• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photocatalytic Degradation of Methylene Blue with Side-glowing Optical Fiber Deliverying Visible Light

    2012-03-22 10:11:10CHUJinyu儲(chǔ)金宇andZHONGLei仲蕾

    CHU Jinyu (儲(chǔ)金宇)* and ZHONG Lei (仲蕾)

    Institute of Environment of Jiangsu University, Jiangsu University Branch Center of State Key Lab of Urban Water Resource and Environment, Zhengjiang 212013, China

    1 INTRODUCTION

    TiO2-based heterogeneous photocatalysis is considered to be an effective means of removing organic and inorganic contaminations from water and air streams[1-5]. However, the low utilization efficiency of solar energy and photocatalytic degradation efficiency still need to be solved urgently. Especially, printing and dyeing effluents are large emission sources of heavy pollution with high colourity, and complicated components. External radiation light is hard to penetrate these wastewaters. And the light intensity declines sharply inside liquid effluents, which affects the photocatalytic oxidation efficiency. These problems limit the actual application of photocatalytic degradation. Though many researchers devote themselves to modify photocatalyst(such as doping metal, semicondutor photosensitization and recombination) [6-9], immobilize catalyst [10-13],and innovate photocatalytic reactor [14, 15]. How to make full use of illumination light still remains to be solved.

    Generally speaking, optical-fiber as excellent light transmission medium, it could solve problem of scant internal illumination. Usually under high intensity light illuminating, water samples show the decoloration rate and removal efficiency of chemical oxygen demand(COD). Therefore, the light transmission and distribution in liquid phase plays an important role in photocatalytic degradation.

    The idea of using optical fiber as both a means of light transmission and the support for photocatalyst was originally proposed and theoretically evaluated by Marinangeli and Ollis around 1980 [16-18]. In recent years, most researchers focused on fixing the photocatalyst, and fewer researchers placed particular emphasis on fiber-optical for higher light utilization, using lower intensity light or visible light instead of artificial UV light to excite photocatalytic reaction. However, nude quartz optical fiber (QOF) was broken easily, and the side surface has large extinction coefficient, the light is impossible to transmit far [19]. Another option—plastic optical fiber cannot bear high temperature, and its temperature range is from -55 to 70 °C [20]. For the high temperature wastewater treatment, it will be greatly affected.

    In this work, we chose the side-glowing optical fiber(SOF), which with nude quartz glass fiber as the core and silicone buffer as cladding. According to the report,Xuet al. worked out a novel optical fiber reactor, utilizing SOFs as substrates, and loading with nano-size titania films [15]. Their researches show that 79% of 4-chlorophenol had been decomposed under sunlight irradiation. So far, the relevant researches on SOFs participate in catalytic degradation were few, but the study on SOF is prospective. Because of the cladding,part of the light can be scattered in the buffer layer, and it reflect part of light so that the light can be transmitted farther. Research shows that SOF can emit light from its side uniformly for more than 10 m [15]. All the time,to improve TiO2photocatalysis efficiency and realize its visible light activity have been the most challenging topics. This research aims to use optical-fiber for convert external visible light into internal light source with the purpose of maximum utilization of visible light.

    2 EXPERIMENTAL

    2.1 Characteristics of SOF

    After traveling in the SOF for Δx, the input light with intensity ofIwould decrease to a lower levelI+ΔI, due to the attenuation of light by fibre itself and output by side glowing, both of which are proportional to the fibre length. Thus, the change ofIafter transmitted the distance of Δxcan be formulated as

    in whichIis the light intensity per cross-sectional area of a fibre,dis its diameter,kxis the fibre attenuation coefficient, andkis the side glowing coefficient.Meanwhile, the side glowing intensityIs, presumed to be in proportion to the transmitted light intensity along the fibre, will be

    Eq. (1) is rearranged to give the differential equation ofIas

    Integrating over the fibre lengthL, we will have

    It can be realized that the largerkvalue, the higherIsvalue andIsdecreases along a fibre in an exponential way.

    From the formula, it is found that as irradiation light imported from one end, theIsvalue is reduced exponentially with the increasing length of SOF. In this work, the SOFs are from Nanjing Fiber Institute.The SOFs were with nude quartz glass fiber as the core,and silicone buffer as cladding. The density of silicon cladding was controlled by partial crystallization method, so that part of the light can be scattered in the buffer layer and emanate out of SOF surface. The diameter was 0.4 mm, the side-glowing coefficientkis 0.09 m-1. The side light intensityIswas measured to be 1.766 lm·cm-2at starting point and 1.722 lm·cm-2at end point of a SOF fiber. This level ofIswas enough to induce photocatalytic reactions.

    2.2 Experimental facility

    The basic features of the facility illustrated in Fig. 1. The key components are a filament lamp (300 W), a UV-IR Blocker (diameter 10 cm), a focusing lens, a light transmitting fiber-optical bundle consisting of 500 fibers, 35 cm length (the stripped fiber bundle of 30 cm length immersed in solution), a magnetic stirring apparatus and an air pump. The SOFs were scattered and fixed in the reactor with a perforated Plexiglass plate.

