• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Propanoic Acid on Ethanol Fermentation by Saccharomyces cerevisiae in an Ethanol-Methane Coupled Fermentation Process*

    2012-03-22 10:11:10張成明,杜風(fēng)光,王欣

    1 INTRODUCTION

    Cassava is an attractive ethanol fuel feedstock compared to other fuel feedstocks, because it is not a staple food of the Chinese people and can grow in marginal lands where other crops, such as corn, wheat,rice, and sugarcane, do not thrive [1]. Thus, using cassava for ethanol production would not raise major ethical and moral questions as would corn [2]. Currently, >1 million tons of cassava ethanol is being produced annually in China, but in ethanol production from cassava starch, large amounts of stillage, the remainder after ethanol distillation, is produced, which causes serious water pollution. A reputed “full stillage” recycling for ethanol fermentation has been widely studied regarding water pollution reduction [3-5]. The main processes of full stillage recycling is a solid-liquid separation, direct recycling of 15%-30% of the thin stillage, and the balance is then treated successively by anaerobic and aerobic wastewater treatments. There are several drawbacks in full stillage recycling. First,solids separation equipment is severely corroded during solid-liquid separation because the separation is performed under high temperature and acidic conditions [6], and the sand in stillage further exacerbates corrosion. Second,S.cerevisiaemetabolic coproducts in thin stillage can accumulate during recycling and thus degrade ethanol fermentation [7]. Finally, after aerobic treatment, the chemical oxygen demand of the wastewater is usually >300 mg·L-1, which can severely threaten the environment.

    Therefore, an alternative process called ethanolmethane coupled fermentation has been proposed to resolve the stillage pollution problems [8, 9]. In this process, the stillage generated from ethanol fermentation was first treated by anaerobic digestion (methane fermentation) and then the anaerobic effluent utilized for the next ethanol fermentation batch after reclamation treatment. As a result, wastewater was not discharged to the environment (Fig. 1) and in addition,separation equipment corrosion and metabolic coproduct inhibition were avoided. This coupled process has been confirmed by laboratory scale operation through >20 successive batches and could arrive at a water and mass balance [9, 10]. The main drawback to this system is that organic acids in the anaerobic effluent, mainly acetic and propanoic acid, are potential inhibitors of ethanol fermentation.

    The inhibitory effects of organic acids, mainly acetic and lactic acid, on ethanol fermentation have been widely investigated [11-15]. These acids are mainly produced by contaminating bacteria, such as acetogenic and lactogenic bacteria. The inhibitory effects of propanoic acid on yeast growth have also been reported [16, 17], but these reports are mostly related to food preservation. Usually, no propanoic acid is introduced from cassava, and negligible propanoic acid is produced by yeast and/or contaminating bacteria,and thus, reports of propanoic acid effects on ethanol fermentation byS.cerevisiaehave been scarce.

    Figure 1 Flowchart of the coupled ethanol-methane fermentation process

    In the ethanol-methane coupled process here,stillage generated from ethanol fermentation was first treated by anaerobic digestion (methane fermentation),which involved a spectrum of bacteria consisting of three major groups, which perform hydrolysis, acidification,or methane conversion. Propanoic acid is produced by propanoic producing groups of acidogenic bacteria during acidification [8], and in some cases its concentration can reach 2.96 g·L-1[8]. Moreover, the rate of propanoic acid conversion to methane is much lower than that of acetic acid under the same conditions [18, 19].Consequently, as production proceeds, propanoic acid more easily and gradually accumulates, which can potentially cause collapse of the coupled process. Thus,propanoic acid is one of the most important factors for the successful operation of ethanol-methane coupled fermentation. Furthermore, concentration of propanoic acid can be always detected in the anaerobic effluent.As a result, in preparation for the application of an ethanol-methane coupled fermentation at the industrial scale, it was necessary to evaluate the influence of propanoic acid on ethanol fermentation. Moreover, description of a functional method for avoiding potential ethanol inhibition originating from high propanoic acid concentrations in the anaerobic effluent would be valuable.

    In this study, the effects of propanoic acid concentration onS.cerevisiaegrowth, ethanol fermentation,and glycerol production in cassava mash were investigated, focusing on the influence of pH on these parameters.

    2 MATERIALS AND METHODS

    2.1 Microorganism and growth conditions

    Two strains ofS.cerevisiaewere employed: AG strain (“Angel”, a commercial strain ofS.cerevisiaefor ethanol production) obtained from Hubei Angel Yeast Co., China and TG 1308 strain, an industrial strain, kindly provided by Henan Tianguan Fuel Ethanol Co., China. Yeast was cultivated in an orbital shaker at 100 r·min-1and 30 °C for 19 h and the seed medium contained (in g·L-1) glucose, 20; yeast extract,8.5; ammonium sulfate, 1.3; magnesium sulfate heptahydrate, 0.1; and calcium chloride dihydrate, 0.06.

    2.2 Mashing of cassava

    Liquefied mash prepared from 100 g of cassava powder (starch content 65%-70%, ~0.45 mm diameter,kindly provided by the Henan Tianguan Fuel Ethanol Co., China) was added to 300 ml of water. The pH of the resulting slurry was adjusted to 6.2-6.4 with 30%H2SO4. Liquefaction was accomplished by adding 10 IU of thermostable α-amylase (20000 IU·ml-1, optimal temperature range 95-105 °C, Genencor China Co.)per gram of powder, heating at 100 °C for 60 min, and then autoclaving at 121 °C for 20 min—water lost during autoclaving was replaced with sterile water. No propanoic acid was detected in the mash.

