal of lanthanum and gadolinium from nitrate medium using Aliquat-336 impregnated onto Amberlite XAD-4”,J.Hazard.Mater., 153 (3), 948-954 (2008).

    11 El-Dessouky, S.I., El-Sofany, E.A., Daoud, J.A., “Studies on the sorption of praseodymium (III), holmium (III) and cobalt (II) from nitrate medium using TVEX-PHOR resin”,J.Hazard.Mater., 143(1-2), 17-23 ( 2007).

    12 Ayoob, S., Gupta, A.K., “Insights into isotherm making in the sorptive removal of fluoride from drinking water”,J.Hazard.Mater.,152 (3), 976-985 (2008).

    13 Yao, C.P., “Sorption behavior and mechanism of D113 resin for erbium”,J.Rare Earth., 25 (Suppl. 1.), 169-174 (2007).

    14 Hafizi, M., Abolghasemi, H., Moradi, M., Alamdar Milani, S.,“Strontium adsorption from sulfuric acid solution by Dowex 50W-X resins”,Chin.J.Chem.Eng., 19 (2), 267-272 (2011).

    15 Xiong, C.H., Yao, C.P., “Preparation and application of acrylic acid grafted polytetrafluoroethylene fiber as a weak acid cation exchanger for adsorption of Er(III)”,J.Hazard.Mater., 170 (2-3), 1125-1132(2009).

    16 Hu, Q.H., Meng, Y.Y., Sun, T.X., Mahmood, Q., Wua, D.L., Zhua,J.H., Lu, G., “Kinetics and equilibrium adsorption studies of dimethylamine (DMA) onto ion-exchange resin”,J.Hazard.Mater.,185 (2-3), 677-681 (2011).

    17 Yao, C.P., “Adsorption and desorption properties of D151 resin for Ce(III)”,J.RareEarth., 28 (Suppl. 1), 183-188 (2010).

    18 Arica, M.Y., Bayramoglu, G., “Biosorption of reactive red-120 dye from aqueous solution by native and modified fungus biomass preparations ofLentinus sajorcaju”,J.Hazard.Mater., 149 (2),499-507 (2007).

    19 Ho, Y.S., “Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods”,Water Res., 40 (1), 119-125 (2006).

    20 Demirbas, A., Pehlivan, E., Gode, F., Altun, T., Arslan, G., “Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin”,J.Colloid Interf.Sci., 282 (1),20-25 (2005).

    21 Bayramoglu, G., Bektas, S., Arica, M.Y., “Removal of Cd(II), Hg(II)and Pb(II) ions from aqueous solution using p(HEMA/chitosan)membranes,J.Appl.Polym.Sci., 106 (1), 169-177 (2007).

    22 Bayramoglu, G., Arica, M.Y., “Ethylenediamine grafted poly (glycidylmethacrylate-co-methylmethacrylate) adsorbent for removal of chromate anions”,Sep.Purif.Technol., 45 (3), 192-199 (2005).

    23 Langmuir, I., “Adsorption of gases on plain surface of glass mica platinum”,J.Am.Chem.Soc., 40 (9), 1361-1403 (1918).

    24 Huang, G.L.,Yang C., Zhang, K., Shi, J., “Adsorptive removal of copper ions from aqueous solution using cross-linked magnetic chitosan beads”,Chin.J.Chem.Eng., 17 (6), 960-966 (2009).

    25 Freundlich, H., “über die adsorption in l?sungen”,Z.Phys.Chem.,57, 385-470 (1906).

    26 Aksu, Z., Tatli, A.I., Tunc, O., “A comparative adsorption/biosorption study of Acid Blue 161: Effect of temperature on equilibrium and kinetic parameters”,Chem.Eng.J., 142 (1), 23-39 (2008).