    A magnetic stirring bar agitating the solution is also beneficial to keep the solute concentration uniform. An air pump with the flow rate of 2.0 L·min-1was used to ensure the supply of oxygen. The photocatalytic reactor was wrapped with aluminum foil to exclude the interference of other light source.

    2.3 Preparation of Ag+/TiO2 powders

    The Ag+/TiO2powders were prepared through a sol-gel method [21], using Ti(OBu)4as molecular precursor. Through adding the mixture of 9 ml Ti(OBu)4and 60 ml EtOH gradually into 1 ml water with pH value of 4, and adding 0.2366 g AgNO3into the mixture, stirring, then the stable and semitransparent Ag+/TiO2sol was obtained. All reagents are analytical grade. The sol was dried under constant 80 °C for 24 h and then calcinated under 600 °C in air for 3h. The mixture was grinded and the nano-size particle aggregates with the size of 0.2-0.3 μm were obtained.

    2.4 Degradation of methylene blue

    20 mg·L-1methylene blue (MB) was chosen as model reactant, reaction solution volume was 1.5 L,and photocatalyst was 7% (by mass) Ag+/TiO2. First,reaction was allowed to equilibrate in dark for half an hour before the lamp was switched on. When solution had reached the adsorption-desorption balance, then

    Figure 1 Schematic of optical-fiber bundled array photocatalytic reactor system

    the lamp were turned on, SOFs were put in. The photodegradation lasted for 8 h, and in this process one sample needed to be taken per hour. Second, the samples were centrifuged 5 min (3000 r·min-1). After that, supernatant liquid was taken and put in visible spectrophometer. Absorbance value was measured at 664 nm. Thirdly, catalytic performances were evaluated according to the solution absorbency changes.

    3 RESULTS AND DISCUSSION

    3.1 Visible light response

    In this work, pure TiO2particles (size 200 nm)produced by Sinopharm Chemical Reagent Co. were also used as photocatalyst. Pure TiO2in the UV areas(400 nm range) has the strong absorption peak, but little visible light is absorbed. The UV-Vis spectrogram of Ag+/TiO2and pure TiO2particles are shown in Fig. 2,and it is observed that the catalyst blended with silver ions obviously has a strong response to visible light. It indicates that, the presence of Ag+altered the structure of TiO2crystal, the excited photon energy decreased and visible light absorption increased. And the change hindered the holes and photoelectrons from compounding; the “red shift” was appeared.

    Figure 2 Solid UV-Vis of catalyst7% (by mass) Ag+/TiO2; TiO2

    Figure 3 XRD patterns of 7% (by mass) Ag+/TiO2 particles▼ antanse phase

    Figure 3 describes XRD pattern of 7% (by mass)Ag+/TiO2composite nanophase catalyst. And the samples were tested by D/max 2500PC X-ray diffractometer. The presence of peaks (2θ=25.2°, 37.7°, 47.9°,54.9°, 62.4°) was regarded as an attributive indicator of anatase which was thought to be the most active phase for photocatalysis. As seen from Fig. 3, part of catalyst sample has changed, from anatase phase into rutile phase. The catalyst is a mix crystal. The research had reported that the mix crystal has high photocatalytic activity [22].

    3.2 Influence of suspension turbidity

    MB of 20 mg·L-1with pH=10.22 was chosen as the target to be degraded. SOF with 500 roots was selected, and a 300 W lamp was the light source.

    In Fig. 4, as the catalyst increased, the degradation efficiency became higher than the initial stage.However, too much addition of catalyst resulted in low specific efficiency of photocatalyst. The best amount of catalyst dosage was 1.167 g·L-1. The liquid containing suspended catalyst particles was turbid, and this added the difficulty of external light penetrating through solution. So the scattered SOFs provided effective photon transmitting channels in solution that increased the catalytic efficiency.

    Figure 4 The influence of different catalytic dosage■ 0.500 g·L-1; ● 0.667 g·L-1; ▲ 0.833 g·L-1; ▼ 1.000 g·L-1;1.167 g·L-1; 1.333 g·L-1

    3.3 Function of fibers

    With Ag+/TiO2catalytic dose at 1.167 g·L-1and other reaction conditions remained unchanged. The factor whether to insert optical-fibers into the liquid medium (to utilize the side-illumination function) or introduce illumination just at the liquid surface (the lamp lights the liquid from the above) is examined.The result was shown in Fig. 5. It shows that putting optical-fibers into the solution improves the degradation efficiency. The degradation efficiency reached up to 97%, nearly 20% than the situation of no fiber. The SOFs successfully convert external light to internal illuminant, and solve the problem of insufficient internal light in solution. For the sewage treatment, especially at some places without light, the SOF system can be used as a reference.