    2.3 Ethanol fermentation

    Triplicate fermentations were carried out in 250 ml flasks containing 150 ml of cassava mash, and experiments involved propanoic acid at 0, 15, 30, 45, 60, and 75 mmol·L-1. After acid addition, slurry pH was adjusted to pH 4.0, 5.0, or 6.0 using 30% H2SO4or 10%NaOH. A bolus of 130 IU of glucoamylase (130000 IU·ml-1, Genencor China Co.) per gram of cassava powder was added to promote saccharification, with 0.3% of urea added as nitrogen source. Seed broth at 10% of the flask volume (15/150 ml) was inoculated into the mash to produce 10 million cells per miniliter mash, and the temperature maintained at 30°C in an incubator. Fermentations were terminated when residual total sugar concentration decreased to <10 g·L-1.

    2.4 Analytical methods

    Fehling’s reagent was utilized to measure reducing sugar concentration as well as total sugars after samples were acid hydrolyzed (in 2%, hydrochloric acid, at 100 °C for 120 min) [20].

    Concentration of ethanol, propanoic acid, and glycerol was determined by high performance liquid chromatography (UltiMate 3000 HPLC, Dionex Corp.,California, USA), with samples pretreated as described by Graveset al[14]. A 20-μl aliquot from a suitably diluted sample was analyzed using an Aminex HPX-87H ion exclusion column (Bio-Rad Laboratories, California, USA) coupled to a refractive index detector (Shodex RI-101, Showa Denko K.K., Oita,Japan). The column was operated at 65 °C, the mobile phase 0.005 mol·L-1sulfuric acid at 0.6 ml·min-1, and the data processed using the Chromeleon Software(Dionex, USA).

    Figure 2 Final ethanol concentrations produced by two strains of S. cerevisiae in cassava mash at 30 °C, containing increasing propanoic acid concentrations at different pH values (Error bars too small to show; standard deviation, <2.5%)pH: ■ 4.0; ◆ 5.0; ▲ 6.0

    All final ethanol, glycerol, and biomass data were analyzed using software SPSS version 13.0 (SPSS Inc.,Illinois, USA), which was widely used in statistic analysis. Differences among means were analyzed at a significance level of 0.05 by one-way ANOVA. Thep-values were calculated to estimate significance:p<0.01 meant highly significant, 0.01<p<0.05 significant, andp>0.05 not significant.

    3 RESULTS AND DISCUSSION

    3.1 Effect of propanoic acid on ethanol production by S. cerevisiae

    Propanoic acid addition significantly (p<0.01)affected the ethanol production from both yeast strains at pH 4.0 and 5.0 (Fig. 2), but the effect was not significant (p>0.05) at pH 6.0. For strain TG 1308, lower pH conditions increased the acid’s inhibitory activity at each acid concentration (30 mmol·L-1,p<0.05; 45,60, and 75 mmol·L-1,p<0.01, Fig. 2). For example, at pH 6.0 and 5.0, 75 mmol·L-1propanoic acid did not decrease final ethanol concentrations but, at pH 4.0,ethanol fermentation was completely inhibited. It has been reported that the inhibitory effect of weak organic acids on microorganisms is due to their undissociated forms which are determined by the medium’s pH [11]; lower pH increases undissociated acid concentration and, in turn, increases propanoic acid inhibitory activity (Table 1). Statistical analysis showed that medium pH without propanoic acid addition did not significantly (p>0.05) affect the ethanol fermentation by strain TG 1308, whereas strain AG was more sensitive to the pH alone (p<0.05, without propanoicacid). This difference is derived perhaps from the different strain characteristics.

    Table 1 Percentages of undissociated and anions of propanoic acid in cassava mash at different pH values corresponding to various total propanoic acid concentrations

    Propanoic acid addition increased (p<0.01) the final ethanol concentration at pH 4.0 and 5.0, with total propanoic acid concentration <30.0 mmol·L-1(Fig. 3). Similar stimulating effects by low concentration acetic acid have been reported [11]; acetic acid could stimulate ethanol production in some cases by as much as 20% [12], but this phenomenon has not been not consistently observed. In the present study,the final ethanol concentration was increased by 5.5%and 7.6% withS.cerevisiaeTG 1308 and AG strains,respectively, consistent with results by Zhaoet al. [11].The stimulatory effect of propanoic acid on ethanol fermentation observed here could be explained in two ways. First, propanoic acid conversion to propenyl-CoA,and its subsequent utilization in the 2-methylcitrate pathway [21], spared some pyruvic acid from metabolic reactions associated with anaerobic cell growth,thus allowing increased fermentative ethanol production [22]. And second, in the presence of propanoic acid, a greater proportion of glucose was diverted for energy production (as ATP) to maintain cytosolic pH homeostasis [12]. Overall, propanoic acid stimulated the energy producing glycolytic pathway, thus increasing ethanol production. Other researchers have also reported that the presence of acid may modify glycolytic controls, and enolase and/or phosphorylating enzymes(hexokinase and phosphofructokinase) are presumably involved in the process [23].

    Figure 3 Final ethanol concentrations, as percentage of controls, produced by two strains of S. cerevisiae in cassava mash at 30 °C and containing different concentrations of undissociated propanoic acid (Error bars too small to show; standard deviation<2.5%)pH: ■ 4.0; ◆ 5.0; ▲ 6.0

    Figure 4 Effect of propanoic acid on cell numbers of two S. cerevisiae strains at termination of fermentation in cassava mash at 30 °C at different pH valuespH: ■ 4.0; ◆ 5.0; ▲ 6.0

    3.2 Inhibition of S. cerevisiae growth by propanoic acid

    Yeast growth was also determined, as it is critical to the ethanol fermentation rate. As the yeast dry weight in these incubations was difficult to measure due to solids in the media, yeast growth was evaluated by yeast cell counts by hemocytometer. Addition of propanoic acid significantly (p<0.01) decreased cell numbers for both yeast strains at all pH conditions(Fig. 4), which meant that total acid concentration determined the growth of yeast strain. When the propanoic acid concentration was 60 or 75 mmol·L-1at pH 4.0, strain TG 1308 growth was totally inhibited.Cell numbers also declined with decreased medium pH without propanoic acid addition but to a smaller extent (p<0.05); similar results were obtained with strain AG. The different characteristics of these strains resulted most likely in the growth differences observed here in the presence of propanoic acid [16, 17].