    27 Lyubchik, S.I., Lyubchik, A.I., Galushko, O.L., Tikhonova, L.P., Vital, J., Fonseca, I.M., Lyubchik, S.B., “Kinetics and thermodynamics of the Cr(III) adsorption on the activated carbon from co-mingled wastes”,Colloids Surf.A:Physicochem.Eng.Aspects, 242 (1-3),151-158 (2004)

    28 El-Kamash, A.M., El-Gammal, B., El-Sayed, A.A., “Preparation and evaluation of cerium(IV) tungstate powder as inorganic exchanger in sorption of cobalt and europium ions from aqueous solutions”,J.Hazard.Mater., 141 (3), 719-728 (2007).

    29 Tabakci, M., Yilmaz, M., “Sorption characteristics of Cu(II) ions onto silica gel-immobilized calix[4]arene polymer in aqueous solutions:batch and column studies”,J.Hazard.Mater., 151 (2-3), 331-338(2008).

    30 Shu, Z.N., Yang, M.H., “Adsorption of rhenium (VII) with anion exchange resin D318”,Chin.J.Chem.Eng., 18 (3), 372-376 (2010).31 Philip, D., Aruldhas, G., Journal of Raman Spectroscopy, 21 (3),155-214 (1990).

    32 Rao, C.N.R., Chemical Applications of Infrared Spectroscopy, Academic Press, New York (1963).

    33 Blinc, R., Hadzi, D., Hydrogen Bonding, Pergamon, New York (1957).

    34 Colthup, N.B., Daly, L.H., Wiberly, S.E., Introduction to IR and Raman spectroscopy, Academic Press, New York (1975).

    猜你喜歡
    春華
    張春華油畫作品
    木碗
    過生日
    張之洞的“三不爭”
    做人與處世(2022年4期)2022-05-26 04:43:14
    待到春華爛漫時
    黃河之聲(2020年5期)2020-05-21 08:24:38
    我們該如何表達(dá)苦難?——讀黃春華《扁腦殼》
    東方朔智答漢武帝
    肉被騙以后
    寒木守春華
    火花(2016年7期)2016-02-27 07:45:24
    春華而后秋實
    海峽姐妹(2015年3期)2015-02-27 15:10:04
