• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recovery of Tungsten (VI) from Aqueous Solutions by Complexationultrafiltration Process with the Help of Polyquaternium*

    2012-03-22 10:07:44ZENGJianxian曾堅賢SUNXiahui孫霞輝ZHENGLifeng鄭立鋒HEQincheng賀勤程andLIShu李書

    ZENG Jianxian (曾堅賢)**, SUN Xiahui (孫霞輝), ZHENG Lifeng (鄭立鋒), HE Qincheng(賀勤程) and LI Shu (李書)

    College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

    1 INTRODUCTION

    Tungsten is one of the important hi-tech metals,and its high-purity products are vital for developing advanced materials. The recovery methods of tungsten(VI) in aqueous media include mainly chemical precipitation [1], ion exchange [2], extraction [3], adsorption [4],etc. Some of them have the great disadvantage of using heterogeneous reactions or distribution of substances among different phases, which are phenomena controlled by diffusion, requiring usually large operating times. Moreover, they are often inadequate to possess high power or chemical products consumptions, generate sludge or solid wastes,etc.

    Recently, complexation-ultrafiltration process(CUFP) has been shown to be a promising method for metal ion recovery from aqueous solutions [5-8]. In this process, metal ions are first bound with watersoluble polymeric ligands to form macromolecular complexes, and then are retained and concentrated by ultrafiltration membranes, whereas unbound metal ions pass through the membranes. A retentate stream containing high concentration of polymer and bound metal ions is obtained, while a permeate with the unbound metal ions is produced. Furthermore, the bound metal ions must be released from the polymer for recovering the metals and reusing the polymer [9-12].The advantages related to the use of CUFP are the low energy requirement in the ultrafiltration, high selectivity for separation owing to the use of a selective binding agent, high recovery efficiency because of effective binding, and high volume reduction in separation and concentration of metal ions [13].

    Some efforts have been made to investigate the applicability of CUFP in metal recovery or removal from aqueous solutions. Camarilloet al. [14] tried to recover copper (II) from aqueous solutions using ultrafiltration by complexing it with poly(acrylic acid)sodium salt. Trivunac and Stevanovic [15] studied the feasibility of the CUFP for removal of cadmium and zinc ions by using diethylaminoethyl cellulose.Zamariottoet al. [16] investigated the retention of Cu(II)- and Ni(II)-polyaminocarboxylate complexes in dilute solutions using the CUFP by polyethylenimine and chitosan. Molinariet al. [17] used the polyethyleneimine as a complexing agent to study the CUFP in the selective separation of copper (II) and nickel (II)in aqueous media. In our previous study [7, 18], the CUFP is used to remove mercury (II) and cadmium (II)from aqueous solutions with the help of poly (acrylic acid) sodium salt. In the cited work, these metals exist in cationic forms in aqueous solutions, but a few of metals, such as tungsten, molybdenum and vanadium,which are present as oxyanions, are seldom studied in the CUFP. Polyquaternium possesses the following characteristics: water-solubility, appropriate molecular weight, good affinity to target ion, possibility of regeneration, high chemical stability, low toxicity and low cost. Thus, polyquaternium is appropriate to be selected as the polymeric ligand, whereas it is scarcely applied for complexation-ultrafiltration process.

    The aim of this work is to study the applicability of CUFP for tungsten (VI) oxyanions with the help of polyquaternium-6 (PQ6) in aqueous solutions. The first part of this work is to investigate the effects of operational parameters such as polymer metal ratio(PMR, expressed as mg PQ6/mg tungsten), pH value,and the salts added on tungsten rejection coefficient or permeate flux in the total recirculation mode. Further work is the concentration experiment at the optimum polymer metal ratio and pH. Finally, the decomplexation, diafiltration and reuse of regenerated PQ6 are carried out.

    2 EXPERIMENTAL

    2.1 Chemicals, membranes and apparatus

    Polyquaternium-6 with average molecular mass 150000 provided by Shandong Luyue Chemical Company (China) was used as a water-soluble polymeric ligand. Its structural formula is

    Sodium tungstate dihydrate (Na2WO4·2H2O), sodium chloride (NaCl), sodium hydroxide (NaOH) and hydrochloric acid (HCl) were all purchased from Aladdin Reagent Co., Ltd., as analytical reagent grade.Various solutions were prepared with deionized water of conductivity less than 1 μS·cm-1.

    Polysulfone hollow fiber ultrafiltration membrane with the molecular mass cut off of 50000 and an effective filtration area of 0.1 m2was used. It was offered by Shanghai Mosu Science Instrument Co., Ltd. (China).

    A laboratory-scale ultrafiltration system shown in Fig. 1 was employed. The system consisted of a thermostatic water bath, a 2 L volume capacity reservoir, a feed diaphragm pump for the flow, two pressure meters,an ultrafiltration membrane module, a temperature meter, a flow meter and three control valves which enabled optimal running conditions. A pH meter was employed to control pH value.

    Figure 1 Schematic diagram of the experimental apparatus 1—thermostatic water bath; 2—reservoir; 3—temperature meter; 4—pump; 5—pressure meter; 6—hollow fiber ultrafiltration membrane module; 7—flow meter; 8—pH meter

    2.2 Experimental procedures

    2.2.1Polymer pre-treatment experiments

    The PQ6 solutions were pretreated in a diafiltration process in the experimental apparatus in order to eliminate the shorter macromolecules that can go through the membrane. The deionized water was added to the reservoir in batches, and permeate streams were sent to a separate tank. The pre-treatment was ended until PQ6 concentrations in the permeate streams decreased to zero. PQ6 was determined by total organic carbon analyzer (SHIMADZU TOC-V CSN). After the pre-treatment, the loss of the polymer was about 12.7%, close to that reported by Baticleet al. [19]. The pre-treated PQ6 was used in all complexationultrafiltration experiments.