    The decreased biomass production observed here could be explained by the classical weak acid theory,in which undissociated propanoic acid, which diffuses into yeast cells, dissociates due to the higher intracellular pH, thus acidifying the cytoplasm. To maintain intracellular pH in an optimal metabolic range, cells pump protons to the exterior at the expense of metabolic energy,in a ratio of 1 mol ATP per 1 mol transported H+[24].Increased diversion of energy to export protons thus results in decreased biomass yield with respect to glucose.

    Narendranathet al. have reported that 100 mmol·L-1acetic acid inhibits completely yeast growth in minimal medium [13], while here 75 mmol·L-1propanoic acid totally inhibited yeast growth. The present results revealed that propanoic acid was more lethal toS.cerevisiaethan acetic acid, probably due to propanoic acid has a longer aliphatic group, making it more lipophilic than acetic acid. Besides causing cytoplasm acidification, propanoic acid can also cause disordering of membrane structure [25], which may also have contributed in part to its greater inhibitory effect on yeast ethanol fermentation.

    3.3 Effect of propanoic acid on glycerol production by S. cerevisiae

    As an important ethanol fermentation by-product,glycerol production was measured in the present experiments and, compared to the control, glycerol production was found to decease (p<0.01) with propanoic acid addition (Fig. 5). At pH 4.0, the glycerol produced by strain TG 1308 decreased (p<0.01) from(7.57±0.31) g·L-1to (4.56±0.24) g·L-1when propanoic acid increased from 0 to 45 mmol·L-1; similar results were obtained at pH 5.0 and 6.0. Under anaerobic conditions, glycerol is formed during reoxidation of NADH, in a great extent, from cellular material synthesis [26]. Consequently, decreased biomass should have resulted in decreased glycerol production. It is noted that, in both strains, pH without propanoic acid addition also affected (p<0.01, strain TG 1308;p<0.05,strain TG) glycerol production.

    3.4 Effect of propanoic acid on ethanol fermentation by S. cerevisiae

    When ethanol fermentation was complete (residual sugar at <10 g·L-1), propanoic acid addition to the medium improved ethanol fermentation performance in terms of product yield; the ethanol yield increased and the coproduct yield (glycerol and biomass yield)decreased (Table 2). However, ethanol productivity must be considered in light of industrial scale production. Although the final ethanol concentration and ethanol yield increased when propanoic acid was present, ethanol productivity decreased in some cases because the fermentation time was prolonged (Table 3).For example, with 45 mmol·L-1propanoic acid, the final ethanol concentration, ethanol yield, and ethanol productivity by strain AG at pH 4.0 was (88.4±1.5)g·L-1, (0.468±0.008) g ethanol per gram sugar, and(1.84±0.01) g·L-1·h-1, respectively, while the control showed (82.1±1.3) g·L-1, (0.434±0.007) g ethanol per gram sugar, and (2.74±0.03) g·L-1·h-1, respectively(Table 3). The prolonged fermentation time reflects the time required for the yeast to pump out excess protons to produce the required intracellular pH for growth and active fermentation [13]. Here, accelerated ethanol formation in the presence of propanoic acid was found (data not shown), which was similar to other observations regarding the presence of low acetic acid concentrations [11, 12]. Consequently, ethanol productivity did not decrease with low propanoic acid concentrations but, with high propanoic acid, ethanol productivity decreased (Table 3). Compared to the gains obtained in the ethanol yield, the losses caused by significantly decreased ethanol productivity was greater, and would be thus unacceptable in industrial scale ethanol production. The results here suggested that, to avoid decreased ethanol productivity (increased fermentation time), the propanoic acid concentration should be at <30.0 mml·L-1(Table 3).However, the potential inhibitory effect by propanoic acid could be avoided by elevating the medium pH as an ameliorating condition because, as observed here,at pH 6.0 the effect of propanoic acid on ethanol fermentation by yeast became insignificant (p>0.05). In this case, the risk of contamination in ethanol fermentation must be considered because the growth of contaminating bacteria, such as acetogenic and lactogenic bacteria, during ethanol fermentation is usually inhibited by lowering the fermentation medium’s initial pH[14]. As a result, when the medium pH is increased,the growth of contaminating bacteria would no longer be strongly inhibited.

    Figure 5 Glycerol concentrations produced by two strains of S. cerevisiae at termination of fermentation in cassava mash at 30 °C, containing increasing propanoic acid concentrations at different pH valuespH: ■ 4.0; ◆ 5.0; ▲ 6.0

    Table 2 (a) Ethanol and coproduct fermentation performance by strain TG 1308 in cassava mash at 30°C,containing increasing propanoic acid concentrations and adjusted to different pH values

    Table 2 (b) Ethanol and coproduct fermentation performance by strain AG in cassava mash at 30 °C,containing increasing propanoic acid concentrations and adjusted to different pH values

    Table 3 Ethanol fermentation time and ethanol productivityby both yeast strains in cassava mash at 30°C,containing increasing propanoic acid concentrations at different pH values

    4 CONCLUSIONS

    In the ethanol-methane coupled fermentation process, abnormal methane fermentation usually results in increased concentrations of organic acid, particularly propanoic acid, in the anaerobic effluent. If this anaerobic effluent is used for subsequent ethanol fermentation, the fermentation performance could deteriorate. The present results suggested that in a traditional ethanol fermentation with an initial pH of 4.0, the propanoic acid concentration should be <30 mmol·L-1;otherwise, the ethanol fermentation would be prolonged (45 and 60 mmol·L-1) or totally inhibited (75 mmol·L-1). However, the potential inhibitory effect by propanoic acid could be avoided by the ameliorating effect of elevating the medium pH.