    Figure 5 Photocatalytic degradation efficiency of methylene blue with different ways of light delivery into liquid phase■ no fiber; ● fibers

    3.4 Quantity of optical-fiber influence

    Experiment was also done with the variable quantity of SOFs, while other reaction conditions remained unchanged. Light goes into solution through fibers. The quantity of fiber increased, the capacity of light transport is increased accordingly. On the other hand, light in fibers is subjected to certain attenuation,especially when the length elongates. In other words,increasing fiber number may reduce light attenuation.Under the condition of total light illumination intensity invariable, photocatalytic activity also increases rapidly as the number of optical fiber increased (Fig. 6).Considering the cost of SOFs, the system with 500 roots of SOF attained good degradation efficiency, and thus was selected.

    Figure 6 Degradation efficiency of different optical-fiber quantity■ 300 fibers; ● 500 fibers

    3.5 Intensity of light influence

    Figure 7 The influence of different light intensity■ 100 W; ● 200 W; ▲ 300 W

    Different lamps (100 W, 200 W and 300 W) were chosen for test, while other reaction conditions remained unchanged (Fig. 7). According to the Langmuir-Hinshelwood kinetics, light intensity is correlated with the catalytic efficiency. It is reported [23] that in low light intensity, the degradation efficiency of organic pollutant and light intensity are linearly correlated. In medium light intensity, the decomposition efficiency is linearly related with the square root of light intensity. Further increasing the intensity, photocatalytic reaction becomes gradually irrelevant of the light intensity. In this experiment, light intensity was suitable,and the photodegradation efficiency improved significantly with lamp power. When lamp selected 300 W, the efficiency rate reached 97%. Considering the cost, 300W for this reaction is suitable.

    4 CONCLUSIONS

    The effect of catalyst dosage, optical-fiber quantity,and some another factors on photocatalytic performance is investigated. Catalyst doped Ag+had good response within visible light which account for 70% in the sunlight. SOF can emanate light from its side uniformly and transmit a longer distance than ordinary quartz optical fiber. Because of its coated layer, it can be freely bent and not easily broken. These characters make SOF much suitable for use in photocatalytic reactor. This work shows that photodegradation which combined Ag+/TiO2and SOFs with visible light for photocatalysis is feasible. And the suitable reaction conditions were 1.167 g?L-1Ag+/TiO2with 7% (by mass) of Ag+doped in TiO2, and 500 SOFs in the cross section ofφ10 cm. The photocatalytic degradation efficiency under 300 W lamp illumination was about 97% in 6 h. The degradation efficiency was proportional to SOF quantity, light intensity and catalytic doses within certain ranges. This experiment provides a reference for the treatment of contaminated water in the subsurface environment or dark places without light.

    ACKNOWLEDGEMENTS

    The authors thank gratefully Mr.Hui Xu and Mr.Wei Zhou for their analytical support.REFERENCES

    1 Li, J., Cheng, C., Zhao, J., Zhu, H., Orthman, J., “Photodegradation of dye pollutants on TiO2nanoparticles dispersed in silicate under UV-Vis irradiation”,Appl.Catal.B Envir., 37, 331-338 (2002).

    2 Hager, S., Bauer, R., Udilka, G.K., “Photocatalytic oxidation of gaseous chlorinated organic over titanium dioxide”,Chemosphere,41, 1219-1219 (2000).

    3 Xie, Y.B., Shen, X.W., Yuan, C.W., “A novel multi-tube photo reactor with UV light and immobilized TiO2thin film for water treatment”,Chin.J.Chem.Eng., 11, 27-32 (2003).

    4 Zhu, X.D., Castleberry, S.R., Nanny, M.A., Butler, E.C., “Effects of pH and catalyst concentration on photocatalytic oxidation of aqueous ammonia and nitrite in titanium dioxide suspensions”,Envir.Sci.Technol., 39, 3784-3791 (2005).

    5 Lin, Y.M., Tseng, Y.H., Huang, J.H., Chao, C.C., Chen, C., Wang, I.,“Photocatalytic activity for degradation of nitrogen oxides over visible light responsive titania-based photocatalysts”,Envir.Sci.Technol., 40, 1616-1621 (2000).

    6 Zhou, Y.S., Jiang, G.W., “Study on properties of composite oxides TiO2/SiO2”,Chin. J. Chem .Eng., 10, 349-353 (2002).

    7 Dai, Z.M., Burgeth, G., Parrino, F., Kisch, H., “Visible light photocatalysis by a titania-rhodium (III) complex”,J.Organomet.Chem.,694, 1049-1054 (2009).

    8 Sobana, N., Muruganadham, M., Swaminathan, M., “Nano-Ag particles doped TiO2for efficient photodegradation of direct azo dyes”,J.MolecularCatal.A Chem., 258, 124-132 (2006).

    9 Rupa Valentine, A., Maniandan, D., Divakar, D., Sivakumar, T.,“Effect of deposition of Ag on TiO2nanoparticles on the photodegradation of reactive Yellow-17”,J.Hazard.Mater., 147, 906-913(2007).