    2.2.2Total recirculation experiments

    The desired amounts of sodium tungstate dihydrate and PQ6 were dissolved separately in deionized water at certain pH, and the two solutions were mixed and stirred fully for 2 h to make sure that the complexation equilibrium between tungsten (VI) and PQ6 was reached (In these experiments, 2 h was found to be the appropriate equilibrium time). This mixture solution was introduced in the reservoir. The thermostatic bath was adjusted to certain temperature. The system was run under the desired experimental conditions. The permeate stream was returned to the reservoir to keep the concentration constant in the feed.Permeate flux (J) was measured by determining the permeate volume produced in a period of time and calculated using the following equation:

    whereVpis the volume of permeate,Sis the effective membrane area, andtis time. To evaluate the filtration efficiency, tungsten rejection coefficient (R) is defined as

    wherecpandcfare tungsten concentrations in the permeate and the feed, respectively. Tungsten was determined by an atomic absorption spectrophotometer(Perkin Elmer, AANALYST 300). In this mode, the effects of operating parameters (polymer metal ratio,pH and the added salts) on permeate flux or tungsten rejection coefficient were studied.

    2.2.3Concentration, decomplexation, diafiltration and reuse of regenerated polymer

    The concentration experiment was carried out at pH 7 and polymer metal ratio 3. Permeate stream was sent to a separate tank, and this experiment was ended when volume concentration factor (VCF, defined as the ratio between the volume of feed solution and the volume of retentate) reached 16. Then, the concentrated retentate was used for the decomplexation. The decomplexation experiment was performed at the chloride ion concentration of 50 mg·L-1in total recirculation mode. Further, the diafiltration experiment was carried out by adding successively sodium chloride solution containing 50 mg·L-1chloride ions. The polymer reuse experiments were carried out using the regenerated PQ6, and compared with those using the fresh PQ6.

    3 RESULTS AND DISCUSSION

    3.1 Effects of polymer metal ratio and pH on permeate flux

    Figure 2 (a) shows the effect of polymer metal ratio on permeate flux. Permeate flux decreases slightly with the increase of polymer metal ratio. At transmembrane pressure 45 kPa, when polymer metal ratio increases from 0 to 7, permeate flux decreases within a relatively narrow range from 92.3 to 82.6 L·m-2·h-1.This is probably caused by the insignificant concentration polarization phenomenon at the transmembrane pressures and PQ6 concentrations used. A similar result has been obtained by Müslehiddino?luet al[20].Fig. 2 (b) shows that permeate fluxes are not influenced by pH. The phenomenon may be explained as: a change of the conformation of PQ6 molecule does not occur and membrane fouling does not change with pH.This result is different from that reported in some literatures. For example, it is in contrast to what Ca?izareset al. [11] observed for the ultrafiltration of poly(acrylic acid) solution. They found that permeate fluxes decrease significantly at pH 3, due to the conformation change of poly(acrylic acid) structure in stronger acidic media. In addition, in Figs. 2 (a) and (b), one can see that permeate flux increases linearly with increasing transmembrane pressure. This means that a gel layer of retained PQ6 on the membrane surface does not form in this range of PQ6 concentration [5].Transmembrane pressure 45 kPa was used in the other experiments since the experimental system was controlled easily under this pressure.

    Figure 2 Effects of polymer metal ratio (a) and pH (b) on permeate flux at different transmembrane pressures (temperature=298 K; tungsten concentration=20 mg·L-1)transmembrane pressure/kPa: □ 75; ○ 60; △ 45; ▽ 30; ☆ 15

    3.2 Effects of polymer metal ratio and pH on tungsten rejection coefficient

    Figure 3 shows the effects of polymer metal ratio and pH on tungsten rejection coefficient. At a fixed pH value, tungsten rejection coefficients increase rapidly with polymer metal ratio, and then maintain a maximum value, because the available sites of PQ6 increase with polymer metal ratio. Similar trends were observed in other studies [7, 21]. At a fixed polymer metal ratio, tungsten rejection coefficients obtained in the pH range 3-9 are almost equal. This means that tungsten rejection coefficient is not influenced by pH(In order to reduce the dosage of sodium hydroxide or hydrochloric acid, pH 7 was usually employed in other experiments). This may be attributed to the stability of the formed tungsten (VI)-PQ6 complexes which is pH independent. These data are in contrast to the results of Llanoset al. [22] and Zhang and Xu [23], for removal of heavy metals in complexation-ultrafiltration process. They reported that the rejections of metals depended strongly on pH value by using the modified polyethyleneimine or poly(acrylic acid) as a complexing agent, due to the competition of hydrogen ions with the metals trapped in the polymer structure.Binding capacity of PQ6 can be defined as the critical polymer metal ratio (PMRCr) at which tungsten rejection coefficient reaches 0.99. In Fig. 3, critical polymer metal ratio is 3.0 at various pH values.

    F reijgeucrteio 3n cEofeffefcictsieonft ps ol(ytumnegrs tmene taclo rnacteinot raantido npH= o2n0 tumngg·sLte-1n;transmembrane pressure=45 kPa; temperature=298 K)PMR: □ 1; 2; △ 2.5; ▽ 2.7; ◇ 2.8; 2.9; ● 3; × 3.2; ☆ 4;6

    3.3 Effect of chloride ion on permeate flux and tungsten rejection coefficient

    Figure 4 shows the effect of chloride ion concentration on permeate flux and tungsten rejection coefficient in the presence of sodium chloride. It is observed that permeate flux does not vary with chloride ion concentration at different pH values. This indicates that in this range of concentration, chloride ion does not influence the interaction between PQ6 and the membrane. The membrane fouling in the presence of sodium chloride is the same as that in the absence of the salt. Thus, permeate flux keeps a constant value.Tungsten rejection coefficient decreases significantly with increasing chloride ion concentration, then declines slowly, and finally changes little. When the concentration of chloride ion is 17.5 times that of tungsten (VI),i.e. 350 mg·L-1, the decrease of tungsten rejection coefficient amounts to about 80% of the initial value. It may be explained that the increase of the added salt concentration leads to the compression of electrical double layer, reducing electrostatic attractions between tungsten (VI) and PQ6. It is in contrast to what Baticleet al. [19] observed for Ni(II) removal by using polyethyleneimine as a complexing agent.They found that the decrease of Ni(II) retention is slight in the presence of sodium chloride. Therefore, it may be preferable for the decomplexation of tungsten(VI)-PQ6 complex to control a special chloride ion concentration.