    Interestingly, although propanoic acid exhibited an inhibitory effect on ethanol fermentation byS.cerevisiae, low concentration propanoic acid stimulated ethanol production as much as 7.6% under the proper conditions. This improved ethanol fermentation could partly be explained by the observed decreased biomass and decreased glycerol production resulting from propanoic acid addition. In the ethanol-methane coupled process, it was not necessary to decrease the acid content in the anaerobic effluent to zero. Actually,this acid-free requirement would be almost impossible to be meet by controlling the anaerobic digestion(methane fermentation) when considering industrial production efficiency.

    As the effect of propanoic acid on ethanol fermentation byS.cerevisiaewas also influenced by other environmental conditions, such as temperature and substrate concentration, related research into other important parameters are under way.

    1 Dai, D., Hu, Z., Pu, G., Li, H., Wang, C., “Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China”,Energy Convers.Manage., 47, 1686-1699 (2006).

    2 Pimentel, D., “Ethanol fuels: energy balance, economics, and environmental impacts are negative”,Nat.Resour.Res., 12 (2), 127-134(2003).

    3 Bialas, W., Szymanowska, D., Grajek, W., “Fuel ethanol production from granular corn starch usingSaccharomyces cerevisiaein a long term repeated SSF process with full stillage recycling”,Bioresour.Technol., 101 (9), 3126-3131 (2010).

    4 Miao, J., Li, L.L., Chen, G.H., Gao, C.J., Dong, S.X., “Preparation ofN,O-carboxymethyl chitosan composite nanofiltration membrane and its rejection performance for the fermentation effluent from a wine factory”,Chin.J.Chem.Eng., 16 (2), 209-213 (2008).

    5 Grossmann, I.E., Martín, M., “Energy and water optimization in biofuel plants”,Chin.J.Chem.Eng., 18 (6), 914-922 (2010).

    6 Mao, Z.G., Zhang, J.H., “Trend of ‘zero energy consumption and wastewater’ in fuel ethanol production”,Chin.J.Biotechnol., 24 (6),946-949 (2008).

    7 Castro, G.A., Caicedo, L.A., Almeciga-Diaz, C.J., Sanchez, O.F.,“Solvent extraction of organic acids from stillage for its re-use in ethanol production process”,Waste Manage.Res., 28 (6), 533-538(2010).

    8 Zhang, C.M., Mao, Z.G., Wang, X., Zhang, J.H., Sun, F.B., Tang, L.,Zhang, H.J., “Effective ethanol production by reutilizing waste distillage anaerobic digestion effluent in an integrated fermentation process coupled with both ethanol and methane fermentations”,Bioprocess Biosyst.Eng., 33 (9), 1067-1075 (2010).

    9 Sun, F.B., Mao, Z.G., Zhang, J.H., Zhang, H.J., Tang, L., Zhang,C.M., Zhang, J., Zhai, F.F., “Water-recycled cassava bioethanol production integrated with two-stage UASB treatment”,Chin.J.Chem.Eng., 18 (5), 837-842 (2010).

    10 Zhang, Q.H., Lu, X., Tang, L., Mao, Z.G., Zhang, J.H., Zhang, H.J.,“A novel full recycling process through two-stage anaerobic treatment of distillery wastewater for bioethanol production from cassava”,J.Hazard.Mater., 179, 635-641 (2010).

    11 Zhao, R., Bean, S.R., Crozier-Dodson, B.A., Fung, D.Y.C., Wang,D.H.,“Application of acetate buffer in pH adjustment of sorghum mash and its influence on fuel ethanol fermentation”,J.Ind.Microbiol.Biotechnol., 36 (1), 75-85 (2009).

    12 Taherzadeh, M., Niklasson, C., Lidén, G., “Acetic acid-friend or foe in anaerobic batch conversion of glucose to ethanol bySaccharomyces cerevisiae?”,Chem.Eng.Sci., 52 (15), 2653-2659 (1997).

    13 Narendranath, N.V., Thomas, K.C., Ingledew, W.M., “Effects of acetic acid and lactic acid on the growth ofSaccharomyces cerevisiaein a minimal medium”,J.Ind.Microbiol.Biotechnol., 26 (3), 171-177(2001).

    14 Graves, T., Narendranath, N., Dawson, K., Power, R., “Effect of pH and lactic or acetic acid on ethanol productivity bySaccharomyces cerevisiaein corn mash”,J.Ind.Microbiol.Biotechnol., 33 (6),469-474 (2006).

    15 Graves, T., Narendranath, N.V., Dawson, K., Power, R., “Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production bySaccharomyces cerevisiaein corn mash”,Appl.Microbiol.Biotechnol., 73 (5), 1190-1196 (2007).

    16 Lind, H., Jonsson, H., Schnurer, J., “Antifungal effect of dairy propionibacteria—contribution of organic acids”,Int.J.FoodMicrobiol., 98 (2), 157-165 (2005).

    17 Mollapour, M., Shepherd, A., Piper, P.W., “Novel stress responses facilitateSaccharomyces cerevisiaegrowth in the presence of the monocarboxylate preservatives”,Yeast, 25 (3), 169-177 (2008).

    18 Wang, Y., Zhang, Y., Wang, J., Meng, L., “Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria”,Biomass Bioenergy, 33 (5), 848-853 (2009).