    10 Tayade, R.J., Kulkarni, R.G., Jasra, R.V., “Enhanced photocatalytic avtivity of TiO2-coated NaY and HY zeolites for the degradation of methylene blue in water ”,Ind.Eng.Chem.Res., 46, 369-376 (2007).

    11 Tsoukleris, D.S., Maggos, T., Vassilakos, C., Falaras, P., “Photocatalytic degradation of volatile organics on TiO2embedded glass spherules”,Catal.Today, 129, 96-101 (2007).

    12 Liang, M., Sun, S.Q., Peng, S.C., Chen, T.H., Gan, H., “Study on preparation and improvement of palygorskite-TiO2as a photocatalyst”,J.HefeiUniversityof Technology(Natural Science), 32,145-149 (2009). (in Chinese)

    13 Huang, H., Du, Y.K., Dai, J.T., Yang, P., “Prepared of TiO2/ACF catalysts and their photo degradation on tetrachlorethylene”,Photograph.Sci.Photochem., 25, 123-129 (2007).

    14 Danion, A., Disdier, J., Guillard, C., Pa?ssé, O., Jaffrezic-Renault, N.,“Photocatalytic degradation of imidazolinone fungicide in TiO2-coated optical fiber reactor”,Appl.Catal.B Envir., 62, 274-281 (2006).

    15 Xu, J.J., Ao, Y.H., Fu, D.G., Lin, J., Lin, Y.H., Shen, X.W., Yuan,C.W., Yin, Z.D., “Photocatalytic activity on TiO2-coated side-glowing optical fiber reactor under solar light”,Photochem.Photobiol.A:Chem., 199, 165-169 (2008)

    16 Marinangeli, R.E., Ollis, D.E., “Photoassisted heterogenous catalysis with optical fibers (I) Isolated single fiber”,AIChE J., 23, 415-426(1977).

    17 Marinangeli, R.E., Ollis, D.E., “Photoassisted heterogenous catalysis with optical fibers (II) Nonisothermal single fiber and fiber bundle”,AIChE J., 26, 1000-1008 (1980).

    18 Marinangeli, R.E., Ollis, D.E., “Photoassisted heterogenous catalysis with optical fibers (III) Photoelectrodes”,AIChE J., 28, 945-955(1982).

    19 Choi, W.Y., Ko, J.Y., Park, H., Chung, J.S., “Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone”,Appl.Catal.B Envir., 31, 209-220 (2001).

    20 Hyunku, J., Jeong, H., Jeon, M., Moon, I., “The use of plastic optical fiber in photocatalysis of trichloroethylene”,Solar Energy Mater.Solar Cells, 79, 93-101 (2003).

    21 Cheng, Y.Q., Li, L.L., Yin, X.M., Xu, J., “Study on phase transformation and bactericidal activity of sol-gel Ag doped titania powders”,Precious Metals, 28, 37-42(2007). (in Chinese)

    22 Zhang, F.X., Zhang, X., Chen, J.X., Liu, Z.G., Gao, W.L., Jin, R.C.,Guan, N.J., “Preparation and characterization of Ag/TiO2nanoparticle catalyst and its photocatalytic activity”,Chin.J.Catal., 11,877-880 (2003). (in Chinese)

    23 Vinodgopal, K., Kamat, P.V., “Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2coupled semiconductor thin films”,Envir.Sci.Technol., 29, 841-845 (1995).