    Figure 4 Effect of chloride ion concentration on permeate flux and tungsten rejection coefficient at different pH values(tungsten concentration=20 mg·L-1; PQ6 concentration=60 mg·L-1; transmembrane pressure=45 kPa; temperature=298 K)× J, pH=5; ○ J, pH=7; □ R, pH=5; △ R, pH=7

    3.4 Concentration experiment

    Figure 5 Effect of volume concentration factor on permeate flux, tungsten rejection coefficient and tungsten concentrations in the permeate and retentate (feed volume=16 L;pH=7; initial tungsten concentration=20 mg·L-1; initial PQ6 concentration=60 mg·L-1; transmembrane pressure=45 kPa;temperature=298 K)□ R; ○ cp; × J; △ cr

    According to the results of the total recirculation experiments, pH 7 and polymer metal ratio 3 were selected for the concentration experiment. Fig. 5 shows the effects of volume concentration factor on permeate flux, tungsten rejection coefficient and tungsten concentrations in the permeate (cp) and the retentate (cr). The slight flux decay is identified during the concentration process. Permeate flux decreases from 90.1 to 76.4 L·m-2·h-1, which corresponds to volume concentration factor from 1 to 16. This decrease amounting to 15.2%of the initial value is relatively insignificant. The phenomenon can be attributed mainly to the insignificant concentration polarization. A similar result has been also observed in our previous study [7]. Regarding the membrane retention, tungsten rejection coefficients obtained at different volume concentration factors are very high (approximated to 1). With increasing volume concentration factor, there is a rapid linear increase of tungsten concentration in the retentate. Tungsten concentration of the retentate is 317.5 mg·L-1when volume concentration factor reaches 16. However, tungsten concentration of the permeate almost keeps a steady value and is about 0.04 mg·L-1in the whole concentration process. This means that tungsten is concentrated efficiently by the membrane under the conditions.

    3.5 Decomplexation experiment

    After the concentration experiment, 1 L of concentrated retentate was obtained, with tungsten and PQ6 concentrations of 317.5 and 960 mg·L-1, respectively. The possibility of achieving the decomplexation of tungsten-PQ6 complex was tested by adding sodium chloride to the retentate in total recirculation mode. In order to control a lower salt content and obtain an appropriate decomplexation ratio, 50 mg·L-1chloride ion concentration was considered. Once the decomplexation began, permeate flux and tungsten concentrations in the permeate and the retentate were measured at intervals. Fig. 6 shows that the effect of decomplexation time on permeate flux, tungsten concentrations in the retentate and the permeate at pH 7.Permeate flux does not change with time, and tungsten concentration of the retentate never varies during this experiment. This is due to the permeate being returned back to the retentate in the total recirculation mode.Tungsten concentration of the permeate increases with decomplexation time, and it changes little after about 6 min. Since tungsten concentration in the permeate is considered to be equal to free tungsten concentration in the retentate, 6 min is regarded as the minimum time for reaching decomplexation equilibrium. The equilibrium tungsten concentrations in the retentate and the permeate are 317.5 and 178.1 mg·L-1respectively,which means that 56.1% of tungsten-PQ6 complex are dissociated. This demonstrates that tungsten concentration in the retentate is always higher than that in the permeate,i.e. some of tungsten remains trapped by PQ6.

    Figure 6 Effect of decomplexation time on permeate flux and tungsten concentrations in the retentate and the permeate in total recirculation mode (feed volume=1 L;pH=7; tungsten concentration=317.5 mg·L-1; PQ6 concentration=960 mg·L-1; chloride ion concentration=50 mg·L-1;transmembrane pressure=45 kPa; temperature=298 K)○ cr; □ cp; △ J

    3.6 Diafiltration experiment

    Figure 7 Effect of diafiltration volume on permeate flux and tungsten concentrations in the retentate and the permeate (feed volume=1 L; pH=7; initial tungsten concentration=317.5 mg·L-1; initial PQ6 concentration=960 mg·L-1;chloride ion concentration=50 mg·L-1; transmembrane pressure=45 kPa; temperature=298 K)△ J; ○ cr; □ cp

    After the decomplexation experiments, the possibilities of extracting the maximum amount of tungsten(VI) and making PQ6 as pure as possible were tested by using the diafiltration method. One liter of the retentate was treated by adding sodium chloride solutions containing 50 mg·L-1chloride ions. Tungsten (VI)should be progressively washed by passing the permeate, while PQ6 was retained in the retentate. Fig. 7 shows the effect of diafiltration volume on permeate flux, tungsten concentrations in the retentate and the permeate at pH 7. Permeate flux is not influenced by the diafiltration volume, and almost equals the flux of the decomplexation experiment. Tungsten concentrations in the retentate and the permeate decrease significantly with increasing diafiltration volume at initial stage, and then decrease slightly. When the diafiltration volume reaches 4.5 L,i.e. the volume of sodium chloride solution is 4.5 times the initial one,Tungsten concentration of the retentate decreases from 317.5 to 7.6 mg·L-1, which corresponds to tungsten removal percentage of 97.6%. Therefore, tungsten (VI)can be extracted effectively and the purification of polymer is acceptably satisfactory.