    19 Ren, N.Q., Liu, M., Wang, A., Ding, J., Li, H., “Organic acids conversion in methanogenic-phase reactor of the two-phase anaerobic process”,Chin.J.Environ.Sci., 24 (4), 89-93 (2003).

    20 Schneider, F., Sugar Analysis: Official and Tentative Methods Recommended by the International Commission for Uniform Methods of Sugar Analysis (ICUMSA), ICUMSA, Englang (1979).

    21 Pronk, J.T., van der Linden-Beuman, A., Verduyn, C., Scheffers,W.A., van Dijken, J.P., “Propionate metabolism inSaccharomyces cerevisiae: implications for the metabolon hypothesis”,Microbiology, 140, 717-722 (1994).

    22 Abbott, D.A., Ingledew, W.M., “Buffering capacity of whole corn mash alters concentrations of organic acids required to inhibit growth ofSaccharomyces cerevisiaeand ethanol production”,Biotechnol.Lett., 26 (16), 1313-1316 (2004).

    23 Pampula, M.E., Loureiro-Dias, M.C., “Activity of glycolytic enzymes ofSaccharomyces cerevisiaein the presence of acetic acid”,Appl.Microbiol.Biotechnol., 34 (3), 375-380 (1990).

    24 Pampulha, M.E., Loureiro-Dias, M.C., “Energetics of the effect of acetic acid on growth ofSaccharomyces cerevisiae”,FEMS Microbiol.Lett., 184 (1), 69-72 (2000).

    25 Piper, P., Calderon, C.O., Hatzixanthis, K., Mollapour, M., “Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives”,Microbiology, 147,2635-2642 (2001).

    26 Zhang, A.L., Chen, X., “Improve ethanol yield through minimizing glycerol yield in ethanol fermentation ofSaccharomyces cerevisiae”,Chin.J.Chem.Eng., 16 (4), 620-625 (2008).

    27 Devantier, R., Pedersen, S., Olsson, L., “Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain”,Appl.Microbiol.Biotechnol., 68 (5), 622-629 (2005).