    91麻豆av在线| 国产精品98久久久久久宅男小说| 不卡一级毛片| 欧美午夜高清在线| 一边摸一边抽搐一进一小说 | 老司机深夜福利视频在线观看| 亚洲熟女毛片儿| 国产真人三级小视频在线观看| 黄片小视频在线播放| 丰满的人妻完整版| 亚洲av第一区精品v没综合| 中文字幕另类日韩欧美亚洲嫩草| 免费观看a级毛片全部| 久久影院123| 手机成人av网站| 精品亚洲成a人片在线观看| 国产三级黄色录像| 黄色片一级片一级黄色片| 在线观看日韩欧美| 无人区码免费观看不卡| 99久久国产精品久久久| 精品午夜福利视频在线观看一区| 国产精品免费大片| 首页视频小说图片口味搜索| 黄色片一级片一级黄色片| 久久精品国产99精品国产亚洲性色 | 国产亚洲精品久久久久5区| 99精国产麻豆久久婷婷| 国产亚洲精品久久久久5区| 午夜老司机福利片| 99国产精品99久久久久| 久久久久久久国产电影| 久久精品人人爽人人爽视色| 日本撒尿小便嘘嘘汇集6| 日日摸夜夜添夜夜添小说| 999精品在线视频| 国产一卡二卡三卡精品| 制服诱惑二区| 久久 成人 亚洲| 每晚都被弄得嗷嗷叫到高潮| 亚洲中文av在线| 国产av又大| xxx96com| 午夜精品国产一区二区电影| 欧美日本中文国产一区发布| 精品欧美一区二区三区在线| 午夜免费鲁丝| 丝袜在线中文字幕| 90打野战视频偷拍视频| 99热网站在线观看| 免费日韩欧美在线观看| 国产欧美日韩一区二区三| 母亲3免费完整高清在线观看| 欧美成人免费av一区二区三区 | 亚洲成av片中文字幕在线观看| 最新的欧美精品一区二区| 校园春色视频在线观看| av电影中文网址| 亚洲少妇的诱惑av| 欧美日韩亚洲综合一区二区三区_| 美女 人体艺术 gogo| 久久 成人 亚洲| 亚洲全国av大片| 大香蕉久久网| 国产精品亚洲av一区麻豆| 精品欧美一区二区三区在线| 亚洲精品成人av观看孕妇| 一区福利在线观看| 久久性视频一级片| 一级毛片精品| 岛国在线观看网站| 老熟妇乱子伦视频在线观看| 欧美人与性动交α欧美软件| 亚洲精品成人av观看孕妇| 妹子高潮喷水视频| 亚洲五月色婷婷综合| 黄网站色视频无遮挡免费观看| 亚洲全国av大片| 99久久人妻综合| 日韩精品免费视频一区二区三区| 男女床上黄色一级片免费看| 免费高清在线观看日韩| 欧美日韩乱码在线| 久久九九热精品免费| 麻豆国产av国片精品| 少妇的丰满在线观看| 一级片'在线观看视频| 国产高清国产精品国产三级| 欧美 亚洲 国产 日韩一| 国产精品国产高清国产av | 国产成人精品久久二区二区91| 在线观看免费日韩欧美大片| 亚洲免费av在线视频| 国产aⅴ精品一区二区三区波| 手机成人av网站| 精品人妻在线不人妻| 天天操日日干夜夜撸| 很黄的视频免费| 亚洲一区二区三区不卡视频| 国产av一区二区精品久久| 中国美女看黄片| 国产人伦9x9x在线观看| 亚洲专区中文字幕在线| 性色av乱码一区二区三区2| 亚洲成国产人片在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 精品久久久久久,| 精品国产乱码久久久久久男人| 亚洲第一欧美日韩一区二区三区| 动漫黄色视频在线观看| 90打野战视频偷拍视频| 久久久久久亚洲精品国产蜜桃av| 色老头精品视频在线观看| 精品人妻在线不人妻| 丝袜人妻中文字幕| 中文字幕av电影在线播放| 18禁观看日本| 亚洲七黄色美女视频| 亚洲精品国产一区二区精华液| 水蜜桃什么品种好| 久久久水蜜桃国产精品网| 久久国产精品人妻蜜桃| 麻豆乱淫一区二区| 一二三四社区在线视频社区8| 别揉我奶头~嗯~啊~动态视频| 日日摸夜夜添夜夜添小说| 午夜免费成人在线视频| 久久精品91无色码中文字幕| 美女福利国产在线| av在线播放免费不卡| 国产精品久久视频播放| 夜夜躁狠狠躁天天躁| 成人av一区二区三区在线看| 一夜夜www| 午夜成年电影在线免费观看| 日本黄色视频三级网站网址 | 欧美国产精品va在线观看不卡| 一区二区日韩欧美中文字幕| 99精国产麻豆久久婷婷| 国产黄色免费在线视频| 国产精品秋霞免费鲁丝片| 十分钟在线观看高清视频www| 夜夜躁狠狠躁天天躁| 好看av亚洲va欧美ⅴa在| 9热在线视频观看99| 欧美亚洲日本最大视频资源| 午夜福利欧美成人| 99精品欧美一区二区三区四区| 亚洲久久久国产精品| 亚洲欧美一区二区三区黑人| 后天国语完整版免费观看| 国内久久婷婷六月综合欲色啪| av免费在线观看网站| 丝瓜视频免费看黄片| 日韩精品免费视频一区二区三区| 亚洲av成人av| a在线观看视频网站| 大香蕉久久成人网| 人人妻人人澡人人看| 黄色怎么调成土黄色| 精品国产亚洲在线| 亚洲人成77777在线视频| 成人国语在线视频| 欧美成人午夜精品| 国产精品.