    亚洲av中文字字幕乱码综合| 国产高清有码在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91 | 成人二区视频| 最后的刺客免费高清国语| 国语对白做爰xxxⅹ性视频网站| 激情 狠狠 欧美| 亚洲精品色激情综合| 国产精品久久久久久精品电影| 亚洲熟女精品中文字幕| 欧美日韩视频精品一区| 亚洲av.av天堂| 国产一区二区亚洲精品在线观看| a级毛片免费高清观看在线播放| 一级毛片久久久久久久久女| videossex国产| 最后的刺客免费高清国语| 日本一二三区视频观看| 大香蕉97超碰在线| 国产精品熟女久久久久浪| 在线 av 中文字幕| 国产精品嫩草影院av在线观看| 国内精品宾馆在线| 亚洲精品国产av成人精品| 一级毛片我不卡| 嫩草影院新地址| 久久99热这里只有精品18| 亚洲av成人精品一二三区| 五月伊人婷婷丁香| av国产免费在线观看| 3wmmmm亚洲av在线观看| 免费av毛片视频| 亚洲一级一片aⅴ在线观看| 欧美精品国产亚洲| 亚洲av福利一区| 亚洲自偷自拍三级| 亚洲国产欧美在线一区| 国产亚洲午夜精品一区二区久久 | 直男gayav资源| 亚洲精品国产av蜜桃| 久久久久久久大尺度免费视频| 18禁动态无遮挡网站| 亚洲国产成人一精品久久久| 日日啪夜夜爽| 新久久久久国产一级毛片| 嘟嘟电影网在线观看| 欧美极品一区二区三区四区| 男人狂女人下面高潮的视频| 晚上一个人看的免费电影| 99热这里只有精品一区| 内地一区二区视频在线| 99久久人妻综合| tube8黄色片| 久久亚洲国产成人精品v| 亚洲精华国产精华液的使用体验| 日本熟妇午夜| 三级经典国产精品| 九九在线视频观看精品| 国产精品一区二区性色av| 国产永久视频网站| 亚洲欧美精品专区久久| 精品国产乱码久久久久久小说| 最新中文字幕久久久久| 亚洲伊人久久精品综合| 欧美精品国产亚洲| 少妇的逼好多水| 听说在线观看完整版免费高清| 中国国产av一级| 国产精品爽爽va在线观看网站| 欧美日韩视频高清一区二区三区二| 深爱激情五月婷婷| 丝袜美腿在线中文| 老司机影院成人| 亚洲精品日本国产第一区| 国产成人aa在线观看| 26uuu在线亚洲综合色| 菩萨蛮人人尽说江南好唐韦庄| 一级毛片 在线播放| 18禁裸乳无遮挡动漫免费视频 | 18禁动态无遮挡网站| 熟妇人妻不卡中文字幕| 真实男女啪啪啪动态图| 国产乱人偷精品视频| 男女那种视频在线观看| 国产伦精品一区二区三区四那| 伊人久久精品亚洲午夜| 看十八女毛片水多多多| 一个人看的www免费观看视频| 免费观看在线日韩| av网站免费在线观看视频| 免费看a级黄色片| 久久精品国产自在天天线| 免费电影在线观看免费观看| 男女边吃奶边做爰视频| 天美传媒精品一区二区| 大片免费播放器 马上看| 欧美成人一区二区免费高清观看| 国产亚洲av嫩草精品影院| 精品一区二区三区视频在线| 国产亚洲一区二区精品| 成年免费大片在线观看| 悠悠久久av| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费视频网站a站| 1024香蕉在线观看| 欧美激情极品国产一区二区三区| 免费女性裸体啪啪无遮挡网站| 国产精品久久久久久人妻精品电影 | 午夜免费鲁丝| 9191精品国产免费久久| 老司机在亚洲福利影院| 一级a爱视频在线免费观看| 99热全是精品| 国产精品蜜桃在线观看| 精品亚洲成国产av| 久久精品aⅴ一区二区三区四区| 一本一本久久a久久精品综合妖精| 精品少妇黑人巨大在线播放| 国产免费现黄频在线看| 国产免费福利视频在线观看| 最新的欧美精品一区二区| 亚洲天堂av无毛| 亚洲成国产人片在线观看| 又粗又硬又长又爽又黄的视频| 免费观看性生交大片5| 亚洲国产最新在线播放| 欧美 亚洲 国产 日韩一| 777久久人妻少妇嫩草av网站| 中文字幕亚洲精品专区| 久久久久久久国产电影| 欧美在线黄色| 国产一区二区三区综合在线观看| 最近中文字幕2019免费版| 精品福利永久在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 啦啦啦在线观看免费高清www| 熟女少妇亚洲综合色aaa.