    国产高清国产精品国产三级 | 国产淫片久久久久久久久| 亚洲人与动物交配视频| 最近最新中文字幕大全电影3| 久久精品国产亚洲av涩爱| 精品国产露脸久久av麻豆 | 国产精品熟女久久久久浪| 免费看av在线观看网站| 青春草视频在线免费观看| 亚洲经典国产精华液单| 婷婷色综合大香蕉| 天美传媒精品一区二区| 免费看av在线观看网站| 97超碰精品成人国产| 国产精品久久久久久久电影| 日韩人妻高清精品专区| 日本午夜av视频| 九九久久精品国产亚洲av麻豆| 色吧在线观看| 丰满少妇做爰视频| 国产在线一区二区三区精| 久久久久久久久中文| 建设人人有责人人尽责人人享有的 | 女人久久www免费人成看片| 精品不卡国产一区二区三区| 亚洲av日韩在线播放| 亚洲自拍偷在线| 国产精品av视频在线免费观看| 五月玫瑰六月丁香| 成人午夜高清在线视频| 亚洲国产色片| 中文字幕亚洲精品专区| 国产成人a区在线观看| 最近最新中文字幕大全电影3| 国产在线男女| 国产精品久久久久久久电影| 日本与韩国留学比较| 99久久精品热视频| 丰满人妻一区二区三区视频av| 国产精品精品国产色婷婷| 六月丁香七月| 成年人午夜在线观看视频 | 国产精品不卡视频一区二区| 岛国毛片在线播放| 大陆偷拍与自拍| 亚洲第一区二区三区不卡| 日韩精品有码人妻一区| 久久精品国产自在天天线| 3wmmmm亚洲av在线观看| 国产 亚洲一区二区三区 | 亚洲欧美成人综合另类久久久| 亚洲精品日韩av片在线观看| 国产三级在线视频| 91av网一区二区| 美女国产视频在线观看| av一本久久久久| 亚洲精品久久午夜乱码| 春色校园在线视频观看| 国产精品爽爽va在线观看网站| 超碰av人人做人人爽久久| 99久久精品国产国产毛片| 国产乱人偷精品视频| 大香蕉久久网| 久久精品国产自在天天线| 国产精品精品国产色婷婷| 久久精品夜色国产| av专区在线播放| 午夜福利网站1000一区二区三区| 久久久久久久午夜电影| 天堂俺去俺来也www色官网 | 男女边吃奶边做爰视频| 国产成人aa在线观看| 国产激情偷乱视频一区二区| 久久99蜜桃精品久久| 乱人视频在线观看| 成人亚洲精品av一区二区| 欧美不卡视频在线免费观看| 搡女人真爽免费视频火全软件| 久久99热这里只频精品6学生| 少妇熟女欧美另类| 国产成人一区二区在线| 男人舔女人下体高潮全视频| 久久午夜福利片| 高清毛片免费看| 伦理电影大哥的女人| 日韩中字成人| 亚洲国产最新在线播放| 午夜精品一区二区三区免费看| 免费观看在线日韩| 日韩三级伦理在线观看| 小蜜桃在线观看免费完整版高清| 国产av码专区亚洲av| 亚洲国产av新网站| 成年人午夜在线观看视频 | 色综合亚洲欧美另类图片| 在线观看免费高清a一片| 成年av动漫网址| 免费无遮挡裸体视频| 日韩精品有码人妻一区| 老司机影院成人| 欧美潮喷喷水| 久久久亚洲精品成人影院| 欧美精品国产亚洲| 日韩一区二区三区影片| 成年版毛片免费区| 一级a做视频免费观看| 久久久色成人| 久久久精品免费免费高清| 男女边摸边吃奶| 色综合站精品国产| 蜜桃亚洲精品一区二区三区| 大陆偷拍与自拍| 久久久久久久久大av| 国产免费视频播放在线视频 | 精品午夜福利在线看| 2021少妇久久久久久久久久久| 大又大粗又爽又黄少妇毛片口| ponron亚洲| 综合色av麻豆| 国产精品蜜桃在线观看| 你懂的网址亚洲精品在线观看| 99久久精品热视频| 在线 av 中文字幕| 十八禁网站网址无遮挡 | 可以在线观看毛片的网站| 亚洲精品aⅴ在线观看| 国产黄a三级三级三级人| 国产精品一区www在线观看| 国产成人精品一,二区| 亚洲av日韩在线播放| 亚洲av免费在线观看| 久久久色成人| 伦精品一区二区三区| 亚洲成人中文字幕在线播放| 91精品伊人久久大香线蕉| 高清毛片免费看| 欧美日韩综合久久久久久| 国产欧美另类精品又又久久亚洲欧美| 免费黄色在线免费观看| 久久久久国产网址| 精品久久久久久电影网| 一本一本综合久久| 国产伦在线观看视频一区| av播播在线观看一区| 日本av手机在线免费观看| 国产成人aa在线观看| 联通29元200g的流量卡| 亚洲精品自拍成人| 综合色丁香网| 亚洲美女搞黄在线观看| 肉色欧美久久久久久久蜜桃 | 亚洲国产色片| 中国美白少妇内射xxxbb| 精品人妻视频免费看| 卡戴珊不雅视频在线播放| 日日啪夜夜爽| 欧美日韩一区二区视频在线观看视频在线 | 91午夜精品亚洲一区二区三区| 国产国拍精品亚洲av在线观看| 97精品久久久久久久久久精品| 国产午夜精品论理片| 黄片wwwwww| 插阴视频在线观看视频| 午夜免费男女啪啪视频观看| 免费播放大片免费观看视频在线观看| 卡戴珊不雅视频在线播放| 亚洲天堂国产精品一区在线| 亚洲av国产av综合av卡| av卡一久久| 高清在线视频一区二区三区| 亚洲av中文av极速乱| 观看美女的网站| 免费播放大片免费观看视频在线观看| 亚洲欧美日韩卡通动漫| 最近的中文字幕免费完整| 久久久色成人| 久久这里只有精品中国| 欧美日韩视频高清一区二区三区二| 久久久久网色| 亚洲成人一二三区av| 国产又色又爽无遮挡免| 亚洲激情五月婷婷啪啪| 成人漫画全彩无遮挡| 成人鲁丝片一二三区免费| 欧美人与善性xxx| 在线观看av片永久免费下载| 国产亚洲午夜精品一区二区久久 | 精品久久久久久电影网| 精品久久久久久久久av| 一二三四中文在线观看免费高清| 午夜爱爱视频在线播放| 国产久久久一区二区三区| 中文字幕久久专区| 色网站视频免费| 成人国产麻豆网| 狂野欧美激情性xxxx在线观看| 日韩亚洲欧美综合| 亚洲国产精品国产精品| 99久久九九国产精品国产免费| 久久久午夜欧美精品| 777米奇影视久久| av国产久精品久网站免费入址| 国产精品蜜桃在线观看| 成人高潮视频无遮挡免费网站| 国产亚洲5aaaaa淫片| 