久久久| 国产精品亚洲av一区麻豆| 国产精品免费视频内射| 黄色视频,在线免费观看| 久久久国产一区二区| 亚洲三区欧美一区| 免费观看人在逋| 高清在线国产一区| 国产日韩欧美亚洲二区| 这个男人来自地球电影免费观看| 国产亚洲精品一区二区www | 啦啦啦在线免费观看视频4| 国产亚洲精品第一综合不卡| 久久天躁狠狠躁夜夜2o2o| xxx96com| 美女午夜性视频免费| 一区二区三区精品91| 亚洲av片天天在线观看| 久久天堂一区二区三区四区| bbb黄色大片| 色婷婷久久久亚洲欧美| 91麻豆精品激情在线观看国产 | 丝袜美足系列| av网站在线播放免费| 久久精品亚洲熟妇少妇任你| 日韩三级视频一区二区三区| 色综合欧美亚洲国产小说| 成人特级黄色片久久久久久久| 亚洲av电影在线进入| 熟女少妇亚洲综合色aaa.| 激情视频va一区二区三区| 捣出白浆h1v1| 欧美成人免费av一区二区三区 | 最近最新免费中文字幕在线| 99久久99久久久精品蜜桃| 午夜福利乱码中文字幕| 国产97色在线日韩免费| 精品福利观看| 国产精品自产拍在线观看55亚洲 | 久久久久精品人妻al黑| 欧美中文综合在线视频| 色在线成人网| 99热国产这里只有精品6| 成年人午夜在线观看视频| 欧美黑人欧美精品刺激| 欧美日韩亚洲国产一区二区在线观看 | 久久中文看片网| 免费在线观看亚洲国产| 国产精品久久久久久精品古装| 精品国产乱码久久久久久男人| 制服人妻中文乱码| 搡老岳熟女国产| 久久午夜亚洲精品久久| 九色亚洲精品在线播放| 精品久久久久久久毛片微露脸| 男女高潮啪啪啪动态图| 热re99久久精品国产66热6| 日韩精品免费视频一区二区三区| 国产成人精品在线电影| 中文欧美无线码| 国产精品一区二区在线不卡| 国产亚洲av高清不卡| 99re在线观看精品视频| 久久久水蜜桃国产精品网| 国产成人影院久久av| 久久ye,这里只有精品| 天天躁日日躁夜夜躁夜夜| 国产欧美日韩一区二区三区在线| 久久久水蜜桃国产精品网| 69精品国产乱码久久久| 黄色丝袜av网址大全| 曰老女人黄片| 精品亚洲成国产av| 叶爱在线成人免费视频播放| 国产成人啪精品午夜网站| 香蕉久久夜色| 日韩成人在线观看一区二区三区| av欧美777| 性色av乱码一区二区三区2| 国产单亲对白刺激| 国产精品乱码一区二三区的特点 | 欧美日韩国产mv在线观看视频| 午夜免费观看网址| 国产亚洲欧美精品永久| 涩涩av久久男人的天堂| 香蕉国产在线看| 亚洲国产精品合色在线| 久久久久久久午夜电影 | 国产亚洲精品久久久久久毛片 | 亚洲精品成人av观看孕妇| 极品教师在线免费播放| 免费一级毛片在线播放高清视频 | tube8黄色片| 成人黄色视频免费在线看| 老司机亚洲免费影院| 亚洲精品粉嫩美女一区| 国产日韩一区二区三区精品不卡| 久热这里只有精品99| av片东京热男人的天堂| 午夜视频精品福利| 国产精品偷伦视频观看了| 亚洲av片天天在线观看| 亚洲av成人不卡在线观看播放网| 免费在线观看完整版高清| av超薄肉色丝袜交足视频| 多毛熟女@视频| 国产精品免费视频内射| 啦啦啦免费观看视频1| 精品免费久久久久久久清纯 | 亚洲伊人色综图| 老司机影院毛片| 在线av久久热| 亚洲专区国产一区二区| 国产午夜精品久久久久久| 国产精品欧美亚洲77777| 韩国精品一区二区三区| 日本一区二区免费在线视频| 女人被躁到高潮嗷嗷叫费观| 青草久久国产| 建设人人有责人人尽责人人享有的| 18禁美女被吸乳视频| 真人做人爱边吃奶动态| 十八禁网站免费在线| 777米奇影视久久| 欧美日韩精品网址| 80岁老熟妇乱子伦牲交| 嫁个100分男人电影在线观看| 久久国产精品人妻蜜桃| 国产一区二区三区视频了| 欧美激情极品国产一区二区三区| 成人手机av| 国产亚洲欧美精品永久| 99国产精品一区二区三区| 99re在线观看精品视频| 人成视频在线观看免费观看| 欧洲精品卡2卡3卡4卡5卡区| 黄色成人免费大全| 免费在线观看完整版高清| 别揉我奶头~嗯~啊~动态视频| 国产在视频线精品| 另类亚洲欧美激情| 成人黄色视频免费在线看| 国产免费男女视频| 免费黄频网站在线观看国产| 日本a在线网址| 成熟少妇高潮喷水视频| 