| 欧美国产精品一级二级三级| 亚洲色图综合在线观看| av不卡在线播放| 久热爱精品视频在线9| 飞空精品影院首页| 一个人免费看片子| 亚洲,欧美精品.| 女人久久www免费人成看片| 亚洲七黄色美女视频| 制服诱惑二区| 久久久国产一区二区| 久久99热这里只频精品6学生| 亚洲精品日本国产第一区| 国产一级毛片在线| 免费少妇av软件| 久久久久精品人妻al黑| 制服丝袜香蕉在线| 这个男人来自地球电影免费观看 | 老司机靠b影院| 精品亚洲成a人片在线观看| 久久av网站| 狠狠婷婷综合久久久久久88av| 亚洲美女黄色视频免费看| 亚洲美女视频黄频| www.熟女人妻精品国产| 国产免费一区二区三区四区乱码| 韩国av在线不卡| 亚洲国产精品国产精品| 国产成人午夜福利电影在线观看| 老司机影院毛片| 亚洲国产精品一区二区三区在线| 免费高清在线观看视频在线观看| 性少妇av在线| 国产亚洲最大av| 国产人伦9x9x在线观看| 大码成人一级视频| 成年人免费黄色播放视频| 成人18禁高潮啪啪吃奶动态图| 国产精品国产三级国产专区5o| 韩国av在线不卡| 久久久久久久精品精品| 两个人看的免费小视频| 免费日韩欧美在线观看| 中文字幕亚洲精品专区| 国产不卡av网站在线观看| 欧美日韩一区二区视频在线观看视频在线| 久久久久精品久久久久真实原创| 丰满迷人的少妇在线观看| 无限看片的www在线观看| www.自偷自拍.com| 亚洲国产毛片av蜜桃av| 人人妻人人爽人人添夜夜欢视频| 肉色欧美久久久久久久蜜桃| 日本色播在线视频| 一边亲一边摸免费视频| 高清欧美精品videossex| 女的被弄到高潮叫床怎么办| 国产淫语在线视频| 人体艺术视频欧美日本| 欧美日韩一级在线毛片| 青春草亚洲视频在线观看| 五月天丁香电影| 狠狠精品人妻久久久久久综合| 男女床上黄色一级片免费看| 亚洲av欧美aⅴ国产| 女人精品久久久久毛片| 啦啦啦中文免费视频观看日本| 一区二区三区激情视频| 久久精品熟女亚洲av麻豆精品| 午夜福利在线免费观看网站| 亚洲av中文av极速乱| 免费不卡黄色视频| 两个人看的免费小视频| 9热在线视频观看99| 亚洲少妇的诱惑av| 欧美精品一区二区大全| 久久久久久免费高清国产稀缺| 男人添女人高潮全过程视频| 国产一区二区激情短视频 | 爱豆传媒免费全集在线观看| 一区二区av电影网| 日韩一卡2卡3卡4卡2021年| 欧美日韩成人在线一区二区| 男女边摸边吃奶| 免费人妻精品一区二区三区视频| 另类亚洲欧美激情| 国产精品一区二区在线不卡| 亚洲成国产人片在线观看| www.精华液| 韩国高清视频一区二区三区| av.