在线观看美女被高潮喷水网站| av线在线观看网站| 国内少妇人妻偷人精品xxx网站| av一本久久久久| 男人狂女人下面高潮的视频| 熟女电影av网| 成人午夜高清在线视频| 国产伦精品一区二区三区四那| 国产精品福利在线免费观看| 老司机影院成人| 熟妇人妻久久中文字幕3abv| 国产国拍精品亚洲av在线观看| 蜜桃亚洲精品一区二区三区| 天天躁夜夜躁狠狠久久av| 嫩草影院精品99| 日本三级黄在线观看| 精品国产一区二区三区久久久樱花 | 中文在线观看免费www的网站| 午夜久久久久精精品| 老司机影院毛片| 国内揄拍国产精品人妻在线| 性色avwww在线观看| 精品亚洲乱码少妇综合久久| 免费av不卡在线播放| 美女黄网站色视频| 大香蕉97超碰在线| 老师上课跳d突然被开到最大视频| 免费观看av网站的网址| 亚洲av福利一区| 性色avwww在线观看| 极品少妇高潮喷水抽搐| 久久热精品热| 国国产精品蜜臀av免费| 久久久久网色| 在线播放无遮挡| 男人舔女人下体高潮全视频| 亚洲精品影视一区二区三区av| 亚洲人成网站在线播| 国产精品不卡视频一区二区| 亚洲乱码一区二区免费版| or卡值多少钱| 人妻系列 视频| 国产成人一区二区在线| 国产女主播在线喷水免费视频网站 | 日本欧美国产在线视频| 91精品伊人久久大香线蕉| 少妇裸体淫交视频免费看高清| 国产精品美女特级片免费视频播放器| 免费黄频网站在线观看国产| 狠狠精品人妻久久久久久综合| 亚洲精品第二区| 成年女人在线观看亚洲视频 | 波多野结衣巨乳人妻| 国产黄色免费在线视频| av在线播放精品| 韩国av在线不卡| 色5月婷婷丁香| 亚洲熟女精品中文字幕| 亚洲欧洲日产国产| 97精品久久久久久久久久精品| 国产午夜精品论理片| 搡女人真爽免费视频火全软件| 综合色丁香网| 免费在线观看成人毛片| 精品少妇黑人巨大在线播放| 亚洲成人精品中文字幕电影| 一二三四中文在线观看免费高清| 在线观看人妻少妇| 亚洲av日韩在线播放| 日本猛色少妇xxxxx猛交久久| 在线观看美女被高潮喷水网站| 久久精品国产亚洲网站| 波多野结衣巨乳人妻| 91午夜精品亚洲一区二区三区| 少妇的逼好多水| 男人狂女人下面高潮的视频| 夜夜看夜夜爽夜夜摸| 淫秽高清视频在线观看| 国产v大片淫在线免费观看| 99视频精品全部免费 在线| 国产伦精品一区二区三区视频9| 一区二区三区乱码不卡18| 亚洲人成网站高清观看| 国产高潮美女av| 国产一区二区亚洲精品在线观看| 久久久久性生活片| 九草在线视频观看| 国产一区二区在线观看日韩| 欧美xxxx黑人xx丫x性爽| 青春草国产在线视频| 99re6热这里在线精品视频| 九九久久精品国产亚洲av麻豆| 亚洲精品国产av成人精品| 我要看日韩黄色一级片| 男插女下体视频免费在线播放| 亚洲久久久久久中文字幕| 岛国毛片在线播放| 自拍偷自拍亚洲精品老妇| 天堂√8在线中文| 日韩欧美精品免费久久| 99久久人妻综合| 免费av不卡在线播放| 亚洲精品成人久久久久久| 国精品久久久久久国模美| 国产视频内射| 亚洲av在线观看美女高潮| 国产一区二区三区综合在线观看 | 中文字幕制服av| 精品酒店卫生间| 免费av毛片视频| 欧美成人a在线观看| 日日啪夜夜爽| 欧美最新免费一区二区三区| 国产成人91sexporn| 天天躁日日操中文字幕| videos熟女内射| 精品国产露脸久久av麻豆 | 嫩草影院新地址| 三级国产精品片| 肉色欧美久久久久久久蜜桃 | 乱码一卡2卡4卡精品| 欧美bdsm另类| 免费看日本二区| 免费看a级黄色片| 最近2019中文字幕mv第一页| 22中文网久久字幕| 亚洲欧美一区二区三区国产| 一区二区三区高清视频在线| 人妻少妇偷人精品九色| av网站免费在线观看视频 | 大陆偷拍与自拍| 卡戴珊不雅视频在线播放| 国产成人freesex在线| 亚洲av电影在线观看一区二区三区 | kizo精华| 亚洲最大成人av| 久久久久久久亚洲中文字幕| 亚洲精品亚洲一区二区| 日韩成人av中文字幕在线观看| 乱码一卡2卡4卡精品| 男人舔奶头视频| 亚洲国产最新在线播放| 80岁老熟妇乱子伦牲交| 日本与韩国留学比较| 欧美成人a在线观看| 日日啪夜夜爽| 亚洲精品自拍成人| 国产高清有码在线观看视频| 又爽又黄a免费视频| 亚洲精品亚洲一区二区| 国产精品久久久久久av不卡| 国产一区有黄有色的免费视频 | 观看美女的网站| 日本一本二区三区精品| 日本与韩国留学比较| 性色avwww在线观看| 日韩成人伦理影院| 99热网站在线观看| 麻豆av噜噜一区二区三区| 肉色欧美久久久久久久蜜桃 | 亚洲国产最新在线播放| 99视频精品全部免费 在线| 久久午夜福利片| 在线a可以看的网站| 六月丁香七月| 一级毛片黄色毛片免费观看视频| 一本久久精品| 亚洲成人av在线免费| 精品久久久久久久末码| 亚洲成人av在线免费| 18禁在线无遮挡免费观看视频| 天天一区二区日本电影三级| 91久久精品国产一区二区成人| 亚洲最大成人中文| 两个人视频免费观看高清| 搞女人的毛片| 久久97久久精品| 尾随美女入室| 日本av手机在线免费观看| 欧美+日韩+精品| 综合色丁香网| 九草在线视频观看| 午夜福利在线观看吧| 九九在线视频观看精品| 大香蕉97超碰在线| 两个人的视频大全免费| 亚洲国产色片| 免费高清在线观看视频在线观看| 久久99热6这里只有精品| 免费看a级黄色片| 国产69精品久久久久777片| 国产精品国产三级专区第一集| 亚洲精品成人av观看孕妇| 日日啪夜夜撸| 久久精品久久久久久久性| 深夜a级毛片| 欧美 日韩 精品 国产| 国产精品福利在线免费观看| 亚洲av电影不卡..