    3.7 Reuse of regenerated polymer

    After the previous diafiltration experiment, the regenerated PQ6 was used to bind tungsten (VI). In order to describe the regenerated PQ6 quantitatively,the binding capacity recovery percentage (BCRP) is defined as follows:

    where PMRCr,fand PMRCr,rare critical polymer metal ratio for fresh and regenerated PQ6, respectively. At various pH values, critical polymer metal ratio for regenerated PQ6 all are 3.2, and close to critical polymer metal ratio for fresh PQ6 (3.0). BCRP value reaches 93.8%. This suggests that the PQ6 can be recovered effectively for recycling and reuse.

    4 CONCLUSIONS

    The CUFP was successfully used to recover of tungsten (VI) from aqueous solutions with the help of water-soluble polymeric ligand PQ6.

    In total recirculation mode, the effects of polymer metal ratio, pH and chloride ion concentration on permeate flux and tungsten rejection coefficient were studied. Permeate flux decreases slightly as PMR increases, and is not influenced by pH. Tungsten rejection coefficient increases rapidly with polymer metal ratio,and then maintains a maximum value. pH has no effect onRat a fixed polymer metal ratio. Tungsten rejection coefficient decreases significantly with increasing chloride ion concentration, then declines slowly, and finally changes little. Thus, an appropriate chloride ion concentration is helpful for the decomplexation of tungsten (VI)-PQ6 complex. Binding capacity of the PQ6 to tungsten (VI) is 3.0 mg PQ6 per mg tungsten,which does not change in the pH range 3-9.

    In the concentration experiment, the flux decay is slight. Tungsten rejection coefficients obtained at different volume concentration factors are very high, and tungsten is concentrated efficiently. In the decomplexation experiment, it takes about 6 min to reach the decomplexation equilibrium at the chloride ion concentration of 50 mg·L-1. Tungsten concentration in the retentate is always higher than that in the permeate.The decomplexation percentage of tungsten (VI)-PQ6 complex reaches 56.1%. In the diafiltration experiment, tungsten (VI) can be extracted effectively from the retentate and the purification of the regenerated PQ6 is acceptably satisfactory. In the stage for recycling the regenerated polymer, the binding capacity of regenerated PQ6 is close to that of fresh PQ6 at different pH values, and BCRP is higher than 90%.

    1 Plattes, M., Bertrand, A., Schmitt, B., Sinner, J., Verstraeten, F.,Welfring, J., “Removal of tungsten oxyanions from industrial wastewater by precipitation, coagulation and flocculation processes”,J.Hazard.Mater., 148, 613-615 (2007).

    2 Kholmogorov, A.G., Kononova, O.N., Kachin, S.V., Kalyakina, O.P.,Pashkov, G.L., “Study of sorption properties of anion exchangers with long-chained cross-linking agents for tungsten hydrometallurgy”,Chin.J.Chem.Eng., 8, 241-246 (2000).

    3 Ning, P.G., Cao, H.B., Zhang, Y., “Selective extraction and deep removal of tungsten from sodium molybdate solution by primary amine N1923”,Sep.Purif.Technol., 70, 27-33 (2009).

    4 Gecol, H., Miakatsindila, P., Ergican, E., Hiibel, S.R., “Biopolymer coated clay particles for the adsorption of tungsten from water”,Desalination, 197, 165-178 (2006).

    5 Mimoune, S., Amrani, F., “Experimental study of metal ions removal from aqueous solutions by complexation-ultrafiltration”,J.Membr.Sci., 298, 92-98 (2007).

    6 Cojocaru, C., Zakrzewska-Trznadel, G., Jaworska, A., “Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach. part 1:Optimization of complexation conditions”,J.Hazard.Mater., 169, 599-609 (2009).

    7 Zeng, J.X., Ye, H.Q., Hu, Z.Y., “Application of the hybrid complexation-ultrafiltration process for metal ion removal from aqueous solutions”,J.Hazard.Mater., 161, 1491-1498 (2009).

    8 Barakat, M.A., Schmidt, E., “Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater”,Desalination, 256, 90-93 (2010).

    9 Uludag, Y., ?zbelge, H.?., Yilmaz, L., “Removal of mercury from aqueous solutionsviapolymer enhanced ultrafiltration”,J.Membr.Sci., 129, 93-99 (1997).

    10 Rether, A., Schuster, M., “Selective separation and recovery of heavy metal ions using water-solubleN-benzoylthiourea modified PAMAM polymers”,React.Funct.Polym., 57, 13-21 (2003).

    11 Ca?izares, P., Lucas, A., Pérez, A., Camarillo, R., “Effect of polymer nature and hydrodynamic conditions on a process of polymer enhanced ultrafiltration”,J.Membr.Sci., 253, 149-163 (2005).

    12 Aroua, M.K., Zuki, F.M., Sulaiman, N.M., “Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration”,J.Hazard.Mater., 147, 752-758 (2007).

    13 Molinari, R., Poerio, T., Argurio, P., “Chemical and operational aspects in running the polymer assisted ultrafiltration for separation of copper(II)-citrate complexes from aqueous media”,J.Membr.Sci.,295, 139-147 (2007).

    14 Camarillo, R., Llanos, J., Garcia-Fernandez, L., Perez, A., Canizares,P., “Treatment of copper (II)-loaded aqueous nitrate solutions by polymer enhanced ultrafiltration and electrodeposition”,Sep.Purif.Technol., 70, 320-328 (2010).

    15 Trivunac, K., Stevanovic, S., “Effects of operating parameters on efficiency of cadmium and zinc removal by the complexation-filtration process”,Desalination, 198, 282-287 (2006).

    16 Zamariotto, D., Lakard, B., Fievet, P., Fatin-Rouge, N., “Retention of Cu(II)- and Ni(II)-polyaminocarboxylate complexes by ultrafiltration assisted with polyamines”,Desalination, 258, 87-92 (2010).