日韩中文字幕欧美一区二区| 国产欧美亚洲国产| 国产成人av教育| 757午夜福利合集在线观看| 免费高清在线观看日韩| 窝窝影院91人妻| 深夜精品福利| 亚洲在线自拍视频| 在线免费观看的www视频| √禁漫天堂资源中文www| 黑人巨大精品欧美一区二区蜜桃| 三级毛片av免费| 久久婷婷成人综合色麻豆| 99riav亚洲国产免费| 97人妻天天添夜夜摸| 91av网站免费观看| 中文字幕精品免费在线观看视频| 午夜亚洲福利在线播放| 久久国产亚洲av麻豆专区| 男女床上黄色一级片免费看| 夜夜躁狠狠躁天天躁| 欧美老熟妇乱子伦牲交| 91精品三级在线观看| 成人影院久久| 精品人妻在线不人妻| 欧美日韩亚洲国产一区二区在线观看 | 国产精品二区激情视频| 午夜免费鲁丝| 99在线人妻在线中文字幕 | 久久人妻福利社区极品人妻图片| 国产激情欧美一区二区| 午夜福利视频在线观看免费| 中国美女看黄片| 国产成人免费无遮挡视频| 午夜福利视频在线观看免费| 十八禁人妻一区二区| 99精品在免费线老司机午夜| 午夜精品国产一区二区电影| 黄色视频,在线免费观看| 亚洲成国产人片在线观看| 女人被躁到高潮嗷嗷叫费观| av网站免费在线观看视频| 高清欧美精品videossex| 黑丝袜美女国产一区| 看黄色毛片网站| 国产欧美亚洲国产| 99国产精品99久久久久| 成人亚洲精品一区在线观看| 韩国av一区二区三区四区| 国产精品一区二区在线观看99| 中文字幕av电影在线播放| 久久久久精品人妻al黑| 亚洲精品av麻豆狂野| 国产精品免费一区二区三区在线 | 国产乱人伦免费视频| 久久中文字幕人妻熟女| 搡老熟女国产l中国老女人| 90打野战视频偷拍视频| 热re99久久国产66热| 捣出白浆h1v1| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲三区欧美一区| 一二三四社区在线视频社区8| 在线观看免费午夜福利视频| 亚洲精品av麻豆狂野| 欧美av亚洲av综合av国产av| 精品国产一区二区三区久久久樱花| 中出人妻视频一区二区| 亚洲中文字幕日韩| 国产精品一区二区在线观看99| 国内久久婷婷六月综合欲色啪| 热re99久久国产66热| 热re99久久国产66热| 亚洲全国av大片| 国产精品.久久久| 熟女少妇亚洲综合色aaa.| 久久国产精品影院| 国产精品免费一区二区三区在线 | 亚洲一卡2卡3卡4卡5卡精品中文| 在线播放国产精品三级| 少妇粗大呻吟视频| 国产av精品麻豆| 精品欧美一区二区三区在线| 女同久久另类99精品国产91| 男女床上黄色一级片免费看| 美女扒开内裤让男人捅视频| avwww免费| 成年女人毛片免费观看观看9 | 久久精品成人免费网站| 国产精品免费视频内射| 十八禁人妻一区二区| 变态另类成人亚洲欧美熟女 | 精品一区二区三区视频在线观看免费 | 无遮挡黄片免费观看| 91国产中文字幕| 亚洲一区二区三区不卡视频| 老司机影院毛片| 精品国产国语对白av| 亚洲视频免费观看视频| 婷婷丁香在线五月| 精品人妻在线不人妻| 午夜久久久在线观看| 午夜福利一区二区在线看| 丰满人妻熟妇乱又伦精品不卡| 国产一卡二卡三卡精品| 看免费av毛片| 国产av精品麻豆| 国产免费男女视频| 日韩人妻精品一区2区三区| 久久国产精品影院| 欧美色视频一区免费| 91字幕亚洲| 色婷婷av一区二区三区视频| 国产在线观看jvid| 国产精品久久电影中文字幕 | 91麻豆av在线| 日韩欧美一区二区三区在线观看 | 精品国产一区二区三区四区第35| svipshipincom国产片| 18禁国产床啪视频网站| e午夜精品久久久久久久| 亚洲中文字幕日韩| 一个人免费在线观看的高清视频| 在线av久久热| 美女视频免费永久观看网站| 欧美精品人与动牲交sv欧美| 天天躁日日躁夜夜躁夜夜| 久久久水蜜桃国产精品网| 一级毛片女人18水好多| 精品一区二区三区视频在线观看免费 | 97人妻天天添夜夜摸| 久久国产精品大桥未久av| 黄色怎么调成土黄色| 国产精品久久久人人做人人爽| 成人国语在线视频| av中文乱码字幕在线| av福利片在线| av不卡在线播放| 国产乱人伦免费视频| 19禁男女啪啪无遮挡网站| 在线播放国产精品三级| 亚洲全国av大片| 欧美精品人与动牲交sv欧美| 亚洲成人手机| 高清视频免费观看一区二区| 香蕉国产在线看| 免费日韩欧美在线观看| 十八禁网站免费在线| 成人18禁在线播放| 中文字幕制服av| a在线观看视频网站| 