在线天堂| 黑人欧美特级aaaaaa片| 国产xxxxx性猛交| 欧美日韩成人在线一区二区| 中国国产av一级| 女人爽到高潮嗷嗷叫在线视频| 久久97久久精品| 中文字幕色久视频| 操美女的视频在线观看| 一级毛片 在线播放| 高清av免费在线| 亚洲精品久久午夜乱码| 亚洲自偷自拍图片 自拍| 巨乳人妻的诱惑在线观看| 国产熟女欧美一区二区| 欧美精品一区二区免费开放| 大话2 男鬼变身卡| 九草在线视频观看| 成人亚洲欧美一区二区av| 亚洲第一青青草原| 欧美日韩综合久久久久久| 国产1区2区3区精品| 亚洲欧美色中文字幕在线| 久久精品亚洲av国产电影网| 嫩草影院入口| 乱人伦中国视频| 国产精品二区激情视频| 男女免费视频国产| 中文字幕人妻熟女乱码| 大码成人一级视频| 如日韩欧美国产精品一区二区三区| 免费人妻精品一区二区三区视频| 亚洲人成电影观看| 亚洲精品乱久久久久久| 99久久综合免费| 亚洲熟女毛片儿| 亚洲精品久久成人aⅴ小说| 老鸭窝网址在线观看| 91老司机精品| 无遮挡黄片免费观看| 成年美女黄网站色视频大全免费| 国产精品国产三级专区第一集| 国产成人精品久久二区二区91 | 婷婷成人精品国产| 十八禁高潮呻吟视频| 久久婷婷青草| 中文字幕另类日韩欧美亚洲嫩草| 美女扒开内裤让男人捅视频| tube8黄色片| 丝袜人妻中文字幕| 久久久久久久久免费视频了| 一级毛片我不卡| 丰满饥渴人妻一区二区三| 亚洲精品国产色婷婷电影| 看免费av毛片| 亚洲国产欧美网| 97人妻天天添夜夜摸| 国产又爽黄色视频| 亚洲精品视频女| 毛片一级片免费看久久久久| 十八禁高潮呻吟视频| 免费高清在线观看日韩| 亚洲精品自拍成人| 日韩人妻精品一区2区三区| 18在线观看网站| 午夜av观看不卡| 亚洲av电影在线观看一区二区三区| 日韩免费高清中文字幕av| 男人舔女人的私密视频| 亚洲av日韩精品久久久久久密 | 成人18禁高潮啪啪吃奶动态图| 18禁动态无遮挡网站| 成人亚洲精品一区在线观看| 日本av免费视频播放| 国产一区二区在线观看av| 91aial.com中文字幕在线观看| 午夜激情久久久久久久| 在线观看免费高清a一片| 亚洲欧美日韩另类电影网站| 日韩电影二区| 国产成人精品无人区| 少妇猛男粗大的猛烈进出视频| 久久狼人影院| 超色免费av| 国产一区二区 视频在线| 男男h啪啪无遮挡| 校园人妻丝袜中文字幕| 成年人午夜在线观看视频| 国产亚洲av高清不卡| 久久狼人影院| 一级片免费观看大全| 99热网站在线观看| 亚洲欧美一区二区三区久久| 精品人妻熟女毛片av久久网站| 一级毛片电影观看| h视频一区二区三区| 狂野欧美激情性xxxx| 纯流量卡能插随身wifi吗| 国产高清不卡午夜福利| 精品久久蜜臀av无| 在现免费观看毛片| 亚洲视频免费观看视频| 欧美亚洲 丝袜 人妻 在线| 男女国产视频网站| av不卡在线播放| 日韩中文字幕欧美一区二区 | 一级片'在线观看视频| 高清欧美精品videossex| 国产色婷婷99| 久久人妻熟女aⅴ| 少妇人妻久久综合中文| 亚洲国产最新在线播放| 久久鲁丝午夜福利片| 成人18禁高潮啪啪吃奶动态图| 欧美av亚洲av综合av国产av | 精品少妇一区二区三区视频日本电影 | 超碰97精品在线观看| videosex国产| 熟女少妇亚洲综合色aaa.| 国产精品久久久久久精品古装| 叶爱在线成人免费视频播放| 丰满迷人的少妇在线观看| 国产乱人偷精品视频| 欧美日韩一区二区视频在线观看视频在线| e午夜精品久久久久久久| 亚洲欧美一区二区三区国产| 九草在线视频观看| 欧美日韩亚洲国产一区二区在线观看 | 黄频高清免费视频| 一级毛片电影观看| 亚洲成人一二三区av| 成人亚洲欧美一区二区av| 日日摸夜夜添夜夜爱| 老汉色av国产亚洲站长工具| 国产av国产精品国产| 精品人妻熟女毛片av久久网站| 日日摸夜夜添夜夜爱| 在线天堂中文资源库| xxxhd国产人妻xxx| 国产欧美亚洲国产| 男男h啪啪无遮挡| 久久精品人人爽人人爽视色| 精品久久久精品久久久| 肉色欧美久久久久久久蜜桃| 女性被躁到高潮视频| 国产av精品麻豆| 