    17 Molinari, R., Poerio, T., Argurio, P., “Selective separation of copper(II) and nickel(II) from aqueous media using the complexation-ultrafiltration process”,Chemosphere, 70, 341-348 (2008).

    18 Zeng, J.X., Ye, H.Q., Huang, N.D., Liu, J.F., Zheng, L.F., “Selective separation of Hg(II) and Cd(II) from aqueous solutions by complexation-ultrafiltration process”,Chemosphere, 76, 706-710(2009).

    19 Baticle, P., Kiefer, C., Lakhchaf, N., Leclerc, O., Persin, M., Sarrazin,J., “Treatment of nickel containing industrial effluents with a hybrid process comprising of polymer complexation- ultrafiltration- electrolysis”,Sep.Purif.Technol., 18,195-207 (2000).

    20 Müslehiddino?lu, J., Uluda?, Y., ?zbelge, H.?., Yilmaz, L., “Effect of operating parameters on selective separation of heavy metals from binary mixturesviapolymer enhanced ultrafiltration”,J.Membr.Sci., 140, 251-266 (1998).

    21 Ca?izares, P., Pérez, A., Camarillo, R., Mazarro, R., “Simultaneous recovery of cadmium and lead from aqueous effluents by a semi-continuous laboratory-scale polymer enhanced ultrafiltration process”,J.Membr.Sci., 320, 520-527 (2008).

    22 Llanos, J., Camarillo, R., Perez, A., Canizares, P., “Polymer supported ultrafiltration as a technique for selective heavy metal separation and complex formation constants prediction”,Sep.Purif.Technol., 73,126-134 (2010).

    23 Zhang, Y.F., Xu, Z.L., “Study on the treatment of industrial wastewater containing Pb2+ion using a coupling process of polymer complexation-ultrafiltration”,Sep.Sci.Technol., 38, 1585-1596 (2003).