欧美人与性动交α欧美软件| 五月开心婷婷网| 久久久久久久久免费视频了| 国产蜜桃级精品一区二区三区 | 麻豆乱淫一区二区| 男女下面插进去视频免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 最近最新免费中文字幕在线| 国产成人欧美| 国产又色又爽无遮挡免费看| 久久久久精品国产欧美久久久| 国产精品二区激情视频| 午夜91福利影院| а√天堂www在线а√下载 | 国产av精品麻豆| 热re99久久国产66热| 99re6热这里在线精品视频| 国产成人啪精品午夜网站| 久久久国产欧美日韩av| 99香蕉大伊视频| 国产一区二区三区视频了| 在线观看午夜福利视频| 又黄又爽又免费观看的视频| 狠狠婷婷综合久久久久久88av| 亚洲成人手机| 亚洲熟妇熟女久久| 久久影院123| 黄色女人牲交| 人妻久久中文字幕网| 女人高潮潮喷娇喘18禁视频| 免费在线观看黄色视频的| 国产成人欧美| 18在线观看网站| 亚洲色图av天堂| 天堂中文最新版在线下载| 91九色精品人成在线观看| videosex国产| 国产成人av激情在线播放| 一进一出好大好爽视频| 午夜成年电影在线免费观看| 久久亚洲精品不卡| 久久草成人影院| 村上凉子中文字幕在线| 国产精品美女特级片免费视频播放器 | 精品福利永久在线观看| 精品国产国语对白av| 亚洲精品粉嫩美女一区| 亚洲欧美日韩高清在线视频| 久久精品国产清高在天天线| 亚洲精品乱久久久久久| 午夜福利视频在线观看免费| 十分钟在线观看高清视频www| 久久久国产欧美日韩av| 狂野欧美激情性xxxx| 老熟妇仑乱视频hdxx| 在线观看日韩欧美| 精品国产亚洲在线| 电影成人av| 欧美人与性动交α欧美软件| 国产av精品麻豆| 久久精品亚洲精品国产色婷小说| 精品国产一区二区三区久久久樱花| 精品卡一卡二卡四卡免费| 亚洲精品美女久久av网站| 黄片播放在线免费| 日韩欧美三级三区| 夜夜躁狠狠躁天天躁| 日本精品一区二区三区蜜桃| 国内久久婷婷六月综合欲色啪| 欧美午夜高清在线| 夜夜躁狠狠躁天天躁| 国产精品.久久久| 精品国产国语对白av| 国产精品.久久久| 啦啦啦视频在线资源免费观看| 成人亚洲精品一区在线观看| 亚洲成人手机| 男女之事视频高清在线观看| 9热在线视频观看99| 高清黄色对白视频在线免费看| 黄色毛片三级朝国网站| 啦啦啦 在线观看视频| 人人妻人人添人人爽欧美一区卜| 日韩欧美三级三区| 欧美久久黑人一区二区| 日韩欧美三级三区| 人人澡人人妻人| 国产一区二区三区综合在线观看| 人妻丰满熟妇av一区二区三区 | 欧美大码av| 午夜福利免费观看在线| 韩国av一区二区三区四区| 狠狠婷婷综合久久久久久88av| 亚洲欧美精品综合一区二区三区| 国产精品秋霞免费鲁丝片| avwww免费| 久久午夜综合久久蜜桃| a级片在线免费高清观看视频| 最新美女视频免费是黄的| 天堂√8在线中文| 黄色a级毛片大全视频| 欧美激情 高清一区二区三区| 国产高清videossex| 亚洲熟妇熟女久久| 咕卡用的链子| 午夜亚洲福利在线播放| 91在线观看av| 丝袜美腿诱惑在线| 9191精品国产免费久久| 国产精品av久久久久免费| 亚洲专区字幕在线| 免费人成视频x8x8入口观看| 麻豆成人av在线观看| 青草久久国产| 午夜精品国产一区二区电影| 很黄的视频免费| 亚洲欧美色中文字幕在线| 50天的宝宝边吃奶边哭怎么回事| 国产成人精品久久二区二区91| 国产欧美日韩一区二区三区在线| 色尼玛亚洲综合影院| 亚洲性夜色夜夜综合| 国产99白浆流出| 777米奇影视久久| 女性生殖器流出的白浆| 亚洲五月色婷婷综合| 国产亚洲欧美98| 国产欧美日韩精品亚洲av| 手机成人av网站| aaaaa片日本免费| 亚洲av美国av| 美女国产高潮福利片在线看| 如日韩欧美国产精品一区二区三区| 999久久久国产精品视频| 成年女人毛片免费观看观看9 | 日韩人妻精品一区2区三区| 精品一区二区三区视频在线观看免费 | 日韩欧美国产一区二区入口| 99久久综合精品五月天人人| av有码第一页| 黄色成人免费大全| 在线av久久热| 啦啦啦 在线观看视频| 侵犯人妻中文字幕一二三四区| 在线av久久热| 亚洲精品粉嫩美女一区| 女同久久另类99精品国产91| 少妇的丰满在线观看| 国产亚洲欧美在线一区二区| 女同久久另类99精品国产91| 精品欧美一区二区三区在线| 色94色欧美一区二区| 动漫黄色视频在线观看| 免费久久久久久久精品成人欧美视频|