在线观看| 国产精品久久久久久精品电影| 十八禁国产超污无遮挡网站| 天堂√8在线中文| 久久精品熟女亚洲av麻豆精品 | 熟妇人妻不卡中文字幕| 国产精品久久久久久精品电影| 在线观看人妻少妇| 一级a做视频免费观看| 赤兔流量卡办理| 18禁在线播放成人免费| 九草在线视频观看| 亚洲va在线va天堂va国产| 亚洲欧美精品自产自拍| 非洲黑人性xxxx精品又粗又长| av在线观看视频网站免费| 婷婷色av中文字幕| 草草在线视频免费看| 精品人妻一区二区三区麻豆| 国产一区亚洲一区在线观看| 国产激情偷乱视频一区二区| 视频中文字幕在线观看| 99久久精品一区二区三区| 国产精品国产三级国产av玫瑰| 女的被弄到高潮叫床怎么办| 国产三级在线视频| 国产片特级美女逼逼视频| 欧美激情久久久久久爽电影| 精品午夜福利在线看| 国产久久久一区二区三区| 亚洲精品日韩在线中文字幕| 99九九线精品视频在线观看视频| 精品久久久噜噜| 婷婷色综合大香蕉| 最近2019中文字幕mv第一页| 亚洲第一区二区三区不卡| 国产黄片视频在线免费观看| kizo精华| 亚州av有码| 内地一区二区视频在线| 22中文网久久字幕| 久久国内精品自在自线图片| 国产综合懂色| 国产午夜精品久久久久久一区二区三区| 久久国内精品自在自线图片| 白带黄色成豆腐渣| 2018国产大陆天天弄谢| 欧美 日韩 精品 国产| 神马国产精品三级电影在线观看| videossex国产| 国内精品一区二区在线观看| 日韩av免费高清视频| 日本一本二区三区精品| 国产亚洲午夜精品一区二区久久 | 边亲边吃奶的免费视频| 国产69精品久久久久777片| 久久久久精品久久久久真实原创| 丝袜喷水一区| 国产视频首页在线观看| 久久鲁丝午夜福利片| 插阴视频在线观看视频| 男女啪啪激烈高潮av片| 嘟嘟电影网在线观看| 菩萨蛮人人尽说江南好唐韦庄| 夜夜爽夜夜爽视频| 激情 狠狠 欧美| 国产毛片a区久久久久| 插阴视频在线观看视频| 午夜日本视频在线| 国产91av在线免费观看| 国产成人精品婷婷| 国产伦一二天堂av在线观看| 性插视频无遮挡在线免费观看| 欧美xxⅹ黑人| 美女高潮的动态| 热99在线观看视频| 可以在线观看毛片的网站| 偷拍熟女少妇极品色| 网址你懂的国产日韩在线| 午夜福利视频1000在线观看| 蜜臀久久99精品久久宅男| 精品久久久久久成人av| 亚洲av免费在线观看| 日韩欧美一区视频在线观看 | 国产有黄有色有爽视频| 三级毛片av免费| 美女主播在线视频| 午夜精品一区二区三区免费看| 舔av片在线| 亚洲经典国产精华液单| 成人av在线播放网站| 亚洲精品日韩av片在线观看| 丝袜喷水一区| 深爱激情五月婷婷| 国产老妇女一区| 三级毛片av免费| 国产不卡一卡二| 亚洲在线观看片| 18禁在线播放成人免费| 最近中文字幕2019免费版| 精品人妻熟女av久视频| 欧美bdsm另类| 联通29元200g的流量卡| 啦啦啦中文免费视频观看日本| 大香蕉久久网| 人妻少妇偷人精品九色| 3wmmmm亚洲av在线观看| 精品国内亚洲2022精品成人| 日韩成人av中文字幕在线观看| 国产av码专区亚洲av| 午夜激情欧美在线| 精品久久久久久电影网| 赤兔流量卡办理| 男女视频在线观看网站免费| 国产免费一级a男人的天堂| 男人狂女人下面高潮的视频| 亚洲av免费在线观看| av在线亚洲专区| 一本久久精品| 人人妻人人澡欧美一区二区| 天堂影院成人在线观看| 噜噜噜噜噜久久久久久91| 看十八女毛片水多多多| 国产成人aa在线观看| 成人国产麻豆网| av专区在线播放| 69av精品久久久久久| 永久免费av网站大全| 中文字幕制服av| 天堂√8在线中文| 亚洲最大成人中文| 在线 av 中文字幕| 国产不卡一卡二| 免费人成在线观看视频色| 久久97久久精品| 国产女主播在线喷水免费视频网站 | 欧美xxⅹ黑人| 又爽又黄无遮挡网站| 国产 亚洲一区二区三区 | 人人妻人人看人人澡| av卡一久久| 日韩av在线免费看完整版不卡| 蜜桃久久精品国产亚洲av| 久久久久久国产a免费观看| 伦理电影大哥的女人| 国产黄色视频一区二区在线观看| 国内揄拍国产精品人妻在线| 亚洲人成网站在线观看播放| 一个人观看的视频www高清免费观看| 午夜福利高清视频| 99热这里只有精品一区| 国产精品日韩av在线免费观看| 网址你懂的国产日韩在线| 在线免费观看不下载黄p国产| 久久这里只有精品中国| 亚洲精品一二三| videossex国产| 人人妻人人澡欧美一区二区| 又黄又爽又刺激的免费视频.| 午夜亚洲福利在线播放| 国产高潮美女av| 亚洲人成网站在线播| a级毛片免费高清观看在线播放| 国产精品1区2区在线观看.| 久久人人爽人人片av| 国产 亚洲一区二区三区 | 亚洲精品一二三| 春色校园在线视频观看| 美女大奶头视频| 亚洲三级黄色毛片| 国产av国产精品国产| 男女边摸边吃奶| 尤物成人国产欧美一区二区三区| 最近视频中文字幕2019在线8| 免费观看在线日韩| 晚上一个人看的免费电影| 国国产精品蜜臀av免费| 国产男女超爽视频在线观看| 久久精品久久久久久久性| 国产男人的电影天堂91| 欧美不卡视频在线免费观看| 韩国av在线不卡| 国产精品国产三级国产av玫瑰| 国产一区二区三区综合在线观看 | 超碰97精品在线观看| 亚洲真实伦在线观看| 国产一级毛片在线| 亚洲av成人精品一二三区| 最近最新中文字幕大全电影3| 又粗又硬又长又爽又黄的视频| 国产伦精品一区二区三区四那| 国国产精品蜜臀av免费| 中文资源天堂在线| 免费观看无遮挡的男女| 插逼视频在线观看| 在线 av 中文字幕| 婷婷色麻豆天堂久久| 婷婷色av中文字幕| 精品一区二区免费观看| 一级爰片在线观看| 欧美性猛交╳xxx乱大交人| 黄色一级大片看看| 男插女下体视频免费在线播放| 在线观看av片永久免费下载| 91精品国产九色| 99久久中文字幕三级久久日本| av专区在线播放| 日日干狠狠操夜夜爽| 国产精品一区二区三区四区免费观看| 一区二区三区乱码不卡18| 精品人妻偷拍中文字幕| 特大巨黑吊av在线直播|