    老汉色av国产亚洲站长工具| 国产一区二区激情短视频| 成人国产一区最新在线观看| 看黄色毛片网站| 日韩大码丰满熟妇| 亚洲第一av免费看| 亚洲一区二区三区不卡视频| 成年免费大片在线观看| 亚洲av第一区精品v没综合| 听说在线观看完整版免费高清| 日韩av在线大香蕉| 午夜激情福利司机影院| 久久久精品国产亚洲av高清涩受| 后天国语完整版免费观看| av天堂在线播放| 成年版毛片免费区| 成人三级做爰电影| 国产成人精品久久二区二区91| 亚洲国产精品999在线| 美女午夜性视频免费| 人人妻人人澡欧美一区二区| 精品电影一区二区在线| 50天的宝宝边吃奶边哭怎么回事| 嫩草影院精品99| 亚洲成人免费电影在线观看| 久久 成人 亚洲| 国产区一区二久久| 在线观看免费午夜福利视频| 免费观看精品视频网站| 亚洲精品在线美女| 亚洲av成人av| 久99久视频精品免费| 精品久久久久久久久久免费视频| 99久久99久久久精品蜜桃| 国产激情偷乱视频一区二区| 高清在线国产一区| 国产熟女午夜一区二区三区| 久久人妻福利社区极品人妻图片| 日韩免费av在线播放| 日日爽夜夜爽网站| 亚洲一区高清亚洲精品| 欧美色视频一区免费| 亚洲国产欧美一区二区综合| 视频在线观看一区二区三区| 高清在线国产一区| 国产午夜福利久久久久久| 在线视频色国产色| 成人国产一区最新在线观看| 国产亚洲精品av在线| 欧美乱妇无乱码| av欧美777| 不卡一级毛片| 国产激情偷乱视频一区二区| 看片在线看免费视频| 在线十欧美十亚洲十日本专区| 女人高潮潮喷娇喘18禁视频| 淫秽高清视频在线观看| 国产精品爽爽va在线观看网站 | 国产麻豆成人av免费视频| 亚洲国产精品成人综合色| 哪里可以看免费的av片| 国产在线观看jvid| 午夜免费成人在线视频| 老司机在亚洲福利影院| 亚洲精品av麻豆狂野| 欧美成人一区二区免费高清观看 | 特大巨黑吊av在线直播 | 中文字幕人成人乱码亚洲影| av在线播放免费不卡| 99在线人妻在线中文字幕| www.www免费av| av片东京热男人的天堂| 中文字幕最新亚洲高清| 亚洲专区字幕在线| 精品国产超薄肉色丝袜足j| 亚洲精品在线观看二区| 欧美久久黑人一区二区| 一本久久中文字幕| 国产亚洲av嫩草精品影院| 性色av乱码一区二区三区2| 国产精品九九99| 黄色视频不卡| 久久久水蜜桃国产精品网| 长腿黑丝高跟| АⅤ资源中文在线天堂| 草草在线视频免费看| 香蕉av资源在线| 国产精品久久久av美女十八| 在线视频色国产色| 免费在线观看完整版高清| 国产精品二区激情视频| 精品电影一区二区在线| 白带黄色成豆腐渣| 午夜福利成人在线免费观看| 成人国语在线视频| 国产精华一区二区三区| 99精品久久久久人妻精品| 免费观看精品视频网站| 日韩欧美 国产精品| 国产av在哪里看| 久久欧美精品欧美久久欧美| 一本大道久久a久久精品| 精品无人区乱码1区二区| 在线观看免费日韩欧美大片| 亚洲精华国产精华精| 亚洲七黄色美女视频| 人人妻人人澡人人看| 成人欧美大片| 亚洲欧美日韩无卡精品| 久久久国产欧美日韩av| 丁香欧美五月| 97人妻精品一区二区三区麻豆 | 欧美绝顶高潮抽搐喷水| 国产99久久九九免费精品| 亚洲欧洲精品一区二区精品久久久| 亚洲免费av在线视频| 一级片免费观看大全| 色综合亚洲欧美另类图片| 中文亚洲av片在线观看爽| 国产亚洲欧美精品永久| 国产熟女午夜一区二区三区| 91国产中文字幕| 国产欧美日韩一区二区精品| 黄片大片在线免费观看| 国产色视频综合| 俺也久久电影网| 最近在线观看免费完整版| 麻豆成人午夜福利视频| 久99久视频精品免费| 好男人在线观看高清免费视频 | 午夜精品在线福利| 午夜福利成人在线免费观看| 国产精品一区二区免费欧美| 日韩大尺度精品在线看网址| 老熟妇仑乱视频hdxx| 精品久久久久久久毛片微露脸| 国产单亲对白刺激| 在线观看www视频免费| 欧美激情极品国产一区二区三区| 亚洲avbb在线观看| 久热爱精品视频在线9| 一级a爱视频在线免费观看| 久久久久九九精品影院| 99在线视频只有这里精品首页| 成人18禁高潮啪啪吃奶动态图| 国产免费男女视频| 亚洲五月色婷婷综合| 日韩成人在线观看一区二区三区| 一进一出抽搐动态| 免费在线观看成人毛片| 一区二区三区精品91| 怎么达到女性高潮| 巨乳人妻的诱惑在线观看| 亚洲熟妇熟女久久| 极品教师在线免费播放| 国产一区二区三区在线臀色熟女| 久久精品国产清高在天天线| 免费高清在线观看日韩| 色精品久久人妻99蜜桃| 国产精品亚洲av一区麻豆| 丰满人妻熟妇乱又伦精品不卡| 又黄又爽又免费观看的视频| 午夜福利在线在线| 亚洲精品美女久久av网站| 日本 欧美在线| 免费搜索国产男女视频| 黄片大片在线免费观看| 久久精品aⅴ一区二区三区四区| 国产欧美日韩一区二区三| 亚洲美女黄片视频| 亚洲熟妇中文字幕五十中出| 久久中文字幕一级| 18禁美女被吸乳视频| 成在线人永久免费视频| 日韩大码丰满熟妇| 亚洲第一电影网av| 宅男免费午夜| 国产精品一区二区精品视频观看| 女性被躁到高潮视频| 精品电影一区二区在线| 精品国产超薄肉色丝袜足j| 亚洲国产精品999在线| 国产蜜桃级精品一区二区三区| 极品教师在线免费播放| 丝袜人妻中文字幕| av片东京热男人的天堂| 亚洲天堂国产精品一区在线| 99久久99久久久精品蜜桃| 日本一本二区三区精品| 欧美大码av| 777久久人妻少妇嫩草av网站| 嫩草影视91久久| 国产av一区二区精品久久| 久久中文字幕人妻熟女| 欧美性猛交╳xxx乱大交人| 亚洲熟女毛片儿| 99久久久亚洲精品蜜臀av| 久久中文看片网| 人人妻人人澡人人看| 午夜福利成人在线免费观看| www日本在线高清视频| 国产精品久久久久久亚洲av鲁大| 国产主播在线观看一区二区| 成人午夜高清在线视频 | 亚洲天堂国产精品一区在线| 看片在线看免费视频| 国产成人欧美| 