美女福利国产在线| 最近中文字幕2019免费版| 女人爽到高潮嗷嗷叫在线视频| 成人亚洲欧美一区二区av| 日韩欧美精品免费久久| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品日本国产第一区| 男女免费视频国产| 最近的中文字幕免费完整| 久久天躁狠狠躁夜夜2o2o | 一级爰片在线观看| 一级片'在线观看视频| 久久久国产欧美日韩av| 一边亲一边摸免费视频| 午夜免费观看性视频| 男女边吃奶边做爰视频| 宅男免费午夜| 精品一区二区三区av网在线观看 | 欧美另类一区| 国产一卡二卡三卡精品 | 美女中出高潮动态图| 国产亚洲欧美精品永久| kizo精华| 日韩成人av中文字幕在线观看| 亚洲精品美女久久久久99蜜臀 | 国产精品蜜桃在线观看| 少妇人妻 视频| 亚洲图色成人| 国产成人免费观看mmmm| 国产精品香港三级国产av潘金莲 | 一边摸一边做爽爽视频免费| 两性夫妻黄色片| 久久久久久久大尺度免费视频| 69精品国产乱码久久久| 久久久久久人妻| 精品一区二区三区四区五区乱码 | 另类亚洲欧美激情| 亚洲精品久久午夜乱码| 老司机影院毛片| 一本久久精品| av网站免费在线观看视频| 狂野欧美激情性bbbbbb| 中文欧美无线码| 老汉色∧v一级毛片| 别揉我奶头~嗯~啊~动态视频 | 精品国产超薄肉色丝袜足j| 制服诱惑二区| 国产在线一区二区三区精| 七月丁香在线播放| avwww免费| 制服人妻中文乱码| 国产一区二区三区综合在线观看| 99九九在线精品视频| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美中文字幕日韩二区| 亚洲人成电影观看| 午夜精品国产一区二区电影| 爱豆传媒免费全集在线观看| 少妇被粗大的猛进出69影院| 看免费av毛片| 欧美日韩亚洲综合一区二区三区_| 无限看片的www在线观看| 久久人妻熟女aⅴ| 老司机在亚洲福利影院| 久久精品亚洲av国产电影网| 亚洲美女搞黄在线观看| e午夜精品久久久久久久| 国产色婷婷99| 两个人看的免费小视频| 久久久国产精品麻豆| 日韩免费高清中文字幕av| 国产精品久久久久久人妻精品电影 | videosex国产| 五月天丁香电影| 麻豆av在线久日| 美女视频免费永久观看网站| 少妇人妻久久综合中文| 亚洲精品久久成人aⅴ小说| 国产精品一区二区在线不卡| 女性生殖器流出的白浆| 老司机亚洲免费影院| 最新的欧美精品一区二区| a级片在线免费高清观看视频| 9色porny在线观看| 伦理电影大哥的女人| 亚洲综合精品二区| 欧美精品人与动牲交sv欧美| 老汉色∧v一级毛片| 精品一区二区三区四区五区乱码 | 国产伦理片在线播放av一区| 午夜日韩欧美国产| 美女大奶头黄色视频| 国产亚洲一区二区精品| 一区二区av电影网| 精品一品国产午夜福利视频| 久久综合国产亚洲精品| 90打野战视频偷拍视频| 热99国产精品久久久久久7| 一级,二级,三级黄色视频| 老汉色∧v一级毛片| e午夜精品久久久久久久| 午夜福利乱码中文字幕| 精品少妇久久久久久888优播| 天天添夜夜摸| 狂野欧美激情性bbbbbb| 日本一区二区免费在线视频| 一级爰片在线观看| 久久人人爽av亚洲精品天堂| 人体艺术视频欧美日本| 一级a爱视频在线免费观看| 香蕉国产在线看| 99久久人妻综合| 中文精品一卡2卡3卡4更新| 国产成人午夜福利电影在线观看| 在线观看免费高清a一片| 亚洲av日韩在线播放| 一级黄片播放器| 人人妻人人澡人人看| 日本欧美视频一区| 伦理电影免费视频| 国产成人精品在线电影| 免费在线观看视频国产中文字幕亚洲 | 国产高清国产精品国产三级| 日韩 欧美 亚洲 中文字幕| 国产成人91sexporn| 免费黄网站久久成人精品| 中文字幕人妻熟女乱码| 久久精品久久久久久久性| 天天躁夜夜躁狠狠久久av| 亚洲一区中文字幕在线| 九草在线视频观看| 久久久国产一区二区| 亚洲精品国产av蜜桃| 99香蕉大伊视频| 精品少妇内射三级| 女人高潮潮喷娇喘18禁视频| 汤姆久久久久久久影院中文字幕| 不卡av一区二区三区| 国产免费福利视频在线观看| 曰老女人黄片| 观看av在线不卡| 欧美精品高潮呻吟av久久| 国产一区二区 视频在线| 成人亚洲欧美一区二区av| 97精品久久久久久久久久精品| 国产极品粉嫩免费观看在线| 欧美在线黄色| 日本爱情动作片www.在线观看| 免费观看av网站的网址| 亚洲成人一二三区av| 少妇的丰满在线观看| 国产免费又黄又爽又色| 久久久久视频综合| 在线观看一区二区三区激情| 菩萨蛮人人尽说江南好唐韦庄| 男人舔女人的私密视频| 99精品久久久久人妻精品| 在线 av 中文字幕| 亚洲精品久久久久久婷婷小说| 九九爱精品视频在线观看| 一边亲一边摸免费视频| 五月开心婷婷网| 777久久人妻少妇嫩草av网站| 男人操女人黄网站| 成年av动漫网址| e午夜精品久久久久久久| 一个人免费看片子| √禁漫天堂资源中文www| 亚洲成人国产一区在线观看 | 99九九在线精品视频| 免费女性裸体啪啪无遮挡网站| 免费日韩欧美在线观看| 久久天躁狠狠躁夜夜2o2o | 纯流量卡能插随身wifi吗| 别揉我奶头~嗯~啊~动态视频 | 国产人伦9x9x在线观看| 亚洲,欧美精品.| 天美传媒精品一区二区| 国产在线免费精品| 亚洲欧美一区二区三区久久| 久久人妻熟女aⅴ| 99久国产av精品国产电影| 国产女主播在线喷水免费视频网站| 亚洲欧美中文字幕日韩二区| 中文字幕人妻熟女乱码| 人妻 亚洲 视频| 久久韩国三级中文字幕| 亚洲av中文av极速乱| 伊人久久国产一区二区| av天堂久久9| 肉色欧美久久久久久久蜜桃| 飞空精品影院首页| 免费久久久久久久精品成人欧美视频| 亚洲av日韩精品久久久久久密 | 成年av动漫网址| 亚洲精品国产色婷婷电影| 欧美日韩亚洲综合一区二区三区_| 性色av一级| 大码成人一级视频| 黄色一级大片看看| 亚洲欧美一区二区三区国产| 日本vs欧美在线观看视频| 亚洲精华国产精华液的使用体验| 美国免费a级毛片| 91国产中文字幕| 国产日韩欧美在线精品| 卡戴珊不雅视频在线播放| 纵有疾风起免费观看全集完整版| 久久久久久人妻| 成人18禁高潮啪啪吃奶动态图| 51午夜福利影视在线观看| 亚洲国产欧美日韩在线播放| 日本猛色少妇xxxxx猛交久久| 欧美最新免费一区二区三区| 亚洲欧美一区二区三区国产| 女人精品久久久久毛片| 老汉色av国产亚洲站长工具| 97人妻天天添夜夜摸| 日日撸夜夜添| 国产在线视频一区二区| 最近的中文字幕免费完整| 日韩大片免费观看网站| 99国产精品免费福利视频| 美女国产高潮福利片在线看| 精品一区二区免费观看| 91精品三级在线观看| 国产精品99久久99久久久不卡 | 亚洲欧美成人精品一区二区| 又黄又粗又硬又大视频| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩欧美一区视频在线观看| 99九九在线精品视频| 成人黄色视频免费在线看| 80岁老熟妇乱子伦牲交| 亚洲自偷自拍图片 自拍| 又大又黄又爽视频免费| 热99久久久久精品小说推荐| av不卡在线播放| 国产麻豆69| 精品人妻熟女毛片av久久网站| 久久久久国产精品人妻一区二区| 日本wwww免费看|