18禁国产床啪视频网站| 亚洲av电影在线进入| 免费搜索国产男女视频| 亚洲成人久久爱视频| 久久久久精品国产欧美久久久| 怎么达到女性高潮| 啦啦啦观看免费观看视频高清| 亚洲欧美精品综合一区二区三区| 欧美又色又爽又黄视频| 国产精品,欧美在线| 欧美激情极品国产一区二区三区| 精品国产乱码久久久久久男人| 久久久国产成人免费| 日本一区二区免费在线视频| 日本一区二区免费在线视频| 亚洲男人的天堂狠狠| 一区二区三区国产精品乱码| 欧美日本视频| 999精品在线视频| 婷婷六月久久综合丁香| 真人一进一出gif抽搐免费| 一区二区三区国产精品乱码| 中文字幕人妻丝袜一区二区| 欧美黄色淫秽网站| 999久久久国产精品视频| 黄色视频,在线免费观看| xxx96com| 丁香欧美五月| 成年人黄色毛片网站| 亚洲av片天天在线观看| 草草在线视频免费看| 日韩一卡2卡3卡4卡2021年| 欧美日韩瑟瑟在线播放| 亚洲精品国产精品久久久不卡| 国产97色在线日韩免费| 丝袜在线中文字幕| 人成视频在线观看免费观看| 久久热在线av| 亚洲精品久久成人aⅴ小说| 成人手机av| 日韩精品中文字幕看吧| 久久香蕉国产精品| 黑人欧美特级aaaaaa片| 在线视频色国产色| 99精品久久久久人妻精品| 又黄又粗又硬又大视频| 国产午夜精品久久久久久| 很黄的视频免费| www日本在线高清视频| 久久久久久久久久黄片| 夜夜夜夜夜久久久久| 老司机靠b影院| 久久中文字幕一级| 9191精品国产免费久久| 亚洲激情在线av| 久久久国产成人精品二区| 国产视频一区二区在线看| 91成年电影在线观看| 精品日产1卡2卡| 日韩免费av在线播放| 欧美zozozo另类| 淫妇啪啪啪对白视频| avwww免费| 久久午夜亚洲精品久久| 又黄又粗又硬又大视频| 丝袜美腿诱惑在线| 看免费av毛片| 免费电影在线观看免费观看| 日本撒尿小便嘘嘘汇集6| 久久久久久免费高清国产稀缺| 欧美性猛交╳xxx乱大交人| 色尼玛亚洲综合影院| www.自偷自拍.com| 久久天躁狠狠躁夜夜2o2o| 一本大道久久a久久精品| 欧美黑人欧美精品刺激| 久久伊人香网站| 91字幕亚洲| 人成视频在线观看免费观看| 色婷婷久久久亚洲欧美| 深夜精品福利| 国产av一区在线观看免费| 亚洲全国av大片| 一本久久中文字幕| 欧美日韩瑟瑟在线播放| 精品免费久久久久久久清纯| 精品高清国产在线一区| 国产精品久久久人人做人人爽| 国产v大片淫在线免费观看| 国产一级毛片七仙女欲春2 | 黑人巨大精品欧美一区二区mp4| 男女之事视频高清在线观看| 一级毛片女人18水好多| 无遮挡黄片免费观看| 可以在线观看的亚洲视频| 女性被躁到高潮视频| 久久中文字幕一级| 成人欧美大片| 亚洲av成人av| 亚洲国产中文字幕在线视频| 国产又色又爽无遮挡免费看| xxxwww97欧美| 欧美又色又爽又黄视频| 色婷婷久久久亚洲欧美| 欧美成人性av电影在线观看| 亚洲国产精品合色在线| 国产高清有码在线观看视频 | 欧美日韩福利视频一区二区| 国产亚洲精品久久久久久毛片| 中文字幕另类日韩欧美亚洲嫩草| 婷婷精品国产亚洲av| av欧美777| 欧美日韩一级在线毛片| 日韩中文字幕欧美一区二区| 一个人观看的视频www高清免费观看 | 91九色精品人成在线观看| 在线永久观看黄色视频| xxxwww97欧美| 一进一出抽搐gif免费好疼| 免费观看人在逋| 波多野结衣巨乳人妻| 草草在线视频免费看| 成人三级做爰电影| 国产三级在线视频| x7x7x7水蜜桃| 成人av一区二区三区在线看| 欧美成狂野欧美在线观看| 日韩精品中文字幕看吧| 啪啪无遮挡十八禁网站| 老司机深夜福利视频在线观看| 俄罗斯特黄特色一大片| 真人做人爱边吃奶动态| 女性生殖器流出的白浆| 亚洲在线自拍视频| 亚洲熟妇熟女久久| 九色国产91popny在线| 久久国产精品男人的天堂亚洲| 久久中文字幕人妻熟女| 看黄色毛片网站| 亚洲国产精品999在线| 满18在线观看网站| 午夜日韩欧美国产| 国产一区二区在线av高清观看| 怎么达到女性高潮| 宅男免费午夜| 亚洲人成网站高清观看| 草草在线视频免费看| 国产成人啪精品午夜网站| 欧美日本亚洲视频在线播放| 久久草成人影院| 91成人精品电影| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇粗大呻吟视频| 久久午夜亚洲精品久久| 亚洲精品国产区一区二| 亚洲精品久久国产高清桃花| 国产精品免费视频内射| 国产成人精品无人区| 在线十欧美十亚洲十日本专区| 久久久久久久午夜电影| 一区二区三区国产精品乱码| 哪里可以看免费的av片| 99精品在免费线老司机午夜| 中文字幕人妻丝袜一区二区| 人妻丰满熟妇av一区二区三区| 国产av一区二区精品久久| 国产精品永久免费网站| 亚洲精品久久成人aⅴ小说| 国产精品久久电影中文字幕| 国产野战对白在线观看| 久久久国产成人精品二区| 好男人电影高清在线观看| 午夜老司机福利片| 一进一出抽搐gif免费好疼| 久99久视频精品免费| 日本黄色视频三级网站网址| 好男人在线观看高清免费视频 | 欧美乱妇无乱码| 曰老女人黄片| 最近最新中文字幕大全免费视频| 国产片内射在线| av天堂在线播放| 精品乱码久久久久久99久播| 亚洲成人免费电影在线观看| 免费电影在线观看免费观看| 免费人成视频x8x8入口观看| 欧美色欧美亚洲另类二区| 999久久久国产精品视频| 99久久无色码亚洲精品果冻| 国产精品野战在线观看| 在线观看一区二区三区| 国产极品粉嫩免费观看在线| 波多野结衣巨乳人妻| 久久国产精品男人的天堂亚洲| 久99久视频精品免费| 国产精品电影一区二区三区| 一a级毛片在线观看| 国产成人影院久久av| 欧美乱码精品一区二区三区| 精品国产美女av久久久久小说| 老司机福利观看| 91字幕亚洲| 最近在线观看免费完整版| 日韩精品中文字幕看吧| 国产午夜精品久久久久久| 久久热在线av| 国产野战对白在线观看| 别揉我奶头~嗯~啊~动态视频| 熟妇人妻久久中文字幕3abv| 日韩欧美三级三区| 欧美日韩亚洲国产一区二区在线观看| 好男人电影高清在线观看| 给我免费播放毛片高清在线观看| www.熟女人妻精品国产| 成人一区二区视频在线观看| 男女下面进入的视频免费午夜 | 中出人妻视频一区二区| 又紧又爽又黄一区二区| 人成视频在线观看免费观看| 国产精品电影一区二区三区| 黄色 视频免费看| 桃红色精品国产亚洲av| 亚洲午夜理论影院| 亚洲第一青青草原| 免费在线观看亚洲国产| 精品国产超薄肉色丝袜足j| 欧美黑人巨大hd| 男男h啪啪无遮挡| 欧美黄色片欧美黄色片| 少妇的丰满在线观看| 在线观看www视频免费| 香蕉丝袜av| 观看免费一级毛片| 国产男靠女视频免费网站| 中亚洲国语对白在线视频| 中文字幕av电影在线播放| 欧美在线黄色| 女警被强在线播放| 亚洲精品中文字幕在线视频| 免费高清在线观看日韩| xxx96com| 黄片小视频在线播放| 在线av久久热| 男女午夜视频在线观看| 久久中文字幕人妻熟女| 国产精品电影一区二区三区| 亚洲av美国av| 精品欧美一区二区三区在线| 亚洲精品在线观看二区| 久久亚洲真实| bbb黄色大片| 免费高清在线观看日韩| 狂野欧美激情性xxxx| 天天一区二区日本电影三级| 精品国产美女av久久久久小说| 熟女少妇亚洲综合色aaa.| 亚洲精品国产区一区二| 日日干狠狠操夜夜爽| 国产亚洲欧美98| 99国产极品粉嫩在线观看| 一本一本综合久久| 不卡一级毛片| 大型av网站在线播放| 国产激情偷乱视频一区二区| 亚洲熟妇熟女久久| 国产精品永久免费网站| 亚洲国产精品999在线| 国产真实乱freesex| 亚洲一区中文字幕在线| 叶爱在线成人免费视频播放| 日本一本二区三区精品| 91麻豆精品激情在线观看国产| 在线观看免费午夜福利视频| 少妇熟女aⅴ在线视频| 久久人妻福利社区极品人妻图片| 日本一本二区三区精品| 国产精品久久久久久精品电影 | 亚洲欧美日韩高清在线视频| 一a级毛片在线观看| 久久久久九九精品影院| 搞女人的毛片| 琪琪午夜伦伦电影理论片6080| 高潮久久久久久久久久久不卡| 亚洲精品美女久久久久99蜜臀| 精品久久久久久久人妻蜜臀av| 日韩视频一区二区在线观看| 亚洲午夜理论影院| 18美女黄网站色大片免费观看| 国产一级毛片七仙女欲春2 | 国产精品99久久99久久久不卡| 制服诱惑二区| 人人妻人人澡欧美一区二区| 精品午夜福利视频在线观看一区| 日本精品一区二区三区蜜桃| 亚洲精品av麻豆狂野| 51午夜福利影视在线观看| 亚洲国产精品合色在线| 久久久国产成人免费| 自线自在国产av| 欧美日韩亚洲国产一区二区在线观看| 久久精品aⅴ一区二区三区四区| 亚洲 欧美一区二区三区| 国产黄色小视频在线观看| 精品福利观看| 99久久国产精品久久久| 亚洲欧美日韩无卡精品| 亚洲在线自拍视频| 精品乱码久久久久久99久播| 亚洲午夜理论影院| 18美女黄网站色大片免费观看| 精品国产超薄肉色丝袜足j| 国产97色在线日韩免费| 男女下面进入的视频免费午夜 | 男人舔女人的私密视频| 在线观看日韩欧美| 午夜福利欧美成人| 日日夜夜操网爽| 露出奶头的视频| 又紧又爽又黄一区二区| 欧美日韩福利视频一区二区| 国产精品一区二区精品视频观看| 国产精品一区二区三区四区久久 | 午夜成年电影在线免费观看| 一进一出抽搐gif免费好疼| 18禁黄网站禁片午夜丰满| 老汉色∧v一级毛片| 成年人黄色毛片网站| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av香蕉五月| 欧美日韩亚洲国产一区二区在线观看| 亚洲av成人不卡在线观看播放网| 1024手机看黄色片| 午夜两性在线视频| 性色av乱码一区二区三区2| 精品国产亚洲在线| 久99久视频精品免费| 亚洲片人在线观看| 精品高清国产在线一区| 51午夜福利影视在线观看| 麻豆久久精品国产亚洲av| 中文字幕精品亚洲无线码一区 | 午夜精品久久久久久毛片777| 啦啦啦免费观看视频1| 夜夜夜夜夜久久久久| 亚洲男人天堂网一区| 亚洲av中文字字幕乱码综合 | 久久国产精品影院| 一本一本综合久久| 国产不卡一卡二| 最近最新中文字幕大全电影3 | 欧美中文日本在线观看视频| 18禁国产床啪视频网站| 日日爽夜夜爽网站| 国产精品久久视频播放| 亚洲真实伦在线观看| 亚洲男人的天堂狠狠| 91成年电影在线观看| 岛国在线观看网站| 亚洲人成电影免费在线| 国产亚洲精品第一综合不卡| 欧美中文综合在线视频| 亚洲人成77777在线视频| 亚洲一区中文字幕在线| 午夜老司机福利片| 18禁国产床啪视频网站| 亚洲av中文字字幕乱码综合 | 国产精品1区2区在线观看.| 午夜激情福利司机影院| 久久国产乱子伦精品免费另类| 人妻丰满熟妇av一区二区三区| 成人午夜高清在线视频 | 中文字幕精品亚洲无线码一区 | 在线观看午夜福利视频| 少妇粗大呻吟视频| 在线播放国产精品三级| 国产精品,欧美在线| 天天一区二区日本电影三级| 女警被强在线播放| 日韩 欧美 亚洲 中文字幕| 精品高清国产在线一区| 日韩高清综合在线| 午夜福利在线在线| 午夜免费鲁丝| 国产黄a三级三级三级人| 久热爱精品视频在线9| 在线av久久热| 国产91精品成人一区二区三区| 超碰成人久久| 国产成人av教育| 精品国产一区二区三区四区第35| 看片在线看免费视频| 亚洲七黄色美女视频| 男人舔奶头视频| 最近最新中文字幕大全电影3 | 国产精华一区二区三区| 波多野结衣高清无吗| 欧洲精品卡2卡3卡4卡5卡区| 亚洲,欧美精品.| 亚洲午夜理论影院| 好男人在线观看高清免费视频 | bbb黄色大片| 91麻豆精品激情在线观看国产| 亚洲最大成人中文| 嫁个100分男人电影在线观看| 一a级毛片在线观看| 搡老熟女国产l中国老女人| 久久久久国内视频| 18禁黄网站禁片免费观看直播|